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Key Points

Question: Are there group differences in whole brain functional connectivity between individuals
with and without cocaine use disorder, and to what extent do these connectivity patterns relate to
the spatial distribution of dopamine (D2s3) receptor densities?

Findings: The presence of cocaine use disorder is associated with brain-wide functional
connectivity alterations that are spatially coupled to the density of dopamine (D2s3) receptors.

Meaning: A preferential and replicable link exists between the functional connectome correlates

of cocaine use disorder and dopamine receptor densities across the brain.
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Abstract

Background: The biological mechanisms that contribute to cocaine and other substance use
disorders involve an array of cortical and subcortical systems. Prior work on the development and
maintenance of substance use has largely focused on cortico-striatal circuits, with relatively less
attention on alterations within and across large-scale functional brain networks, and associated
aspects of the dopamine system. The brain-wide pattern of temporal co-activation between
distinct brain regions, referred to as the functional connectome, underpins individual differences
in behavior. Critically, the functional connectome correlates of substance use and their specificity
to dopamine receptor densities relative to other metabotropic receptors classes remains to be
established.

Methods: We comprehensively characterized brain-wide differences in functional connectivity
across multiple scales, including individual connections, regions, and networks in participants with
cocaine use disorder (CUD; n=69) and healthy matched controls (n=62), Further, we studied the
relationship between the observed functional connectivity signatures of CUD and the spatial
distribution of a broad range of normative neurotransmitter receptor and transporter bindings as
assessed through 18 different normative positron emission tomography (PET) maps.

Results: Our analyses identified a widespread profile of functional connectivity differences
between individuals with CUD and matched healthy comparison participants (8.8% of total edges;
8,185 edges; prwe=0.025). We largely find lower connectivity preferentially linking default network
and subcortical regions, and higher within-network connectivity in the default network in
participants with CUD. Furthermore, we find consistent and replicable associations between

signatures of CUD and normative spatial density of dopamine Dz receptors.

Conclusions: Our analyses revealed a widespread profile of altered connectivity in individuals with
CUD that extends across the functional connectome and implicates multiple circuits. This profile
is robustly coupled with normative dopamine D3 receptors densities. Underscoring the
translational potential of connectomic approaches for the study of in vivo brain functions, CUD-
linked aspects of brain function were spatially coupled to disorder relevant neurotransmitter
systems.
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Introduction

The study and treatment of substance use disorders represents a complex, multifaceted
challenge with far-reaching implications for individuals, their families, and our broader society. In
particular, increasing prevalence of cocaine use disorder (CUD) substantially contributes to the
rising overdose deaths in the United States (1). A fundamental question facing the field of
addiction neuroscience concerns the extent to which substance use behaviors emerge through
local patterns of activity or are instantiated across the broader large-scale networks of the human
brain. While prior foundational work has established cortico-striatal-thalamic circuit disruption as
a fundamental feature of substance use disorders (2), consistent with systems-level models of
substance use disorders (3), striatal circuitry is deeply embedded within spatially distributed and
functionally linked systems that span the cortical sheet. Whether alterations in functioning are
isolated to specific circuits or diffusely distributed throughout large-scale network architecture
remains largely unexplored.

Cocaine preferentially targets the dopamine system, and both tonic and phasic dopamine
neurotransmission have been shown to play a critical role in the onset and maintenance of
substance use pathology (4). Here, for instance, reduced activity within the large-scale networks
supporting attention and inhibitory control points to an imbalance between the core dopaminergic
circuits that underlie subjective valuation and conditioned responding and those that support
“higher-level” executive functioning. Moreover, the neuromodulatory impact of cocaine is not
specific to the dopamine system, while primarily blocking the dopamine transporter and inhibiting
its reuptake from the synaptic cleft, it also modulates serotonin and norepinephrine transporters
(5). However, the extent to which the brain functional correlates of CUD may be coupled to the
spatial distribution of dopaminergic processes, relative to other neurotransmitters, remains to be
established.

Here, we investigate the relationship between CUD, whole-brain functional connectivity,
and neurotransmitter receptor densities. First, we used the network-based statistic (6) to derive
whole-brain functional connectivity differences between individuals with CUD and controls. We
then examine the association between the identified functional network and the spatial distribution
of receptor densities, inferred from positron emission tomography (PET). In doing so, we
demonstrate preferential correspondence between regional connectivity alterations related to
CUD and the normative topography of dopamine D23 receptor densities across three independent
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PET datasets. These data reliably establish that in CUD, extensive and brain-wide alterations in
connectivity exist and are closely coupled with dopamine D23 receptor densities.

