

1 **Insight into the gut virome in patients with multiple sclerosis**

2 Suresh C Bokoliya¹, Jordan Russell¹, Hanshu Yuan¹, Zongqi Xia², Laura Piccio³, Yanjiao Zhou^{1*}

3 ¹Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030,
4 USA.

5 ²Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA

6 ³Charles Perkins Centre and School of Medical Sciences, The University of Sydney, Camperdown,
7 NSW, Australia

8 **Authors:**

9 **Suresh C Bokoliya** (bokoliya@uchc.edu)

10 **Jordan Russell** (jtrussell777@gmail.com)

11 **Hanshu Yuan** (hyuan@uchc.edu)

12 **Zongqi Xia** (zxia1@pitt.edu)

13 **Laura Piccio** (laura.piccio@sydney.edu.au)

14 *Corresponding author

15 **Dr. Yanjiao Zhou**

16 Associate Professor, Department of Medicine

17 University of Connecticut Health Center, Farmington, CT 06030, USA.

18 Email: yazhou@uchc.edu

19

20 **Abstract**

21 Multiple sclerosis (MS) is an autoimmune condition associated with dysbiosis in the bacterial
22 element of microbiome, yet limited information exists regarding dysbiosis in the virome. In this
23 study, we examined the virome in 20 relapsing-remitting MS (RRMS) patients and 22 healthy
24 controls (HC). We extracted virus-like particles (VLP) genomic DNA through sequential filtration,
25 followed by deep metagenomic sequencing approaches with and without multiple displacement
26 amplification (MDA). We found significantly lower diversity in the gut virome of RRMS patients
27 relative to HC, consistent across both sequencing methods. MDA method identified reduced
28 relative abundance of *Microviridae* and *Myoviridae* bacteriophage, and eukaryotic virus such as
29 *Herpesviridae* and *Phycodnaviridae* in RRMS patients compared to HC. Non-MDA methods
30 showed reduction in relative abundance of *Siphoviridae* bacteriophage and eukaryotic viruses such
31 as *Ackermannviridae*, *Demerecviridae*, *Dicistroviridae*, *Herelleviridae*, *Mesnidovirineae* in
32 RRMS patients. Cluster analysis revealed that the whole virome family was dominated by
33 *Podoviridae* and *Siphoviridae* clusters. Comparing dietary metadata between these clusters,
34 RRMS patients in the *Siphoviridae*-dominated Cluster B showed significantly higher consumption
35 of refined grains and salad dressings compared to those in the *Podoviridae*-dominated Cluster A.
36 Correlation analysis between gut viruses and bacteria demonstrated that *Siphoviridae* exhibited
37 positive correlations with many different bacterial genera. Conversely, *Microviridae* displayed
38 negative correlations with many different bacterial genera. These findings underscore the
39 alterations in viral diversity and taxonomic composition of the gut virome in RRMS patients. Our
40 study represents the first step in understanding the gut virome in MS patients, providing a
41 groundwork for future research on the role of the gut virome in the context of MS.

42 **Keywords:** RRMS, MDA, VLP, Virome

43

44 **Introduction**

45 Multiple sclerosis (MS) is a complex autoimmune disease of the central nervous system
46 characterized by demyelination. Globally, MS affects approximately 2 million individuals, and
47 currently, there is no cure available. The most prevalent form of MS is relapsing-remitting MS
48 (RRMS) that affects 85% of the total patient population (1). While the exact cause is unknown, a
49 combination of genetic and environmental factors is believed to contribute to its development (2).
50 Several studies have shown that changes in the gut microbiome can influence the immune system,
51 affect the stability and function of the blood-brain barrier, initiate demyelination, and interact with
52 various immune cell types in MS (3). As a novel and essential player in immune and metabolic
53 homeostasis, gut microbiome has become a potential therapeutic target in MS (4). However, most
54 studies on the gut microbiome in MS have primarily focused on bacteria, neglecting the reservoir
55 of diverse viruses that also reside in the gut known as the “gut virome”. The gut virome is a
56 dynamic entity that can interact with the gut bacterial microbiota, impacting the host's immune
57 response and overall health. In a healthy gut, the gut virome remains stable over time but diversifies
58 during illness (5). This diversification is also modulated by individual dietary patterns (6, 7),
59 ethnic disparities, geographic factors, and urbanization trends (8). The gut virome predominantly
60 comprises bacteriophages, numbering approximately 1×10^8 to 2×10^9 (9), a count parallels that of
61 gut bacteria (10). Bacteriophages play a pivotal role in gut physiology by exerting influence on the
62 intestinal lining by adhering to mucus (11). In addition, a diverse range of eukaryotic viruses are
63 also populated in the gut (12).

64 While studies have shown dysbiosis of gut virome in multiple diseased conditions including
65 inflammatory bowel diseases (13-15), colon cancer(16), diabetes (17-20), alcoholic and non-
66 alcoholic liver ailments (21, 22). Notably, few studies conducted among patients with autoimmune
67 disease such as rheumatoid arthritis (23, 24) and systemic lupus erythematosus (24, 25), with only
68 a recent study shedding light on alterations in the gut virome related to MS (26). Specific viruses,
69 such as Cytomegalovirus, Varicella zoster virus and Human Endogenous Retrovirus-W and
70 Epstein-Barr virus, have been implicated in development of MS and immune modulation (27).
71 Whether the gut virome is associated with MS has not been explored. Technical challenges such
72 as the absence of an universal taxonomic marker for virome sequencing and the requirement for
73 viral enrichment techniques (28) have impeded our understanding of the role of the virome in

74 diseases. Viral metagenomic sequencing, while more complex, offers a more comprehensive
75 representation of viral communities and enhanced detection sensitivity for rare and low-abundant
76 viruses (29).

77 To gain insight into the gut virome profile of RRMS patients and their healthy controls, we
78 performed viral enrichment using sequential filtration to isolate virus-like particles (VLP),
79 followed by deep metagenomic shotgun sequencing with and without multiple displacement
80 amplification (MDA). We identified a complex DNA viral community comprising of
81 bacteriophage and eukaryotic viruses and showed alteration of the gut virome in RRMS patients
82 compared to health controls. We have identified multiple clinical and dietary factors associated
83 with the gut virome. Our study provides the first insight into the gut virome in MS patients, laying
84 the foundation to study the role of the gut virome MS in future.

85 **Methods**

86 **Subjects**

87 We conducted an analysis of the clinical characteristics of 42 subjects, consisting of 20 individuals
88 diagnosed with RRMS and 22 healthy controls (HC). All participants were enrolled at the
89 Washington University School of Medicine in St. Louis City, Missouri, U.S.A. The individuals
90 with RRMS were diagnosed by clinicians based on the McDonald 2010 criteria (1). Prior to their
91 involvement, all subjects provided written informed consent. The demographic and clinical
92 characteristics of these subjects are presented in **Table 1**.

93 **Stool collection**

94 Stool samples were self-collected and carefully placed on frozen gel packs, then shipped overnight
95 to the research laboratory. Upon arrival at the laboratory, the stool samples were promptly stored
96 at -80°C until further procedures were carried out. To ensure consistency and minimize any
97 potential batch effects, stool samples collected at the baseline and six-month time points were
98 processed simultaneously for DNA extraction and microbiome sequencing.

100 **Bacterial DNA isolation and sequencing**

101 We employed 16S rRNA gene sequencing protocol as described in our previous report (30). Stool
102 DNA extraction was carried out using the Qiagen Power Soil DNA Extraction kit (Qiagen, MD,
103 U.S.A). For 16S rRNA gene sequencing, the hyper-variable regions V1–V3 of the 16S gene were
104 amplified using primers 27F and 534R (27F: 5'-AGAGTTGATCCTGGCTCAG-3' and 534R:
105 5'-ATTACCGCGGCTGCTGG-3'). Subsequently, amplified libraries were prepared and
106 sequenced on the Illumina MiSeq platform using a V3 2 × 300 bp paired end sequencing protocol,
107 targeting a read depth of 10,000 reads per sample. Initial processing of raw sequencing data was
108 managed by Illumina's software (Illumina, CA, U.S.A). Sample deconvolution was conducted with
109 one mismatch allowed in primers and zero mismatches in barcodes. Further data processing
110 involved the removal of sequences with low quality (average quality score <35) and sequences
111 with ambiguous bases. Chimeric amplicons were identified and removed using UChime (v4.2.40),
112 and amplicon sequences were clustered into operational taxonomic units (OTUs) using Usearch
113 against the SILVA_132_SSURel_Nr99 database at a 97% threshold. Taxonomic assignment was
114 performed using RDP-classifier (v2.11) with a 0.8 confidence value cutoff. To ensure data
115 integrity, potential contaminant taxa found in DNA extraction controls and PCR controls were
116 excluded from the sequenced samples. Sequencing and data processing were conducted at The
117 Jackson Laboratory for Genomic Medicine, CT, U.S.A.

