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 Abstract4 The time-resolved analysis of heart rate (HR) and 

heart rate variability (HRV) is crucial for the evaluation of the 

dynamic changes of autonomic activity under different clinical 

and behavioral conditions. Standard HRV analysis is performed 

in the frequency domain because the sympathetic activations tend 

to increase low-frequency HRV oscillations, while the 

parasympathetic ones increase high-frequency HRV oscillations. 

However, a strict separation of HRV in frequency bands may 

cause biased estimations, especially in the low frequency range. 

To overcome this limitation, we propose a robust estimator that 

combines HR and HRV dynamics, based on the correlation of the 

Poincaré plot descriptors of interbeat intervals from the 

electrocardiogram. To validate our method, we used 

electrocardiograms gathered from different open databases 

where standardized paradigms were applied to elicit changes in 

autonomic activity. Our proposal outperforms the standard 

spectral approach for the estimation of low- and high-frequency 

fluctuations in HRV, which are mostly triggered by sympathetic 

and parasympathetic activity, respectively. Our method 

constitutes a valuable, robust, time-resolved, and cost-effective 

tool for a better understanding of autonomic activity through HR 

and HRV in healthy state and potentially for pathological 

conditions. 

 

I. INTRODUCTION 

HE analysis of autonomic dynamics through heart rate 
variability (HRV) is a standard approach for clinical and 
fundamental research [1]3[3]. Biomarkers based on HRV 

serve for the non-invasive analysis of physiological responses 
to different stimuli, which allows the assessment of several 
pathological conditions [4]3[6]. Additionally, HRV analysis 
can enable the characterization of neural processes, which can 
help to enlighten the physiological underpinnings behind 
homeostatic regulations, sensorimotor function, and cognition 
[7].  

Heartbeats are generated from the continuous interactions 
within the autonomic nervous system, between sympathetic 
and parasympathetic outflows [8]. These interactions occur 
specifically on the sinoatrial node, which contains the 
pacemaker cells that contract to produce the heartbeats [9]. 
The fluctuations in the autonomic modulations to the sinoatrial 
node cause the heartbeat generation at different rhythms [10], 
as a function of the sympathetic and parasympathetic 
activations that cause changes in the release rate of 
noradrenaline and acetylcholine [11]. The estimation of the 
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sympathetic and parasympathetic activities is usually 
performed through HRV spectral integration at the low- (LF: 
0.0430.15 Hz) and high-frequency (HF: 0.1530.4 Hz), 
respectively [12], [13]. However, the spectral components of 
HRV series can be biased in certain conditions [14]. 
Specifically, the fixed subdivisions for the frequency ranges 
(LF and HF) cannot successfully separate the influences of the 
ongoing sympathetic and parasympathetic activities, which are 
potentially overlapped in the LF range [1]. To overcome this 
issue, alternative strategies have been proposed to estimate 
autonomic dynamics and to disentangle the low and high-
frequency HRV oscillations [15]3[18]. 

We propose a method for a robust estimation of sympathetic 
and parasympathetic activities. The method is grounded on the 
measurement of the successive changes in interbeat intervals, 
by analyzing the changes of the Poincaré plot geometry over 
time. Our approach demonstrates its ability to precisely 
estimate cardiac sympathetic and parasympathetic responses 
in healthy subjects during postural changes and a cold-pressor 
test, standard autonomic stimulation protocols. Our method 
holds potential for the future development of biomarkers for 
clinical conditions related to dysautonomia. 

II. MATERIALS AND METHODS 

A. Datasets description 

Twenty-four adults were recruited for the cold-pressor test. 
A total of 18 subjects were included in this study (six of them 
were discarded because of missing data in their ECG). Three 
trials of the cold pressor test were performed. Each trial 
consisted in a 5-minute resting period, followed by a 3-minute 
immersion of the hand in ice water (0°C) and a 2-minute 
recovery through immersion of the same hand in warmer 
water (32°C). In this study, the first trial was considered. 
Trials were considered in the -120 to 120 s with respect the 
onset of the cold-pressor test. ECG was measured using 
Finapres NOVA system (Finapres Medical Systems, 
Amsterdam, The Netherlands) with a sampling frequency of 
200 Hz. The study was approved by the local ethical 
committee (Radboud University, ECS17022 and REC18021). 
All participants signed informed consent to participate in the 
study as required by the Declaration of Helsinki. For further 
detail on the experimental procedures, please refer to the 
original study [18]. 
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Ten adults were recruited for the tilt-table test. The subjects 
were initially asked to remain in a horizontal supine position 
and to move to a vertical position with the help of either the 
tilt-table or by self-stand up. The subjects were part of six 
sessions that were sorted randomly between resting periods: 
two stand up, two slow tilts (50 s from 0 to 70°), and two fast 
tilts (2 s from 0 to 70°), while remaining in each condition for 
approximately 3 min. The entire protocol lasted between 55 
and 75 minutes for each participant. ECG was measured using 
Hewlett-Packard 1500A system (Hewlett-Packard, Palo Alto, 
California, United States of America) with a sampling 
frequency of 250 Hz. In this study, the trials performed by 
each participant were considered as individual measurements 
and independently of the vertical positioning procedure (tilt 
table or self-stand up). Trials were considered in the -120 to 
120 s with respect the onset of the postural change. The study 
was approved by the local ethical committee (Massachusetts 
Institute of Technology, COUHES 2895 and MIT CRC 512). 
All participants signed informed consent to participate in the 
study as required by the Declaration of Helsinki. For further 
detail on the experimental procedures, please refer to the 
original study [19], [20]. 

