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Abstract
Gene misexpression is the aberrant transcription of a gene in a context where it is usually
inactive. Despite its known pathological consequences in specific rare diseases, we have a
limited understanding of its wider prevalence and mechanisms in humans. To address this,
we analyzed gene misexpression in 4,568 whole blood bulk RNA sequencing samples from
INTERVAL study blood donors. We found that while individual misexpression events occur
rarely, in aggregate they were found in almost all samples and over half of inactive genes.
Using 2,821 paired whole genome and RNA sequencing samples, we identified that
misexpression events are enriched in cis for rare structural variants. We established putative
mechanisms through which a subset of SVs lead to gene misexpression, including
transcriptional readthrough, transcript fusions and gene inversion. Overall, we develop
misexpression as a novel type of transcriptomic outlier analysis and extend our
understanding of the variety of mechanisms by which genetic variants can influence gene
expression.

Introduction
Temporal and spatial regulation of gene expression is essential for the functioning of
multicellular eukaryotes. Gene regulation involves the context-specific activation and
maintenance of transcription, as well as gene silencing to avoid aberrant transcription
interfering with normal cellular function. The aberrant transcription of a gene in a context
where it is usually inactive is termed gene misexpression (also referred to as ectopic
expression) (Fig.1A)1. Gene misexpression can occur either via the transcription of a single
inactive gene or production of a novel transcript derived in part from an inactive gene. We
refer to these different types of events as non-chimeric and chimeric misexpression,
respectively.

Gene misexpression can have profound phenotypic consequences, as evidenced by the
development of ectopic eyes across different tissues in Drosophila melanogaster upon
targeted misexpression of the eyeless gene2. In humans, gene misexpression has been
implicated in cancers3,4 and several rare diseases, for example, congenital limb
malformations5, congenital hyperinsulinism6 and monogenic severe childhood obesity7.
These studies have identified gain-of-function genetic variants that lead to both chimeric and
non-chimeric gene misexpression. For example, chimeric misexpression can be caused by
transcript fusions7 and non-chimeric misexpression via rearrangements in 3D chromatin
architecture8 or loss of silencer function6. However, these studies have predominantly
focused on a limited number of disease-related loci.

Recent large-scale RNA sequencing (RNA-seq) studies analyzing transcriptional outliers in
humans have demonstrated that outliers are enriched for rare single nucleotide variants
(SNVs), indels and structural variants (SVs) in cis9–12 and that these outlier-associated
genetic variants can contribute to complex disease risk11,13. However, these studies focused
on outliers in highly expressed genes within the tissue(s) under study, overlooking
misexpression of inactive genes. Consequently, the prevalence of gene misexpression in
humans, the genes whose misexpression can be tolerated and their associated properties
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are unknown. Furthermore, the types of genetic variants associated with misexpression and
their mechanisms remain underexplored.

To address these gaps in our understanding, we conducted a genome-wide analysis of gene
misexpression using bulk RNA-seq data from 4,568 blood donors from the INTERVAL
study14,15. We assessed the prevalence of gene misexpression across genes and samples,
and the characteristics of genes that tolerate misexpression. Additionally, we established the
types of genetic variants associated with gene misexpression as well as their putative
mechanisms of action using 2,821 paired whole genome sequencing (WGS) and RNA-seq
samples.

Results
Identification of misexpression events in whole blood
To identify misexpression events, we first defined a set of inactive genes with negligible or no
detectable expression across the majority of the 4,568 whole blood RNA-seq samples from
the INTERVAL study (Methods). We restricted our analysis to 29,614 autosomal
protein-coding and long non-coding RNA genes with evidence of being expressed in at least
one tissue from the Genotype-Tissue Expression (GTEx) project. From these, we identified
8,779 inactive genes that were expressed (transcripts per million (TPM) > 0.1) in less than
5% of samples (Fig. 1B). We confirmed that these genes were likely inactive using other
whole blood RNA-seq datasets, such as GTEx, and predicted chromatin states from
peripheral blood mononuclear cells (PBMCs) (Supplementary Fig. 1). To account for
non-genetic drivers of misexpression, such as sequencing depth or variation in cell
proportions, we removed 129 (1.5%) genes that were significantly correlated (|Spearman’s
rho| > 0.2, FDR-adjusted p < 0.05) with any of 225 technical and cellular covariates. We
transformed expression values into z-scores and identified 28,956 misexpression events
(z-score > 2 and TPM > 0.5). Across all inactive gene-sample pairs, the proportion of
misexpression events was low (0.07%, 28,956/39,513,200) with the number of events
decreasing substantially at higher z-score thresholds (Fig. 1C, Supplementary Fig. 2).
While individual misexpression events occurred rarely, in aggregate they were found in 51%
of inactive genes (4,437/8,650) and in 96% of samples (4,386/4,568) with a median of 4
events per sample (Supplementary Fig. 2).

Misexpressed genes are shorter, depleted of developmental genes and less tightly
regulated
Next, we investigated the properties that differ between genes with and without
misexpression events. We tested for enrichment of 81 gene-level features in genes that
were misexpressed at least once (''misexpressed genes'') versus genes with no observed
misexpression events (''non-misexpressed genes'') across different misexpression z-score
thresholds (Fig. 1D, Supplementary Fig. 3, Methods). Overall, misexpressed genes were
shorter, less constrained according to both mutational (gnomAD LOEUF and missense
OEUF) and non-mutational (Enhancer Domain Score and Episcore) metrics and were less
likely to be implicated in developmental diseases16–19. These genes also had fewer predicted
enhancer interactions based on both proximity- and activity-linking approaches from Wang &
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Figure 1. Identification of misexpression events and characterisation of misexpressed genes.
A.) Gene misexpression is the aberrant transcription of a gene in a context where it is usually inactive.
In this schematic, the majority of individuals have negligible or no expression of gene A (inactive,
gray) with only a handful of individuals showing high expression (misexpression, red). B.) Distribution
of gene activity across 29,614 genes within the INTERVAL whole blood RNA-seq dataset. For each
gene, activity is quantified as the percentage of samples where the gene has a TPM > 0.1 (x-axis).
Inactive genes are defined as having a TPM > 0.1 in less than 5% of samples (vertical dashed line).
C.) Proportion of 39,513,200 gene-sample pairs (8,650 inactive genes across 4,568 samples) that are
misexpressed (y-axis) across different misexpression z-score thresholds (x-axis). Text labels indicate
the total number of misexpression events at each misexpression z-score threshold. D.) Enrichment of
gene-level features within 4,437 genes that are misexpressed (z-score > 2 and TPM > 0.5) versus
4,213 non-misexpressed genes. The 15 features with the highest absolute log odds passing
Bonferroni correction are shown. Lines indicate 95% confidence intervals for the fitted parameters
using the standard normal distribution. E.) Top 10 Human Phenotype Ontology (HPO) terms, by
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-log10(adjusted p-value) on the x-axis, underrepresented within 4,437 misexpressed genes using all
8,650 inactive genes as the custom background. OMIM; Online Mendelian Inheritance in Man,
LOEUF; loss-of-function observed/expected upper bound fraction, OEUF; observed/expected upper
bound fraction.

Goldstein17, suggesting that they are under weaker regulatory control. Misexpressed genes
were less likely to be expressed in brain, pituitary and heart tissues, and generally were
expressed across fewer GTEx tissues (n = 52). Additionally, they were underrepresented for
Human Phenotype Ontology (HPO) terms relating to phenotypic abnormalities of the
nervous and musculoskeletal system (Fig. 1E, Supplementary Fig. 4, Methods). This is of
interest as congenital limb malformations are known to be caused by gene misexpression8.
Taken together, these results suggest that natural selection has acted to prevent the
misexpression of genes important in developmental processes. Importantly, these results
also demonstrate that our method for identifying gene misexpression is valid, as we would
expect misexpression of inactive developmental genes to be deleterious, and therefore,
underenriched in a generally healthy population cohort.