Methods

Participants

The current study used data from the SUDMEX CUD imaging dataset (7). A total of n=131
individuals (age range: 18-50), including 69 individuals with CUD (85.51% male) and 62
demographically matched healthy comparison patrticipants (79.03% male) were included in the
present study. Notably, these data represent a diverse and non-European-centric population in
Mexico City, Mexico. Participants with CUD had to have used for at least one year, with current
average use of at least three times per week, with periods of continuous abstinence of less than
one month during the last year. Additional participant inclusion criteria can be found in
Supplementary Section 1. Participant behavioral characteristics and demographics can be
found in Table 1. The reported study analyses procedures were approved by the Yale University
Institutional Review Board IRB #1507016245.

MRI acquisition and processing

Intrinsic (resting state; fcMRI) functional imaging data were acquired using a 3T Phillips
Ingenia MR scanner in Mexico City, Mexico. Field-standard processing and quality control
procedures were implemented. To generate whole-brain functional connectivity matrices, we
parceled each individual's normalized scans into 400 cortical (8) and 32 subcortical (9) regions.

(Fig. 1A). Further details can be found in in Supplement Section 3.

Whole-brain functional connectome correlates of cocaine use disorder

Non-parametric ANCOVA models were used to analyze brain-wide functional connectivity
differences between individuals with CUD and matched controls, adjusting for age, sex, and
education. The Network Based Statistic (NBS) was used to perform familywise error-corrected
(FWE) inference at the level of connected components of edges (12,13), with the primary
component-forming threshold, 7, set to p < .05 and significance assessed at ppyr < 0.05.
Further statistical details and results forz = 0.01 and = = 0.001 are reported in Supplementary

Table 2 and Supplementary Section 4.
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Associations between functional dysconnectivity and receptor densities

In order to investigate the relationship between functional alterations identified in
individuals with CUD and the topographic distributions of normative neurotransmitter expression
in healthy participants, we used Spearman correlation to examined spatial associations between
the number of significant connections and normative receptor bindings across each of the 432-
brain regions. These associations were first assessed using 17 unique spatial maps that index a
specific receptor or transporter with the largest available sample size (10, 11). Multiple maps from
independent datasets were available for some of the receptors and transporters, using either the
same or unique tracer. If available, these additional maps were used to assess the stability and
replicability of any statistically significant associations (p < 0.05). Permutation-based inference
(10,000 permutations) using ‘spin-tests’ were used to assess significance, while accounting for
spatial autocorrelation. Further statistical details and information regarding specific tracers are
provided in Supplementary Section 1 and Table 2.

Results

Wide-spread connectivity alterations in cocaine use disorder

We find a significant wide-spread pattern of both hyperconnectivity and hypoconnectivity
associated with CUD, encompassing 8.8% of the total edges (8,185 edges; prwe=0.025) linking
432 brain regions (Fig. 1). The majority of significant edges (58.94%; 4,824 total edges)
demonstrated hypoconnectivity in individuals with CUD. Here, the highest proportion of
hypoconnected edges preferentially implicated the default network (Fig. 1D-E). After accounting
for network size (see Supplemental Section 4), connections within striatum and thalamic
regions, and between striatum and control networks were preferentially implicated in participants
with CUD (Fig. 1D-E). At a regional level, precuneus posterior cingulate cortex, medial prefrontal
cortex, and anterior caudate nucleus were among the areas most strongly implicated in the
network of lower functional connectivity.

When considering patterns of higher connectivity in the CUD group, hyperconnected
edges accounted for 41.06% of the total significant edges (3,361 total edges). The total number
of hyperconnected edges demonstrated preferential within-network connectivity of the default
network, as well as between-network connectivity of striatum and ventral attention networks (Fig.
1B-C). When normalizing for the total size of a given network, between-network hyperconnectivity
of the striatum-somatomotor networks preferentially emerged. At a regional level, frontal
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operculum, parietal operculum, extrastriate cortex, and anterior putamen, were among the areas

most strongly implicated in the network of higher functional connectivity.