B. Estimation of cardiac sympathetic and parasympathetic 

indices 

The R-peaks from the subject ECGs were detected 
automatically using a method inspired in the Pan3Tompkins 
algorithm [21]. Consecutively, the detected R-peaks were 
manually corrected for misdetections or ectopic beats. 
Interbeat interval series (IBI) were constructed, based on the 
R-to-R-peak durations. Poincaré plot was used to depict the 
fluctuations on the duration of consecutive IBI [22], as shown 
in Figure 1A. We quantified three features from Poincaré plot: 
R, SD1 and SD2, which correspond to the distance to the 
origin, and the ratios of the ellipse representing the short- and 

long-term fluctuations of HRV, respectively [23]. Figure 1B 
displays the calculations of the Cardiac Sympathetic Index 
(CSI) and Cardiac Parasympathetic Index (CPI) for a single 
subject undergoing a cold-pressor test. These indices are 
derived by integrating the time-resolved estimates of R, SD1, 
and SD2. Additionally, these estimates are displayed alongside 
their spectral counterparts, LF and HF. 

The time-varying fluctuations of the distance to the origin 
and the ellipse ratios were computed with a sliding-time 
window, as shown in Eq. 1, 2 and 3: 

	
�(�) 	= 	'����(���!,&,$%&)' 	+	����(���!(&,&,$)'	 (1) 

	
��&(�) 	= 	'�)!

(1,1) (2) 

	
��'(�) 	= 	'�)!

(2,2)	 (3) 
 

where �)!
 is the matrix with the eigenvalues of the 

covariance matrix of ���*,&,$%& and ���*(&,&,$, with  
�+:	�	3 	�	 f 	 �! 	f 	�, and � is the length of IBI in the time 
window �+ .	The method implementation includes four 
approaches to compute SD1 and SD2: <exact=, <robust=, 
<95%= and <approximate=. The exact approach computes the 
standard covariance matrix giving the covariance between 
each pair of elements. The robust approach computes the 
covariance matrix using a shrinkage covariance estimator 
based on the Ledoit-Wolf lemma for analytic calculation of 
the optimal shrinkage intensity [24]. The 95% approach 
computes the covariance matrix using the Fast Minimum 
Covariance Determinant Estimate [25]. This covariance 
estimation method selects / observations out of total �. The 
selection of / fulfills the relationship /	 j (1 2 �������) 	 ; � , 

 
Fig. 1.  Estimation of the fluctuating parameters of the Poincaré plot. (A) The Poincaré plot illustrates the sequential changes in interbeat intervals (IBI). It 

allows us to estimate the Cardiac sympathetic (CSI) and parasympathetic indices (CPI) by calculating the minor (SD1) and major ratios (SD2) of the formed 

ellipse and the distance (R) from its center to the origin. (B) The estimated CSI and CPI are presented alongside their corresponding spectral counterparts: the 

low-frequency (LF) and high-frequency (HF) components of heart rate variability, which are aimed to index sympathetic and parasympathetic activity, 

respectively. 
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with ������� = 0.05. Then the selected points fulfill a 
standard covariance matrix with the lowest determinant. 
Finally, the approximate approach computes SD1 and SD2 as 
follows [16]: 

	
��&(�) 	= 	F&

'
	���(���,)!

)' (4) 

	
��'(�) 	= 	F2	���(���)!

)' 2 &

'
	���(���,)!

)'	 (5) 

 
where IBI, is the derivative of IBI, std() refers to the 

standard deviation, and «-:	t	3 	T	 f 	 t* 	f 	t. In this study T is 
fixed in 15 seconds, as per previous simulation studies in 
humans [26], and the validation is performed using the robust 
approach. In Figure 3, we provide a single-subject illustration 
of estimations using various time window lengths. In Figure 4, 
we present another example that employs the four different 
approaches for computation under the presence of ectopic 
heartbeats.  

