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SUMMARY 

Cells expressing similar transcriptional regulatory circuits spatially aggregate into 

distinct cell types or states. However, most existing methods for inferring gene 

regulatory networks from spatially resolved transcriptomics are devoted to spatial co-

expression modules or interactions between transcription factors and target genes, 

neglecting mediated effects from extracellular signals. Here we introduce SpaGRN, a 

statistical framework for predicting the comprehensive intracellular regulatory network 

underlying spatial patterns by integrating spatial expression profiles with prior 

knowledge on regulatory relationships and signaling paths. We validate and assess 

SpaGRN using simulated and real datasets, demonstrating its efficiency, 

performance, and robustness. When applied to 3D datasets of developing Drosophila 

embryos and larvae, SpaGRN identifies spatiotemporal variations in specific 

regulatory patterns, delineating the cascade of events from receptor stimulation to 

downstream transcription factors and targets, revealing synergetic regulation 

mechanism during organogenesis. Moreover, SpaGRN provides flexible visualization 

functions. We construct an online 3D regulatory network atlas database for 

interactive exploration and sharing. 

 

INTRODUCTION 

Studying the architecture of seemingly simple organisms or single tissues is an 

intricate undertaking that necessitates not only decoding the molecular profiles of 
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numerous cells, but also comprehending the impact of their spatial context on cellular 

state and function1. Understanding the gene regulatory network (GRN) is imperative 

to decipher how cellular identity is established, maintained, and responds to the 

microenvironment at the molecular level2. The GRN represents a complex web of 

interactions between genetic materials including transcription factors (TFs) and 

downstream genes across different cell types and developmental stages. Although the 

GRN orchestrates cell functions via intracellular signaling within a cell, it is profoundly 

influenced by extracellular communications from neighboring cells in the spatial 

context3,4. For instance, the determination of distinct mesodermal cell fates in sea 

urchin embryonic development is driven by the spatially confined activation of the 

mesoderm GRN, which is restricted by the proximal endoderm cells5. Another 

compelling example is the remarkable insight gained from investigating the 

spatiotemporal behavior of histologically specific GRNs during Drosophila 

embryogenesis6. 

Reconstructing GRNs is a fundamental goal of system biology leveraging diverse 

experimental methods and computational algorithms7,8. In this study, our focus is 

specifically on elucidating the interplay between TFs and target genes, with a particular 

emphasis on unraveling the intercellular effects through transcriptomics data. GRNs 

are mathematically represented as networks or graphs, which can be directed or 

undirected, weighted or unweighted, unipartite or bipartite, depending on the 

regulatory direction, strength, and gene sets under analysis. Pioneering efforts have 

leveraged bulk transcriptomics data to model GRNs by identifying gene co-expression 

patterns, which reflect the overall state of the tissue. For instance, WGCNA9 is a well-

known correlation-based inference algorithm for predicting non-directional gene 

modules. However, this unsupervised approach is limited by the lack of regulatory 

relationships and cellular specificity, which can lead to false positive connections and 

hinder interpretability and causality. 

Whereafter, GENIE310 and its successor GRNBoost211 employ random forest 

models trained for each target gene against all TF, incorporating prior regulatory 

information from TF3DNA binding assays, such as chromatin immunoprecipitation 

sequencing (ChIP-seq) experiments. The variable importance measures in these 

models uncover the regulatory potentials of TFs for targets, thereby introducing 

directional information to the inferred regulatory relationships. Meantime, the advent of 

single-cell technologies, particularly single-cell RNA sequencing (scRNA-seq), has 

opened up an entirely new avenue for GRN inference at the resolution of individual 

cells, enabling the tracing of cell cluster9s heterogeneity in GRNs across 

developmental stages or conditions12-14. scRNA-seq-based GRN inference algorithms 

primarily concentrate on exploiting cell type or state-specific regulatory patterns 

through linear and nonlinear regression analyses. This approach has facilitated 

temporal GRN modeling15, GRN perturbation analysis16, and GRN refinement by 

integrating other modalities such as scATAC-seq data17. Despite these advancements, 

predicting essential regulators to study cell-identity-specific phenomena using 
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computational methods remains a challenging problem in bioinformatics2,8. For 

example, GRNs are essentially intrinsic to individual cells. But owing to the sparse and 

noisy nature, GRN inference algorithms for scRNA-seq data generally compute 

statistically significant co-expression of TF and targets for a specific cell cluster rather 

than one single cell. These algorithms assume that cells of the same type or state 

share the same regulatory events, neglecting the importance of considering the spatial 

context of TF-target co-expression. However, harnessing the co-expression 

information of neighboring cells can aid in the accurate inference of the GRN of a focal 

cell. Additionally, scRNA-seq-based GRN inference methods fail to account for the loss 

of cellular niche topological structure during cell dissociation, which can lead to the 

rewiring of the GRN inside a central cell due to ligand-receptor (L-R) interactions with 

spatially proximal cells. Thus, the connection between extracellular signaling and 

intracellular regulation is overlooked by these methods. 

To address these challenges, we propose a refining and improving existing GRN 

model through spatially resolved transcriptomics (SRT). Recent advances in SRT 

technologies have enabled the investigation of spatially specific gene expression 

patterns and interactions within complex tissues18-21. Specifically, SRT allows for not 

only the inspection of gene co-expression pattern in specific spatial locations but also 

the identification of extracellular signaling that drives cellular responses from their 

respective niches. Current approaches to predict gene regulatory interactions using 

SRT data can be mainly categorized into four types: (a) subcellular proximity: 

extracting gene proximity relationships from subcellular patches to infer interaction 

networks using fluorescence in situ hybridization (FISH) imaging-based SRT data22; (b) 

direct application: directly using algorithms originally designed for scRNA-seq data to 

infer GRNs from SRT data23; (c) spatial co-expression: deriving spatially specific gene 

co-expression modules including graph-based Hotspot24, spatially weighted CellTrek 

toolkit25, and Bayesian-based SpaceX26; and (d) extracellular to intracellular model: 

exploiting the effect of cell-cell communications (CCC) to refine GRNs27-29. However, 

these methods pose new challenges owing to SRT data characteristics. In particular, 

the <subcellular proximity= strategy is only applicable to imaging-based ISH techniques 

to generate RNA profiles at the single molecule resolution for a limited number of 

preselected genes. The <direct application= approach allows for the GRN analysis of 