Shared spatial topography links cocaine use disorder and D/ receptor densities.
Regional functional dysconnectivity was significantly correlated with D23 receptor density
(['"CJFLB 457, p=0.175 pspin=0.015). Associations with D2 receptors replicated across two
additional normative PET maps (['®F]fallypride, p=0.168; pspin=0.022) and ([''C]FLB 457, p=0.192;
pspin=0.007) (Fig. 2B-C), indicating robust and reliable relationships between D23 receptors
density and CUD-related connectivity dysfunction (Fig. 2). To ensure that this association was
not driven by large differences in tracer binding between cortical and subcortical regions, we
replicated the D2 receptors association after excluding subcortical regions (Supplementary Fig.
1). Associations with two serotonin results were also significant (5HT4[''C]SB207145: p=0.143;
Pspin=0.032, and 5HTs [''C]GSK215083: p=0.136; psxin=0.020) and reported in Supplementary
Fig. 3, but did not have replication samples. No associations with other available neurotransmitter

systems were detected (Supplementary Table 2).
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Table 1: Demographic characterization of study sample (n=131).

Group Cocaine Use Disorder Healthy Comparison
(CuD)

Participants (n, % Male) 69(85.51) 62(79.03) x2:0.30
p=0.583

Age (meantsd) 31.34+7.27 30.42+8.18 t:-0.68;
p=0.501

Education (meantsd) 2.83+1.27 3.52+1.39 x2: 13.40
p<0.020*

Head Motion(meanzsd) 0.231£0.10 0.21£0.08 t: 1.63;
p=0.105

Three participants were excluded for missing age values. Seven participants were excluded for missing
education values. Three participants (2 two HC, 1 CUD) missing sex values, male/female were the only
available options. x2, chi-square. Head motion calculated using mean framewise displacement (mm). * =

significant group difference (p < 0.05).
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Figure 1. Whole brain atypical functional connectivity in cocaine use disorder (CUD). A
widespread network of affected connections exists between individuals with CUD and healthy
matched controls, extending across the functional connectome. A) Schaefer 7-network and Tian
subcortex parcellations (Scale Il) from left to right: a indicates anterior; AMY, amygdala; CAU,
caudate nucleus; d, dorsal; DA, dorsoanterior; Default, default network; DorsAttn, dorsal attention
network; DP, dorsoposterior; FPN, frontoparietal network; GP, globus pallidus; HIP,
hippocampus; |, lateral; Lim, cortical limbic network; m, medial; MTL, medial-temporal lobe
(amygdala and hippocampus); NAc, nucleus accumbens; p, posterior; SomMot, somatomotor
network; Stri, striatum; PUT, putamen; THA, thalamus. B) Images with a red color scale represent
number of significant edges (degree) where individuals with CUD show hyperconnectivity. B)
Images with a red color scale represent number of significant negative edges of NBS network
where individuals with CUD show hypoconnectivity. C) Heatmap quantified using raw total edge
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count (upper triangle) and normalized proportion of edges based upon network size (lower
triangle) within the NBS component that fall within each of the canonical networks. The darker red
indicates higher connectivity in CUD. D) Images with a blue color scale represent number of
significant negative edges of NBS network where individuals with CUD show hypoconnectivity.
E) Heatmap quantified using raw total edge count (upper triangle) and normalized proportion of
edges based upon network size (lower triangle) within the NBS component that fall within each of
the canonical networks. Darker blue color indicates lower connectivity in CUD.
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Figure 2. Spatial overlap between whole-brain Network Based Statistic (NBS) network and Dzj3
receptor density in cocaine use disorder (CUD). A) Visualization of the total (positive and
negative) number of significant edges at each region within the NBS component (Fig. 1B + 1D)
where change in fcMRI was significantly correlated with the spatial D23 receptor density in a
discovery sample (Sandiego 2015, pspin=0.019) and two replication samples (Jaworska 2020,
pspin=0.030 and Smith 2017, psin=0.013), respectively). B) D23 binding potential of PET samples
for each receptor source, i.e., discovery sample and replication samples. Color scale normalized
between -1.0 to 1.0 for cortex and subcortex separately. C) Each violin-box plot contains (from
left to right) distribution of 10k spin-test null correlations between each edge of the NBS
component and the spatial density of Dz receptors. Red dot indicates significant spearman’s
correlation. * reflects statistical significance at the threshold pspin<0.05. Discovery Sample:
Sandiego et al., (2015) (12); Replication 1: Jaworska et al., 2020 (13); Replication 2: Smith et al.,
2017 (14).
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Discussion