Rare structural variants are associated with gene misexpression
To assess the influence of genetic variation on gene misexpression in cis we conducted
genetic variant enrichment analyses. Our analysis focused on 2,821 participants with both
WGS and RNA-seq data in the INTERVAL study (Methods). In total, we conducted 700
enrichment tests, determining significance using a Bonferroni-adjusted p-value threshold (p
< 0.05). Firstly, we tested whether rare (MAF < 1%), low-frequency (1% ≤ MAF < 5%) or
common (5% ≤ MAF < 50%) SNVs, indels (≤ 50 bp) or SVs (> 50 bp) were enriched within
the gene body and flanking sequence of genes involved in misexpression events (±10 kb for
SNVs and indels, ±200 kb for SVs, Methods). Across all tested z-score thresholds, we
observed a significant enrichment of rare SVs around gene misexpression events, whereas
no significant enrichment was observed for low frequency or common SVs at any z-score
threshold (Fig. 2A). The enrichment for rare SVs increased dramatically at increasing
z-score thresholds, with 4.7% (38/803) of extreme misexpression events (z-score > 40)
having a nearby rare SV compared to 1.3% (229/17,380) of less extreme events (z-score >
2, Fig. 2A, Supplementary Fig. 5). Notably, we did not find a significant enrichment for
SNVs or indels at any MAF or z-score threshold (maximum enrichment SNVs = 1.04 and
indels = 1.15) and even observed a significant weak underenrichment in some cases.

We examined whether the observed rare SV enrichment could be due to a small number of
SVs leading to the misexpression of many genes. However, out of the 312 SVs within 200kb
of a misexpression event, 95% (297) were linked to only one gene and the remainder to a
maximum of two genes. We also assessed whether the observed rare SV enrichment could
be due to a small number of participants with a high number of SVs and misexpression
events. Similarly, of the 206 participants containing misexpression events with a nearby SV,
89% (183) had only one misexpression event with an SV in cis.

To investigate the influence of genetic variation on gene misexpression over longer
distances, we tested rare variant enrichment at increasing distances from genes. For each
gene, we assigned each rare SNV, indel and SV to a unique genomic window up to 1 Mb
upstream or downstream and tested variant enrichment for each window independently
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Figure 2. Enrichment of genetic variants near to gene misexpression events.
Across all figures, enrichments were calculated as the relative risk of having a nearby variant type or
consequence given the misexpression status. Bars represent 95% Wald confidence intervals of the
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relative risk estimates. The line at enrichment = 1 indicates no enrichment; asterisks positioned either
side of the line indicate significant enrichment or underenrichment after Bonferroni correction. A.)
Enrichment of SNVs, indels and SVs within the gene body and flanking sequence of genes involved in
misexpression events across different misexpression z-score thresholds and MAF cutoffs. A flanking
sequence of ±200 kb around each gene was used for SVs and ±10 kb for SNVs and indels. B.)
Enrichment of rare (MAF < 1%) SNVs, indels and SVs within 200 kb genomic windows and the body
of genes involved in misexpression events. The misexpression threshold shown is a z-score > 10 and
TPM > 0.5. C.) Enrichment of rare (MAF < 1%) deletions and duplications in a ±200 kb window
around genes involved in misexpression events across different misexpression z-score thresholds. D.)
Enrichment of rare (MAF < 1%) deletions, duplications, and inversions within 200 kb genomic
windows and the body of genes involved in misexpression events. The misexpression threshold
shown is a z-score > 10 and TPM > 0.5. E.) Enrichment of rare (MAF < 1%) SVs, stratified by their
class and predicted VEP consequence in a ±200 kb window around genes involved in misexpression
events. The misexpression threshold shown is a z-score > 10 and TPM > 0.5. Only SV consequences
with at least one Bonferroni significant enrichment at any z-score threshold are shown. SNV; single
nucleotide variant, SV; structural variant, TTS; transcription termination site, TSS; transcription start
site.

(Methods). Across all z-score thresholds, enrichment was highest for rare SVs within the
gene body and decreased at greater distances from the misexpressed gene (Fig. 2B,
Supplementary Fig. 6), remaining significant up to 200 kb upstream. Interestingly, rare SV
enrichment was not symmetrical around misexpressed genes with greater enrichment
upstream of transcription start sites (TSS) compared to downstream of the transcription
termination site (TTS). Similarly to the gene-level analysis, we found that rare SNVs were
not significantly enriched across any window or expression threshold, and again observed
significant weak underenrichment in some genomic windows (Fig. 2B, Supplementary Fig.
6). While indels did show a significant enrichment in some windows, the level of enrichment
was much lower than SVs (maximum significant enrichment = 1.11) and was not consistently
observed across all z-score thresholds (Supplementary Fig. 6).

Rare deletions, duplications and inversions are associated with gene misexpression
We hypothesized that misexpression events are associated with a specific type of structural
variation and therefore conducted enrichment tests for the four different SV classes
available: deletions (DEL), duplications (DUP), inversions (INV) and mobile element
insertions (MEI) (Fig. 2C, Supplementary Fig. 7, Methods). Across all z-score thresholds,
rare deletions and duplications were significantly enriched within a 200 kb window around
misexpressed genes with duplications consistently showing the highest enrichment.
However, at this sample size and genomic window size, rare inversions and mobile element
insertions were not significantly enriched.

Next, we tested whether different SV classes showed distinct patterns of enrichment at
increasing distances from misexpressed genes (Methods). Rare duplications and inversions
were significantly enriched only within the gene body of the misexpressed gene (Fig. 2D).
For duplications, all tested z-score thresholds were significant, while for inversions this
enrichment was significant only up to a z-score threshold of 10, likely due to the low number
of inversion calls (Supplementary Fig. 7). Rare deletions were significantly enriched in the
window 200 kb upstream from the transcription start site (TSS) across all z-score thresholds
(Fig. 2D, Supplementary Fig. 7). Rare deletions were also enriched within the gene body of
the misexpressed gene but this was only significant at higher z-score thresholds
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(Supplementary Fig. 7). Rare mobile element insertions were not significantly enriched
within any tested window at any z-score threshold. No significant enrichment was observed
at greater distances for any SV class.

We annotated each rare SV by its predicted consequence on the inactive genes in the tested
window using the Ensembl Variant Effect Predictor (VEP)20. For each SV class, we then
tested for enrichment of predicted consequences ±200 kb around misexpressed genes
relative to controls (Fig. 2E, Supplementary Fig. 8, Methods). We found that inversions
affecting coding regions had the highest enrichment of any variant consequence; however,
this was only significant up to a z-score threshold of 20, again likely due to the low number of
inversion calls. Deletions upstream and with no predicted effect on the tested gene were
significantly enriched as were deletions affecting non-coding transcripts at higher z-score
thresholds. Additionally, duplications leading to transcript amplification and affecting coding
regions as well as non-coding transcripts were significantly enriched. These results support
the enrichment observed for SVs classes within specific genomic windows.

Properties and regulatory features of misexpression-associated structural variants
To understand the general properties of misexpression-associated rare SVs, we compared a
set of 105 misexpression-associated and 20,150 control SVs (Methods). Of these 105 SVs,
87 were deletions, 16 were duplications and 2 were inversions (Fig. 3A). All the duplications
were confirmed to be tandem duplications (Methods). Notably, for 60% and 28% of
deletions and duplications VEP did not predict an effect on the misexpressed gene (Fig. 3B).
While the majority (72%) of duplications overlapped the misexpressed gene either entirely or
partially, this was not the case for deletions (8% overlapping) (Fig. 3C). Therefore, we
analyzed the properties of deletions and duplications separately, excluding inversions due to
their low numbers.

First, we found that misexpression-associated deletions and duplications were on average
2.5- and 3.4-times longer, respectively, than control variants (p = 6.03x10-7 and p = 3.9x10-6,
one-sided Mann-Whitney U test, Fig. 3D). Since MAF and SV length are inversely
correlated, we also compared the lengths of singletons and found that
misexpression-associated deletions and duplications remained on average 2.8- and
2.0-times longer, respectively (p = 2.3x10-4 and p = 2.2x10-3, one-sided Mann-Whitney U
test, Supplementary Fig. 9). To avoid the correlation between length and other genomic
features driving enrichment, we included length as a covariate in subsequent enrichment
analyses.