SRT data generated by in situ spatial barcoding-based platforms such as Stereo-seq, 

10X Visium, and Slide-seq2. But challenges arise due to difficulties in precise cell 

segmentation, which may result from the presence of mixed cells within the same spot 

or the loss of pairwise ssDNA and H&E staining images. Moreover, the lack of spatial 

information in this approach can confound the identification of important TF-target 

associations26. Another dilemma is that most available methods cannot handle over 

tens of thousands of cells with tens of thousands of genes8. One compromise solution 

is cell aggregation or downsampling. Furthermore, the <spatial co-expression= 

approach only provides symmetrical gene-gene interactions without causal 

relationships and typically yields false positive connections in the network. In contrast, 
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the <extracellular to intracellular model= represents an innovative approach that 

exploits the spatial information and incorporates the influence of CCC to refine GRN 

in a spatially correlated manner. NicheNet28 and CellCall29 predict the communication 

pathways linking the inside and outside of cells, yet they do not generate spatially 

constrained GRNs. The recently published CLARIFY utilizes a multi-level graph 

autoencoder to infer CCC and simultaneously prune GRNs27. But it should be noted 

that CLARIFY has only been applied to a limited number of cells and genes, and it 

requires an input GRN. On account of the increased sparsity caused by dropouts and 

lower gene capturing efficiency in SRT data compared to scRNA-seq data, the 

identification of spatially proximal co-expression patterns across putative cells or 

spots/bins becomes imperative for predicting statistically significant gene regulation for 

each cell type or state. It is reasonable to assume that cells exhibiting similar 

intracellular gene regulation aggerate into spatially constrained groups to perform 

specific functions in most scenarios. Therefore, one would expect that cells in close 

spatial proximity would exhibit more similar GRNs under the same intercellular 

stimulation, while more distant cells would exhibit more distinct GRNs in response to 

different intercellular signals. Remarkably, none of the existing GRN analysis 

frameworks for SRT data, to the best of our knowledge, incorporate cis-regulatory motif 

analysis and spatial gene expression patterns to accurately predict the complete 

intracellular regulatory paths30.  

Based on this assumption, we propose the pipeline, SpaGRN, for the inference of 

spatially-aware intracellular receptor-TF-target network for these locally-distributed 

scenarios. Considering the continuous increase in the numbers of captured cells/bins 

and gene as the data size grows, we have employed a proximity-graph-based 

statistical model with high computational efficiency to investigate potential gene-gene 

interactions within cells. The spatial proximity and the TF cis-regulatory relationship 

are jointly used to eliminate false positive connections between TF and targets. In 

parallel, we identify potential receptors that might be specifically activated by 

extracellular signals based on the spatially aware co-expression graph, and connect 

them to intracellular TFs and targets to accomplish the cellular regulation. To evaluate 

the performance of our pipeline, we have conducted comprehensive benchmarking 

using simulated SRT data. Our results demonstrate that SpaGRN outperforms several 

state-of-the-art methods in terms of key evaluation metrics, including the area under 

the precision-recall curve (AUPRC) and the area under the receiver operating 

characteristic curve (AUROC). Additionally, our algorithm exhibits superior 

performance in capturing regulon spatial heterogeneity and offers high computational 

efficiency. When applied to well-characterized mouse brain datasets, our algorithm 

recapitulates well-known cell fate regulations governed by TFs, and identifies cell-type-

specific regulons with distinct spatial distributions. Moreover, we further interpret 

regional cell-type-specific regulon configurations and dynamics using a high-resolution 

3D Drosophila spatiotemporal transcriptomics database, thus enabling mechanistic 

insights into the cellular and molecular regulation of morphogenesis in the fruit fly. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 19, 2023. ; https://doi.org/10.1101/2023.11.19.567673doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.19.567673
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 / 31 

 

Furthermore, we have built an interactive 3D GRN atlas database for SRT data 

(http://www.bgiocean.com/SpaGRN/) rendered by VT3D31, that covers different SRT 

datasets. The availability of this atlas database contributes to advancing related 

studies, including investigations on embryogenesis and organogenesis processes. 

 

Design 

Briefly, the design of the SpaGRN pipeline, aimed at inferring spatially constrained 

GRNs from SRT data, encompasses a series of well-defined steps (Figure 1). To begin 

with, a bipartite spatially-aware gene co-expression network is constructed using the 

gene coordinated co-occurrence patterns derived from SRT data. This network 

captures the spatial relationships between genes within spatially proximate cells and 

serves as the foundation for subsequent analysis. Next, SpaGRN proceeds to infer 

potential regulatory modules centered around all available TFs. The resulting 

candidate regulatory modules are subsequently pruned following an approach that is 

similar to a previously reported method14, incorporating promoter region and TF-

binding site information. This pruning process eliminates non-significant modules and 

indirect targets in each significant module. SpaGRN then identifies receptor genes 

from the co-occurrence graph referring to an established L-R database, and construct 

final directional receptor-TF-target paths for each TF. The inclusion of receptor genes 

enriches the biological relevance of the inferred GRNs, accounting for the impact of 

extracellular signaling on cellular regulation. Finally, cellular receptor-TF-target 

activities of each regulon are computed in individual cells or spatial bins. This measure 

can be either enriched to detect cell-identity-specific regulon modules or used for cell 

clustering to resolve the problem of sparsity for SRT data, which enables the discovery 

of spatially coherent cell populations and facilitates the interpretation of cellular 

heterogeneity within the tissue or organ. In summary, by addressing these challenges 

mentioned earlier and leveraging the power of spatial expression, cell proximity, and 

extracellular receptor activation, SpaGRN emerges as a robust and effective tool for 

accurately predicting explicit intracellular regulatory pathways from SRT data. 

