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SUMMARY

Cells expressing similar transcriptional regulatory circuits spatially aggregate into
distinct cell types or states. However, most existing methods for inferring gene
regulatory networks from spatially resolved transcriptomics are devoted to spatial co-
expression modules or interactions between transcription factors and target genes,
neglecting mediated effects from extracellular signals. Here we introduce SpaGRN, a
statistical framework for predicting the comprehensive intracellular regulatory network
underlying spatial patterns by integrating spatial expression profiles with prior
knowledge on regulatory relationships and signaling paths. We validate and assess
SpaGRN using simulated and real datasets, demonstrating its efficiency,
performance, and robustness. When applied to 3D datasets of developing Drosophila
embryos and larvae, SpaGRN identifies spatiotemporal variations in specific
regulatory patterns, delineating the cascade of events from receptor stimulation to
downstream transcription factors and targets, revealing synergetic regulation
mechanism during organogenesis. Moreover, SpaGRN provides flexible visualization
functions. We construct an online 3D regulatory network atlas database for
interactive exploration and sharing.

INTRODUCTION

Studying the architecture of seemingly simple organisms or single tissues is an

intricate undertaking that necessitates not only decoding the molecular profiles of
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numerous cells, but also comprehending the impact of their spatial context on cellular
state and function'. Understanding the gene regulatory network (GRN) is imperative
to decipher how cellular identity is established, maintained, and responds to the
microenvironment at the molecular level>. The GRN represents a complex web of
interactions between genetic materials including transcription factors (TFs) and
downstream genes across different cell types and developmental stages. Although the
GRN orchestrates cell functions via intracellular signaling within a cell, it is profoundly
influenced by extracellular communications from neighboring cells in the spatial
context**. For instance, the determination of distinct mesodermal cell fates in sea
urchin embryonic development is driven by the spatially confined activation of the
mesoderm GRN, which is restricted by the proximal endoderm cells®. Another
compelling example is the remarkable insight gained from investigating the
spatiotemporal behavior of histologically specific GRNs during Drosophila
embryogenesis®.

Reconstructing GRNs is a fundamental goal of system biology leveraging diverse
experimental methods and computational algorithms”®. In this study, our focus is
specifically on elucidating the interplay between TFs and target genes, with a particular
emphasis on unraveling the intercellular effects through transcriptomics data. GRNs
are mathematically represented as networks or graphs, which can be directed or
undirected, weighted or unweighted, unipartite or bipartite, depending on the
regulatory direction, strength, and gene sets under analysis. Pioneering efforts have
leveraged bulk transcriptomics data to model GRNs by identifying gene co-expression
patterns, which reflect the overall state of the tissue. For instance, WGCNA°® is a well-
known correlation-based inference algorithm for predicting non-directional gene
modules. However, this unsupervised approach is limited by the lack of regulatory
relationships and cellular specificity, which can lead to false positive connections and
hinder interpretability and causality.

Whereafter, GENIE3" and its successor GRNBoost2" employ random forest
models trained for each target gene against all TF, incorporating prior regulatory
information from TF—DNA binding assays, such as chromatin immunoprecipitation
sequencing (ChlP-seq) experiments. The variable importance measures in these
models uncover the regulatory potentials of TFs for targets, thereby introducing
directional information to the inferred regulatory relationships. Meantime, the advent of
single-cell technologies, particularly single-cell RNA sequencing (scRNA-seq), has
opened up an entirely new avenue for GRN inference at the resolution of individual
cells, enabling the tracing of cell cluster’'s heterogeneity in GRNs across
developmental stages or conditions'>'*, scRNA-seg-based GRN inference algorithms
primarily concentrate on exploiting cell type or state-specific regulatory patterns
through linear and nonlinear regression analyses. This approach has facilitated
temporal GRN modeling™, GRN perturbation analysis'®, and GRN refinement by
integrating other modalities such as scATAC-seq data'’. Despite these advancements,
predicting essential regulators to study cell-identity-specific phenomena using
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computational methods remains a challenging problem in bioinformatics®®. For
example, GRNs are essentially intrinsic to individual cells. But owing to the sparse and
noisy nature, GRN inference algorithms for scRNA-seq data generally compute
statistically significant co-expression of TF and targets for a specific cell cluster rather
than one single cell. These algorithms assume that cells of the same type or state
share the same regulatory events, neglecting the importance of considering the spatial
context of TF-target co-expression. However, harnessing the co-expression
information of neighboring cells can aid in the accurate inference of the GRN of a focal
cell. Additionally, scRNA-seg-based GRN inference methods fail to account for the loss
of cellular niche topological structure during cell dissociation, which can lead to the
rewiring of the GRN inside a central cell due to ligand-receptor (L-R) interactions with
spatially proximal cells. Thus, the connection between extracellular signaling and
intracellular regulation is overlooked by these methods.