To investigate the importance of regions overlapping misexpression-associated SVs versus
controls, we tested for enrichment of five different genomic scores spanning evolutionary
conservation, constraint and deleteriousness (Fig. 3E, Supplementary Fig. 9, Methods).
Both misexpression-associated deletions and duplications were significantly enriched within
more conserved regions compared to controls (Bonferroni p < 0.05) and were predicted to
be significantly more deleterious by CADD-SV (Bonferroni p < 0.05)21,22. However, only
duplications were located in more constrained regions (Bonferroni p < 0.05)23,24. Neither
misexpression-associated deletions nor duplications were significantly enriched for human
accelerated regions (HARs, Bonferroni p ≥ 0.05)25.
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Figure 3. Properties and regulatory features associated with misexpression-associated rare
SVs.
A.) Proportion of misexpression-associated and control deletions, duplications, inversions and mobile
element insertions. Proportion of misexpression-associated deletions and duplications by their B.)
predicted VEP consequence on the misexpressed gene and C.) position relative to the misexpressed
gene. D.) SV length distributions of misexpression-associated and control duplications and deletions.
E.) Enrichment (x-axis) of misexpression-associated deletions (left panel, red) and duplications (right
panel, green) compared to controls for genomic scores (y-axis) including evolutionary conservation
(PhyloP), predicted deleteriousness (CADD-SV), constraint (gnomAD z-score constraint and
gwRVIS), and HARs. Enrichments were calculated as the log odds ratio with lines indicating 95%
confidence intervals for the fitted parameters using the standard normal distribution. Asterisks indicate
significant enrichment after Bonferroni correction. F.) Enrichment of misexpression-associated
deletions and duplications compared to controls for regulatory features including CTCF candidate
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cis-regulatory elements (cCREs) from ENCODE, TAD boundaries shared across multiple cell-lines, A
and B compartments, chromatin states from the Roadmap Epigenomics Project and CpG islands from
the UCSC genome browser. Enrichments were calculated as the log odds ratio and tiles shaded in
gray do not pass Bonferroni correction. CADD-SV; combined annotation dependent depletion for SVs,
gwRVIS; genome-wide residual variation intolerance score, TADs; topologically-associated domains,
HARs; human accelerated regions, TSS; transcription start site, CTCF; CCCTC-binding factor, ZNFs;
zinc-finger proteins.

To determine whether misexpression-associated SVs were enriched in specific regulatory
features compared to the control SVs, we annotated SVs with 23 regulatory features (Fig.
3F, Supplementary Fig. 9, Methods). Misexpression-associated deletions were most
strongly enriched for transcribed regions but were also significantly enriched for regions with
weak repressed polycomb, CTCF-binding sites in B-cells and neutrophils, CpG islands,
enhancers and TAD boundaries (Bonferroni p < 0.05). Misexpression-associated
duplications were most strongly enriched for enhancers but also showed significant
enrichment for transcribed regions, active promoters, CpG islands and repressed polycomb
(Bonferroni p < 0.05). Overall, these enrichments suggest that a subset of SVs may lead to
gene misexpression via disruption of regulatory regions.

Deletions and duplications lead to chimeric misexpression via transcriptional
readthrough
Next, we aimed to identify putative mechanisms whereby the 105 misexpression-associated
SVs lead to gene misexpression. From the genetic variant and regulatory feature enrichment
analysis, we hypothesized that a subset of deletions and duplications could cause
transcriptional readthrough resulting in chimeric gene misexpression. Based on their position
and genomic context, we identified 17 (16.2%) transcriptional readthrough candidate SVs
(12 deletions, 5 duplications) from the 105 misexpression-associated SVs (Fig. 4A, Fig. 4B,
Methods).

To assess whether these candidate SVs resulted in transcriptional readthrough we computed
fragments per kilobase of transcript per million mapped reads (FPKM) and the fraction of
bases with non-zero coverage (FBNC) over the predicted readthrough regions across all
4,568 RNA-seq samples (Methods). We z-score-transformed FPKM and FBNC metrics to
account for differing levels of background transcription at each locus. For carriers of all 17
deletions and duplications, we observed aberrant (z-score > 2) levels of both FPKM and
FBNC over the predicted readthrough region (Fig. 4C, Supplementary Fig. 10).
Furthermore, both z-scores were positively correlated with the level of gene misexpression
across carriers (FBNC Spearman’s rho = 0.76, p < 0.05, FPKM = 0.55, p < 0.05, Fig. 4D,
Fig. 4E), while this was not the case for non-carriers (FBNC Spearman’s rho = 0.05 and
FPKM = 0.09). Together these results provide strong evidence that these SVs lead to
transcriptional readthrough resulting in gene misexpression.

Of the 12 transcriptional readthrough deletions, only 5 were within 5 kb and therefore were
annotated by VEP as upstream variants with respect to the misexpressed gene
(Supplementary Fig. 10). Of the 5 transcriptional readthrough duplications, 2 were
annotated as non-coding transcript variants and 3 as transcript amplifications
(Supplementary Fig. 10). These VEP consequences supported the enrichments observed
in Fig. 2E. The median length of the readthrough region was 15 kb, but remarkably for one
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Figure 4. Transcriptional readthrough leads to chimeric misexpression.
A.) Schematic diagram of a deletion resulting in transcriptional readthrough and chimeric gene
misexpression. Deletion of the transcription termination site of an expressed gene (green) leads to
transcriptional readthrough. This results in misexpression of the usually inactive gene (blue) located
downstream. B.) Schematic diagram of a tandem duplication resulting in transcriptional readthrough
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and chimeric gene misexpression. The tandem duplication places an inactive gene (blue) downstream
of an expressed gene (green) with no transcription termination site. This leads to transcriptional
readthrough and misexpression of the usually inactive gene. C.) FPKM and FBNC z-scores over the
predicted readthrough regions for carriers of candidate deletions (red) and duplications (green), as
well as non-carriers (gray). Relationship between D.) FBNC z-score and E.) FPKM z-score with the
respective misexpression z-score for carriers of candidate deletions (red) and duplications (green), as
well as non-carriers (gray). F.) Length of the predicted readthrough region for duplications (red) and
deletions (green). G.) Expression of RTP1 comparing a DEL chr3:187069321-187094542 carrier to
non-carriers. Red color indicates samples passing the misexpression threshold TPM > 0.5 and
z-score > 2 while gray samples are below this threshold. H.) Deletion of the 3’ end of ST6GAL1
results in transcriptional readthrough. Transcriptional readthrough leads to RTP1 misexpression
(orange gene) and intergenic splicing between ST6GAL1 and RTP1 (intergenic reads, orange). In the
sashimi plot, the line width corresponds to the number of reads spanning a given junction. FPKM;
fragments per kilobase of transcript per million mapped reads, FBNC; fraction of bases with non-zero
coverage. TPM; transcripts per million.

deletion (DEL chr3:187069321-187094542) we observed misexpression of a gene 103 kb
away (Fig. 4F). At this locus, split reads revealed that intergenic splicing occurred between
the expressed ST6GAL1 gene and the usually inactive gene RTP1 (Fig. 4H). The carrier of
this deletion had highly aberrant expression levels of RTP1 relative to non-carriers (Fig. 4G).
RTP1 is normally expressed in multiple non-blood tissues with the highest expression in the
brain frontal cortex according to the GTEx project26. We also observed evidence of intergenic
splicing due to transcriptional readthrough for a deletion (DEL chr5:77674588−77771600)
involving misexpression of the OTP gene. According to the GTEx project, OTP is normally
expressed in the hypothalamus (Supplementary Fig. 10, Methods)26.

Deletions and duplications lead to chimeric misexpression via transcript fusion
Previous studies in rare diseases have demonstrated that pathogenic gene misexpression
can occur via transcript fusion7. Therefore, we hypothesized that a subset of deletions and
duplications could lead to chimeric gene misexpression via transcript fusion. To assess this,
we used STAR fusion to identify fusion transcripts (Methods)27. We identified 12 fusion
transcripts involving misexpressed genes that were consistently observed with a
misexpression-associated SV within 200 kb. Out of these, we labeled 10 as high evidence
and 2 as low evidence using STAR fusion’s filtering criteria (Methods), and focused our
mechanistic analysis on fusion transcripts with high evidence. Of these, 3 were associated
with duplications and 7 with deletions.