 

RESULTS  

SpaGRN identifies spatially resolved regulons 

To quantitatively assess the performance on GRN inference of SpaGRN, we generated 

simulated data using scMultiSim32 and applied metrics defined by BEELINE such as 

AUPRC. These in silico datasets included single-cell expressions and locations of TFs 

and associated targets that were mediated by specific L-R pairs, which served as the 

ground truth for benchmarking (Figure 2A). We compared SpaGRN against three 

state-of-the-art GRN inferring methods, namely GRNBoost2, GENIE3, Hotspot. 

AUPRC and AUROC values were computed as standard classifier scores for a robust 

comparison. Given that GRNs are typically sparse, the inference problem for these 

networks exhibits considerable imbalance. It is therefore more appropriate to consider 
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AUPRC as the primary performance metric, rather than AUROC2,33 (Figure S1). 

SpaGRN demonstrated significant performance advantages in accurately inferring TF-

target regulations on the simulated data. SpaGRN accurately reconstructed cell 

cluster-specific GRNs, which exhibited a distribution that correlated with the spatial 

distribution of corresponding cell clusters (Figures 2B and 2C). To evaluate their 

stability, we simulated 10 datasets with random differences in technical variations 

including library preparation noise and batch effects, as well as cell identities involving 

populations, locations, GRNs, and receptors introduced by the scMultiSim setting. 

Each algorithm was executed on the 10 replicates, and AUPRC ratios (AUPRC values 

normalized by that of a random predictor) were calculated. SpaGRN outperformed 

existing methods across multiple simulated datasets. Specifically, it achieved 

improvements 41.6%, 31.8% and 48.2% in mean AUPRC ratios compared to 

GRNBoost2, GENIE3 and Hotspot, respectively, for each of the five individual spatial 

cell clusters (Figure 2D).  

We also sought to test the robustness of inferred GRNs obtained through SpaGRN 

by varying the number of cells to 1500, 1000, and 500 (Figure 2D). The resulting box 

plots of AUPRC ratios exhibited distinctive dependencies on cell number among the 

four methods. Nevertheless, SpaGRN demonstrated its superior robustness across 

varying cell numbers and consistently outperformed the other algorithms across all 

three sets of ten synthetic datasets investigated. 

 

SpaGRN investigates intercellular influences on intracellular regulation 

Furthermore, we acknowledged that SpaGRN proves to be a valuable tool for not only 

identifying spatially resolved GRNs but also for elucidating intricate intercellular 

influences. To evaluate the performance of SpaGRN in capturing relevant receptors to 

intracellular regulators within the same cell, we utilized scMultiSim simulated datasets 

that provided a cell-type level CCC ground truth. To assess the stability of capturing 

receptor genes, we conducted five iterations of dataset simulation, each iteration 

containing two predefined receptors for every cell cluster for benchmarking purposes. 

The analysis of the results demonstrated that SpaGRN successfully detected an 

average of 90%, 60%, 70%, 70%, and 90% of the receptors for the respective five 

datasets (Figure 2E). This finding highlighted the efficacy of SpaGRN in predicting 

potential intercellular influences on the intracellular regulons. It is noteworthy that other 

competing GRN inference methods did not provide CCC information, thus rendering 

them unable to be compared in this particular aspect. 

 

SpaGRN unveils spatially resolved regulatory mechanisms underlying brain 

development 

The mouse brain, a well-studied and complex model organ, consists of diverse cell 

types with distinct gene expression profiles. It provides a unique opportunity to unravel 

the fundamental cellular and molecular mechanisms governing human brain function, 

model brain development, and advance neuroscience research. By leveraging SRT 
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data to investigate the spatial organization of gene expression, researchers can 

decipher networks of TFs, signaling molecules, and other regulatory elements that 

orchestrate gene expression patterns, contributing to the regional specialization and 

functional organization of the brain. In this study, we applied SpaGRN to analyze a 

mouse coronal hemibrain dataset generated using Stereo-seq, aiming to assess its 

efficacy in detecting spatially resolved regulons. 

The cells were clustered and annotated according to differential expression and 

anatomical structure in the study conducted by Chen et al.20 (Figure 3A). Utilizing 

SpaGRN, we identified highly expressed regions of TFs and associated targets that 

closely corresponded to the annotated brain regions (Figures 3B and S2). To 

investigate the regionalization and functional roles of each regulon, we visualized the 

expression patterns of TFs and target genes, and performed gene ontology (GO) 

enrichment analysis, with a particular focus on constituent cell types such as excitatory 

glutamatergic neuron (EX), dopaminergic neuron (DA), and meninge cell types. 

Notably, the predicted isocortex-specific regulon Bcl11a(+) was already known to be 

present in V1 radial glia and excitatory neurons of the cortical area (Figure S3A). The 

identified GO terms were directly related to neuron projection morphogenesis, 

pathways of neurodegeneration, and Alzheimer's disease, thereby confirming the 

pivotal role played by Bcl11a(+) in regulating neuron progenitor cell proliferation, 

differentiation, and functional homeostasis34 (Figure S3B). Additionally, our findings 

suggested that Bcl11a(+) might maintain its function through the modulation of 

chemical synaptic transmission, regulation of trans-synaptic signaling, and regulation 

of calcium ion-dependent exocytosis (Figure S3B). Furthermore, the regulon Tcf4(+) 

exhibited specific expression in the isocortex and hippocampal formation, in line with 

previous studies that have identified Tcf4 as a significant marker of glutamatergic and 