Cocaine use disorder (CUD) emerges, in part, through the complex interactions of
biological systems encompassing neurochemical cascades and associated functional interactions
across both local circuits and broader large-scale networks. Establishing how these processes
contribute to the onset and maintenance of substance use disorders requires a multi-scale
approach, considering measures of in vivo brain function, as assessed through fcMRI, as well as
neurotransmitter synthesis and transport assessed though PET imaging. In the present analyses,
we find wide-spread alterations in intrinsic (“resting-state”) functional connectivity in CUD and by
integrating these findings with PET data, we demonstrate the presence of shared spatial patterns
linking D23 receptor densities with the functional connectome correlates of CUD.

While prior work has revealed disruptions in cortico-striatal-thalamic circuitry that underlie
varying stages in of substance use disorders (2), our findings support a more diffuse, brain-wide
dysregulation in CUD, extending the beyond neural circuit-specific hypotheses. In addition to
striatal and thalamic regions, we find alterations in large-scale cortical networks, including the
default mode, control, somatomotor, and ventral attention networks, suggesting that dysfunction
extends beyond atomically constrained cortico-striatal-thalamic circuitry.

Critically, our findings demonstrate a reliable spatial correspondence between functional
dysconnectivity in CUD and the dopaminergic system, extending across both cortical and
subcortical regions. Cocaine acts by binding to the dopamine transporter, blocking the reuptake
of dopamine from the synaptic cleft, as well as blocking the transporters for norepinephrine and
serotonin (5). While our findings also implicate parts of the serotonin system, the most replicable
and robust link was found with D23 receptor densities, suggesting that brain dysconnectivity
across large-scale brain networks are preferentially coupled to dopaminergic pathways.

Prior investigations have demonstrated distinguishable functional connectome profiles
between CUD and other substance use disorders, such as opioid use disorder, suggesting that
individual variability in large-scale connectomes may serve as a valuable predictor for treatment
outcomes in CUD (15). While our findings demonstrate a robust pattern of functional alteration in
CUD that is coupled with dopaminergic pathways, the extent to which the present findings may
reflect a substance specific neurobiological profile or a general profile related to dopaminergic
drugs of misuse (for instance, opiates, alcohol, and cocaine) remains to be determined.

The current study, similar to many neuroimaging datasets of individuals with substance
use disorders, is limited by its cross-sectional nature and longitudinal approaches may provide
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further insight on whether neurobiological profiles reflect a vulnerability for illness, a direct
consequence of substance use, or the biproduct of illness linked environmental impacts.
Moreover, further investigations using concurrent PET and fMRI imaging in patient samples is
needed to determine whether illness-related neurochemical alterations interact with brain
function. The present sample is also characterized by a large proportion of male participants. Prior
work has established the importance of sex differences in the brain-behavior features that
characterize substance use disorders (16). Accordingly, data from more sex diverse individuals

should be obtained in the future.

Conclusions

Together, these data establish correspondence across the functional networks implicated
in CUD and the neurotransmitters that underlie its mechanism of action. This provides a
foundation for future work disentangling the biological mechanisms that govern individual

variances in the dopaminergic systems, functional brain organization, and substance use.
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Section 1. Datasets

We used neuroimaging data from the Mexican magnetic resonance imaging dataset of
participants with CUD: SUDMEX CONN (1). SUDMEX is an open-source dataset consisting of
75 (9 female) CUD participants and 62 (11 female) healthy matched controls. Participants were
included based on the following inclusion criteria: (a) age between 18 and 50 years old; (b)
right-handed; (c) cocaine dependency with an active consumption of at least twice a week in the
last month. The exclusion criteria included: (a) current dependence (use and/or abuse) (by
DSM-1V criteria) on other substances (alcohol or nicotine); (b) pregnant or breastfeeding; (c)
neurological and psychiatric disorders; (d) with a severe systemic disease such as tumors or
digestive system disease; and (e) magnetic resonance imaging (MRI) contraindications. All
clinical and cognitive assessments were done by trained mental health psychologists and

psychiatrists.

Section 2. Exclusion criteria

Individuals with mean framewise displacement (FD) > 0.55 mm were exclude form analysis.