We had described 2 of the 7 deletion-associated fusion transcripts previously as being the
result of transcriptional readthrough and intergenic splicing involving RTP1 and OTP (Fig.
4H, Supplementary Fig. 10). Out of the other deletions, 2 removed the 3’ end and TTS of
an active gene and 5’ end of an inactive gene on the same strand resulting in the inactive
gene coming under the control of an active promoter (Fig. 5A, Supplementary Fig. 11). For
the remaining 3 deletion-associated fusion events the mechanism was unclear. This may be
due to failure to detect more complex rearrangements at these loci or because these
variants are non-causal.

All 3 duplications resulted in the 3’ end of an inactive gene being positioned within an active
gene on the same strand (Fig. 5B, Supplementary Fig. 11). This leads to part of the
inactive gene coming under the control of an active promoter. One of the duplications (DUP
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Figure 5. Transcriptional fusion and gene inversions lead to gene misexpression.
A.) Schematic diagram of a deletion resulting in transcript fusion and chimeric gene misexpression.
The deletion of the 3’ end of an active gene (green) and 5’ end of an inactive gene (blue) results in a
fusion transcript containing portions of the active and inactive gene’s transcripts. B.) Schematic
diagram of a tandem duplication resulting in transcript fusion and gene misexpression. The duplication
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of the 3’ end of an inactive gene (blue) and 5’ end of an active gene (green) in tandem results in a
fusion transcript containing portions of the active and inactive gene’s transcripts. C.) Expression of
MYH1 comparing a DUP chr17:10078018-10512685 carrier to non-carriers. Red color indicates
samples passing the misexpression threshold TPM > 0.5 and z-score > 2 while gray samples are
below this threshold. D.) FusionInspector visualization of the GAS7–MYH1 fusion transcript. DUP
chr17:10078018-10512685 breakpoints are labeled in green. Introns have been shortened for
visualization and breakpoint positions have been approximated accordingly. In the sashimi plot, the
line width corresponds to the number of reads spanning a given junction. The misexpressed gene and
the fusion reads are highlighted in orange. E.) Expression of ROPN1B comparing INV
chr3:125966617-125980782 carriers and non-carriers. Red color indicates samples passing the
misexpression threshold TPM > 0.5 and z-score > 2 while gray samples are below this threshold. F.)
Location of INV chr3:125966617-125980782 showing all ROPN1B transcripts. The Ensembl canonical
transcript is labeled with an asterisk and the major misexpressed transcript with a double asterisk. G.)
Percentage expression of ROPN1B transcripts for all INV chr3:125966617-125980782 carriers. H.)
Distribution of misexpression z-scores across different types of misexpression mechanisms. Text
labels indicate the number of misexpression events for each putative mechanism.

chr17:10078018-10512685) was associated with a GAS7-MYH1 fusion transcript (Fig. 5C).
The duplication’s breakpoints were consistent with the structure of the fusion transcript (Fig.
5D). MYH1 is normally exclusively expressed in skeletal muscle tissue26. FusionInspector
predicted that this fusion transcript contained a novel open reading frame resulting from the
in-frame concatenation of 61 N-terminal residues of GAS7 and 1603 C-terminal residues of
MYH1 (total predicted protein length 1664 residues)28. Since expression of this novel
transcript is likely under the control of the GAS7 promoter, we hypothesize that it will be
misexpressed across multiple tissues26. This hypothesis is supported by the fact that fusion
reads have been detected previously in multiple cancer samples from lung, stomach and
intestine29,30. However, within our dataset this fusion transcript is likely the result of a
heterozygous germline variant rather than a somatic variant.

Inverting gene orientation is associated with non-chimeric misexpression
Gene misexpression was not limited to transcriptional readthrough and transcript fusion
mechanisms. We observed that ROPN1B had consistently elevated expression across 10
carriers with an inversion (INV chr3:125966617-125980782) spanning the 5’ end of the gene
(Fig. 5E, Fig. 5F). Transcript quantification using Salmon showed that ROPN1B
misexpression was transcript-specific with the major misexpressed transcript being
completely contained within the inversion (Fig. 5G)31. Inverting ROPN1B’s orientation may
lead to ectopic enhancer-promoter contacts resulting in misexpression but this cannot be
confirmed with the data available. Additionally, we observed elevated expression of intestinal
alkaline phosphatase (ALPI) across 6 participants carrying two deletions (DEL
chr2:232375546-232379537, and DEL chr2:232428106-232431877) in cis (Supplementary
Fig. 12). However, the mechanism by which these deletions lead to misexpression is
unclear.

Overall, we have identified a putative mechanism for 42% (41/98) of events with a
misexpression-associated SV in cis. Out of these mechanisms, transcript fusion on average
led to the most extreme levels of misexpression and gene inversions the lowest (Fig. 5H).
We manually inspected the remaining 57 events but could not identify SVs with shared
mechanisms that could explain the observed misexpression. Interestingly, only 4 of these
events had an SV in cis that overlapped a TAD boundary and CTCF-binding site in the
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required orientation to result in misexpression via rearrangements in 3D chromatin
architecture (Methods). However, we could not confirm that these SVs were causal. This
result suggests that in our cohort 3D genome rearrangements leading to gene
misexpression may be exceedingly rare.

Discussion
In this study, we have developed gene misexpression as a novel type of transcriptomic
outlier analysis and conducted the first genome-wide characterization of the gene
misexpression landscape using bulk RNA-seq in a cohort of 4,568 blood donors. We found
that misexpression events occur in the majority of samples and in over half of inactive
genes. By integrating WGS and RNA-seq data, we assessed the influence of genetic
variation on gene misexpression, demonstrating that these events are enriched for rare SVs
in cis. We also show that a subset SVs lead to misexpression via specific mechanisms
including transcriptional readthrough, transcript fusion and inverting gene orientation. These
findings extend our understanding of gene misexpression and its genetic mechanisms
beyond the limited number of samples and disease-relevant loci where misexpression had
previously been described.

Large-scale RNA-seq studies have found that different categories of transcriptional outliers
are enriched for distinct types of genetic variation9,11. We found that this was also the case
for misexpression events, which were strongly enriched for rare SVs. Compared to SV
enrichment in other outlier types measured across multiple tissues, this rare SV enrichment
occurred at shorter distances from the TSS11. Although rare disease studies have
demonstrated that SNVs and indels can lead to gene misexpression6, we did not observe a
consistent significant enrichment for these types of genetic variation in this large
predominantly healthy cohort. These results emphasize the disproportionate impact that
large genetic perturbations have in influencing gene expression9–12. Unlike in previous
studies focusing on SVs10,12, we identified multiple regulatory features that were enriched in
misexpression-associated SVs and used these features to identify specific misexpression
mechanisms.

Previous studies of rare diseases have observed that non-chimeric misexpression, where an
individual inactive gene is aberrantly transcribed, can result from rearrangements in 3D
chromatin architecture resulting in changes in enhancer-promoter interactions (enhancer
adoption)8. However, in our cohort, we were unable to identify such events with confidence.
This might indicate that these events are exceedingly rare in healthy human populations.
Alternatively, our approach may fail to identify these events due to a lack of high-resolution,
context-specific Hi-C data. However, parallels can be drawn between the SV mechanisms
resulting in chimeric misexpression we have observed here and those involving
rearrangements in 3D chromatin architecture. While SVs leading to chimeric misexpression
via transcript fusion or transcriptional readthrough place an inactive gene under the control
of a different active promoter, SVs resulting in enhancer adoption place an inactive promoter
under the control of active enhancers. Therefore, a consistent theme across different SV
misexpression mechanisms is changes to the regulatory environment of an inactive gene
through alterations to either its promoter or enhancers.
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It is important to highlight the limitations of this study. Firstly, we have only analyzed gene
misexpression within whole blood and further studies should examine the prevalence of
misexpression across different tissues and cell types as well as in disease. Indeed, a link
between misexpression and disease is more likely to be detected in the relevant disease
tissue rather than in whole blood. Secondly, we have focused on high confidence events by
using a stringent expression threshold. This threshold is arbitrary and the level of
misexpression required to influence cellular processes is likely to vary across genes and
contexts. Thirdly, due to the technical difficulties of calling SVs in short-read genome
sequencing, we may be unable to detect some SVs that lead to misexpression and therefore
the proportion of misexpression events associated with an SV is likely underestimated.
Some of the misexpression events not associated with SVs may be due to non-genetic
mechanisms such as leaky transcription, chromatin plasticity or specific environmental cues.
Finally, when interpreting the consequences of rare SVs we have focused on mechanisms
that are shared by multiple variants or events with multiple variant carriers. Therefore, we
are biased towards detecting more common misexpression mechanisms and may miss
additional mechanisms caused by ultra-rare SVs.