GABAergic neurons in these regions35 (Figure S3C). Moreover, further GO analysis 

revealed a significant correlation between these genes and key processes involved in 

synaptic signaling and development, providing compelling evidence for their 

substantial influence on cognitive processes such as perception, attention, learning, 

and memory35 (Figure S3D). We observed the presence of another notable regulon, 

Egr3(+), in both the isocortex and hippocampal formation (Figure 3C), which aligned 

with previous studies reporting its involvement in excitatory neurotransmission and its 

ability to modulate neuronal behavior over time (Figure 3D). This regulon was 

distributed in a distinct Pallium glutamatergic division consisting of the isocortex, 

hippocampal formation, olfactory areas, and cortical subplate36,37. In contrast, DA 

neuron-specific Pbx3(+) exhibited a predominant enrichment in the region of 

behavioral state related midbrain, which agreed with the reported presence in 

substantia nigra in midbrain38 (Figure 3E). The corresponding GO terms underscored 

the significance of Pbx3(+) in midbrain dopaminergic neuron development, 

specification and survival, as well as its implication in the development of 

neurodegenerative diseases39 (Figure 3F). Importantly, when compared to the state-

of-the-art GRN inference algorithm pySCENIC that has been extensively applied in 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 19, 2023. ; https://doi.org/10.1101/2023.11.19.567673doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.19.567673
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 / 31 

 

mouse brain research20,40, SpaGRN9s identification was more correlated to real 

regionalized functions and meanwhile the differentially expressed areas revealed by 

SpaGRN were more clearly discernible according to the ISH image of TFs obtained 

from the mouse brain map of the Allen brain atlas (https://mouse.brain-

map.org/static/atlas)41. 

In the spatial context, cellular heterogeneity is determined not only by the 

intracellular regulatory network but also by the extracellular microenvironment, which 

collaboratively accomplish diverse biological functions42,43. However, existing 

computational methods for modeling both interactions simultaneously are still 

underdeveloped44. SpaGRN exhibited an exceptional capability to precisely identify 

potential receptors that might contribute to regulon activity, providing unique insights 

into intracellular regulation mediated by biochemical signals and intercellular crosstalk 

across multiple dimensions. Within several EX cell clusters, our findings suggested 

that intercellular communication through specific receptors potentially regulated the 

activity of Tcf4(+). Among them, previous studies have reported the co-expression of 

Cntn545, Stx1a46, Scn2a47, Thy145, and Scn1b48 with Tcf4(+). Moreover, SpaGRN 

predicted the involvement of previously unreported receptors, Il31ra and Gp1bb. 

Furthermore, the regulon Bcl11a(+) associated with neuron proliferation and 

differentiation, was inferred to be functionally linked to known co-expressed receptors, 

including Nptxr45, Negr149, Pde1a49, Thy145, and Lrrtm450. Additionally, Scn1b, Il31ra, 

Mpzl2, and Asgr1 were identified by SpaGRN as potential mediators of Bcl11a(+) 

activity, providing novel insights into their regulatory roles that have not been 

previously reported. Within the EX cells in isocortex and hippocampal formation, the 

known receptors Adcy151 and Camk2a51 were identified as key receivers of 

extracellular signaling, influencing the intracellular activity of Egr3(+). This effect could 

also be attributed to the co-expression of Tspan13, Stx1a, Atp6ap2, Opcml, Scn1b, 

Pde1a, Lingo1, Lrrtm4, Camk2a, Scn2a, Gp1bb, and Sv2b. Moreover, the midbrain-

specific Pbx3(+) was associated with Chrna445 and Ret45, with the additional discovery 

of new receptor Chrnb3. SpaGRN provided researchers with direct signaling pathways 

that bridged inter- and intracellular regulation, connecting selected receptors, TFs, and 

targets, thereby streamlining the research process and minimizing labor-intensive 

experimentation. 

SpaGRN presents a comprehensive and robust solution that surpasses existing 

GRN inference algorithms such as pySCENIC, for analyzing complex SRT data. In the 

mouse brain dataset, SpaGRN revealed additional spatially resolved regulons, 

including Zic1(+), Gata3(+), Hivep2(+), and Vsx1(+), which were not identified by 

pySCENIC. Notably, the EX thalamus and Meninge-enriched Zic1(+) emerged as a 

thalamus-specific regulon, known for its significant role in maintaining neural precursor 

cells in an undifferentiated state52 (Figure 3G). Furthermore, GO enrichment analysis 

confirmed its involvement in the development of sensory organs, the visual system, 

hindbrain, and neural crest cells (Figure 3H). Importantly, our findings suggested that 

these functional associations were mechanistically linked to extracellular matrix 
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organization and the TGF-beta signaling pathway (Figure 3H). Additionally, Zic1(+) 

was predicted to be regulated by a set of known co-expressed receptors including 

Fgfr253, Gjb254, Gpr18255, Thbd56, Cdh157, Ramp358, Cd4459, and Anxa260, and we also 

identified previously unreported receptors Il31ra, Mpzl2, and Asgr1. Another regulon, 

Hivep2(+), exhibited a distribution primarily enriched in the frontal cortex and 

hippocampus61 (Figure S3E). The corresponding GO terms aligned well with its crucial 

role in severe cognitive and social impairments, anxiety-like behaviors, hyperactivity, 

and memory deficits61 (Figure S3F). Additionally, the spatial distributions of highly 

expressed regions of Gata3(+) (Figure S3G) and Vsx1(+) (Figure S3H) were in 

accordance with previous studies46,62. Their distributions were further supported by 

corresponding ISH benchmarking images. 

In conclusion, SpaGRN offers a rigorous and systematic analysis of inter- and 

intracellular signaling pathways, yielding invaluable insights into the intricate regulatory 

mechanisms underlying brain structure and function. By employing the SpaGRN 

algorithm and elucidating the roles of receptor-mediated regulons, significant 

advancements have been made in our comprehension of the complex biological 

processes orchestrating brain development and activity. This comprehensive 

approach not only enhances our understanding of brain function at cellular and 

molecular levels but also opens up promising avenues for therapeutic interventions 

and the treatment of neurological disorders. 