To address these challenges, we propose a refining and improving existing GRN
model through spatially resolved transcriptomics (SRT). Recent advances in SRT
technologies have enabled the investigation of spatially specific gene expression
patterns and interactions within complex tissues'®?'. Specifically, SRT allows for not
only the inspection of gene co-expression pattern in specific spatial locations but also
the identification of extracellular signaling that drives cellular responses from their
respective niches. Current approaches to predict gene regulatory interactions using
SRT data can be mainly categorized into four types: (a) subcellular proximity:
extracting gene proximity relationships from subcellular patches to infer interaction
networks using fluorescence in situ hybridization (FISH) imaging-based SRT data??; (b)
direct application: directly using algorithms originally designed for scRNA-seq data to
infer GRNs from SRT data®; (c) spatial co-expression: deriving spatially specific gene
co-expression modules including graph-based Hotspot?*, spatially weighted CellTrek
toolkit?, and Bayesian-based SpaceX?®; and (d) extracellular to intracellular model:
exploiting the effect of cell-cell communications (CCC) to refine GRNs*2°. However,
these methods pose new challenges owing to SRT data characteristics. In particular,
the “subcellular proximity” strategy is only applicable to imaging-based ISH techniques
to generate RNA profiles at the single molecule resolution for a limited number of
preselected genes. The “direct application” approach allows for the GRN analysis of
SRT data generated by in situ spatial barcoding-based platforms such as Stereo-seq,
10X Visium, and Slide-seg2. But challenges arise due to difficulties in precise cell
segmentation, which may result from the presence of mixed cells within the same spot
or the loss of pairwise ssDNA and H&E staining images. Moreover, the lack of spatial
information in this approach can confound the identification of important TF-target
associations?®. Another dilemma is that most available methods cannot handle over
tens of thousands of cells with tens of thousands of genes®. One compromise solution
is cell aggregation or downsampling. Furthermore, the “spatial co-expression”
approach only provides symmetrical gene-gene interactions without causal
relationships and typically yields false positive connections in the network. In contrast,
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the “extracellular to intracellular model” represents an innovative approach that
exploits the spatial information and incorporates the influence of CCC to refine GRN
in a spatially correlated manner. NicheNet® and CellCall*® predict the communication
pathways linking the inside and outside of cells, yet they do not generate spatially
constrained GRNs. The recently published CLARIFY utilizes a multi-level graph
autoencoder to infer CCC and simultaneously prune GRNs?. But it should be noted
that CLARIFY has only been applied to a limited number of cells and genes, and it
requires an input GRN. On account of the increased sparsity caused by dropouts and
lower gene capturing efficiency in SRT data compared to scRNA-seq data, the
identification of spatially proximal co-expression patterns across putative cells or
spots/bins becomes imperative for predicting statistically significant gene regulation for
each cell type or state. It is reasonable to assume that cells exhibiting similar
intracellular gene regulation aggerate into spatially constrained groups to perform
specific functions in most scenarios. Therefore, one would expect that cells in close
spatial proximity would exhibit more similar GRNs under the same intercellular
stimulation, while more distant cells would exhibit more distinct GRNs in response to
different intercellular signals. Remarkably, none of the existing GRN analysis
frameworks for SRT data, to the best of our knowledge, incorporate cis-regulatory motif
analysis and spatial gene expression patterns to accurately predict the complete
intracellular regulatory paths®.

Based on this assumption, we propose the pipeline, SpaGRN, for the inference of
spatially-aware intracellular receptor-TF-target network for these locally-distributed
scenarios. Considering the continuous increase in the numbers of captured cells/bins
and gene as the data size grows, we have employed a proximity-graph-based
statistical model with high computational efficiency to investigate potential gene-gene
interactions within cells. The spatial proximity and the TF cis-regulatory relationship
are jointly used to eliminate false positive connections between TF and targets. In
parallel, we identify potential receptors that might be specifically activated by
extracellular signals based on the spatially aware co-expression graph, and connect
them to intracellular TFs and targets to accomplish the cellular regulation. To evaluate
the performance of our pipeline, we have conducted comprehensive benchmarking
using simulated SRT data. Our results demonstrate that SpaGRN outperforms several
state-of-the-art methods in terms of key evaluation metrics, including the area under
the precision-recall curve (AUPRC) and the area under the receiver operating
characteristic curve (AUROC). Additionally, our algorithm exhibits superior
performance in capturing regulon spatial heterogeneity and offers high computational
efficiency. When applied to well-characterized mouse brain datasets, our algorithm
recapitulates well-known cell fate regulations governed by TFs, and identifies cell-type-
specific regulons with distinct spatial distributions. Moreover, we further interpret
regional cell-type-specific regulon configurations and dynamics using a high-resolution
3D Drosophila spatiotemporal transcriptomics database, thus enabling mechanistic
insights into the cellular and molecular regulation of morphogenesis in the fruit fly.
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Furthermore, we have built an interactive 3D GRN atlas database for SRT data
(http://www.bgiocean.com/SpaGRN/) rendered by VT3D?', that covers different SRT
datasets. The availability of this atlas database contributes to advancing related
studies, including investigations on embryogenesis and organogenesis processes.

Design

Briefly, the design of the SpaGRN pipeline, aimed at inferring spatially constrained
GRNs from SRT data, encompasses a series of well-defined steps (Figure 1). To begin
with, a bipartite spatially-aware gene co-expression network is constructed using the
gene coordinated co-occurrence patterns derived from SRT data. This network
captures the spatial relationships between genes within spatially proximate cells and
serves as the foundation for subsequent analysis. Next, SpaGRN proceeds to infer
potential regulatory modules centered around all available TFs. The resulting
candidate regulatory modules are subsequently pruned following an approach that is
similar to a previously reported method', incorporating promoter region and TF-
binding site information. This pruning process eliminates non-significant modules and
indirect targets in each significant module. SpaGRN then identifies receptor genes
from the co-occurrence graph referring to an established L-R database, and construct
final directional receptor-TF-target paths for each TF. The inclusion of receptor genes
enriches the biological relevance of the inferred GRNs, accounting for the impact of
extracellular signaling on cellular regulation. Finally, cellular receptor-TF-target
activities of each regulon are computed in individual cells or spatial bins. This measure
can be either enriched to detect cell-identity-specific regulon modules or used for cell
clustering to resolve the problem of sparsity for SRT data, which enables the discovery
of spatially coherent cell populations and facilitates the interpretation of cellular
heterogeneity within the tissue or organ. In summary, by addressing these challenges
mentioned earlier and leveraging the power of spatial expression, cell proximity, and
extracellular receptor activation, SpaGRN emerges as a robust and effective tool for
accurately predicting explicit intracellular regulatory pathways from SRT data.