Interpreting the functional effects of rare genetic variation remains challenging and is
important for understanding the molecular mechanisms by which variants influence human
traits. Here, we have extended our understanding of how genetic variants influence gene
expression. The fact that rare SVs can induce misexpression not just in the rare disease
context should be taken into account in future studies when cataloging and interpreting their
effects in population cohorts. This is especially important for SVs associated with human
complex diseases, as it is currently unknown what fraction of these SVs may mediate their
phenotypic effects by causing gene misexpression.

Methods
The INTERVAL Study
The INTERVAL study is a prospective cohort study of approximately 50,000 participants
nested within a randomized trial of varying blood donation intervals14,15. Between 2012 and
2014, blood donors aged 18 years and older were recruited at 25 centers of England’s
National Health Service Blood and Transplant (NHSBT). All participants gave informed
consent before joining the study and the National Research Ethics Service approved this
study (11/EE/0538). Participants were generally in good health as blood donation criteria
exclude individuals with a history of major diseases (e.g. myocardial infarction, stroke,
cancer, HIV, and hepatitis B or C) and who have had a recent illness or infection.
Participants completed an online questionnaire comprising questions on demographic
characteristics (e.g. age, sex, ethnicity), lifestyle (e.g. alcohol and tobacco consumption),
self-reported height and weight, diet and use of medications.

Whole genome sequencing
The manuscript describing the whole genome sequencing in full is in preparation. In brief,
whole genome sequencing was performed on 12,354 samples using the Illumina HiSeq X10
platform as paired-end 151 bp reads at the Wellcome Sanger Institute (WSI). Reads were
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aligned to the GRCh38 human reference genome with decoys (also known as HS38DH)
using BWA MEM. Variants were called using GATK4.0.10.1. GATK Variant Quality Score
Recalibration (VQSR) was used to identify probable false positive calls. 491 samples were
removed including 77 samples with coverage below 12x, 134 with > 3% non-reference
discordance (NRD), 118 with > 3% FreeMix (VerifyBamID2) score, 221 samples failing
identity checks, 30 samples swapped, 40 samples failing sex checks, 39 duplicates and 9
samples with possible contamination. Genotypes with allele read balance > 0.1 for
homozygous reference variants, < 0.9 for homozygous alternative variants or not between
0.2-0.8 for heterozygous variants were removed. Genotypes were also removed if the
proportion of informative reads was < 0.9 or total read depth > 100. We performed variant
quality control and filtered out variants that failed to meet the following requirements: call
rate per site > 95%, mean genotype quality (GQ) value > 20, Hardy-Weinberg equilibrium
(HWE) p-value > 1 x 10-6 only for autosomes. All monomorphic variants with alternative allele
count (AAC) = 0 were further removed, although we kept all monomorphic variants with
reference allele count (RAC) = 0. For chrX and chrY we applied an additional step to correct
the allele counts and frequencies due to female and male samples. Overall this resulted in
116,382,870 variants (100,694,832 SNVs and 15,688,038 indels) including 6,637,420 (5.7%)
multi-allelic sites across 11,863 participants.

Structural variant calling
Generation of the SV callset has been described in full previously32. In brief, deletions,
duplications, inversions and mobile element insertions were called using a combination of
Genome STRiP33, Lumpy34, CNVnator35 and svtools36. For duplications and deletions, a
random forest classifier using read alignment parameters was trained to minimize false
positives. This resulted in 88% sensitivity and 99% specificity for deletions, and 55%
sensitivity and 92% specificity for duplications. Inversions were retained if < 10% of
genotypes were missing, HWE was not violated, and < 10% of alternate allele supporting
reads came from split and paired read ends. Breakends were removed from the callset. Final
tuning of the overall quality score was modeled to ensure that 90% of carrier genotypes were
identical among duplicate samples. SVs with significant overlap across carriers were
collapsed using a graph-based procedure. The final callset consisted of 123,801 SVs
comprising 107,966 deletions, 11,681 duplications, 1,395 inversions and 1,395 mobile
element insertions across 10,728 participants. The final callset was compared to SV calls
from the 1000 genomes and Hall-SV cohorts. The callset captured 93% and 92% of common
deletions and 65% and 75% of common duplications, from each cohort respectively.

RNA sample processing and sequencing
The manuscript describing the RNA sequencing data in full is in preparation. In brief, blood
samples were collected from INTERVAL participants in Tempus Blood RNA Tubes
(ThermoFisher Scientific) and stored at -80°C until use. RNA extraction was performed by
QIAGEN Genomic Services using an in-house developed protocol. mRNA was isolated
using a NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB) and then re-suspended in
nuclease-free water. Globin depletion was performed using a KAPA RiboErase Globin Kit
(Roche). RNA library preparation was done using a NEBNext Ultra II DNA Library Prep Kit
for Illumina (NEB) on a Bravo WS automation system (Agilent). Samples were PCR
amplified using a KapaHiFi HotStart ReadyMix (Roche) and unique dual-indexed tag
barcodes. PCR products were purified using AMPure XP SPRI beads (Agencourt). Libraries
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were pooled up to 95-plex in equimolar amounts on a Biomek NX-8 liquid handling platform
(Beckman Coulter), quantified using a High Sensitivity DNA Kit on a 2100 Bioanalyzer
(Agilent), and then normalized to 2.8 nM. Samples were sequenced using 75 bp paired-end
sequencing (reverse stranded) on a NovaSeq 6000 system (S4 flow cell, Xp workflow;
Illumina).

RNA sequencing alignment
The data pre-processing, including RNA-seq quality control, STAR and Salmon alignments
were performed with a Nextflow pipeline, which is publicly available at
https://github.com/wtsi-hgi/nextflow-pipelines/blob/rna_seq_interval_5591/pipelines/rna_seq.
nf, including the specific aligner parameters. We assessed the sequence data quality using
FastQC v0.11.8. Reads were aligned using STAR v2.7.3.a37. The STAR index was built
against GRCh38 Ensembl GTF v97 using the option -sjdbOverhang 75. STAR was run in a
two-pass setup with recommended ENCODE options to increase mapping accuracy: (i) a
first alignment step of all samples was used to discover novel splice junctions; (ii) splice
junctions of all samples from the first step were collected and merged into a single list; (iii) a
second step realigned all samples using the merged splice junctions list as input. From the
aligned RNA-seq read data, gene-level read counts were calculated from the number of
reads mapping to exons using featureCounts v2.0.038. The raw gene-level count data
contained 60,617 genes across 4,778 samples.

Quality control of RNA sequencing samples
Samples mismatched between RNA-seq and genotyping data within the cohort were
identified using QTLtools MBV v1.239. Five sample swaps were corrected. Samples with
covariates indicating lower quality data were identified and removed using the following
metrics: RIN < 4 or read depth < 10 million assigned reads by featureCounts v2.0.038.
Samples with missing sequencing covariates and genotyping data were removed as well as
samples with suspected contamination. One sample from each flagged pair of related
participants, estimated as first- or second-degree from genetic data, was removed,
prioritizing samples with WGS data. After this stage, 47 samples were removed, leaving
4,731 remaining samples.