 

SpaGRN observes spatiotemporal regulatory variations in time-series 3D SRT 

data 

Organismal growth and development involve complex biological processes 

characterized by variations in cell types and gene expression over time. These 

temporal variations capture the dynamic molecular changes occurring during 

development. In this study, we leveraged a previously published 3D square-binned 

atlas of Drosophila embryogenesis23 to emphasize dynamic changes in both the spatial 

and temporal dimensions, encompassing 5 developmental stages that span embryos 

and larvae. 

We first inferred the spatial GRN configurations in the 5 stages and detected 33, 

22, 22, 25, and 14 regulons, respectively. Through unsupervised clustering followed 

by manual annotation, we identified regulons enriched in different cell types (Figures 

4A and S4). These regulons including central nervous system (CNS)-specific hth(+), 

midgut-specific cad(+), and epidermis-specific vvl(+), showed spatial patterns similar 

to the reconstructed 3D organ mesh models at different developmental time points 

(Figure 4B). Subsequent ISH examinations also confirmed that hth, cad, and vvl were 

mainly expressed in the CNS, midgut, and epidermis region, respectively (Figure 4C). 

By applying SpaGRN to calculate spatiotemporally dependent regulon activities, we 

identified the dynamic functions of these cell-identity-specific regulons imperative for 

embryogenesis and organogenesis. In particular, our observations revealed the 

dynamic migration of the highly expressed region of the hth(+) regulon from the 
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neurogenic ectoderm region during early embryonic stages to the head region during 

larval stages. This spatial shift was consistent with the dynamic regulation of neuron 

differentiation and morphogenesis, as indicated by GO enrichment analysis63,64 (Figure 

4D). Another regulon, cad(+) successively experienced expansion and contraction 

during midgut development. Although the GO enrichment analysis failed due to the 

limited number of captured targets, it is worth noting that previous studies have 

indicated the involvement of this TF in transmembrane transport and chemical 

homeostasis, implying a potential role in digestion and absorption65. In contrast, the 

regulon activity of the epidermis-specific vvl(+) remained in the ectoderm region 

throughout development. Its enriched GO terms were primarily related to epithelial 

morphogenesis as previously described66 (Figure 4E). Compared to the GRN results 

from the original article23, SpaGRN obtained regulons with more evident and precise 

spatial heterogeneity for the same TF with the benefit of its spatial refinement capability 

(Figure S5). 

Moreover, our investigation delves into the co-regulatory connections among 

different specific regulons enriched in the same tissue. For instance, we inspected the 

crucial cooperative role of two CNS-specific regulons, hth(+) and exd(+) in neuron 

differentiation. These two regulons were connected through shared target genes, and 

could be collectively stimulated by the receptor msn, or independently by LRP1, Egfr, 

ATP6AP2, mag, robo3, Lamp1, Alk, in response to extracellular signaling (Figure 5A). 

The correlation between hth(+) and exd(+) has been reported, with hth responsible for 

the exd retention in the nucleus and forming part of the functional Exd/Hox complex67. 

Double immunostaining experiments further verified the co-expression of these two 

regulators in olfactory projection neurons and their progenitors68. GO term analysis of 

shared targets of these regulons also indicated their vital roles in neuron differentiation, 

aligning with the reported function of encoding a MEIS family protein that regulated the 

subcellular localization of the homeotic protein cofactor Extradenticle, involved in 

multiple aspects of embryonic and adult fly development63,64 (Figure 5B). The mutation 

of hth or exd has been shown to result in defects in olfactory projection neurons68. On 

the other hand, the identification of unique targets for each regulon implied their subtle 

distinctions in regulatory functions (Figure 5B). 

Therefore, SpaGRN facilitates the investigation of specific receptors that transmit 

signals from CNS9s niche, which promote or inhibit the activity of specific TFs inside 

CNS cells through specific signaling pathways. These TFs ultimately influence the 

expression of downstream targets, collectively contributing to the cellular functions 

relevant to organogenesis. 

 

Performance 

GRN inference from large-scale gene expression data of SRT or scRNA-seq has been 

computationally demanding. To evaluate the computational performance of SpaGRN, 

we compared it to two existing algorithms, pySCENIC and Hotspot, using the same 

mouse hemibrain dataset consisting of 50,140 cells and 25,879 genes (Table 1). The 
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current pySCENIC pipeline, implemented in Python, claimed to have increased the 

computational efficiency compared to its predecessor by introducing XGBoost and 

parallelization. However, our results demonstrated that SpaGRN exhibited an average 

5- and 22-fold increase in the running speed compared to pySCENIC and Hotspot, 

respectively, when running on a Linux system equipped with an Intel Core Processor 

(Broadwell, IBRS) of 40 CPU threads and 256 Gb RAM. The peak memory usages of 

the three methods were similar, though. We noted that other GRN tools such as 

CellTrek and SpaceX required significantly longer computation times (more than 2880 

CPU hours) when tested on the same dataset. In addition, the performance of SimiC 

was heavily dependent on user-defined parameters, such as the number of output 

regulons and target genes. These tools were not included in our benchmarking 

analysis. We also tested the performance comparisons using the fruit fly data (Table 

S2). 

 

DISCUSSION  

The burgeoning field of single-cell omics has provided unprecedented opportunities for 

modeling and predicting the regulators of cellular identities. In this paper, we have 

introduced SpaGRN as a versatile approach for exploring directional GRNs in SRT 

data. This pipeline capitalizes on the integration of spatially-aware transcriptomic 

profiles, TF motif sequences, and L-R-TF linkages to infer cell-identity-specific regulon 

modules. By leveraging benchmarking analyses and practical applications, we have 

demonstrated the efficacy of SpaGRN in reconstructing robust guides that elucidate 

regulatory mechanisms within specific cells or regions, thereby capturing topological 

patterns inherent in tissue sections. Furthermore, SpaGRN exhibits remarkable 

flexibility, accommodating mainstream coordinated cell-gene matrices or cell-gene 

similarity graphs generated by most SRT platforms. Notably, our framework can be 

extended to incorporate such matrices or graphs produced by computational 

algorithms that map single cells back to their spatial coordinates through the integration 

of scRNA-seq and SRT data. Additionally, SpaGRN offers users the convenience of 

visualizing and exploring spatial GRNs through flexible 2D imaging functions and an 

interactive 3D online atlas database provided within the framework (Figure S6). 