118 **VLP Preparation, Viral genomic DNA isolation, and sequencing**

119 VLPs were isolated by initially mixing approximately 1.0 gram of stool with 10 mL of SM Buffer
120 which was adjusted to a pH of 7.5 (Thermo Fisher Scientific, MA, U.S.A). Subsequently, the
121 samples were vigorously vortexed for 5 minutes at 3000 RPM using Vortex Genie 2 (Scientific
122 Industries, INC, NY, U.S.A). After this step, the samples were subjected to centrifugation at
123 4000xg for 10 minutes at 4°C. The resulting supernatants were filtered through a 0.45 µM PVDF
124 filter SteriFlip Unit (Milipore Sigma, MO, U.S.A) followed by a 0.22 µM polyethersulfone filter
125 SteriFlip Unit (Milipore Sigma, MO, U.S.A). The filtered VLP supernatants were adjusted to a 10
126 mL volume using sterile SM Buffer. The VLPs were subsequently concentrated down to 180 µL
127 using Amicon Ultra-15 100K Centrifugal Filter Units (Milipore Sigma, MO, U.S.A). To remove
128 any free contaminating nucleic acids, the concentrated VLPs were treated with 4 µL of Ambion
129 Turbo DNase (equivalent to 8 Units) and 0.5 µL of Ambion RNase 1 (equivalent to 50 Units),

130 both sourced from Invitrogen, Thermo Fisher, MA, U.S.A. Additionally, 20 μ L of a buffer
131 containing 10 mM CaCl₂ and 50 mM MgCl₂, obtained from Millipore Sigma, MO, U.S.A was
132 incorporated in this treatment process. DNase/RNase treatment was deactivated by incubating the
133 samples at 70°C for 10 minutes.

134 DNase/RNase treated VLPs were used for genomic DNA extraction using Qiagen QIAamp DSP
135 Virus Spin Kit (Qiagen, MD, U.S.A) following the manufacturer's protocol, with specific
136 modifications such as omitting of carrier RNA, resuspending Qiagen Protease Buffer in Buffer,
137 and the eluting resulted DNA in 40 μ L of DNase/RNase Free water (Thermo Fisher Scientific,
138 MA, U.S.A).

139 We employed MDA method to generate viral libraries for metagenomic whole-genome shotgun
140 sequencing (mWGS). In the MDA method, VLP genomic DNA underwent amplification using the
141 Illustra GenomiPhi V2 DNA Amplification Kit (formerly GE Healthcare Life Sciences but now
142 Cytiva, Tokyo, Japan) following the manufacturer's instructions. The MDA-amplified VLP DNA
143 was then processed using the Zymo Genomic DNA Clean and Concentrator-10 kit (Zymo
144 Research, CA, U.S.A) and eluted in Zymo DNA Elution Buffer. Library preparation for VLP
145 genomic DNA involved using >25ng input DNA with the Nextera DNA Flex Library Preparation
146 Kit (currently named Illumina DNA prep, Illumina, CA, USA). Deviating from the Illumina
147 protocol's full reaction volume (50 μ L), we opted for a quarter reaction volume (12.5 μ L), reducing
148 all components, including DNA concentration and volumes, by one-fourth. Dual-indexed paired-
149 end libraries with an average insert size of 350bp were created from VLP genomic DNA. The
150 bead-linked transposomes in the Nextera DNA Flex kit facilitated DNA fragmentation and the
151 tagging of Illumina sequencing primers. Subsequently, double-sided cleaned tagged libraries were
152 sequenced on NovaSeq 6000 (Illumina, CA, USA) using a 2 \times 250 bp paired end sequencing run,
153 targeting 50M reads/sample. For comparison, we also include a routine library preparation without
154 MDA. Approximately <25ng VLP genomic DNA served as input for library preparation.

155 The raw sequencing reads were processed as we have done previously (30). In brief, we
156 demultiplexed the raw reads, and further processed them by (a) removing human reads using
157 NCBI's BMTagger (v3.101) (<ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/bmtagger>); (b) removing
158 duplicated reads using GATK-Picard 4.1.0 (MarkDuplicates); (c) trimming low-quality bases and
159 low-complexity screening using PRINSEQ (v0.20.4). We further removed bacterial reads by

160 aligning the reads to NCBI bacterial database. The resulting reads were aligned to NCBI virus
161 database using BWA software. The final reads were assigned to different taxonomy based on
162 NCBI viral taxonomic classification using EFetch (30) and TaxonKit (31). The viral hits in
163 different samples were summarized into a table. To account for sequencing depth variations across
164 samples, viral hit counts were normalized using the trimmed mean of M-values (TMM) method
165 implemented in the edgeR package in R (32), separately for MDA and non-MDA counts.
166 Contaminants were removed by excluding viral hits present in any of the negative controls, with
167 the exception of crass-like phage. The resulting normalized and filtered counts were converted into
168 relative abundance, and low relative abundance reads were filtered to retain hits with an average
169 relative abundance exceeding 0.01%.

170 **Diet record**

171 Subjects recorded a four-day food diary covering two weekends and two weekdays, provided
172 insights into their diets (30, 31). The Nutrition Coordinating Center (NCC) Food Group Serving
173 Count System was used to analyze the diaries, estimating food group consumption (32). The study
174 focused on eighteen food groups, including daily servings of yogurt with live active cultures,
175 whole grains, vegetable, vegetable oils, sugar sweetened soft drinks, salad dressings, refined
176 grains, poultry, plain and flavored cow's milk, nut and seeds, meat, fruits, fish and shellfish, eggs,
177 dairy cheese, cold cuts and sausages, butter and animal fats, as well as beer, liquor, and wine. The
178 daily serving sizes for each food group were determined based on the 2000 Dietary Guidelines for
179 Americans (33). For foods not covered by these recommendations, serving sizes as defined by the
180 United States Food and Drug Administration (FDA) were used.

181 **Data analysis**

182 In our analysis, we individually examined demographic and clinical variables between RRMS and
183 HC within the PERMANOVA model. It's important to note that the variance explained by each
184 variable was calculated independently, without considering the influence of other variables. For
185 virome composition analysis, the viral count tables were combined with associated metadata using
186 phyloseq (34). Categorical metadata variables were compared between diagnosis groups using
187 Fisher's exact test, while continuous metadata variables were assessed using the Wilcoxon test.
188 Alpha diversity metrics, including richness and Shannon diversity, as well as virus prevalence,
189 were computed using the Microbiome package in R. Overall differences in virome (beta diversity)

190 among enrichment methods and diagnosis groups were evaluated using PERMANOVA through
191 the adonis function in the vegan package and visualized via principal coordinate analysis (PCoA).
192 Differential relative abundance analysis between diagnosis groups was performed using Linear
193 discriminant analysis Effect Size (LefSe) (35). Spearman correlations analysis was performed to
194 investigate potential associations between dietary factors and phage relative abundance. Various
195 data visualizations, such as barplots, boxplots, scatterplots, and heatmaps, were generated using
196 ggplot2 (36). Metagenome-assembled genomes (MAGs) of viruses were constructed using
197 metaSPAdes v3.14.18 (37). A network was constructed using Cytoscape (38) and analyzed to
198 explore the interactions between bacterial and viral communities dominated RRMS and HC.
199 Spearman correlation was used to identify significant correlation between virus-bacteria network.

200 **Results**

201 **Demographics and clinical characteristics of RRMS and healthy controls**

202 There were no significant differences observed between participants with RRMS (n=20) and HC
203 (n=22) in categorical variables such as race, sex, reports of constipation or diarrhea, or the use of
204 antibiotics, steroids, probiotics, and/or supplements at the time of sampling (Fisher's exact test,
205 $p>0.05$). Similarly, no significant differences were found in continuous variables, including age at
206 sample collection, body-mass index (BMI), and Beck depression score (Wilcoxon test, $p>0.05$).
207 Although the Beck depression score was slightly higher among RRMS subjects (average: 7.61)
208 compared to HC (average: 3.62), this difference was marginally insignificant ($p=0.054$). Overall,
209 there were no significant clinical variables that differed between HC and RRMS (**Table 1**).

210 **Virome detection in stools by MDA and non-MDA methods**

211 Samples from MDA method yielded significantly fewer reads than non-MDA (Wilcoxon, $p=3.9E-$
212 14). However, MDA samples exhibited a notably higher proportion of viral reads, reaching an
213 average of 68.9% with a median value of 99.7%. In contrast, non-MDA samples contained a lower
214 proportion of viral reads, accounting for only 31.8% of the assigned reads on average, with a
215 median of 19.4%. In addition, after filtering for contamination identified from negative controls
216 and low-relative abundance sequences (<0.01%), we found 140 viral hits unique to samples with
217 MDA and 262 viral hits unique to samples with non-MDA method (**Fig. 1A**). Additionally, 110
218 viral hits were shared between MDA and non-MDA samples. These findings indicates that

219 different method strongly influence viral detection, and the combination of these methods provides
220 a comprehensive view of the gut virome.