RESULTS

SpaGRN identifies spatially resolved regulons

To quantitatively assess the performance on GRN inference of SpaGRN, we generated
simulated data using scMultiSim®? and applied metrics defined by BEELINE such as
AUPRC. These in silico datasets included single-cell expressions and locations of TFs
and associated targets that were mediated by specific L-R pairs, which served as the
ground truth for benchmarking (Figure 2A). We compared SpaGRN against three
state-of-the-art GRN inferring methods, namely GRNBoost2, GENIE3, Hotspot.
AUPRC and AUROC values were computed as standard classifier scores for a robust
comparison. Given that GRNs are typically sparse, the inference problem for these

networks exhibits considerable imbalance. It is therefore more appropriate to consider
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AUPRC as the primary performance metric, rather than AUROC?*® (Figure S1).
SpaGRN demonstrated significant performance advantages in accurately inferring TF-
target regulations on the simulated data. SpaGRN accurately reconstructed cell
cluster-specific GRNs, which exhibited a distribution that correlated with the spatial
distribution of corresponding cell clusters (Figures 2B and 2C). To evaluate their
stability, we simulated 10 datasets with random differences in technical variations
including library preparation noise and batch effects, as well as cell identities involving
populations, locations, GRNs, and receptors introduced by the scMultiSim setting.
Each algorithm was executed on the 10 replicates, and AUPRC ratios (AUPRC values
normalized by that of a random predictor) were calculated. SpaGRN outperformed
existing methods across multiple simulated datasets. Specifically, it achieved
improvements 41.6%, 31.8% and 48.2% in mean AUPRC ratios compared to
GRNBoost2, GENIE3 and Hotspot, respectively, for each of the five individual spatial
cell clusters (Figure 2D).

We also sought to test the robustness of inferred GRNs obtained through SpaGRN
by varying the number of cells to 1500, 1000, and 500 (Figure 2D). The resulting box
plots of AUPRC ratios exhibited distinctive dependencies on cell number among the
four methods. Nevertheless, SpaGRN demonstrated its superior robustness across
varying cell numbers and consistently outperformed the other algorithms across all
three sets of ten synthetic datasets investigated.

SpaGRN investigates intercellular influences on intracellular regulation
Furthermore, we acknowledged that SpaGRN proves to be a valuable tool for not only
identifying spatially resolved GRNs but also for elucidating intricate intercellular
influences. To evaluate the performance of SpaGRN in capturing relevant receptors to
intracellular regulators within the same cell, we utilized scMultiSim simulated datasets
that provided a cell-type level CCC ground truth. To assess the stability of capturing
receptor genes, we conducted five iterations of dataset simulation, each iteration
containing two predefined receptors for every cell cluster for benchmarking purposes.
The analysis of the results demonstrated that SpaGRN successfully detected an
average of 90%, 60%, 70%, 70%, and 90% of the receptors for the respective five
datasets (Figure 2E). This finding highlighted the efficacy of SpaGRN in predicting
potential intercellular influences on the intracellular regulons. It is noteworthy that other
competing GRN inference methods did not provide CCC information, thus rendering
them unable to be compared in this particular aspect.

SpaGRN unveils spatially resolved regulatory mechanisms underlying brain
development

The mouse brain, a well-studied and complex model organ, consists of diverse cell
types with distinct gene expression profiles. It provides a unique opportunity to unravel
the fundamental cellular and molecular mechanisms governing human brain function,
model brain development, and advance neuroscience research. By leveraging SRT
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data to investigate the spatial organization of gene expression, researchers can
decipher networks of TFs, signaling molecules, and other regulatory elements that
orchestrate gene expression patterns, contributing to the regional specialization and
functional organization of the brain. In this study, we applied SpaGRN to analyze a
mouse coronal hemibrain dataset generated using Stereo-seq, aiming to assess its
efficacy in detecting spatially resolved regulons.

The cells were clustered and annotated according to differential expression and
anatomical structure in the study conducted by Chen et al.?® (Figure 3A). Utilizing
SpaGRN, we identified highly expressed regions of TFs and associated targets that
closely corresponded to the annotated brain regions (Figures 3B and S2). To
investigate the regionalization and functional roles of each regulon, we visualized the
expression patterns of TFs and target genes, and performed gene ontology (GO)
enrichment analysis, with a particular focus on constituent cell types such as excitatory
glutamatergic neuron (EX), dopaminergic neuron (DA), and meninge cell types.
Notably, the predicted isocortex-specific regulon Bcl/11a(+) was already known to be
present in V1 radial glia and excitatory neurons of the cortical area (Figure S3A). The
identified GO terms were directly related to neuron projection morphogenesis,
pathways of neurodegeneration, and Alzheimer's disease, thereby confirming the
pivotal role played by Bcl/11a(+) in regulating neuron progenitor cell proliferation,
differentiation, and functional homeostasis®* (Figure S3B). Additionally, our findings
suggested that Bc/17a(+) might maintain its function through the modulation of
chemical synaptic transmission, regulation of trans-synaptic signaling, and regulation
of calcium ion-dependent exocytosis (Figure S3B). Furthermore, the regulon Tcf4(+)
exhibited specific expression in the isocortex and hippocampal formation, in line with
previous studies that have identified Tcf4 as a significant marker of glutamatergic and
GABAergic neurons in these regions® (Figure S3C). Moreover, further GO analysis
revealed a significant correlation between these genes and key processes involved in
synaptic signaling and development, providing compelling evidence for their
substantial influence on cognitive processes such as perception, attention, learning,
and memory® (Figure S3D). We observed the presence of another notable regulon,
Egr3(+), in both the isocortex and hippocampal formation (Figure 3C), which aligned
with previous studies reporting its involvement in excitatory neurotransmission and its
ability to modulate neuronal behavior over time (Figure 3D). This regulon was
distributed in a distinct Pallium glutamatergic division consisting of the isocortex,
hippocampal formation, olfactory areas, and cortical subplate®*®". In contrast, DA
neuron-specific Pbx3(+) exhibited a predominant enrichment in the region of
behavioral state related midbrain, which agreed with the reported presence in
substantia nigra in midbrain® (Figure 3E). The corresponding GO terms underscored
the significance of Pbx3(+) in midbrain dopaminergic neuron development,
specification and survival, as well as its implication in the development of
neurodegenerative diseases™ (Figure 3F). Importantly, when compared to the state-
of-the-art GRN inference algorithm pySCENIC that has been extensively applied in
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mouse brain research?**°, SpaGRN’s identification was more correlated to real