Eliminated 5 participants (one control, four CUD) participants due to artifacts and FD criteria (2).
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Section 3. MR Pre-processing

Briefly, raw images were first put through an automated quality control procedure (3, 4)
(fMRIPrep 21.0.1; RRID:SCR_016216), which is based on Nipype 1.6.1 (5, 6)
(RRID:SCR_002502). Data were then denoised using aComp-Cor and regressing out six-head
motion parameters and mean global signal, followed by high-pass filtering (see below for
details). Participants were excluded based on a previously established threshold on framewise
displacement (FD; mean FD>0.55mm (2)), visual/manual quality control, and automated MRI

quality control pipeline.

Preprocessing of B0 inhomogeneity mappings
A B0O-nonuniformity map (or field map) was estimated based on two (or more) echo-planar
imaging (EPI) references with topup. (7) (FSL 6.0.3:0862cdd5).

Anatomical data preprocessing

A total of 1 T1-weighted (T1w) images were found within the input BIDS dataset. The T1-
weighted (T1w) image was corrected for intensity non-uniformity (INU) with
N4BiasFieldCorrection (8) distributed with ANTs 2.3.3 (9) (RRID:SCR_004757), and used as
T1w-reference throughout the workflow. The T1w-reference was then skull-stripped with a
Nipype implementation of the antsBrainExtraction.sh workflow (from ANTSs), using
OASIS30ANTSs as target template. Brain tissue segmentation of cerebrospinal fluid (CSF),
white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using fast
(10) (FSL 6.0.3:b862cdd5, RRID:SCR_002823). Brain surfaces were reconstructed using recon-
all (11) (FreeSurfer 6.0.0, RRID:SCR_001847), and the brain mask estimated previously was
refined with a custom variation of the method to reconcile ANTs-derived and FreeSurfer-derived
segmentations of the cortical gray-matter of Mindboggle (12) (RRID:SCR_002438). Volume-
based spatial normalization to two standard spaces (MNI152NLin6Asym,
MNI152NLin2009cAsym) was performed through nonlinear registration with antsRegistration
(ANTs 2.3.3), using brain-extracted versions of both T1w reference and the T1w template. The
following templates were selected for spatial normalization: FSL\u2019s MNI ICBM 152 non-
linear 6th Generation Asymmetric Average Brain Stereotaxic Registration Model (13)
[RRID:SCR_002823; TemplateFlow ID: MNI152NLin6Asym], ICBM 152 Nonlinear Asymmetrical
template version 2009c¢ [(14) RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym].


https://doi.org/10.1101/2023.11.17.567591
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.17.567591; this version posted November 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Functional data preprocessing

For each of the 1 BOLD runs found per subject (across all tasks and sessions), the following
preprocessing was performed. First, a reference volume and its skull-stripped version were
generated using a custom methodology of fMRIPrep. Head-motion parameters with respect to
the BOLD reference (transformation matrices, and six corresponding rotation and translation
parameters) are estimated before any spatiotemporal filtering using mcflirt (15) (FSL
6.0.3:b862cdd5). The estimated field map was then aligned with rigid-registration to the target
EPI (echo-planar imaging) reference run. The field coefficients were mapped on to the reference
EPI using the transform. BOLD runs were slice-time corrected to 0.972s (0.5 of slice acquisition
range 0s-1.94s) using 3dTshift from AFNI (16) (RRID:SCR_005927). The BOLD reference was
then co-registered to the T1w reference using bbregister (FreeSurfer) which implements
boundary-based registration (17). Co-registration was configured with six degrees of freedom.
Several confounding time-series were calculated based on the preprocessed BOLD: framewise
displacement (FD), DVARS and three region-wise global signals. Global signal was extracted
within the whole-brain masks. Additionally, a set of physiological regressors were extracted to
allow for component-based noise correction (18) (CompCor). Principal components are
estimated after high-pass filtering the preprocessed BOLD time-series (using a discrete cosine
filter with 128s cut-off) for the anatomical (aCompCor). For aCompCor, three probabilistic masks
(CSF, WM, and combined CSF+WM) are generated in anatomical space. The implementation
differs from that of Behzadi et al. in that instead of eroding the masks by 2 pixels on BOLD
space, the aCompCor masks are subtracted from a mask of pixels that likely contain a volume
fraction of GM. This mask is obtained by dilating a GM mask extracted from the FreeSurfer aseg
segmentation, and it ensures components are not extracted from voxels containing a minimal
fraction of GM. Finally, these masks are resampled into BOLD space and binarized by
thresholding at 0.99 (as in the original implementation). Components are also calculated
separately within the WM and CSF masks. For each CompCor decomposition, the k
components with the largest singular values are retained, such that the retained components
time series are sufficient to explain 50 percent of variance across the nuisance mask. The
remaining components are dropped from consideration. The BOLD time-series were resampled
into standard space, generating a preprocessed BOLD run in MNI152NLin6Asym space. First, a
reference volume and its skull-stripped version were generated using a custom methodology of
fMRIPrep. Gridded (volumetric) resamplings were performed using antsApply Transforms
(ANTSs), configured with Lanczos interpolation to minimize the smoothing effects of other kernels
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(19). Finally, the aCompcor, cosine (highpass filtering), six head-motion and global signal
regressors were regressed out of each subjects MNI-space voxel level images.