221 MDA method resulted in a significant decrease (Wilcoxon, $p=4.5\text{E-}05$) in viral richness compared
222 to non-MDA (**Fig. 1B**). However, Shannon viral diversity did not differ significantly between
223 MDA and non-MDA samples (Wilcoxon test, $p=0.19$). This suggests that the virome's overall
224 evenness remained stable in both MDA and non-MDA samples. Both methods also significantly
225 affected the overall viral community structure, both in terms of viral relative abundance
226 (PERMANOVA, Bray-Curtis, $p=0.005$) and viral presence or absence (PERMANOVA, Jaccard,
227 $p=0.001$). PCoA revealed distinct separation between virome communities based on the MDA and
228 non-MDA (**Fig. 1C and 1D**).

229 MDA samples showed higher proportions of circular, single-stranded DNA viruses, predominantly
230 of tail-less bacteriophages from the family of *Microviridae* and increased proportions of eukaryotic
231 viruses such as *Genomoviridae*, *Circoviridae*, and *Anelloviridae* (Fig. 1E). In contrast, non-MDA
232 samples were dominated by tailed bacteriophages with double-stranded DNA genomes, from three
233 families within the *Caudovirales* order, namely *Podoviridae*, *Myoviridae* and *Siphoviridae* (**Fig.**
234 **1E**). Based on these significantly distinct virome profiles, we analyzed the MDA and non-MDA-
235 derived virome separately to compare virome differences between RRMS and HC.

236 **Virus diversity and composition differ by MS diagnosis**

237 When comparing the virome diversity from RRMS patients with HC, it was observed that the viral
238 Shannon diversity exhibited a significant reduction in RRMS patients (MDA: $p=0.03$ and non-
239 MDA: $p=0.03$). (**Fig. 2A**) MDA and non-MDA methods exhibited no significant change in viral
240 richness between RRMS and HC (MDA: $p=0.73$ and non-MDA: $p=0.20$).

241 A significant difference (PERMANOVA, Bray-Curtis, $p=0.037$) in the overall virome community
242 structure between RRMS and HC was evident when MDA was employed. In contrast, such a
243 differentiation was not observed when using the non-MDA method (PERMANOVA, Bray-Curtis,
244 $p=0.061$) as depicted in **Fig. 2B**. However, RRMS and HC virome did not differ based on virus
245 presence/absence for either method (PERMANOVA, Jaccard, MDA: $p=0.854$ and non-MDA:
246 $p=0.591$).

247 Subsequently, we examined the relative abundance of specific viral families that exhibited
248 significant differences between RRMS and HC using both MDA and non-MDA methods. MDA
249 led to the identification of four viral families—*Herpesviridae*, *Microviridae*, *Myoviridae* (the most
250 abundant single-stranded DNA virus), and *Phycodnaviridae* that were significantly reduced in
251 RRMS patients ($p < 0.05$ and FDR < 0.10) compared to HC (Fig. 2C). Using non-MDA enrichment,
252 we identified additional six viral families consist of *Ackermannviridae*, *Demerecviridae*,
253 *Dicistroviridae*, *Herelleviridae*, *Mesnidovirinae*, and *Siphoviridae* that were significantly
254 reduced in RRMS patients ($p < 0.05$ and FDR < 0.10) compared to HC (Fig. 2D). Further, the
255 relative abundance of *Myoviridae* also exhibited a decreasing trend in RRMS patients using non-
256 MDA method ($p=0.08$ without FDR adjustment). It's noteworthy that the *Siphoviridae* family
257 comprises double stranded DNA phages infecting bacteria and archaea as their natural hosts. Due
258 to its high relative abundance in non-MDA samples, we further investigated genus-level
259 differences within the *Siphoviridae* family and identified a significant depletion of *Lactococcus*
260 phages from the *Skunavirus* genus in RRMS patients. Together, our data suggests that RRMS
261 patients exhibit a significant reduction in specific single-stranded and double-stranded DNA
262 viruses, and both MDA and non-MDA methods enhance the sensitivity to detect differentially
263 abundant viral families between RRMS and HC.

264 **Association of diet, demographics, and clinical factors with virus relative abundance**

265 Dietary choices can have a profound impact on the gut microbiome, including the virome (6). In
266 our study, we found significant correlation between various viral families and key dietary
267 categories, including meat, oil, poultry, fruits, vegetables, and grains using both MDA and non-
268 MDA methods. Notably, we observed a strong negative correlation between the relative abundance
269 of *Baculoviridae* and the consumption of eggs. Additionally, we found that the relative abundance
270 of *Bicaudaviridae* was negatively correlated to whole grain intake and positively correlated with
271 vegetable oil consumption. Furthermore, *Closteroviridae* relative abundance showed a negative
272 correlation with refined grain servings. *Demerecviridae* relative abundance was negatively
273 correlated to fish and shellfish consumption but positively correlated with yogurt containing live
274 and active cultures. Moreover, our study revealed a strong negative correlation between the relative
275 abundance of *Microviridae* and the consumption of eggs, butter, and animal fats. Conversely, a
276 positive correlation was observed between *Microviridae* relative abundance and the consumption

277 of fruits and vegetables. We also noticed a strong negative connection between the prevalence of
278 *Podoviridae* and the consumption of salad dressings, while the consumption of salad dressing was
279 positively correlated with the relative abundance of *Siphoviridae*. Additionally, *Polydnaviridae*,
280 *Smacoviridae*, and *Sphaerolipoviridae* showed positive correlations with poultry servings, meat
281 servings, and refined grain servings, respectively (**Fig. 3A**). Furthermore, we noted that certain
282 demographic factors, including the age at the diagnosis of MS, demonstrated a significant positive
283 correlation with the relative abundance of *Myoviridae*. In contrast, this demographic factor showed
284 negative correlations with the relative abundance of *Bicaudaviridae* and *Alphaflexiviridae* (**Fig.**
285 **3A**).

286 In our study, we observed a distinct virus relative abundance pattern among non-MDA samples
287 with one subset being predominantly dominated by the viral family *Podoviridae* and another subset
288 showing a lesser but noticeable dominance by *Siphoviridae*. We performed a cluster analysis for
289 the gut virome at the family level and identified two virome clusters, labeled as Cluster A and
290 Cluster B, primarily based on the prevalence of these two viral families (**Fig. 3B**). Within Cluster
291 A, we found that 17 out of 24 subjects had relative abundance of *Podoviridae* exceeding 80%,
292 with 15 of those subjects having relative abundance greater than 90%. Conversely, in Cluster B,
293 14 out of 18 subjects displayed *Siphoviridae* relative abundance exceeding 50%, with 5 of those
294 subjects having relative abundance greater than 90%. Notably, Cluster B, which was dominated
295 by *Siphoviridae*, exhibited a more diverse composition of viral families. When comparing the
296 dietary metadata between these clusters, we found that subjects in Cluster B, which was dominated
297 by *Siphoviridae*, had significantly higher servings of refined grains ($p=0.048$), and salad dressings
298 ($p=0.044$), in contrast to those in Cluster A, which was dominated by *Podoviridae* (**Fig. 3C**).
299 Interestingly, constipation was reported by nineteen subjects in our cohort, and they all belonged
300 to Cluster A, with no instances reported in Cluster B, showing a statistically significant difference
301 ($p=0.027$). Furthermore, subjects in Cluster A exhibited significantly higher BMIs ($p=3.1\text{E-}06$).

302 **Correlation between MS-associated bacteria and viruses**

303 To understand association between the gut virus and bacteria, we constructed a correlation network
304 (**Fig. 4**). This network draws connections between the presence of various bacterial genera and
305 viral families in a combination of RRMS and HC samples. In this network, there were a total of
306 49 nodes, which represented 15 viruses and 34 bacteria. These nodes were connected by 57 edges,

307 representing 32 positive correlation and 25 negative correlations. For instance, *Siphoviridae*
308 exhibited interactions with 5 bacterial genera, which was the highest number of correlation (all
309 positive correlation) observed for any single phage in the network. In contrast, *Microviridae*
310 displayed highest negative correlation with 5 bacteria genera. This suggests that targeted removal
311 or addition of these two phages could potentially induce more significant alterations in the bacterial
312 community compared to a virus like *Poxviridae*, which only interacted with one bacterial genus.
313 Furthermore, network analysis revealed that *L. bacterium* and *B. longum*, two bacterial genera,
314 were involved in the highest number of correlations with four and three viruses, respectively.
315 These bacteria were also predicted to interact with *Siphoviridae* and *Microviridae*.