 

Limitations 

While SpaGRN represents a powerful tool for exploring spatially informed GRNs, it is 

important to acknowledge its inherent limitations. One such limitation is the potential 

presence of false-positive or false-negative interactions within the inferred spatial GRN, 

emphasizing the need for experimental validation to confirm the reliability of the 

network predictions. Although SpaGRN leverages disparate forms of information such 

as spatial transcriptomic profiles, TF-target cis-regulatory, and existing receptor-TF 

linkages, it is crucial to recognize that certain relevant biological interactions that occur 

in a non-cell-autonomous manner or between distant cells may not be effectively 
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captured by the current framework. 

Similar to other computational methods, SpaGRN also heavily relies on the quality 

and reliability of the input data. Inaccuracies, noise, or biases in SRT profiles can 

impact the accuracy and robustness of the inferred spatial GRNs. The spatial 

resolution of SRT data can also pose limitations on the ability to capture fine-grained 

regulatory interactions. Moreover, the accuracy of SpaGRN's predictions is contingent 

upon the availability and comprehensiveness of annotated TF-target and L-R-TF in the 

two knowledge libraries. Incomplete or biased annotations may result in the 

overlooking of important regulatory interactions, potentially leading to an incomplete 

representation of the spatial GRN and associated signaling paths. At last, the 

performance and generalizability of SpaGRN may vary across different tissues and 

species. One main reason is the two existing knowledge libraries were pre-trained by 

model organisms, potentially affecting the applicability and accuracy of SpaGRN in 

rare organs or in non-model organisms. 

Moving forward, we have outlined several directions for future research to 

enhance the capabilities of SpaGRN. One avenue of investigation involves tracing the 

propagation of regulatory signals within the spatial GRN. By elucidating the flow of 

regulatory information such as pseudotime regulatory trajectory tracing14 across cells 

and regions, we aim to gain valuable insights into the spatiotemporal dynamics of gene 

regulation. Additionally, we plan to conduct in silico gene perturbation experiments16 

within the SpaGRN framework. This simulation-based approach will allow us to 

investigate the functional consequences of perturbing specific genes or regulatory 

elements within the inferred GRN, enabling us to predict the impact of gene 

manipulations on cellular behavior and regulatory outcomes. 
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Figure 1. Overview of SpaGRN workflow 

First, a bipartite spatially-aware gene coexpression graph is constructed using the 

preprocessed SRT dataset. Next, SpaGRN infers refined regulatory modules 

centered around all available TFs, incorporating promoter region and TF-binding site 

information. In the meantime, receptor genes were identified from the co-expression 

graph referring to an established L-R database. Finally, SpaGRN constructs a 

directional receptor-TF-target paths for each TF.  
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Figure 2. SpaGRN identifies superior spatially resolved regulons with potential 

intercellular receptors 

(A) The spatial distribution of 1500 cells across five cell clusters as groud truth for 

benchmarking. 

(B) Detected spatially specific regulons across five cell clusters. 

(C) Heatmap of functional regulon modules enriched for specific spatial cell clusters.  

(D) Box-plots depicturing the AUPRC ratio of SpaGRN and three other state-of-the-

art GRN inference tools on datasets of different total cell numbers. Each box was 

generated across ten simulated datasets sampled with scMultiSim. 

(E) SpaGRN9s capture ratio of ground truth spatial cluster-specific receptors in the 

five simulated datasets. 
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Figure 3. SpaGRN discovers credible and novel regulons with distinct spatial 

patterns in mouse brain data 

(A) Adult mouse hemisphere brain data colored by annotation. 

(B) Heatmap of functional regulon modules enriched for specific cell types.  

(C, E) Spatial representation of regulons Egr3(+) and Pbx3(+) using SpaGRN and 

pySCENIC. The spatial distribution is verified by the corresponding ISH from the 

mouse brain map of the Allen brain atlas. 

(D, F) GO enrichment analyses of Egr3(+) and Pbx3(+). 

(G) Spatial representation of regulon Zic1(+) uniquely detected by SpaGRN and the 

corresponding ISH image for validation. 

(H) GO enrichment analysis of Zic1(+).  
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Figure 4. SpaGRN identifieds 3D spatiotemporal patterns of regulons for 

developing Drosophila 

(A) Heatmap of functional regulon modules enriched for specific cell types. Left color 

bars refer to different cell types. 

(B) Cell-identity-specific regulons during different developmental stages. The typical 

spatial regulon (bottom) for different cell types shows a highly similar pattern in 3D to 

the morphological mesh model of the corresponding organ or tissue (top).  
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(C) ISH experiments validating the spatial distribution of the TF for each specific 

regulon. 

(D) GO term enrichment analysis of representative regulons in (B). 
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Figure 5. SpaGRN unveils an intra- and inter-cellular co-regulation network in 

CNS  

 (A) Connection network of two representative spatially specific regulons enriched in 

CNS. The detected influential receptor genes are shown in magenta color and points 

to the TFs with dashed arrows. 

(B) GO terms of shared and exclusive target genes in hth(+) and exd(+) regulons. 
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Table 1. Statistics of computational performance on mouse brain data 

tools clock time (hour) peak memory (Gb) 

SpaGRN 2.2 67 

pySCENIC 9.2 82 

Hotspot 39 68 

The GRN inferences were performed on a computer cluster with 40 Intel Core 

Processor (Broadwell, IBRS) CPU threads with 256 Gb of memory installed, and used 

the Linux operating system.  
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STAR METHODS 

RESOURCE AVAILABILITY 

Lead Contact 

Further information and requests for the resources and reagents may be directed to 

and will be fulfilled by the lead contact, Mengyang Xu (xumengyang@genomics.cn). 