Gene expression quantification
Prior to expression quantification the following genes were removed: globin genes, rRNA
genes, genes on non-reference chromosomes, pseudoautosomal region genes and genes
with transcripts annotated as “retained_intron” or “read_through”. After removing these
genes, 59,144 remained. Gene-level read counts were converted to TPM values using the
total length of merged exons. The total length of merged exons was computed by collapsing
the GENCODE Release 31 annotation to a single transcript model for each gene using the
custom isoform collapsing procedure from the GTEx project26,40.

Removal of global expression outliers
Using TPM values across 59,144 genes and 4,731 samples, samples with many top
expression events due to either technical or biological effects were removed as global
expression outliers. To count the number of top expression events per sample, genes with
TPM equal to zero across all samples were not included leaving 57,555 genes. Then, for
each sample the number of most extreme expression events in these remaining genes was
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calculated. 3.4% of samples (163/4,731) with >5x the expected number of top expression
outliers (total genes/total samples) were removed resulting in 4,568 samples
(Supplementary Fig. 1).

Inactive gene identification
Enrichment testing and downstream analysis were limited to autosomal protein-coding or
long non-coding RNA genes in GENCODE Release v3140. Additionally, to minimize
misexpression false positives only genes that passed the expression thresholds for
expression quantitative trait loci (eQTL) mapping in at least one of 49 GTEx tissues were
retained, leaving 29,614 genes26. For the remaining genes, we calculated the percentage of
samples with a TPM > 0.1. Across all genes, this percentage had a bimodal distribution
separating highly and lowly expressed genes (Fig. 1B). To focus on genes that had very low
or no detectable expression, we selected 8,779 genes which had a TPM > 0.1 in less than
5% of samples. This approach is analogous to the method used by the GTEx consortium to
define active genes for eQTL mapping26.

Inactive gene set validation
To validate our inactive gene set we used several approaches:

1. We intersected 60,603 genes in GENCODE Release v31 with predicted chromatin
states from the Roadmap Epigenomics Project’s 15-state ChromHMM trained on
PBMC data41. Then, for each gene we calculated the fractional overlap of each
chromatin state and conducted k-means clustering to group genes that had similar
epigenetic modifications. We performed k-means clustering with 2-10 clusters and
selected k = 8 clusters because these clusters were the most biologically
interpretable. Based on the overlapping chromatin states, we manually annotated
these 8 clusters with the following labels: transcription, weak transcription, quiescent,
polycomb weak quiescent, polycomb weak, polycomb repressed, heterochromatin,
and unassigned (Supplementary Fig. 1). 94% (8,277/8,779) of inactive genes were
grouped in clusters with high overlap of repressive or quiescent chromatin states
(Supplementary Fig. 1).

2. We checked whether our method of identifying inactive genes led to a similar gene
set using a different whole blood RNA sequencing dataset. We identified inactive
genes in whole blood RNA sequencing data from GTEx using the same approach. In
brief, we focused on 558 individuals with European ancestry to limit the effects of
population stratification. Samples with >5x the expected number of top expression
outliers (total genes/total samples) were removed (n = 18). Comparison between
INTERVAL and GTEx was restricted to the 29,614 genes defined previously. Inactive
genes were defined as having a TPM > 0.1 in less than 5% of samples (n = 8,207).
80% of the INTERVAL inactive gene set were found in the inactive genes identified in
GTEx. This is in spite of cohort differences including sample size, participant age,
transcript annotation reference, RNA-seq strandedness and sampling method (blood
donation versus post-mortem).

3. We tested whether our inactive gene set contained many genes expressed in other
whole blood RNA sequencing datasets. To do so, we examined the overlap between
inactive genes and eGenes (genes with at least one eQTL) from GTEx and
eQTLgen26,42. Only 6.4% and 3.1% of the INTERVAL inactive genes were eGenes in
GTEx whole blood and eQTLGen, respectively.
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These results confirmed that we had identified a set of genes with very low or no expression
across different datasets using information from different data types.

Defining gene misexpression
TPM values were z-score transformed for each inactive gene across all 4,568 samples
passing quality control. A gene in a sample was defined as misexpressed if it had a TPM >
0.5 and a z-score > 2. Z-scores were used to allow comparison of misexpression events
across genes. In addition to the z-score threshold, a TPM threshold of 0.5 was used to
remove misexpression events that had a high z-score but only low expression.

Accounting for non-genetic sources of gene misexpression
To ensure that gene misexpression was not associated with biological or technical
confounders we correlated the expression of each inactive gene with 225 covariates. These
covariates included sample age, height, weight, BMI, sex, 89 Sysmex cell count
measurements, 67 inferred xCell cell enrichments43, 25 technical covariates, top 20 genetic
PCs, season and sequencing batch. We removed 1.5% (129/8779 genes) whose expression
was significantly correlated (|Spearman’s rho| > 0.2, FDR-adjusted p < 0.05) with any
covariate (Supplementary Table 1). The low percentage of genes removed confirmed that
for the majority of genes, misexpression events could not be attributed to the systematic
effect of a measured or inferred covariate. The final inactive gene set is provided in
Supplementary Table 2.

Gene-level features
We curated a set of gene-level features in order to understand the differences between
misexpressed and non-misexpressed genes. The full set of features is provided in
Supplementary Table 3. For each of the 8,650 inactive genes we compiled a set of 81
gene-level features across 5 major categories: genomic, constraint and conservation,
expression, regulation and gene sets. Genomic features such as gene length, gene density
and distance to the closest gene were calculated from GENCODE Release v3140. Constraint
scores included LOEUF and missense OUEF from gnomAD, as well as pLI, probability of
recessive lethality (pRec), probability of complete haploinsufficiency (pNull), pHaplo, pTriplo,
episcore and the enhancer domain score (EDS)16–18,44. The mean conservation score across
the gene body was calculated using PhyloP basewise conservation score across 100
vertebrates21. The number of conserved elements per base pair within a ±10 kb around a
gene was calculated using GERP++ conserved elements45. The number and type of tissues
a gene is expressed in was calculated from GTEx26. Active gene density and distance were
calculated by subsetting to genes with a median TPM > 0.5 in INTERVAL. Regulation
features derived from chromatin states were calculated using the Roadmap Epigenomics
Project’s 15-state ChromHMM trained on PBMC data41. The fraction of a gene overlapping
A/B compartments was derived from GM12878 Hi-C data processed by the 4D Nucleome
Program46,47. We generated a set of TAD boundaries in GM12878 cells that were shared
(within ±50 kb) across IMR90, HUVEC, HNEK and HMEC cell lines from the 4D Nucleome
Program and used these shared boundaries to calculate the closest distance from each
gene to a TAD boundary. Enhancer features based on proximity- and activity-linking methods
were from Wang & Goldstein17. Gene sets included oncogenes (tier 1, dominant) from the
COSMIC v97 Cancer Gene Census (CGC)48, approved drug targets curated by OpenTargets
(OT release v22.11)49, developmental disorder genes from the Decipher DDG2P database50
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and OMIM19, and different gene sets annotated by gnomAD including olfactory, autosomal
recessive, autosomal dominant and haploinsufficient genes16. All features were z-score
transformed across all inactive genes. Inactive genes were split into two groups depending
on whether they were not misexpressed (4,437 genes) or misexpressed at least once (4,213
genes) defining misexpression with a misexpression z-score > 2 and TPM > 0.5. Using
different z-score thresholds did not lead to markedly different results (Supplementary Fig.
3). The enrichment of each feature within the misexpressed group was calculated using
logistic regression. Across all tests, p-values were adjusted using Bonferroni correction. 95%
confidence intervals for the fitted parameters were calculated using the standard normal
distribution. Underenrichment of HPO terms within misexpressed genes was calculated
using the gProfiler (gProfiler2 v0.2.1) functional profiling function with all 8,650 inactive
genes used as the custom background51.

Matching RNA sequencing and whole genome sequencing samples
Samples with matching RNA-seq and WGS data were identified using QTLtools MBV v1.239.
Out of 4,568 RNA-sequencing samples, 2,821 and 2,640 samples had a matching WGS
sample with SNV/indel calls and SV calls, respectively. The difference in matching samples
was due to a higher number of samples failing SV calling.