316 crAss-like phage in MS

317 Our analysis revealed the consistent presence of crAss-like phage in both methods. In non-MDA
318 samples, crAss-like phage dominated approximately 50%, while it comprised a slightly lower
319 proportion (~40%) in MDA samples (Fig. 5A). Notably, a significant ($p=0.044$) increase in the
320 relative abundance of crAss-like phage was observed in RRMS in non-MDA method (Fig. 5B).
321 Exploring virus–bacterium associations, we found a positive correlation between the relative
322 abundance of *Bacteroides* and crAss-like phage. However, the distribution of their relative
323 abundance was unexpected ($R=0.35$ and $p=0.025$) (Fig. 5C). In certain samples with reduced
324 *Bacteroides*, there was a notable abundance of crAss-like phages, whereas samples with highly
325 abundant *Bacteroides* exhibited no detectable crAss-like phage. This suggests that host bacteria in
326 the latter case might have shed their receptors essential for the docking and entry of crAss-like
327 phages. Notably, *B. fragilis*, acting as a host for crAss-like phage, showed a positive correlation
328 ($R = 0.41$ and $p < 0.01$) with crAss-like phage (Fig. 5D). On the other hand, other *Bacteroidetes*,
329 such as *B. intestinalis*, also serving as a host for crAss-like phages, displayed a non-significant
330 correlation ($R = -0.014$ and $p = 0.93$). Considering the potential family-scale taxonomic diversity
331 of crAss-like phages, it is plausible that they may infect a broad range of hosts within *Bacteroidetes*
332 species, resulting in weak relative abundance correlations with specific host taxa.

333 Discussion

334 The increasing adoption of VLPs enrichment technology, coupled with high-throughput
335 sequencing methods, has brought significant focus to virome research, especially in the context of
336 DNA virome. In our study, we extracted VLP genomic DNA and performed deep metagenomic

337 sequencing with and without MDA amplification to profile the gut virome in individuals with
338 RRMS and HC. In this study, we revealed the alteration in gut virome in RRMS patients compared
339 with HC. MDA is known for its significant impact on reducing genetic diversity and
340 reproducibility, often over-representing single-stranded DNA viruses (39). Despite observing no
341 significant difference in overall virome evenness, our study revealed that MDA samples exhibited
342 a lower viral hit rate and viral richness compared to non-MDA samples in both RRMS and HC
343 subjects. MDA is also known for its lower error rate due to exonuclease and proofreading activities
344 (40). It can generate long amplification products (50-100 kb), making it suitable for long-read
345 sequencing and whole-genome sequencing (41). However, both MDA and non-MDA methods
346 discovered large number of non-overlapping viruses, thus allowing us to have a comprehensive
347 view of the gut microbiome in these participants.

348 Our study further delves into the virome of individuals with RRMS. The findings revealed a
349 significant decrease in gut virome diversity in RRMS patients compared to HC, which aligns with
350 previous studies in IBD and autoimmune diseases (17, 42). Considering that bacteriophages
351 constitute the majority of the gut virome, the reduced richness and diversity of the gut virome in
352 RRMS patients may be indicative of a scarcity of bacterial hosts (43). The observed dysbiosis in
353 the gut virome further showed equal importance to bacterial diversity in response to changes in
354 the gut microbiome associated with RRMS. Further, MDA and non-MDA revealed distinct
355 differences in the distribution and composition of viral assemblages. The non-MDA method
356 resulted in a more even distribution of double stranded DNA viral assemblages and a higher
357 number of rare groups compared to the MDA methods. Additionally, non-MDA predominantly
358 led to a viral composition dominated by bacteriophage Caudovirales order, including *Siphoviridae*,
359 *Myoviridae*, and *Podoviridae* (26, 44). In contrast, MDA samples exhibited a greater proportion
360 of circular, single-stranded DNA viruses from the *Microviridae* family, as well as enhanced
361 proportions of eukaryotic viral families *Genomoviridae*, *Circoviridae*, and *Anelloviridae*. These
362 findings highlight the influence of the viral enrichment method on the diversity and distribution of
363 the detected viral elements. The differences observed between the MDA and non-MDA results
364 could be attributed to variations in denaturation procedures, MDA kit vendors, or template
365 amounts during random priming (45). However, it is important to note that random amplification
366 bias has minimal impact on inter-subject beta diversity due to the uniqueness of human gut virome
367 (45).

368 Following filtration for contamination and low-relative abundance sequences, we observed a
369 significant decrease in *Siphoviridae* and *Myoviridae* within the metagenome of RRMS patients,
370 while *Podoviridae* and *Microviridae* were more prevalent in RRMS compared to HC. *Siphoviridae*
371 were skewed towards HC. A recent report from Japanese patients indicates a nominal increase in
372 abundance of *Podoviridae* and *Microviridae*, coupled with a decrease in the abundance of
373 *Siphoviridae* and *Myoviridae* viral families in MS patients. (26). This suggests that variations in
374 gut virome may be attributed to differences in viral enrichment approaches or population-specific
375 factors, emphasizing the need for further investigation in future experiments. Our findings suggest
376 a potential association between *Podoviridae* and *Microviridae* relative abundance and MS
377 pathogenesis. These gut virome families were more abundant in RRMS, though their biological
378 relevance in health and disease requires further exploration. Bacteriophages can indirectly
379 influence the host's immune system through their interactions with bacteria. Specifically,
380 *Siphoviridae*, with a significantly increased relative abundance in HC, showed the highest number
381 of positive correlations. Conversely, *Microviridae*, with a significantly increased relative
382 abundance in individuals with RRMS, exhibited the highest number of negative correlations.
383 These findings suggest that the gut virome may exert its impact on MS by regulating bacterial
384 populations and underscoring the need for further research to unveil the intricate interplay between
385 the bacteriome, bacteriophages, and MS.

386 Interestingly, the sole dietary factor that significantly differed between RRMS patients and HC
387 was meat consumption (46), which showed a positive correlation with *Smacoviridae*. Our dietary
388 pattern analysis of RRMS and HC indicated that increased meat consumption might be associated
389 with a higher risk of developing multiple sclerosis. We speculated that alterations in the
390 microbiome, particularly shifts in the virome linked to meat consumption, may initiate a cascade
391 of events contributing to or exacerbating the disease. This dietary pattern has the potential to unveil
392 masked connections that could enhance our knowledge of the disease's etiology. Despite the crAss-
393 like phage being commonly present in a healthy gut virome, many of its proteins do not share
394 similarities with previously identified viral proteins (47). The connection between crAss-like
395 phages and disease states, especially autoimmune diseases, has been an area of interest (26). In our
396 investigation, we observed a significant increase relative abundance of crAss-like phages in RRMS
397 patients. Tomofuji et al. (26) reported increased crAssphage abundance in MS, although the

398 difference was not statistically significant. Conversely, crAssphage abundance was found to be
399 reduced in other autoimmune disorders such as systemic lupus erythematosus and rheumatoid
400 arthritis (26). Further, crAss-like phages were also skewed in viral families dominated by
401 *Podoviridae*, a skewness that was significant in RRMS. We also identified a positive correlation
402 between host *Bacteroides* and crAss-like phages. However, the distribution of their relative
403 abundance was not normally shaped, suggesting a probable family-scale taxonomic diversity
404 among crAss-like phages. This diversity may allow them to infect a wide range of hosts across
405 *Bacteroidetes* species, resulting in poor relative abundance correlations between crAss-like phages
406 and specific host taxa. These findings collectively point to disease-specific gut virome and
407 bacterial microbiome in MS. The findings regarding crAss-like phage further emphasize the
408 complexity of the gut virome and its potential associations with MS. Future research is warranted
409 to unravel the intricate relationships between the gut bacteriome, virome, and MS pathogenesis,
410 which could open up new avenues for therapeutic interventions and personalized medicine
411 approaches.

412 **Limitation**

413 The study has several limitations that need to be acknowledged. One limitation is the sample size of
414 MS patients in our study compared to the general population. Consequently, conducting larger-scale
415 analyses with increased statistical power is essential to thoroughly investigate the association
416 between the gut virome and MS. Additionally, it is worth noting that the majority of RRMS patients
417 in our study were in remission, with only a few receiving treatments. Another limitation pertains to
418 the bias in enrichment associated with the MDA and non-MDA method. Careful consideration is
419 required when selecting amplification or not in sequencing library preparation. The sequencing
420 process resulted in numerous unclassified viruses, further underscoring the study's limitations.

421 **Conclusion**

422 Our comprehensive case-control study has illuminated a previously undisclosed facet of the
423 relationship between the gut virome and MS. Analysis of the taxonomic microstructure in RRMS
424 and HC has unveiled distinctive variations in the specific bacteria and viruses identified. These
425 findings hint at a novel perspective wherein RRMS may be associated with an increase in

426 bacteriophage diversity, primarily linked to their bacterial host cells. It is noteworthy that we
427 observed both positive and negative correlation between specific virus and bacterial taxa, suggesting
428 that these alterations could potentially play a role in disease pathogenesis. To gain a more
429 comprehensive understanding of the dynamics of the gut virome in MS, future research should
430 encompass a larger sample size and consider cross-sectional and longitudinal time points. Such an
431 approach will facilitate the exploration of the intricate processes underlying the observed changes,
432 including their associations with diet, disease development, and other potential factors.