regionalized functions and meanwhile the differentially expressed areas revealed by
SpaGRN were more clearly discernible according to the ISH image of TFs obtained
from the mouse brain map of the Allen brain atlas (https:/mouse.brain-

map.org/static/atlas)*'.

In the spatial context, cellular heterogeneity is determined not only by the
intracellular regulatory network but also by the extracellular microenvironment, which
collaboratively accomplish diverse biological functions***3. However, existing
computational methods for modeling both interactions simultaneously are still
underdeveloped*. SpaGRN exhibited an exceptional capability to precisely identify
potential receptors that might contribute to regulon activity, providing unique insights
into intracellular regulation mediated by biochemical signals and intercellular crosstalk
across multiple dimensions. Within several EX cell clusters, our findings suggested
that intercellular communication through specific receptors potentially regulated the
activity of Tcf4(+). Among them, previous studies have reported the co-expression of
Cntn5%, Stx1a*, Scn2a*’, Thy1*®, and Scn1b*® with Tcf4(+). Moreover, SpaGRN
predicted the involvement of previously unreported receptors, /[31ra and Gp1bb.
Furthermore, the regulon Bcl11a(+) associated with neuron proliferation and
differentiation, was inferred to be functionally linked to known co-expressed receptors,
including Nptxr*®, Negr1*°, Pde1a*®, Thy1*°, and Lrrtm4™. Additionally, Scn1b, li31ra,
MpzI2, and Asgr1 were identified by SpaGRN as potential mediators of Bcl171a(+)
activity, providing novel insights into their regulatory roles that have not been
previously reported. Within the EX cells in isocortex and hippocampal formation, the
known receptors Adcy?®' and Camk2a® were identified as key receivers of
extracellular signaling, influencing the intracellular activity of Egr3(+). This effect could
also be attributed to the co-expression of Tspan13, Stx1a, Atp6ap2, Opcml, Scn1b,
Pde1a, Lingo1, Lrrtm4, Camk2a, Scn2a, Gp1bb, and Sv2b. Moreover, the midbrain-
specific Pbx3(+) was associated with Chrna4*® and Ret*®, with the additional discovery
of new receptor Chrnb3. SpaGRN provided researchers with direct signaling pathways
that bridged inter- and intracellular regulation, connecting selected receptors, TFs, and
targets, thereby streamlining the research process and minimizing labor-intensive
experimentation.

SpaGRN presents a comprehensive and robust solution that surpasses existing
GRN inference algorithms such as pySCENIC, for analyzing complex SRT data. In the
mouse brain dataset, SpaGRN revealed additional spatially resolved regulons,
including Zic1(+), Gata3(+), Hivep2(+), and Vsx1(+), which were not identified by
pySCENIC. Notably, the EX thalamus and Meninge-enriched Zic1(+) emerged as a
thalamus-specific regulon, known for its significant role in maintaining neural precursor
cells in an undifferentiated state® (Figure 3G). Furthermore, GO enrichment analysis
confirmed its involvement in the development of sensory organs, the visual system,
hindbrain, and neural crest cells (Figure 3H). Importantly, our findings suggested that
these functional associations were mechanistically linked to extracellular matrix
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organization and the TGF-beta signaling pathway (Figure 3H). Additionally, Zic1(+)
was predicted to be regulated by a set of known co-expressed receptors including
Fgfr2%®, Gjb2**, Gpr182%°, Thbd®®, Cdh1°’, Ramp3°®, Cd44%, and Anxa2®®, and we also
identified previously unreported receptors /I37ra, MpzI/2, and Asgr1. Another regulon,
Hivep2(+), exhibited a distribution primarily enriched in the frontal cortex and
hippocampus®' (Figure S3E). The corresponding GO terms aligned well with its crucial
role in severe cognitive and social impairments, anxiety-like behaviors, hyperactivity,
and memory deficits®" (Figure S3F). Additionally, the spatial distributions of highly
expressed regions of Gata3(+) (Figure S3G) and Vsx7(+) (Figure S3H) were in
accordance with previous studies*®®2. Their distributions were further supported by
corresponding ISH benchmarking images.

In conclusion, SpaGRN offers a rigorous and systematic analysis of inter- and
intracellular signaling pathways, yielding invaluable insights into the intricate regulatory
mechanisms underlying brain structure and function. By employing the SpaGRN
algorithm and elucidating the roles of receptor-mediated regulons, significant
advancements have been made in our comprehension of the complex biological
processes orchestrating brain development and activity. This comprehensive
approach not only enhances our understanding of brain function at cellular and
molecular levels but also opens up promising avenues for therapeutic interventions
and the treatment of neurological disorders.