 

Materials availability 

This study did not generate new unique reagents. 

 

Data and code availability 

ï All data used in this study have been previously reported and are publicly available 

(Table S1). The coronal hemibrain section in an adult mouse is available from 

STOmicsDB MOSTA database69 (https://db.cngb.org/stomics/mosta/download/). 

The raw sequencing data are stored in CNGB Nucleotide Sequence Archive 

(CNSA)70 of China National GeneBank DataBase (CNGBdb)71 under accession 

number CNP0002646. The 3D developing Drosophila embryos and larvae dataset 

was downloaded from STOmicsDB (https://db.cngb.org/stomics/flysta3d/). The 

raw sequencing data is available in the CNGB under accession number 

CNP0002189. Processed data can be interactively explored from our database 

(https://www.bgiocean.com/SpaGRN). All the related data and TF databases can 

be directly obtained from our database website. 

ï All original codes supporting the current study are hosted on GitHub 

(https://github.com/BGI-Qingdao/SpaGRN).  

ï Any additional information required to reanalyze the data reported in this paper is 

available from the lead contact upon request. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Data design and simulation for benchmarking 

We evaluated the GRN inference ability of SpaGRN and existing methods on ten 

replicates of simulated SRT datasets, each consisting of a single-cell gene 

expression matrix of 1800 genes and 1500 cells across five clusters, along with the 

spatial coordinates of cells. We used scMultiSim32 to generate these simulated 

datasets based on a pre-defined ground truth GRN consisting of five regulons with 

distinct spatial patterns and another five regulons uniformly distributed throughout the 

spatial area. Furthermore, we assessed the receptor detection ability of SpaGRN 

using another five simulated SRT datasets generated with scMultiSim. Each of these 

five datasets involved 120 genes and 1500 cells of five types and was simulated 

based on a pre-defined ground truth GRN of five spatially specific regulons as well as 

20 pre-defined ground truth L-R pairs. 

The first ten simulated gene expression datasets were generated using 

scMultiSim through a two-step process. During the first round of simulation, we 
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employed the 'layers' layout and generated coordinates for a total of 1500 cells 

belonging to five different clusters (300 cells for each cluster) by specifying 20 L-R 

pairs in the 8cci9 parameter (Figure 2A).  In the second round, we independently 

simulated five sets of expression data, each consisting of 300 cells and 1800 genes 

and using one of five pre-defined regulon parameters. These five sets of cells were 

assigned to the coordinates corresponding to the five clusters that were generated in 

the previous round of simulation. In this way, these five regulons could be considered 

as spatially specific. In addition, we generated gene expression data of five spatially 

non-specific regulons by simulating a dataset of 1500 cells and 1800 genes with five 

additional regulon parameters and assigning the 1500 cells randomly to these 1500 

coordinates. The resulting dataset comprised a total of 1500 cells, evenly distributed 

among five distinct cell types that were spatially separated from one another.  The 

1800 genes include a combination of five cell-type specific regulons and five 

generally existing regulons, as well as some non-regulon-related noise.  

The other five simulated datasets were also generated with scMultiSim. We 

utilized the same 20 L-R pairs and five different regulon parameters. The resulting 

datasets each consisted of 1500 cells distributed across five spatial clusters and a 

total of 120 genes. 

 

Real data collection and preprocessing 

We downloaded the 2D SRT dataset of the coronal hemibrain section in an adult 

mouse. This dataset was generated by Stereo-seq and has been extensively studied 

as a reliable benchmark for evaluating the pipeline9s performance. The data captured 

mRNA expression from 25,879 genes in 50,140 putative single cells with spatial 

locations.  

Furthermore, we applied SpaGRN to systematically analyze the intracellular 

regulation across the fruit fly development using the 3D developing Drosophila 

embryos and larvae dataset. Since no cell segmentation information was available, 

we used 15,295 bin20 (20 spots × 20 spots) with 13,668 genes, 14,634 bin20 with 

12,850 genes, 17,787 bin20 with 13,083 genes, 64,658 bin20 with 14,270 genes, and 

43,310 bin50 with 16,326 genes for E14-E16, E16-E18, L1, L2, and L3 samples, 

respectively. 

 

Spatially-aware gene co-expression graph construction 

The proposed SpaGRN starts with the construction of a spatially-aware gene co-

expression graph. Traditional computational co-expression methods, such as 

correlation-based statistics, Bayesian networks, and machine learning approaches, 

are commonly used for scRNA-seq data and can be straightforwardly applied to SRT 

data. But the incorporation of spatial co-occurrence and co-distribution relationships 

remains largely underdeveloped. To address this, we leverage the power of a graph 

structure to make full use of spatial information. The similarity graph has been 

previously demonstrated to be effective in detecting gene modules in multimodal 
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settings for SRT data24. In this work, we utilize the K-nearest-neighbors (KNN) graph 

as our similarity graph. Each cell is represented as a node, and we connect each cell 

to its K nearest cells based on the Euclidean distance. 

Using this spatial-proximity graph, SpaGRN calculates spatial autocorrelation to 

evaluate whether the expression of a given gene in a cell can be predicted by its 

neighboring cells in the graph using the statistic 

�! = # # �"#�"�#
#*%(")"

 

where �" is the standardized expression of the gene in cell �, �(�) is the K nearest 

neighbors of cell � , and �"#  is a non-negative weight determined by the distance 

between cell �  and � . The calculated value is dependent on the variation in gene 

expression patterns across different regions in the spatial-proximity graph. The 

dependence of each gene on the graph structure can be statistically tested with a 

parametric null model assuming that the gene expression values in each cell are 

independently drawn from a certain distribution, without any spatial autocorrelation. 

Here, we employ the negative binomial distribution as the selected null model and 

compute the Z scores of �!, from which we can determine the significance of each 

gene. 