433 **Declarations**

434 **Ethics approval and consent to participate**

435 Ethical approval was obtained prior to the study.

436 **Availability of data and material**

437 Upon a reasonable request, all datasets will be available from the corresponding author.

438 **Competing interests**

439 All authors declare that they have no competing interests.

440 **Acknowledgments**

441 We thank The Jackson Laboratory for Genomic Medicine, CT, U.S.A. for sequencing.

442

443 **References**

- 444 1. Plantone D, De Angelis F, Doshi A, Chataway J. Secondary Progressive Multiple Sclerosis: Definition and Measurement. *CNS drugs*. 2016;30(6):517-26.
- 445 2. Waubant E, Lucas R, Mowry E, Graves J, Olsson T, Alfredsson L, et al. Environmental and 446 genetic risk factors for MS: an integrated review. *Annals of clinical and translational 447 neurology*. 2019;6(9):1905-22.
- 448 3. Calvo-Barreiro L, Eixarch H, Montalban X, Espejo C. Combined therapies to treat complex 449 diseases: The role of the gut microbiota in multiple sclerosis. *Autoimmunity reviews*. 450 2018;17(2):165-74.
- 451 4. Ghezzi L, Cantoni C, Pinget GV, Zhou Y, Piccio L. Targeting the gut to treat multiple sclerosis. 452 *The Journal of clinical investigation*. 2021;131(13).
- 453 5. Shkorporov AN, Clooney AG, Sutton TDS, Ryan FJ, Daly KM, Nolan JA, et al. The Human 454 Gut Virome Is Highly Diverse, Stable, and Individual Specific. *Cell host & microbe*. 455 2019;26(4):527-41 e5.
- 456 6. Minot S, Sinha R, Chen J, Li H, Keilbaugh SA, Wu GD, et al. The human gut virome: inter- 457 individual variation and dynamic response to diet. *Genome research*. 2011;21(10):1616-25.
- 458 7. Garmaeva S, Gulyaeva A, Sinha T, Shkorporov AN, Clooney AG, Stockdale SR, et al. Stability 459 of the human gut virome and effect of gluten-free diet. *Cell reports*. 2021;35(7):109132.
- 460 8. Zuo T, Sun Y, Wan Y, Yeoh YK, Zhang F, Cheung CP, et al. Human-Gut-DNA Virome 461 Variations across Geography, Ethnicity, and Urbanization. *Cell host & microbe*. 462 2020;28(5):741-51 e4.
- 463 9. Jung JY, Lee SH, Kim JM, Park MS, Bae JW, Hahn Y, et al. Metagenomic analysis of kimchi, 464 a traditional Korean fermented food. *Appl Environ Microbiol*. 2011;77(7):2264-74.
- 465 10. Kim MS, Park EJ, Roh SW, Bae JW. Diversity and abundance of single-stranded DNA viruses 466 in human feces. *Appl Environ Microbiol*. 2011;77(22):8062-70.
- 467 11. Barr JJ, Auro R, Furlan M, Whiteson KL, Erb ML, Pogliano J, et al. Bacteriophage adhering 468 to mucus provide a non-host-derived immunity. *Proceedings of the National Academy of 469 Sciences of the United States of America*. 2013;110(26):10771-6.
- 470 12. Lim ES, Zhou Y, Zhao G, Bauer IK, Droit L, Ndaio IM, et al. Early life dynamics of the human 471 gut virome and bacterial microbiome in infants. *Nature medicine*. 2015;21(10):1228-34.

473 13. Clooney AG, Sutton TDS, Shkoporov AN, Holohan RK, Daly KM, O'Regan O, et al. Whole-
474 Virome Analysis Sheds Light on Viral Dark Matter in Inflammatory Bowel Disease. *Cell host*
475 & *microbe*. 2019;26(6):764-78 e5.

476 14. Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY, Keller BC, et al. Disease-specific
477 alterations in the enteric virome in inflammatory bowel disease. *Cell*. 2015;160(3):447-60.

478 15. Zuo T, Lu XJ, Zhang Y, Cheung CP, Lam S, Zhang F, et al. Gut mucosal virome alterations in
479 ulcerative colitis. *Gut*. 2019;68(7):1169-79.

480 16. Nakatsu G, Zhou H, Wu WKK, Wong SH, Coker OO, Dai Z, et al. Alterations in Enteric
481 Virome Are Associated With Colorectal Cancer and Survival Outcomes. *Gastroenterology*.
482 2018;155(2):529-41 e5.

483 17. Zhao G, Vatanen T, Droit L, Park A, Kostic AD, Poon TW, et al. Intestinal virome changes
484 precede autoimmunity in type I diabetes-susceptible children. *Proceedings of the National*
485 *Academy of Sciences of the United States of America*. 2017;114(30):E6166-E75.

486 18. Kramna L, Kolarova K, Oikarinen S, Pursiheimo JP, Ilonen J, Simell O, et al. Gut virome
487 sequencing in children with early islet autoimmunity. *Diabetes care*. 2015;38(5):930-3.

488 19. Ma Y, You X, Mai G, Tokuyasu T, Liu C. A human gut phage catalog correlates the gut
489 phageome with type 2 diabetes. *Microbiome*. 2018;6(1):24.

490 20. Wook Kim K, Allen DW, Briese T, Couper JJ, Barry SC, Colman PG, et al. Distinct Gut
491 Virome Profile of Pregnant Women With Type 1 Diabetes in the ENDIA Study. *Open forum*
492 *infectious diseases*. 2019;6(2):ofz025.

493 21. Lang S, Demir M, Martin A, Jiang L, Zhang X, Duan Y, et al. Intestinal Virome Signature
494 Associated With Severity of Nonalcoholic Fatty Liver Disease. *Gastroenterology*.
495 2020;159(5):1839-52.

496 22. Jiang L, Lang S, Duan Y, Zhang X, Gao B, Chopyk J, et al. Intestinal Virome in Patients With
497 Alcoholic Hepatitis. *Hepatology*. 2020;72(6):2182-96.

498 23. Mangalea MR, Paez-Espino D, Kieft K, Chatterjee A, Chriswell ME, Seifert JA, et al.
499 Individuals at risk for rheumatoid arthritis harbor differential intestinal bacteriophage
500 communities with distinct metabolic potential. *Cell host & microbe*. 2021;29(5):726-39 e5.

501 24. Tomofuji Y, Kishikawa T, Maeda Y, Ogawa K, Nii T, Okuno T, et al. Whole gut virome
502 analysis of 476 Japanese revealed a link between phage and autoimmune disease. *Ann Rheum*
503 *Dis*. 2022;81(2):278-88.

504 25. Chen C, Yan Q, Yao X, Li S, Lv Q, Wang G, et al. Alterations of the gut virome in patients
505 with systemic lupus erythematosus. *Frontiers in immunology*. 2022;13:1050895.

506 26. Tomofuji Y, Kishikawa T, Maeda Y, Ogawa K, Nii T, Okuno T, et al. Whole gut virome
507 analysis of 476 Japanese revealed a link between phage and autoimmune disease. *Annals of*
508 *the Rheumatic Diseases*. 2022;81(2):278-88.

509 27. Bar-Or A, Pender MP, Khanna R, Steinman L, Hartung HP, Maniar T, et al. Epstein-Barr Virus
510 in Multiple Sclerosis: Theory and Emerging Immunotherapies: (Trends in Molecular
511 Medicine, 26:3 p:296-310, 2020). *Trends in molecular medicine*. 2021;27(4):410-1.

512 28. Aggarwala V, Liang G, Bushman FD. Viral communities of the human gut: metagenomic
513 analysis of composition and dynamics. *Mobile DNA*. 2017;8:12.

514 29. Langenfeld K, Chin K, Roy A, Wigginton K, Duhaime MB. Comparison of ultrafiltration and
515 iron chloride flocculation in the preparation of aquatic viromes from contrasting sample types.
516 *PeerJ*. 2021;9:e11111.

517 30. Cantoni C, Lin Q, Dorsett Y, Ghezzi L, Liu Z, Pan Y, et al. Alterations of host-gut microbiome
518 interactions in multiple sclerosis. *EBioMedicine*. 2022;76:103798.

519 31. Ma Y, Olendzki BC, Pagoto SL, Hurley TG, Magner RP, Ockene IS, et al. Number of 24-hour
520 diet recalls needed to estimate energy intake. *Annals of epidemiology*. 2009;19(8):553-9.

521 32. Bingham SA, Gill C, Welch A, Day K, Cassidy A, Khaw KT, et al. Comparison of dietary
522 assessment methods in nutritional epidemiology: weighed records v. 24 h recalls, food-
523 frequency questionnaires and estimated-diet records. *The British journal of nutrition*.
524 1994;72(4):619-43.