SpaGRN observes spatiotemporal regulatory variations in time-series 3D SRT
data
Organismal growth and development involve complex biological processes
characterized by variations in cell types and gene expression over time. These
temporal variations capture the dynamic molecular changes occurring during
development. In this study, we leveraged a previously published 3D square-binned
atlas of Drosophila embryogenesis?® to emphasize dynamic changes in both the spatial
and temporal dimensions, encompassing 5 developmental stages that span embryos
and larvae.

We first inferred the spatial GRN configurations in the 5 stages and detected 33,
22, 22, 25, and 14 regulons, respectively. Through unsupervised clustering followed
by manual annotation, we identified regulons enriched in different cell types (Figures
4A and S4). These regulons including central nervous system (CNS)-specific hth(+),
midgut-specific cad(+), and epidermis-specific vi(+), showed spatial patterns similar
to the reconstructed 3D organ mesh models at different developmental time points
(Figure 4B). Subsequent ISH examinations also confirmed that hth, cad, and vv/ were
mainly expressed in the CNS, midgut, and epidermis region, respectively (Figure 4C).
By applying SpaGRN to calculate spatiotemporally dependent regulon activities, we
identified the dynamic functions of these cell-identity-specific regulons imperative for
embryogenesis and organogenesis. In particular, our observations revealed the
dynamic migration of the highly expressed region of the hth(+) regulon from the
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neurogenic ectoderm region during early embryonic stages to the head region during
larval stages. This spatial shift was consistent with the dynamic regulation of neuron
differentiation and morphogenesis, as indicated by GO enrichment analysis®*®* (Figure
4D). Another regulon, cad(+) successively experienced expansion and contraction
during midgut development. Although the GO enrichment analysis failed due to the
limited number of captured targets, it is worth noting that previous studies have
indicated the involvement of this TF in transmembrane transport and chemical
homeostasis, implying a potential role in digestion and absorption®. In contrast, the
regulon activity of the epidermis-specific wi(+) remained in the ectoderm region
throughout development. Its enriched GO terms were primarily related to epithelial
morphogenesis as previously described® (Figure 4E). Compared to the GRN results
from the original article?®, SpaGRN obtained regulons with more evident and precise
spatial heterogeneity for the same TF with the benefit of its spatial refinement capability
(Figure S5).

Moreover, our investigation delves into the co-regulatory connections among
different specific regulons enriched in the same tissue. For instance, we inspected the
crucial cooperative role of two CNS-specific regulons, hth(+) and exd(+) in neuron
differentiation. These two regulons were connected through shared target genes, and
could be collectively stimulated by the receptor msn, or independently by LRP1, Egfr,
ATP6AP2, mag, robo3, Lamp1, Alk, in response to extracellular signaling (Figure 5A).
The correlation between hth(+) and exd(+) has been reported, with hth responsible for
the exd retention in the nucleus and forming part of the functional Exd/Hox complex®’.
Double immunostaining experiments further verified the co-expression of these two
regulators in olfactory projection neurons and their progenitors®®. GO term analysis of
shared targets of these regulons also indicated their vital roles in neuron differentiation,
aligning with the reported function of encoding a MEIS family protein that regulated the
subcellular localization of the homeotic protein cofactor Extradenticle, involved in
multiple aspects of embryonic and adult fly development®®* (Figure 5B). The mutation
of hth or exd has been shown to result in defects in olfactory projection neurons®. On
the other hand, the identification of unique targets for each regulon implied their subtle
distinctions in regulatory functions (Figure 5B).

Therefore, SpaGRN facilitates the investigation of specific receptors that transmit
signals from CNS’s niche, which promote or inhibit the activity of specific TFs inside
CNS cells through specific signaling pathways. These TFs ultimately influence the
expression of downstream targets, collectively contributing to the cellular functions
relevant to organogenesis.

Performance

GRN inference from large-scale gene expression data of SRT or scRNA-seq has been
computationally demanding. To evaluate the computational performance of SpaGRN,
we compared it to two existing algorithms, pySCENIC and Hotspot, using the same
mouse hemibrain dataset consisting of 50,140 cells and 25,879 genes (Table 1). The
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current pySCENIC pipeline, implemented in Python, claimed to have increased the
computational efficiency compared to its predecessor by introducing XGBoost and
parallelization. However, our results demonstrated that SpaGRN exhibited an average
5- and 22-fold increase in the running speed compared to pySCENIC and Hotspot,
respectively, when running on a Linux system equipped with an Intel Core Processor
(Broadwell, IBRS) of 40 CPU threads and 256 Gb RAM. The peak memory usages of
the three methods were similar, though. We noted that other GRN tools such as
CellTrek and SpaceX required significantly longer computation times (more than 2880
CPU hours) when tested on the same dataset. In addition, the performance of SimiC
was heavily dependent on user-defined parameters, such as the number of output
regulons and target genes. These tools were not included in our benchmarking
analysis. We also tested the performance comparisons using the fruit fly data (Table
S2).

DISCUSSION

The burgeoning field of single-cell omics has provided unprecedented opportunities for
modeling and predicting the regulators of cellular identities. In this paper, we have
introduced SpaGRN as a versatile approach for exploring directional GRNs in SRT
data. This pipeline capitalizes on the integration of spatially-aware transcriptomic
profiles, TF motif sequences, and L-R-TF linkages to infer cell-identity-specific regulon
modules. By leveraging benchmarking analyses and practical applications, we have
demonstrated the efficacy of SpaGRN in reconstructing robust guides that elucidate
regulatory mechanisms within specific cells or regions, thereby capturing topological
patterns inherent in tissue sections. Furthermore, SpaGRN exhibits remarkable
flexibility, accommodating mainstream coordinated cell-gene matrices or cell-gene
similarity graphs generated by most SRT platforms. Notably, our framework can be
extended to incorporate such matrices or graphs produced by computational
algorithms that map single cells back to their spatial coordinates through the integration
of scRNA-seq and SRT data. Additionally, SpaGRN offers users the convenience of
visualizing and exploring spatial GRNs through flexible 2D imaging functions and an
interactive 3D online atlas database provided within the framework (Figure S6).