Computing individual-level functional connectivity matrices

To characterize the functional profile of CUD for each individual, we used previously validated
Schaefer 400 cortical (20) and Tian 32-Scale Il subcortical (21) atlases (Fig. 1A) to extract
regional time series by taking the average of all voxels belonging to a given region. We then
calculate the pairwise Pearson correlation between each of the 432 regions, to generate 93,096
edge functional connectivity matrix. We employed the Yeo 7-network parcellation (22) to assign
each cortical ROls to a corresponding functional network. Subcortical regions were classified
according to their broad-scale anatomy (21).

Section 4. Methods

Network Based Statistic

The Network-Based Statistic (NBS) method tackles the challenge of multiple comparisons that
arises in the context of whole brain connectome analyses. It accomplishes this by conducting
statistical assessments at the level of interconnected components, which comprise groups of
nodes linked together through a series of edges, in contrast to the conventional treatment of each
individual edge in isolation. Specifically, at each edge (i.e., functional connectivity estimates
between two regions), differences in functional connectivity between individuals with CUD and
matched controls were assessed using an ANCOVA, adjusting for age, sex, and education,
examining the main effect of the group. Using R-version-4.0.3, package NBR (R package version:
0.1.5) (23), the Network Based Statistic (NBS) was used to perform family-wise error-corrected
(FWE) inference at the level of connected-components of edges showing a common effect, with
significance assessed at prr < 0.05. The NBS procedure involves setting a primary component-
forming threshold (z), which is applied to both the observed data, and the permuted null data. The
decision on where to set this threshold is arbitrary; a lower threshold can detect weaker
differences over many edges, whereas a higher threshold tends to pinpoint stronger effects that
might span fewer edges. We report results for t < 0.05 here, and present results for and t < 0.01,
and 7 < 0.001 in Supplementary Table 2 and Supplementary Figure 1. For both the observed
and permuted null data, we noted the size (number of edges) in the connected components above
this threshold. The size of the largest component from each permutation was employed to
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construct a null distribution, and a corrected-value for each observed component was estimated
as the proportion of null component sizes that was larger than the observed value (24). To
comprehensively delineate brain-wide alterations in functional connectivity, we present the results
at three different scales: (1) the level of individual connections (i.e., where edges are either under-
or over-connected, or hypo- versus hyperconnectivity, respectively); (2) the level of individual
brain regions, to identify specific brain areas which had a high number of significant connections
(Fig. 1B, 1D); and (3) the level of large-scale functional brain networks, analyzed both within- and
between-network. Here, we examined both as proportion of implicated edges (e.qg., upper triangle
Fig. 1C, 1E) and as proportions normalized by the size of the network (e.g., lower triangle Fig.
1C, 1E). To determine whether the observed functional connectivity alterations showed any
network-specificity, we calculated the proportion of significant edges that fell within each brain
networks (e.g., Fig. 1C; upper triangle). Different brain networks have intrinsic differences in their
size (number of regions), therefore we present both raw proportions and proportions normalized
by the total number of possible network connections between each pair of networks (e.g. Fig. 1C
lower triangle of matrix); the former identifies preferential involvement of a given network in an
absolute sense while the latter accounts for differences in network size (i.e., the tendency for
larger networks to be more likely to be implicated in a given NBS network).