525 33. Johnson RK, Kennedy E. The 2000 Dietary Guidelines for Americans: what are the changes
526 and why were they made? The Dietary Guidelines Advisory Committee. *Journal of the*
527 *American Dietetic Association*. 2000;100(7):769-74.

528 34. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and
529 graphics of microbiome census data. *PloS one*. 2013;8(4):e61217.

530 35. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic
531 biomarker discovery and explanation. *Genome biology*. 2011;12(6):R60.

532 36. Villanueva RAM, Chen ZJ. ggplot2: elegant graphics for data analysis. *Taylor & Francis*;
533 2019.

534 37. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile
535 metagenomic assembler. *Genome research*. 2017;27(5):824-34.

536 38. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software
537 environment for integrated models of biomolecular interaction networks. *Genome research*.
538 2003;13(11):2498-504.

539 39. Callanan J, Stockdale SR, Shkorporov A, Draper LA, Ross RP, Hill C. Biases in Viral
540 Metagenomics-Based Detection, Cataloguing and Quantification of Bacteriophage Genomes
541 in Human Faeces, a Review. *Microorganisms*. 2021;9(3).

542 40. Lasken RS. Genomic DNA amplification by the multiple displacement amplification (MDA)
543 method. *Biochemical Society transactions*. 2009;37(Pt 2):450-3.

544 41. Kiguchi Y, Nishijima S, Kumar N, Hattori M, Suda W. Long-read metagenomics of multiple
545 displacement amplified DNA of low-biomass human gut phageomes by SACRA pre-
546 processing chimeric reads. *DNA research : an international journal for rapid publication of*
547 *reports on genes and genomes*. 2021;28(6).

548 42. Bai GH, Lin SC, Hsu YH, Chen SY. The Human Virome: Viral Metagenomics, Relations with
549 Human Diseases, and Therapeutic Applications. *Viruses*. 2022;14(2).

550 43. Mukhopadhyay I, Segal JP, Carding SR, Hart AL, Hold GL. The gut virome: the 'missing link'
551 between gut bacteria and host immunity? *Therapeutic advances in gastroenterology*.
552 2019;12:1756284819836620.

553 44. Gregory AC, Zablocki O, Zayed AA, Howell A, Bolduc B, Sullivan MB. The Gut Virome
554 Database Reveals Age-Dependent Patterns of Virome Diversity in the Human Gut. *Cell host*
555 & *microbe*. 2020;28(5):724-40 e8.

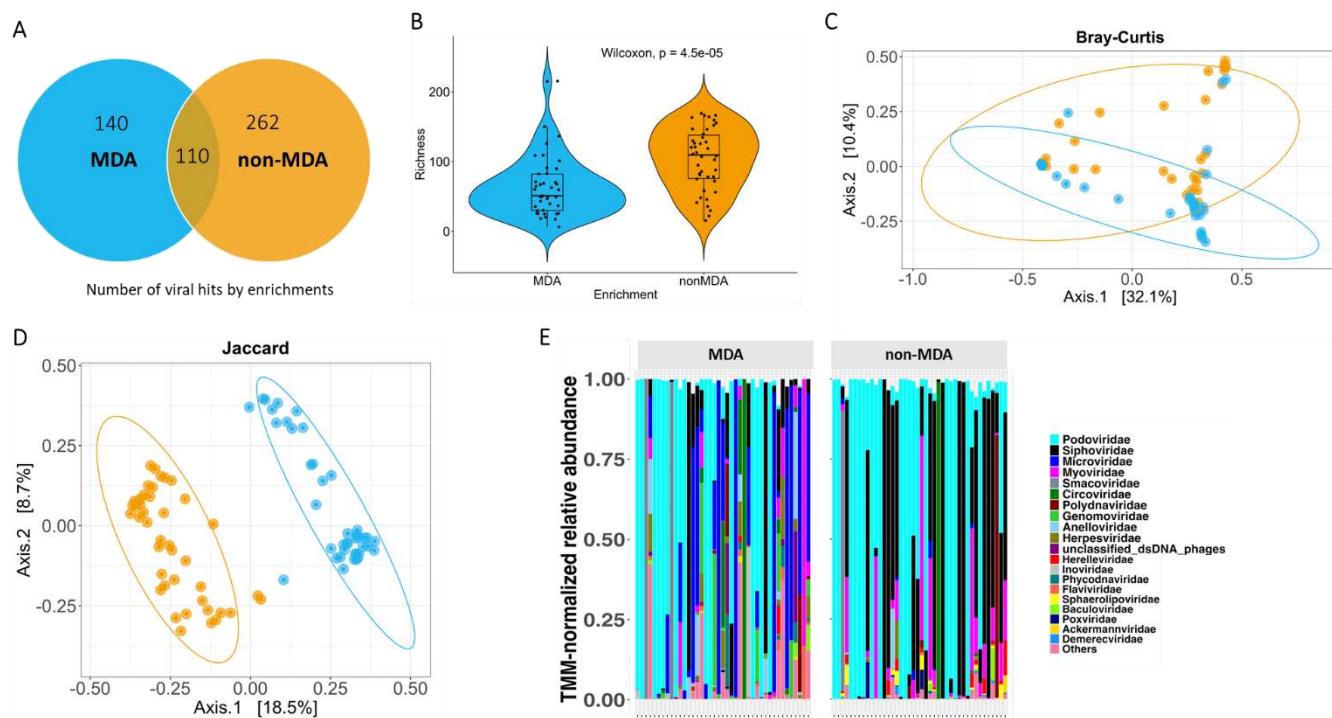
556 45. Parras-Molto M, Rodriguez-Galet A, Suarez-Rodriguez P, Lopez-Bueno A. Evaluation of bias
557 induced by viral enrichment and random amplification protocols in metagenomic surveys of
558 saliva DNA viruses. *Microbiome*. 2018;6(1):119.

559 46. Shah S, Locca A, Dorsett Y, Cantoni C, Ghezzi L, Lin Q, et al. Alterations of the gut
560 mycobiome in patients with MS. *EBioMedicine*. 2021;71:103557.

561 47. Dutilh BE, Cassman N, McNair K, Sanchez SE, Silva GG, Boling L, et al. A highly abundant
562 bacteriophage discovered in the unknown sequences of human faecal metagenomes. *Nature*
563 *communications*. 2014;5:4498.