Limitations

While SpaGRN represents a powerful tool for exploring spatially informed GRNs, it is
important to acknowledge its inherent limitations. One such limitation is the potential
presence of false-positive or false-negative interactions within the inferred spatial GRN,
emphasizing the need for experimental validation to confirm the reliability of the
network predictions. Although SpaGRN leverages disparate forms of information such
as spatial transcriptomic profiles, TF-target cis-regulatory, and existing receptor-TF
linkages, it is crucial to recognize that certain relevant biological interactions that occur

in a non-cell-autonomous manner or between distant cells may not be effectively
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captured by the current framework.

Similar to other computational methods, SpaGRN also heavily relies on the quality
and reliability of the input data. Inaccuracies, noise, or biases in SRT profiles can
impact the accuracy and robustness of the inferred spatial GRNs. The spatial
resolution of SRT data can also pose limitations on the ability to capture fine-grained
regulatory interactions. Moreover, the accuracy of SpaGRN's predictions is contingent
upon the availability and comprehensiveness of annotated TF-target and L-R-TF in the
two knowledge libraries. Incomplete or biased annotations may result in the
overlooking of important regulatory interactions, potentially leading to an incomplete
representation of the spatial GRN and associated signaling paths. At last, the
performance and generalizability of SpaGRN may vary across different tissues and
species. One main reason is the two existing knowledge libraries were pre-trained by
model organisms, potentially affecting the applicability and accuracy of SpaGRN in
rare organs or in non-model organisms.

Moving forward, we have outlined several directions for future research to
enhance the capabilities of SpaGRN. One avenue of investigation involves tracing the
propagation of regulatory signals within the spatial GRN. By elucidating the flow of
regulatory information such as pseudotime regulatory trajectory tracing' across cells
and regions, we aim to gain valuable insights into the spatiotemporal dynamics of gene
regulation. Additionally, we plan to conduct in silico gene perturbation experiments'®
within the SpaGRN framework. This simulation-based approach will allow us to
investigate the functional consequences of perturbing specific genes or regulatory
elements within the inferred GRN, enabling us to predict the impact of gene
manipulations on cellular behavior and regulatory outcomes.
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Figure 1. Overview of SpaGRN workflow

First, a bipartite spatially-aware gene coexpression graph is constructed using the
preprocessed SRT dataset. Next, SpaGRN infers refined regulatory modules
centered around all available TFs, incorporating promoter region and TF-binding site
information. In the meantime, receptor genes were identified from the co-expression
graph referring to an established L-R database. Finally, SpaGRN constructs a
directional receptor-TF-target paths for each TF.
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Figure 2. SpaGRN identifies superior spatially resolved regulons with potential
intercellular receptors

(A) The spatial distribution of 1500 cells across five cell clusters as groud truth for
benchmarking.

(B) Detected spatially specific regulons across five cell clusters.

(C) Heatmap of functional regulon modules enriched for specific spatial cell clusters.
(D) Box-plots depicturing the AUPRC ratio of SpaGRN and three other state-of-the-
art GRN inference tools on datasets of different total cell numbers. Each box was
generated across ten simulated datasets sampled with scMultiSim.

(E) SpaGRN'’s capture ratio of ground truth spatial cluster-specific receptors in the
five simulated datasets.
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Figure 3. SpaGRN discovers credible and novel regulons with distinct spatial
patterns in mouse brain data

(A) Adult mouse hemisphere brain data colored by annotation.

(B) Heatmap of functional regulon modules enriched for specific cell types.

(C, E) Spatial representation of regulons Egr3(+) and Pbx3(+) using SpaGRN and
pySCENIC. The spatial distribution is verified by the corresponding ISH from the
mouse brain map of the Allen brain atlas.

(D, F) GO enrichment analyses of Egr3(+) and Pbx3(+).

(G) Spatial representation of regulon Zic1(+) uniquely detected by SpaGRN and the
corresponding ISH image for validation.

(H) GO enrichment analysis of Zic1(+).
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Figure 4. SpaGRN identifieds 3D spatiotemporal patterns of regulons for
developing Drosophila

(A) Heatmap of functional regulon modules enriched for specific cell types. Left color
bars refer to different cell types.

(B) Cell-identity-specific regulons during different developmental stages. The typical
spatial regulon (bottom) for different cell types shows a highly similar pattern in 3D to
the morphological mesh model of the corresponding organ or tissue (top).
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(C) ISH experiments validating the spatial distribution of the TF for each specific
regulon.
(D) GO term enrichment analysis of representative regulons in (B).
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Figure 5. SpaGRN unveils an intra- and inter-cellular co-regulation network in
CNS

(A) Connection network of two representative spatially specific regulons enriched in
CNS. The detected influential receptor genes are shown in magenta color and points
to the TFs with dashed arrows.

(B) GO terms of shared and exclusive target genes in hth(+) and exd(+) regulons.
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Table 1. Statistics of computational performance on mouse brain data

tools clock time (hour) peak memory (Gb)
SpaGRN 2.2 67
pySCENIC 9.2 82
Hotspot 39 68

The GRN inferences were performed on a computer cluster with 40 Intel Core
Processor (Broadwell, IBRS) CPU threads with 256 Gb of memory installed, and used
the Linux operating system.
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STAR METHODS

RESOURCE AVAILABILITY

Lead Contact
Further information and requests for the resources and reagents may be directed to
and will be fulfilled by the lead contact, Mengyang Xu (xumengyang@genomics.cn).