Genetic variant enrichment calculations
For each enrichment test we defined a misexpression group as all expression events
(expression of a given gene in an individual) passing the specified misexpression z-score
threshold and a TPM > 0.5. The control group was defined as all expression events below
these thresholds restricted to the genes within the misexpression group. Therefore, for each
misexpression threshold the misexpression and control group gene sets were identical. This
ensured that enrichment calculations reflected differences in genetic effects rather than
differences in mutation background distributions between non-identical gene sets. Risk ratios
were calculated as the proportion of expression events in the misexpression group with a
given variant type within the tested genomic region and MAF range over the proportion of
events in the control group. For SV enrichment tests we counted variants overlapping a ±200
kb window around the gene body while for SNVs and indels a ±10 kb window was used.
P-values were calculated using a two-sided Fisher’s exact test and 95% confidence intervals
were calculated using a normal approximation. We tested four non-overlapping MAF
thresholds: rare (0-1% MAF), low-frequency (1-5% MAF) and common variants (5-10% and
10-50% MAF).

To test the enrichment of variants at different genomic distances from genes involved in
misexpression events, we assigned variants to a genomic window for each gene. Variants
were assigned to 200 kb windows up to 1 Mb upstream and downstream from the gene start
and end, respectively, or when overlapping the gene itself to the gene body window. In cases
where a variant spanned multiple windows, the variant was placed in the window closest to
the gene with variants overlapping any part of the gene assigned to the gene body window.
This resulted in all gene-variants pairs being uniquely assigned to a single window.
Enrichment testing was then conducted for each genomic window separately.

To investigate variant consequences, SVs were annotated with the most severe VEP
consequence on the gene in the test window (VEP v97.3)20. Variants with no predicted
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consequence on the gene were annotated according to the most severe consequence if the
annotation was regulatory or intergenic (TFBS ablation, TF_binding_site_variant,
regulatory_region_variant, TFBS_amplification, intergenic_variant,
regulatory_region_ablation, regulatory_region_amplification). If the variant had no predicted
consequence on the gene and its most severe consequence was not regulatory or intergenic
then it was annotated as having no predicted effect. Enrichment calculations were performed
for each variant consequence that had at least one carrier within the tested window. For SVs
a ±200 kb window around the gene body was used.

Overall, we performed 700 genetic variant enrichment tests. Across all tests, p-values were
adjusted using Bonferroni correction. All generic variant enrichment results can be found in
Supplementary Table 4.

Identifying misexpression-associated and control rare structural variants
We identified 23,159 rare (MAF < 1%) SVs located within ±200 kb of an inactive gene for
which misexpression (z-score > 2 and TPM > 0.5) was observed at least once (4,437
genes). For each gene-SV pair, we calculated the median TPM and z-score across all
carriers. We defined misexpression-associated SVs as SVs with a nearby gene that had a
median TPM > 0.5 and median z-score > 2. We additionally excluded gene-SV pairs where
any carrier had a TPM < 0.1, resulting in 105 misexpression-associated SVs. These criteria
allow for variable levels of gene expression around the misexpression threshold while
removing likely non-causal variants. From the 23,159 rare SVs, we defined control SVs as
having a maximum TPM equal to 0 for every inactive gene where the SV is within 200 kb.
This resulted in 20,157 control variants.

Misexpression-associated SVs were annotated based on their VEP consequence on the
misexpressed gene as done for the genetic enrichment analysis and their position relative to
the misexpressed gene. We confirmed that all misexpression-associated duplications were
tandem duplications by manually inspecting them in the Integrative Genome Viewer52.

Structural variant properties
To understand the different properties of misexpression-associated and control SVs we
annotated SVs with 5 features based on conservation, mutational constraint and
deleteriousness scores. Deletions and duplications were scored with CADD-SV v1.1 in
batches of 5000 variants22. Scoring inversions and mobile element insertions is currently not
supported by CADD-SV. Since we were comparing CADD-SV distributions between control
and misexpression-associated variants we used the raw CADD-SV scores as recommended
by the authors. PhyloP conservation scores were downloaded from UCSC genome
browser21. Each SV was annotated based on the maximum conservation score observed
across all overlapping bases. Constraint z-scores passing all quality control checks for
coding and non-coding regions were downloaded from gnomAD24. SVs were annotated with
the maximum gnomAD z-score across all overlapping 1 kb windows. SVs were annotated
based on the minimum gwRVIS across all overlapping bases23. SVs were annotated with a
categorical variable based on whether they overlapped a HAR25. Misexpression-associated
deletions and duplications were compared separately versus controls using logistic
regression with each score modeled independently, z-score transformed and SV length
included as a covariate. P-values were adjusted across all tests using Bonferroni correction.
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95% confidence intervals for the fitted parameters were calculated using the standard
normal distribution. Excluding SV length as a covariate did not lead to dramatic changes in
the enrichments (Supplementary Fig. 8).

Structural variant regulatory features
To understand the regulatory features specific to misexpression-associated SVs, we
conducted enrichment analysis across 23 regulatory features. All regulatory features with
their transformation, cell type and datasource are described in Supplementary Table 5. A/B
compartments measured in the GM12878 cell-line were downloaded from the 4D nucleome
project46,47. We generated a set of TAD boundaries in GM12878 cells that were shared
across IMR90, HUVEC, HNEK and HMEC cell lines. A TAD boundary was considered
shared if another TAD boundary was located within ±50 kb in another cell line. CpG islands
were downloaded from the UCSC genome browser53. CTCF-only candidate cis-regulatory
elements (cCREs) across all cell types were downloaded from ENCODE54. CTCF cCREs
generated in primary cells from whole blood with CTCF ChIP-seq data available (CD14+
monocytes, neutrophils, and B-cells) were also downloaded54. Regulatory features derived
from chromatin states were calculated using the Roadmap Epigenomics Project’s 15-state
ChromHMM trained on PBMC data41. For all data types, features were generated by
encoding SV overlap as a binary indicator that was subsequently z-score transformed.

To assess the enrichment of different regulatory annotations in misexpression-associated
SVs, we performed logistic regression modeling misexpression status as a function of each
regulatory feature individually with SV length included as an additional covariate. Excluding
SV length did not lead to dramatic changes in the log-odds values but many more features
were significant (Supplementary Fig. 8). Logistic regression was conducted separately for
deletions and duplications. P-values were adjusted across all tests using Bonferroni
correction. 95% confidence intervals for the fitted parameters were calculated using the
standard normal distribution.

Selection and characterisation of transcriptional readthrough candidate structural
variants
To identify deletions that were transcriptional readthrough candidates, we selected
misexpression-associated deletions that satisfied the following criteria:

1. The deletion is located upstream of the misexpressed gene.
2. The deletion partially overlaps a gene’s 3’ end and overlaps a terminal exon polyA

site from polyASite 2.055. The overlapping gene is expressed in whole blood (median
TPM > 0.5 in the INTERVAL dataset) and is on the same strand as the misexpressed
gene.

3. The region upstream of the misexpressed gene up to the SV breakpoint does not
contain an expressed gene (median TPM > 0.5 in the INTERVAL dataset) on the
same strand as the misexpressed gene.

If a deletion was associated with misexpression of multiple genes then the gene closest to
the SV was selected in order to define the expected readthrough region.

To identify duplications that were transcriptional readthrough candidates, we selected
misexpression-associated duplications that satisfied the following criteria:

1. The duplication overlaps the entire misexpressed gene.
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2. The duplication partially overlaps the 5’ end of a gene that is expressed (median
TPM > 0.5 in the INTERVAL dataset), is positioned downstream of the misexpressed
gene and is on the same strand as the misexpressed gene.

3. The region upstream of the misexpressed gene up to the SV breakpoint does not
contain an expressed gene (median TPM > 0.5 in the INTERVAL dataset) on the
same strand as the misexpressed gene.

If a duplication was associated with misexpression of multiple genes then the gene with the
shortest expected readthrough region was selected. This resulted in 12 transcriptional
readthrough candidate deletions and 5 transcriptional readthrough candidate duplications.