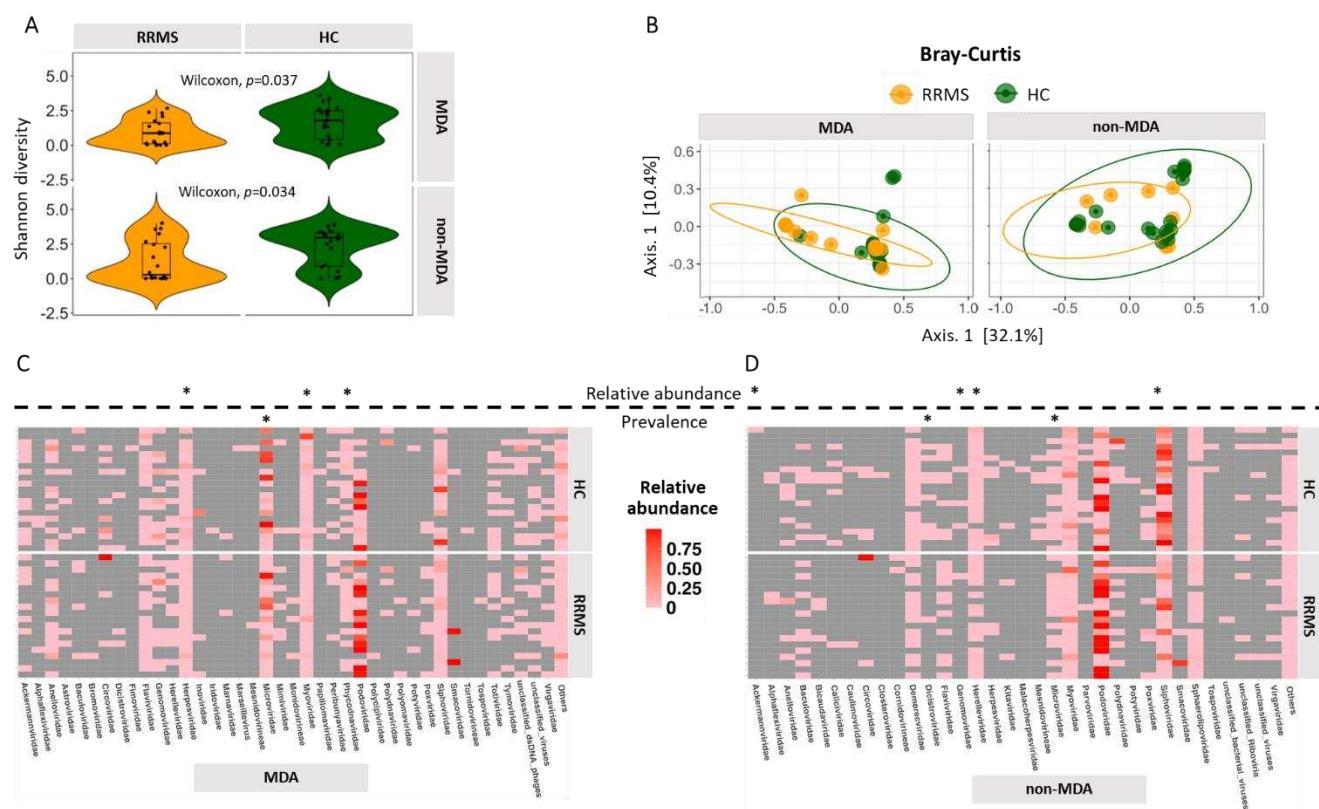
564

565

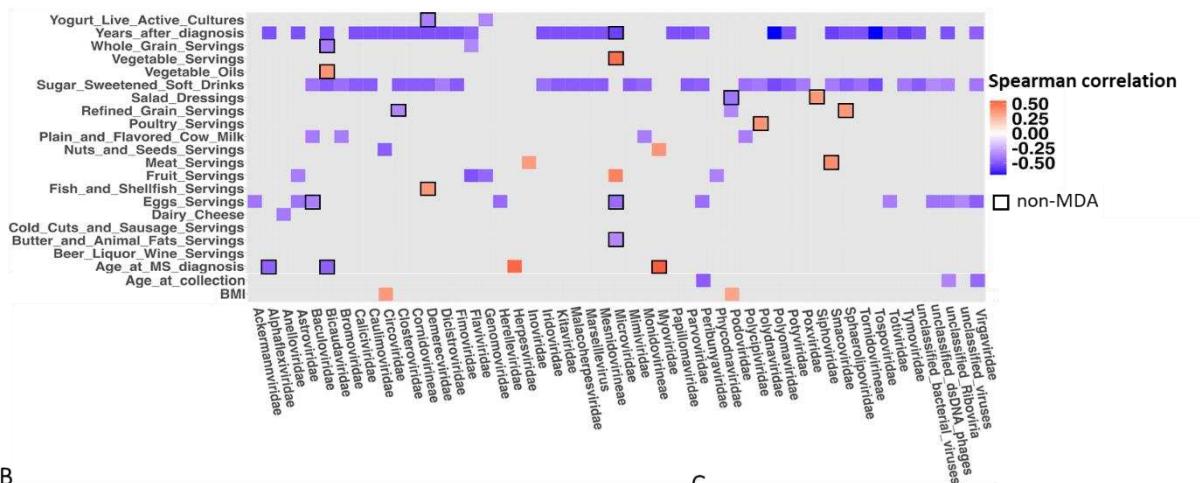

566 **Table 1: Demographics and clinical characteristics of RRMS and HC**

Group	RRMS	HC	p-value
Number of subjects	20	22	<i>p</i> >0.05
Age in years at sample collection [average]	30.5-56.3 [38.8]	30.5-56.5 [38.4]	<i>p</i> >0.05
BMI [average]	17.8-49.8 [28.1]	17.6-40.5 [27.0]	
Beck depression score [average]	0-30 [7.6]	0-17 [3.6]	<i>p</i> =0.054
Gender Male:Female:NA	3:18:1	2:18:0	<i>p</i> >0.05
Race	White-18 Black/African-American-2	White-16 Black/African-American-4 NA-2	<i>p</i> >0.05
Antibiotic use Yes:No:NA	1:17:2	1:20:1	<i>p</i> >0.05
Use of steroids Yes:No:NA	2:14:2	0:17:5	<i>p</i> >0.05
Use of probiotic Yes:No:NA	2:15:3	2:16:4	<i>p</i> >0.05
Use of supplements Yes:No:NA	10:7:3	6:14:2	<i>p</i> >0.05
Constipation Yes:No:NA	4:13:3	2:18:2	<i>p</i> >0.05
Diarrhea Yes:No:NA	2:14:4	1:19:2	<i>p</i> >0.05
Age at MS diagnosis [average]	18.4 – 52.7 [33.9]		
Years after at MS diagnosis [average]	0 – 23.1 [4.6]		

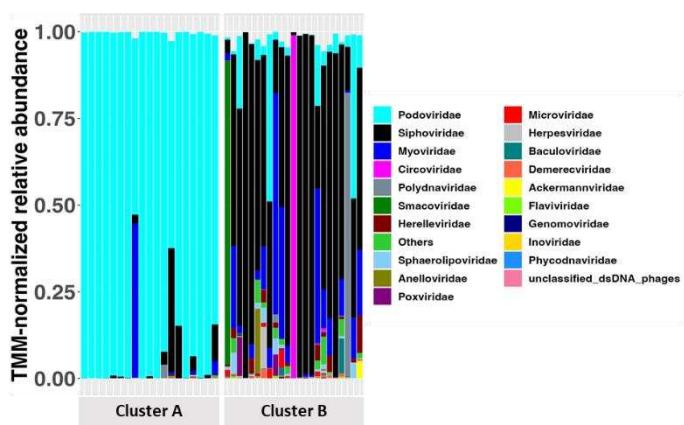
567 RRMS: Relapsing-Remitting Multiple Sclerosis; HC: Healthy controls


568

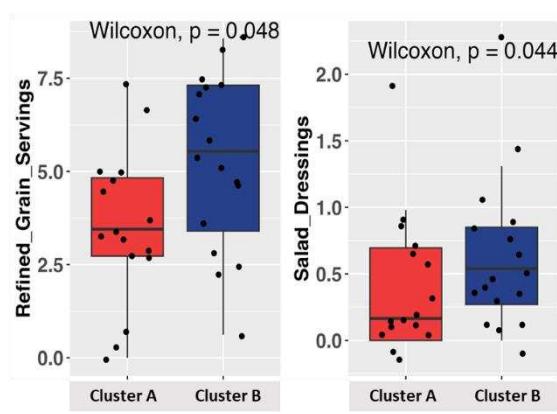
569

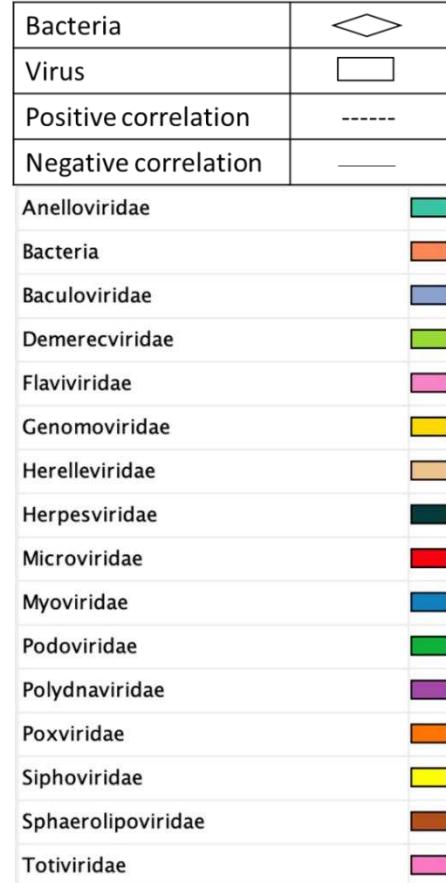
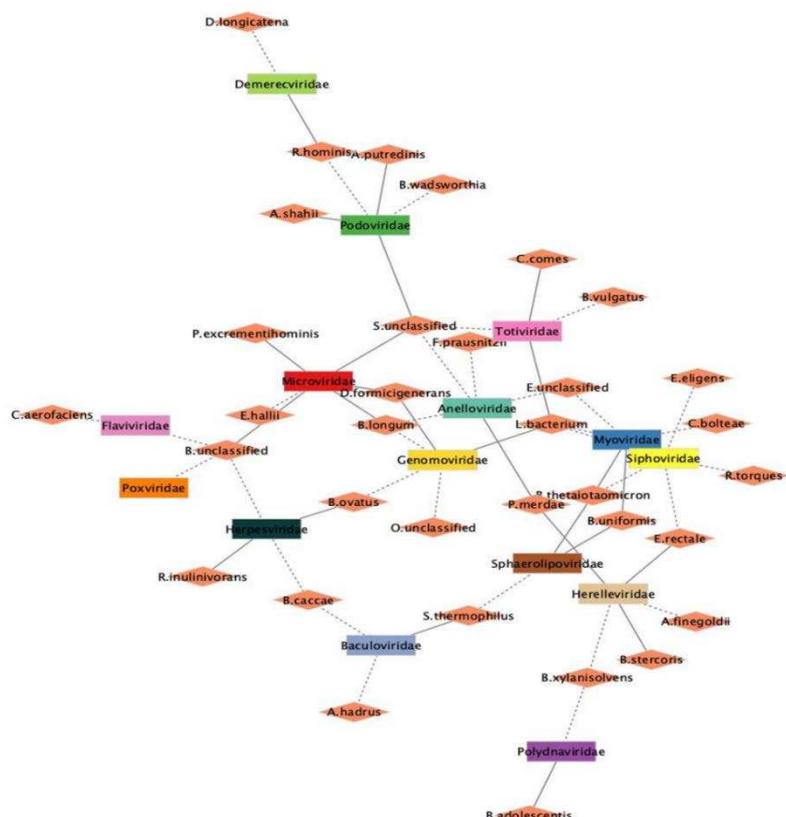