We retain only the genes with significant spatial patterns based on the Hx statistic, 

and divide them into TF and non-TF genes referring to a built-in or user-defined 

whitelist. Subsequently, we build a bipartite co-expression graph connecting every TF 

with all the non-TF genes. The weight assigned to each TF-target edge is determined 

by calculating a local co-expression score, which is defined by the following formula: 

�!( = # # �"#(�"�# + �"�#)
#*%(")"

 

where �" and �" are the standardized expressions for gene � and � in cell �. Then 

for every TF in the co-expression graph, we apply multiple selection strategies, such 

as TF9s top � targets or top �th percentile of targets, to construct multiple regulatory 

modules centered around it. 

 

Direct causal regulatory refinement by TF motif analysis 

Next, we filter the previously constructed regulatory modules and prune the 

unauthenticated connections from the retained regulatory modules. Given that the TF-

centered regulatory modules are generated through spatial proximity screening, they 

may still contain indirect and potentially misleading targets. Since multimodal data are 

not always be readily available for deriving the true TF-gene interactions, we integrate 

gene expression and prior knowledge through the cis-regulatory motif enrichment 

analysis for direct regulatory inference. We perform cisTarget72 to sort and rank all 

target genes of each potential regulatory module. Using the hidden Markov model and 

positional weight matrices, the motif enrichment score of a module is calculated based 

on the area under the ranking curve (AUC) value. Only modules whose target genes 

show significant higher motif enrichment score are retained. Meanwhile, we also 
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leverage the cisTarget rank to prune the target genes in every retained module. To 

enhance user convenience, we have downloaded three pre-computed motif databases 

for three organisms, Homo sapiens, Mus Musculus, and Drosophila melanogaster 

(https://resources.aertslab.org/cistarget/)72 and included them in our pipeline. Given a 

gene set, this analysis aims to further refine the topological structure of the inferred 

GRN such that the edges represent direct interactions corresponding to activation or 

inhibition from the TF to its target genes. 

 

Undirect receptor-TF connection inference  

The intracellular GRN is not isolated from the cellular microenvironment. Potential 

intercellular communications can be inferred with any CCC tools for SRT data. To 

investigate the CCC effect from neighboring cells that may impact the TF-centered 

GRN, we retrieve receptors from the co-expressed genes of each TF that were 

excluded during the motif analysis. Subsequently, we link these receptors to their 

corresponding TFs within the same cells, revealing indirect connections between 

receptors and TFs. In this study, we utilize the NicheNet V2.0 L-R network database 

for Homo sapiens and Mus Musculus (https://zenodo.org/record/7074291) to 

determine the receptors, which integrates 14, 23, and 20 database sources for L-R 

interactions, signaling paths, and TF regulatory relationships, respectively. In total, it 

includes 1,430 L-R pairs, 18,647 signaling linkages, and 25,108 regulatory interactions.  

 

ISR score at single-cell resolution 

To evaluate the receptor-TF-target module as a whole at the single-cell or binned 

resolution, we define and calculate its ISR score in every individual cell. This scoring 

approach is inspired by the recovery-framework-based AUCell algorithm implemented 

in SCENIC14. It is robust against dropouts and noise frequently observed in SRT data 

through measuring the enrichment of each receptor-TF-target signature in a ranking-

based manner, rather than using the original gene expression profiles. 

First, we rank all the genes in a given cell in descending order based on their 

expression levels. Genes with the same expression value are shuffled. Let �) =
/�*, �+, &�,!

3 be the gene set of the �-. receptor-TF-target signature, where �) is the 

number of genes in the �-. signature. Let ����(�") = �" be the rank of gene � in a cell. 

For a pre-defined critical threshold �-./0, let �)1 ¦ �), s.t. �)1 6= {�" 	|	�" f �-./0}. Then, 

the ISR score of the signature � is defined as 

���	�����) =
3 D�-./0,-3/ 2 �"F"*4!,#$%

& 	

�-./0,-3/ ; H�),-3/1 H +
3 D�-./0,/06 2 �#F#*4!,%'(

& 	

�-./0,/06 ; H�),/061 H  

where ��� refers to all the target genes while ��� means all the receptor genes. 

This ranking-based gene signature scoring represents a dimensionless quantity, which 

is robust to the data processing preferences such as the choice of normalization 

procedure. More importantly, it extended the traditional concept of TF-target GRN to 

encompass both targets and receptors that are co-expressed with TFs inside the same 
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cell, building up a more comprehensive picture of the intracellular signaling regulation 

network. 

The resulting spatial cellular ISR matrix has reduced dimensions but retains most 

informative regulatory profiles, and can be used for significant regulatory subnetwork 

identification across different cell types and functional regions. The cell-type- or cell-

state-specific regulons are finally obtained via enrichment analysis using the 

hierarchical clustering algorithm. 

 

Static and interactive visualizations 

SpaGRN accepts two commonly used HDF5 file formats, loom and H5AD, for keeping 

and managing large and complex data. Written in Python language, SpaGRN can 

effectively handle large SRT datasets with its multiprocessing capabilities, making it 

well-suited for big data applications. In addition, SpaGRN offers diverse static and 

interactive visualizations ascribable to a variety of libraries including Matplotlib73, 

Seaborn74, and Plotly75. It is also convenient to integrate SpaGRN with other SRT or 

scRNA-seq data analysis toolkits such as Scanpy and Squidpy76. We note that 

SpaGRN has been added to the latest version of Stereopy, which is a fundamental and 

comprehensive SRT analysis toolkit (https://github.com/STOmics/Stereopy). 

 

Benchmarking methods for regulon reconstruction 

We applied the BEELINE2 framework to benchmark GRN results using different 

inference methods including Hotspot, GENIE3 and GRNBoost2 on the simulated 

datasets. We ranked every possible TF-target interaction edge in the output GRN 

and converted them to a ranked list. According to the ground truth GRN and CCC, 

the AUPRC and AUROC values were computed as metrics from the SpaGRN9s local 

autocorrelation coefficients, GENIE39s regulatory weights, GRNBoost29s importance 

scores, and Hotspot9s autocorrelation scores. 
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