Materials availability
This study did not generate new unique reagents.

Data and code availability

e All data used in this study have been previously reported and are publicly available
(Table S1). The coronal hemibrain section in an adult mouse is available from
STOmicsDB MOSTA database®® (https://db.cngb.org/stomics/mosta/download/).
The raw sequencing data are stored in CNGB Nucleotide Sequence Archive
(CNSA)™ of China National GeneBank DataBase (CNGBdb)"" under accession
number CNP0002646. The 3D developing Drosophila embryos and larvae dataset
was downloaded from STOmicsDB (https://db.cngb.org/stomics/flysta3d/). The
raw sequencing data is available in the CNGB under accession number
CNP0002189. Processed data can be interactively explored from our database
(https://www.bgiocean.com/SpaGRN). All the related data and TF databases can
be directly obtained from our database website.

e All original codes supporting the current study are hosted on GitHub
(https://qgithub.com/BGI-Qingdao/SpaGRN).

e Any additional information required to reanalyze the data reported in this paper is
available from the lead contact upon request.

QUANTIFICATION AND STATISTICAL ANALYSIS
Data design and simulation for benchmarking
We evaluated the GRN inference ability of SpaGRN and existing methods on ten
replicates of simulated SRT datasets, each consisting of a single-cell gene
expression matrix of 1800 genes and 1500 cells across five clusters, along with the
spatial coordinates of cells. We used scMultiSim*? to generate these simulated
datasets based on a pre-defined ground truth GRN consisting of five regulons with
distinct spatial patterns and another five regulons uniformly distributed throughout the
spatial area. Furthermore, we assessed the receptor detection ability of SpaGRN
using another five simulated SRT datasets generated with scMultiSim. Each of these
five datasets involved 120 genes and 1500 cells of five types and was simulated
based on a pre-defined ground truth GRN of five spatially specific regulons as well as
20 pre-defined ground truth L-R pairs.

The first ten simulated gene expression datasets were generated using
scMultiSim through a two-step process. During the first round of simulation, we
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employed the 'layers' layout and generated coordinates for a total of 1500 cells
belonging to five different clusters (300 cells for each cluster) by specifying 20 L-R
pairs in the ‘cci’ parameter (Figure 2A). In the second round, we independently
simulated five sets of expression data, each consisting of 300 cells and 1800 genes
and using one of five pre-defined regulon parameters. These five sets of cells were
assigned to the coordinates corresponding to the five clusters that were generated in
the previous round of simulation. In this way, these five regulons could be considered
as spatially specific. In addition, we generated gene expression data of five spatially
non-specific regulons by simulating a dataset of 1500 cells and 1800 genes with five
additional regulon parameters and assigning the 1500 cells randomly to these 1500
coordinates. The resulting dataset comprised a total of 1500 cells, evenly distributed
among five distinct cell types that were spatially separated from one another. The
1800 genes include a combination of five cell-type specific regulons and five
generally existing regulons, as well as some non-regulon-related noise.

The other five simulated datasets were also generated with scMultiSim. We
utilized the same 20 L-R pairs and five different regulon parameters. The resulting
datasets each consisted of 1500 cells distributed across five spatial clusters and a
total of 120 genes.

Real data collection and preprocessing

We downloaded the 2D SRT dataset of the coronal hemibrain section in an adult
mouse. This dataset was generated by Stereo-seq and has been extensively studied
as a reliable benchmark for evaluating the pipeline’s performance. The data captured
MRNA expression from 25,879 genes in 50,140 putative single cells with spatial
locations.

Furthermore, we applied SpaGRN to systematically analyze the intracellular
regulation across the fruit fly development using the 3D developing Drosophila
embryos and larvae dataset. Since no cell segmentation information was available,
we used 15,295 bin20 (20 spots x 20 spots) with 13,668 genes, 14,634 bin20 with
12,850 genes, 17,787 bin20 with 13,083 genes, 64,658 bin20 with 14,270 genes, and
43,310 bin50 with 16,326 genes for E14-E16, E16-E18, L1, L2, and L3 samples,
respectively.

Spatially-aware gene co-expression graph construction

The proposed SpaGRN starts with the construction of a spatially-aware gene co-
expression graph. Traditional computational co-expression methods, such as
correlation-based statistics, Bayesian networks, and machine learning approaches,
are commonly used for scRNA-seq data and can be straightforwardly applied to SRT
data. But the incorporation of spatial co-occurrence and co-distribution relationships
remains largely underdeveloped. To address this, we leverage the power of a graph
structure to make full use of spatial information. The similarity graph has been
previously demonstrated to be effective in detecting gene modules in multimodal
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settings for SRT data®. In this work, we utilize the K-nearest-neighbors (KNN) graph
as our similarity graph. Each cell is represented as a node, and we connect each cell
to its K nearest cells based on the Euclidean distance.

Using this spatial-proximity graph, SpaGRN calculates spatial autocorrelation to
evaluate whether the expression of a given gene in a cell can be predicted by its
neighboring cells in the graph using the statistic

H, = 2 2 CijXiX;
T JEN(D)

where x; is the standardized expression of the gene in cell i, N(i) is the K nearest
neighbors of cell i, and ¢;; is a non-negative weight determined by the distance
between cell i and j. The calculated value is dependent on the variation in gene
expression patterns across different regions in the spatial-proximity graph. The
dependence of each gene on the graph structure can be statistically tested with a
parametric null model assuming that the gene expression values in each cell are
independently drawn from a certain distribution, without any spatial autocorrelation.
Here, we employ the negative binomial distribution as the selected null model and
compute the Z scores of H,, from which we can determine the significance of each
gene.