570

571 **Fig. 1** illustrates the comparison of gut virome characteristics and relative abundance between
572 MDA and non-MDA methods. **A:** The Venn diagram provides a comparison of viral hits,
573 indicating both shared and unique ones, observed through MDA and non-MDA methods; **B:** Violin
574 and box plots depict virome richness using MDA and non-MDA methods. Data obtained from the
575 MDA approach is represented in sky blue, while data from non-MDA is shown in orange. The
576 violin plot showcases the kernel probability density of the data across various values, while the
577 box plot presents the data in quartiles, with the median indicated by a horizontal line within the
578 box and the "box" representing the middle 50% of the data. The upper and lower whiskers denote
579 the maximum and minimum values, respectively. The viral richness is significantly different using
580 a Wilcoxon test, and the p -values are provided; **C:** Bray-Curtis and **D:** Jaccard distances are
581 presented to compare viral communities between MDA and non-MDA methods. The sky-blue
582 ellipse represents MDA method, while the orange ellipse represents non-MDA method. Colored
583 ellipses denote 95% confidence intervals, and the percentage of variability explained by each axis
584 is displayed; **E:** A stacked bar plot displays the top 20 most abundant gut viruses, distinguishing
585 between MDA and non-MDA approaches.

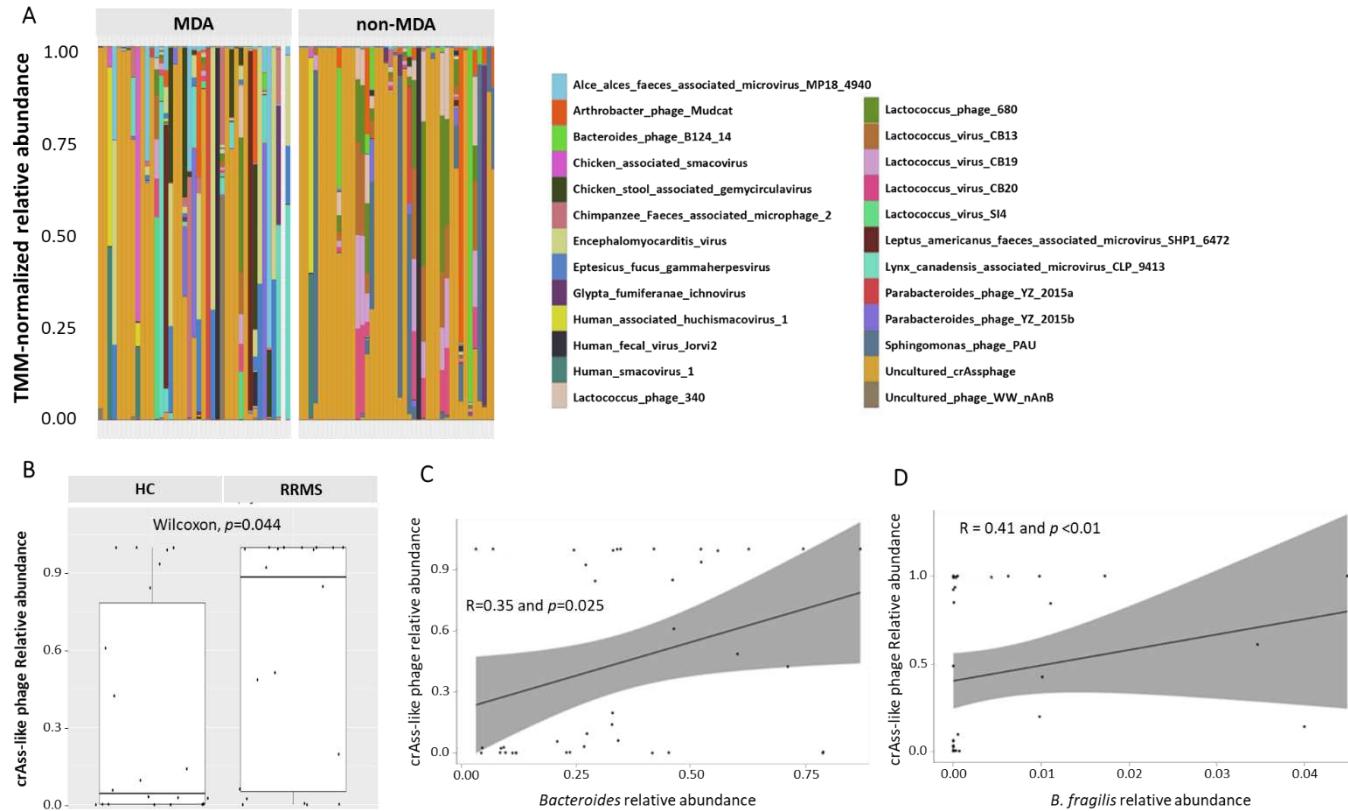


587 **Fig. 2** illustrates a comparative analysis of gut virome diversity and composition in individuals
 588 with RRMS and HC using both MDA and non-MDA method. **A:** Violin and box plots depict
 589 virome diversity when using MDA and non-MDA in both RRMS and HC. Data obtained from the
 590 RRMS is represented in orange, while data from HC is shown in green. The violin plot showcases
 591 the kernel probability density of the data across various values, while the box plot presents the data
 592 in quartiles, with the median indicated by a horizontal line within the box and the "box"
 593 representing the middle 50% of the data. The upper and lower whiskers denote the maximum and
 594 minimum values, respectively. The virome diversity were statistically compared using a Wilcoxon
 595 test, and the p -values are provided; **B:** Bray-Curtis distances are displayed to compare viral
 596 communities between RRMS and HC using MDA and non-MDA method. The orange ellipse
 597 represents RRMS, while the green ellipse represents HC. Colored ellipses denote 95% confidence
 598 intervals, and the percentage of variability explained by each axis is displayed; **C** and **D:** A
 599 heatmap visually represents the relative abundance of the 35 most prevalent viruses within the
 600 virome for both RRMS and HC groups, using both MDA and non-MDA methods. The star symbol
 601 (*) is used to denote a significant difference in relative abundance or prevalence of viral strain
 602 between individuals with RRMS and HC.


A



B

C



603 **Fig. 3** presents an analysis of the associations between diet, demographic characteristics, and
604 clinical factors with the abundance of viruses. **A:** The heatmap illustrates Spearman's correlation
605 of the relative abundance of different gut viruses and dietary habits within both RRMS and HC
606 groups. The size and color intensity of the squares in the heatmap indicate the strength of
607 correlation, with blue squares representing negative correlations and orange squares representing
608 positive correlations. Correlations that are statistically significant are highlighted with a black
609 square border; **B:** A stacked bar plot displays the top 20 most abundant gut viruses between the
610 *Podoviridae*-dominated cluster A and the *Siphoviridae*-dominated cluster B; **C:** A box plot
611 visualizes a significant dietary factor comparison between the *Podoviridae*-dominated cluster A
612 and the *Siphoviridae*-dominated cluster B. The box plot shows the data distribution, with the
613 median indicated by a horizontal line within the box. The "box" encompasses the middle 50% of
614 the data, while the upper and lower whiskers represent the maximum and minimum values,
615 respectively. Statistical comparison of dietary factors was conducted using a Wilcoxon test, with
616 corresponding *p*-values provided.

618 **Fig. 4** displays a network plot illustrating the relationships among bacterial genera and viral family
 619 within the gut microbiome of individuals with RRMS. Each node in the plot represents either a
 620 virus family (rectangle) or a bacterial genus (diamond). Edges connecting nodes such as dashed
 621 lines indicate significant positive correlation, while solid lines represent significant negative
 622 correlation.

623

624 **Fig. 5** abundance and correlation of crAss-like phage with host bacteria **A**: A stacked bar plot
625 displays the top 20 most abundant gut viruses at organism level in both MDA and non-MDA
626 methods; **B**: crAss-like phage relative abundance in RRMS and HC. Statistical comparison was
627 conducted using a Wilcoxon test, with corresponding p -values provided; **C** and **D**: Correlation
628 between crAss-like phage abundance and host bacteria. Correlations that are statistically
629 significant are provided in panel.

630