For both deletions and duplications, the read count and fraction of bases with non-zero
coverage of the region upstream of the misexpressed gene up to the SV breakpoint was
calculated using BedTools coverage requiring the same strandedness and treating split BAM
entries as distinct bed intervals. Read counts were converted to FPKM using sample read
depth and the length of the region. For each readthrough region, z-scores were calculated
for both FPKM and FBNC metrics across all 4568 RNA-seq samples passing quality control.
2640 samples with available SV calls and WGS were then annotated as either deletion
carriers, duplication carriers or non-carriers.

Identification of fusion transcripts
We used STAR fusion v.1.10.1 to identify fusion transcripts27. First, we ran STAR fusion
across all samples with a misexpression-associated variant in max sensitivity mode with a
STAR max mate distance of 50 kb and with no annotation filter (as recommended for
detecting fusion in non-cancer samples). We selected fusion events that involved
misexpressed genes that had a misexpression-associated SV in cis. We removed fusion
events that were not supported across all carriers of the misexpression-associated SV. Next,
we ran STAR fusion again using the same parameters except without applying the max
sensitivity mode and with the –denovo_reconstruct, FusionInspector validate and
–examine_coding_effect flags applied28. Fusion transcripts validated by FusionInspector
from this run were labeled high evidence while those that were only identified in the first run
were labeled low evidence.

Salmon transcript quantification
We used Salmon v1.1.0 for transcript quantification31. The Salmon index was built against
GRCh38 cDNA, which was used to generate transcript level quantification from the
sequence data. R packages tximport v1.14.2, AnnotationHub v2.18.0, BiocFileCache
v1.10.2, BiocGenerics v0.32.0 were applied to obtain various count matrices from these
quantifications at the transcript or gene level. For INV chr3:125966617-125980782 carriers
the transcript percentage for each ROPN1B transcript was calculated as the transcript TPM
divided by the total TPM across all transcripts.

Identification of SVs with potential to alter 3D chromatin architecture
From the misexpression events with no putative mechanism we selected
misexpression-associated SVs that overlapped both a TAD boundary (shared across
multiple cell-lines), a CTCF-only cCRE across all cell-types from ENCODE46. For
duplications, we also required that the variant completely overlapped the misexpressed gene
and an Enh or EnhG chromHMM state from PBMCs41. For deletions, we also required that
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the variant did not overlap the misexpressed gene. This led to the identification of 4
misexpression events with a candidate SV for altering 3D chromatin architecture.

Genome track visualization
Gviz v.1.38.4 was used to visualize genomic tracks and FusionInspector results56.

Data availability
The INTERVAL study data used in this paper are available to bona fide researchers from
helpdesk@intervalstudy.org.uk. The data access policy for the data is available on emailing
CEU-DataAccess@medschl.cam.ac.uk. The RNA-seq data (n = 4,732 INTERVAL
participants) have been deposited at the European Genome-phenome Archive (EGA) under
the accession number EGAD00001008015. The WGS data have been deposited at the EGA
under accession number EGAD0000100866.

GENCODE v31:
https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_31/gencode.v31.anno
tation.gtf.gz
Ensembl v97:
http://ftp.ensembl.org/pub/release-97/gtf/homo_sapiens/Homo_sapiens.GRCh38.97.gtf.gz
eQTLGen eQTL:
https://molgenis26.gcc.rug.nl/downloads/eqtlgen/cis-eqtl/2019-12-11-cis-eQTLsFDR-ProbeL
evel-CohortInfoRemoved-BonferroniAdded.txt.gz
GTEx v8 eQTL expression matrices:
https://storage.googleapis.com/gtex_analysis_v8/single_tissue_qtl_data/GTEx_Analysis_v8_
eQTL_expression_matrices.tar
GTEx v8 eQTL data all tissues :
https://storage.googleapis.com/gtex_analysis_v8/single_tissue_qtl_data/GTEx_Analysis_v8_
eQTL_EUR.tar
GTEx v8 read count whole blood:
https://storage.googleapis.com/gtex_analysis_v8/rna_seq_data/gene_tpm/gene_tpm_2017-
06-05_v8_whole_blood.gct.gz
GTEx v8 median TPM per tissue:
https://storage.googleapis.com/gtex_analysis_v8/rna_seq_data/GTEx_Analysis_2017-06-05
_v8_RNASeQCv1.1.9_gene_median_tpm.gct.gz
OMIM: https://www.omim.org
DECIPHER gene list: https://www.ebi.ac.uk/gene2phenotype/downloads/DDG2P.csv.gz
pHaplo and pTriplo scores:
https://ars.els-cdn.com/content/image/1-s2.0-S0092867422007887-mmc7.xlsx
ChromHMM PBMC states:
https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/co
reMarks/jointModel/final/E062_15_coreMarks_hg38lift_mnemonics.bed.gz
ENCODE cCREs all CTCF-only sites:
https://downloads.wenglab.org/Registry-V3/GRCh38-cCREs.CTCF-only.bed
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ENCODE cCREs CD14+ monocytes:
https://downloads.wenglab.org/Registry-V3/Seven-Group/ENCFF389PZY_ENCFF587XGD_
ENCFF184NWF_ENCFF496PSJ.7group.bed
ENCODE cCREs B-cells:
https://downloads.wenglab.org/Registry-V3/Seven-Group/ENCFF035DJL.7group.bed
ENCODE cCREs Neutrophils:
https://downloads.wenglab.org/Registry-V3/Seven-Group/ENCFF685DZI_ENCFF311TAY_E
NCFF300LXQ.7group.bed
CpG islands: http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/cpgIslandExt.txt.gz
gnomAD metrics:
https://storage.googleapis.com/gcp-public-data--gnomad/release/2.1.1/constraint/gnomad.v2
.1.1.lof_metrics.by_transcript.txt.bgz
gnomAD constraint z-scores:
https://gnomad.broadinstitute.org/downloads#v3-genomic-constraint
gnomAD gene lists:
https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-020-2308-7/MediaObject
s/41586_2020_2308_MOESM4_ESM.zip
gwRVIS: https://az.app.box.com/v/jarvis-gwrvis-scores/folder/159704875574​​
GERP++ elements:
https://bds.mpi-cbg.de/hillerlab/120MammalAlignment/Human120way/data/conservation/ger
pElements_hg38_multiz120Mammals.bed.gz
PhyloP 100-way:
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/phyloP100way/hg38.phyloP100way.bw
HARs:
https://ftp.ncbi.nlm.nih.gov/geo/series/GSE180nnn/GSE180714/suppl/GSE180714%5FHARs
%2Ebed%2Egz
Cosmic Cancer Gene Census v97: https://cancer.sanger.ac.uk/census
OpenTargets targets information:
http://ftp.ebi.ac.uk/pub/databases/opentargets/platform/22.11/output/etl/json/targets/
A/B compartments in GM12878:
https://data.4dnucleome.org/files-processed/4DNFILYQ1PAY/
TAD boundaries in GM12878: https://data.4dnucleome.org/files-processed/4DNFIVK5JOFU/
TAD boundaries in HMEC: https://data.4dnucleome.org/files-processed/4DNFIJL18YS3/
TAD boundaries in HNEK: https://data.4dnucleome.org/files-processed/4DNFICLU9GUP/
TAD boundaries in HUVEC: https://data.4dnucleome.org/files-processed/4DNFI9MZWZF7/
TAD boundaries in IMR90: https://data.4dnucleome.org/files-processed/4DNFIMNT2VYL/
polyASite 2.0 database polyA sites:
https://polyasite.unibas.ch/download/atlas/2.0/GRCh38.96/atlas.clusters.2.0.GRCh38.96.bed
.gz
polyASite 2.0 database polyA sites with sample information:
https://polyasite.unibas.ch/download/atlas/2.0/GRCh38.96/atlas.clusters.2.0.GRCh38.96.tsv.
gz
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Code availability
The Nextflow pipeline used for STAR and Salmon alignments is available at
https://github.com/wtsi-hgi/nextflow-pipelines/blob/rna_seq_interval_5591/pipelines/rna_seq.
nf. Custom code used for analysis of processed sequencing data is available here:
https://github.com/tvdStichele/interval_misexpression_manuscript.
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