Neuromaps

Receptor density data were obtained from Neuromaps (25). Neuromaps is an open source a
toolbox for accessing and analyzing structural and functional brain maps, combined from open-
access data to compare brain maps. Each group-level parametric PET image was parcellated
into 432 regions using the same atlases as the functional MRI data, and these regional values
were z-scored within each map. To quantify the relationship between the various receptor
distributions and CUD-related functional alterations, we first computed the degree of the detected
NBS network (number of significant edges connecting each region). We then performed
Spearman's correlation between regional degree and each receptor expression, using ‘spin tests’
for non-parametric inference that accounts for spatial autocorrelation (10,000 permutations; (26)).
Subcortical regions were random shuffled within hemisphere at each permutation (27, 28).
Specifically, to evaluate receptor density map comparison significance, a corresponding set of
null models was generated by computing 10,000 null correlations between permuted degree from
the detected NBS network (see Methods) and observed receptor densities. The p-value for each

correlation’s significance is defined as the proportion of null models with correlation values greater
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the original (observed) value. Binding potential refers to the ratio at which a radioligand binds to
a specific receptor within the brain compared to its nonspecific binding.

Supplementary Table 1: Results using alternate component forming threshold (1=0.01).

Threshold (1) component number of edges pFWE
0.01 1 2343 0.014

Supplementary Table 2: Neurotransmitter receptor density spearman’s p correlations after 10k
spin test and random shuffling per hemisphere for subcortical regions, and pspin-values
(uncorrected) for both 1) non-duplicate discovery set of receptor maps and 2) replication
receptor maps. Raclopride D23 tracer was excluded due to inconsistent binding as previously

reported using neuromaps (32).

Discovery | space | de |tracer |rece | neurotrans | sam | spearm | Pspin
source ns ptor | mitter ple | an’s value
size | rho (p)
1 hillmer2016 | MNI1 | 1m | flubatin | A4B2 | acetylcholin | 30 0.03 0.73902
52 m |e e 6097
2 naganawa2 | MNI1 | 1m |Isn317 | M1 acetylcholin | 24 0.09178 | 0.12538
020 52 m [ 2176 e 5158 7461
3 normandin2 | MNI1 | 1Tm | omar CB1 cannabinoi | 77 0.07733 | 0.29837
015 52 m d 9267 0163
4 kaller2017 MNI1 | 83m | sch233 | D1 dopamine 13 0.09543 | 0.21597
52 m |90 5821 8402
5 sandiego20 | MNI1 | 1m | flb457 | D2/3 | dopamine 55 0.17499 | 0.01499
15 52 m 5557 85
6 sasaki2012 | MNI1 | 1m | fepe2i | DAT | dopamine 6 0.00730 | 0.89031
52 m 1772 0969
7 dukart2018 | MNI1 | 3m | flumaz | GAB | gaba 6 0.05359 | 0.40765
52 m | enil Aa 7342 9234
8 norgaard202 | fsaver | 16 | flumaz | GAB | gaba 16 - 0.32836
1 age 4k | enil Aa-bz 0.06931 | 7163
0191
9 smart2019 MNI1 | 1m | abp688 | mGlu | glutamate 73 0.10527 | 0.08119
52 m R5 2997 1881
10 | gallezot2017 | MNI1 | 1m | gsk189 | H3 histamine 8 - 0.74442
52 m | 254 0.02591 | 5557
5649
11 | ding2010 MNI1 | 1m | mrb NET | norepineph | 77 - 0.25977
52 m rine 0.07472 | 4023
1389
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12 | kantonen20 | MNI1 | 3m | carfent | MOR | opioid 204 | 0.11040 | 0.17008
20 52 m | anil 8802 2992
13 | savli2012 MNI1 | 3m | way1l0 | 5HT1 | serotonin 36 0.08821 | 0.28057
52 m_ | 0635 a 0344 1943
14 | gallezot2010 | MNI1 | 1m | p943 5HT1 | serotonin 65 - 0.45895
52 m b 0.04913 | 4105
9507
15 | beliveau201 | fsaver | 16 | cimbi3 | 5HT2 | serotonin 29 - 0.97790
7 age 4k |6 a 0.00203 | 221
3638
16 | beliveau201 | fsaver | 16 | sb2071 | 5HT4 | serotonin 59 0.14333 | 0.03189
7 age 4k | 45 271 681
17 | beliveau201 | fsaver | 16 | dasb 5HTT | serotonin 100 | - 0.72652
7 age 4k 0.02487 | 7347
6314
18 | radnakrishn | MNI1 | 1m | gsk215 | 5HT6 | serotonin 30 0.13598 | 0.02009
an2018 52 m | 083 9626 799
Replicati | space | de | tracer rece | neurotran | sam | spearm | Pspin
on ns ptor | smitter ple |an’s value
source size | rho (p)
1 bedard20 | MNI1 | 1m | feobv VAC | acetylcholi |5 0.05086 | 0.43575
19 52 m hT ne 6695 6424
2 tuominen | MNI1 | 2m | feobv VAC | acetylcholi | 4 - 0.80841
52 m hT ne 0.01439 | 9158
6615
3 aghourian | MNI1 | 1m | feobv VAC | acetylcholi | 18 - 0.91940
2017 52 m hT ne 0.00630 | 8059
025
4 | jaworska2 | MNI1 | 1m | fallypride D2/3 | dopamine |49 0.16840 | 0.02229
020 52 m 5309 777
5 smith201 | MNI1 | 1m | flb457 D2/3 | dopamine |37 0.19151 | 0.00709
7 52 m 8035 929
6 dubois20 | MNI1 | 1m | abp688 mGlu | glutamate | 28 0.10159 | 0.14948
15 52 m R5 9185 5051
7 rosaneto | MNI1 | 1m | abp688 mGlu | glutamate |22 0.04152 | 0.54464
52 m R5 1609 5535
8 hesse201 | MNI1 | 3m | methylrebo | NET | norepineph | 10 0.00620 | 0.91890
7 52 m | xetine rine 1028 8109
9 turtonen2 | MNI1 | 1m | carfentanil | MOR | opioid 39 0.10399 | 0.20717
020 52 m 1003 9282
10 | laurikaine | MNI1 | 1m | fmpepd2 CB1 | cannabinoi | 22 0.03973 | 0.57094
n2018 52 m d 8966 2906
11 | beliveau2 | fsaver | 16 | cumi101 5HT1 | serotonin 8 0.06427 | 0.48965
017 age 4k a 7571 1035
12 | beliveau2 | fsaver | 16 | az1041936 | 5HT1 | serotonin 36 - 0.07019
017 age 4k |9 b 0.12000 | 2981
4048
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13 | savli2012 | MNI1 | 3m | p943 5HT1 | serotonin 22 - 0.57714
52 m b 0.04011 | 2286