We retain only the genes with significant spatial patterns based on the Hy statistic,
and divide them into TF and non-TF genes referring to a built-in or user-defined
whitelist. Subsequently, we build a bipartite co-expression graph connecting every TF
with all the non-TF genes. The weight assigned to each TF-target edge is determined
by calculating a local co-expression score, which is defined by the following formula:

Hyy = 2 2 cij(xXiyj + yix;)
T JEN(D)

where x; and y; are the standardized expressions for gene x and y in cell i. Then
for every TF in the co-expression graph, we apply multiple selection strategies, such
as TF’s top N targets or top nth percentile of targets, to construct multiple regulatory
modules centered around it.

Direct causal regulatory refinement by TF motif analysis

Next, we filter the previously constructed regulatory modules and prune the
unauthenticated connections from the retained regulatory modules. Given that the TF-
centered regulatory modules are generated through spatial proximity screening, they
may still contain indirect and potentially misleading targets. Since multimodal data are
not always be readily available for deriving the true TF-gene interactions, we integrate
gene expression and prior knowledge through the cis-regulatory motif enrichment
analysis for direct regulatory inference. We perform cisTarget’? to sort and rank all
target genes of each potential regulatory module. Using the hidden Markov model and
positional weight matrices, the motif enrichment score of a module is calculated based
on the area under the ranking curve (AUC) value. Only modules whose target genes
show significant higher motif enrichment score are retained. Meanwhile, we also
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leverage the cisTarget rank to prune the target genes in every retained module. To
enhance user convenience, we have downloaded three pre-computed motif databases
for three organisms, Homo sapiens, Mus Musculus, and Drosophila melanogaster
(https://resources.aertslab.org/cistarget/)’? and included them in our pipeline. Given a
gene set, this analysis aims to further refine the topological structure of the inferred
GRN such that the edges represent direct interactions corresponding to activation or
inhibition from the TF to its target genes.

Undirect receptor-TF connection inference

The intracellular GRN is not isolated from the cellular microenvironment. Potential
intercellular communications can be inferred with any CCC tools for SRT data. To
investigate the CCC effect from neighboring cells that may impact the TF-centered
GRN, we retrieve receptors from the co-expressed genes of each TF that were
excluded during the motif analysis. Subsequently, we link these receptors to their
corresponding TFs within the same cells, revealing indirect connections between
receptors and TFs. In this study, we utilize the NicheNet V2.0 L-R network database
for Homo sapiens and Mus Musculus (https://zenodo.org/record/7074291) to
determine the receptors, which integrates 14, 23, and 20 database sources for L-R
interactions, signaling paths, and TF regulatory relationships, respectively. In total, it
includes 1,430 L-R pairs, 18,647 signaling linkages, and 25,108 regulatory interactions.

ISR score at single-cell resolution

To evaluate the receptor-TF-target module as a whole at the single-cell or binned
resolution, we define and calculate its ISR score in every individual cell. This scoring
approach is inspired by the recovery-framework-based AUCell algorithm implemented
in SCENIC™. It is robust against dropouts and noise frequently observed in SRT data
through measuring the enrichment of each receptor-TF-target signature in a ranking-
based manner, rather than using the original gene expression profiles.

First, we rank all the genes in a given cell in descending order based on their
expression levels. Genes with the same expression value are shuffled. Let S, =
{gl,gz, ...gnk} be the gene set of the k;; receptor-TF-target signature, where n; is the
number of genes in the k., signature. Let rank(g;) = r; be the rank of gene i in a cell.
For a pre-defined critical threshold 1y, let S, € Sk, s.t. Sy, := {g; | i < Ttnre}- Then,
the ISR score of the signature k is defined as

Ziesl’c’mr (T'thre,tar - Ti) Zjesllc,rec (rthre,rec - r])

ISR scorey, =
Tthretar |Sllc,tar| Tthrerec |Sllc,rec|

where tar refers to all the target genes while rec means all the receptor genes.
This ranking-based gene signature scoring represents a dimensionless quantity, which
is robust to the data processing preferences such as the choice of normalization
procedure. More importantly, it extended the traditional concept of TF-target GRN to
encompass both targets and receptors that are co-expressed with TFs inside the same
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cell, building up a more comprehensive picture of the intracellular signaling regulation
network.

The resulting spatial cellular ISR matrix has reduced dimensions but retains most
informative regulatory profiles, and can be used for significant regulatory subnetwork
identification across different cell types and functional regions. The cell-type- or cell-
state-specific regulons are finally obtained via enrichment analysis using the
hierarchical clustering algorithm.

Static and interactive visualizations

SpaGRN accepts two commonly used HDF5 file formats, loom and H5AD, for keeping
and managing large and complex data. Written in Python language, SpaGRN can
effectively handle large SRT datasets with its multiprocessing capabilities, making it
well-suited for big data applications. In addition, SpaGRN offers diverse static and
interactive visualizations ascribable to a variety of libraries including Matplotlib™,
Seaborn™, and Plotly’®. It is also convenient to integrate SpaGRN with other SRT or
scRNA-seq data analysis toolkits such as Scanpy and Squidpy’®. We note that
SpaGRN has been added to the latest version of Stereopy, which is a fundamental and
comprehensive SRT analysis toolkit (https://github.com/STOmics/Stereopy).

Benchmarking methods for regulon reconstruction

We applied the BEELINE? framework to benchmark GRN results using different
inference methods including Hotspot, GENIE3 and GRNBoost2 on the simulated
datasets. We ranked every possible TF-target interaction edge in the output GRN
and converted them to a ranked list. According to the ground truth GRN and CCC,
the AUPRC and AUROC values were computed as metrics from the SpaGRN’s local
autocorrelation coefficients, GENIE3’s regulatory weights, GRNBoost2’s importance
scores, and Hotspot’s autocorrelation scores.
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