9403
14 | savli2012 | MNI1 | 3m | altanserin | 5HT2 | serotonin 19 0.07929 | 0.23297
52 m a 6088 6702
16 | savli2012 | MNI1 | 3m | dasb 5HTT | serotonin 30 0.00676 | 0.93650
52 m 0779 6349
17 | fazio2016 | MNI1 | 3m | madam 5HTT | serotonin 10 - 0.16258
52 m 0.08788 | 3742

1565
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Supplementary Figure 1:
Results using alternate component forming threshold r = 0.01. No significant component was
detected at T < 0.001, suggesting that the detected effect is disperse and spatially widespread.


https://doi.org/10.1101/2023.11.17.567591
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.17.567591; this version posted November 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

| o.179°

["CIFLB 457 ['®F]fallypride ["CIFLB 457
(Discovery Sample) (Replication 1) (Replication 2)

A)  Total Cortical NBS Degree

0.2 4

e
o
.

Correlation (Spearman’s Rho)
=) o
- o

o
no
.

Receptor Source
Supplementary Figure 2: Results remain significant when subcortical regions are excluded.
Regional dysconnectivity was significantly correlated with D23 receptors in the absence of
subcortical only associations. Color scale for PET maps normalized between -1.0 to 1.0 for
cortex and subcortex separately. (Sandiego et al., 2015. (29) Discovery Sample: p=0.179;
pspin=0.018); (Jaworska et al., 2020. (30) Replication 1: p=0.172; psin=0.029); (Smith et al., 2017
(31): Replication 2: p=0.187; pspin=0.013)
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Supplementary Figure 3: NBS total degree dysfunction associations with serotonin receptors.
Regional dysconnectivity was additionally significantly correlated with 5HT4 (p=0.143;
Pspin=0.032), and 5HTg (p=0.136; pspin=0.020) serotonin receptors, however, replications were
not available. Color scale for PET maps normalized between -1.0 to 1.0 for cortex and
subcortex separately. (5-HTs-R: Beliveau et al., 2017 (33)) (5-HTs: Radhakrishnan et al., 2018
(34)). 5HT4: Bumax was converted from BPnp using autoradiography densities.
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