The distance to the origin �. and ellipse ratios ��.& and 
��.' for the whole experimental duration are computed to re-
center the time-resolved estimations of R, SD1 and SD2. 
Then, the Cardiac Parasympathetic Index (���) and the 
Cardiac Sympathetic Index (���), are computed as follows: 

	
�(�) 	= 	RS(�) +	�. (6) 
	
���(�) = k/ ; (��&

UUUUU(�) +	��.&) +	�V(�) (7) 
	
���(�) = k0 ; (��'

UUUUU(�) +	��.') + 	D(�)	 (8) 
 
where ��1

UUUUU is the demeaned ��1 and �V is the flipped � with 
respect the mean. The coefficients k/ and k0 define the weight 
of the fast and slow HRV oscillations, with respect the 
changes in the baseline heart rate. In this study, the values 
were defined as k/ = 10 and k0 = 1. Those values were 
chosen based on the well-stablished effects of autonomic 
modulations on cardiac dynamics: Sympathetic modulations 
primarily influence baseline heart rate [27], but also slower 

 
Fig. 2.  Cardiac autonomic indices CSI and CPI, and their spectral counterparts LF and HF under the Tilt-table and Cold-pressor tests. The indices were used to 

quantify the autonomic changes triggered by the postural/temperature changes with respect to the baseline. (A) Time course of the computed indices between -

120 to 120 s with respect to the condition change onset. The plot indicates the group median and the shaded areas the median absolute deviation. Time series 

were z-score normalized per subject before averaging for visualization purposes. (B) Statistical comparison using a signed rank Wilcoxon test, comparing the 

mean 120 s after the condition change with respect to the 120 s before. Dashed lines indicate the group median. All signal amplitude units are arbitrary units. 
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HRV changes [1], while parasympathetic modulations are 
typically captured by quantifying faster HRV changes [1]. In 
Figure 5, we present an example that employs k/ = 1,& ,10 
and k0 = 1,&,10 for illustration. 

 

C. Frequency-based estimation of cardiac sympathetic and 

parasympathetic activities  

 The HRV analysis in the frequency domain was computed 
following the adapted Wigner3Ville method for estimating the 
LF and HF time series [28]. The HRV series were constructed 
as an interbeat intervals duration time course. Consecutively, 
the HRV series were evenly re-sampled to 4 Hz using the 
spline interpolation. The pseudo-Wigner3Ville algorithm 
consists of a two-dimensional Fourier transform with an 
ambiguity function kernel to perform two-dimensional 
filtering, which comprises ellipses whose eccentricities depend 
on the parameters ¿0 and Ç0, to set the filtering degrees of time 
and frequency domains, respectively [29]. An additional 
parameter » is set to control the frequency filter roll-off and 
the kernel tails9 size [28], [29]. The parameters are set as: v0 = 
0.03, Ç0 = 0.06 and » = 0.3, as per previous simulation studies 
[28]. Finally, low-frequency (LF) and high-frequency (HF) 
series were integrated withing the 0.0430.15 Hz and 0.1530.4 
Hz, respectively [12], [13]. 

D. Statistical analysis 

To statistically evaluate the performance of the two 
methods in discerning the experimental conditions, we used a 
two-sided non-parametric Wilcoxon signed-rank test for 
paired samples. The time-resolved information for all the 
estimated features was condensed as the average value for 
each experimental session, and the group-wise descriptive 
measures are expressed as medians and median absolute 

deviations (MAD). Significance was set to alpha=0.0125, 
following Bonferroni correction for multiple comparisons. 

E. Data and code availability 

All physiological data used in this study are publicly 
available. Postural changes and intense exercise data were 
gathered from Physionet [19]. Cold-pressor data were 
gathered from Donders Institute repository [30]. Codes 
implementing the methods of this study are available at 
https://github.com/diegocandiar/robust_hrv. 

III. RESULTS 

We examined cardiac dynamics derived from HR and HRV 
in healthy individuals undergoing autonomic elicitation in two 
different conditions: tilt-table postural changes and cold-
pressor test. Cardiac sympathetic and parasympathetic indices 
(CSI and CPI) were computed using our proposed method 
based on Poincaré plot descriptors of RR intervals.  

The protocol on individuals undergoing postural changes 
consisted in transitioning from a horizontal/supine position to 
a vertical/head-up position using a tilt-table [20]. Our findings 
indicated that the proposed method precisely captured the 
dynamic fluctuations in autonomic activity in response to 
postural changes. Consistent with previous literature, we 
successfully observed the rise in sympathetic activity during 
the transition to an upright position [31]3[35], as depicted in 
Figure 2. Notably, when distinguishing between the two 
experimental conditions during postural changes, CSI and CPI 
exhibited superior performance compared to their spectral 
counterparts (Wilcoxon signed rank test, CSI: p < 0.0001, Z = 
-6.4686; LF: p = 0.0574, Z = -1.9006; CPI: p < 0.0001, Z = 
6.1341; HF: p < 0.0001, Z = 4.0051). 

The second protocol consisted on a cold-pressor test [18], in 
which the subjects immersed their hand in ice cold water. As 
shown in Figure 2, our findings revealed that variations in 
temperature induce alterations in autonomic activity, where an 
increase in sympathetic activity and a decrease in 
parasympathetic activity is expected [36]3[39]. While both 
parasympathetic markers displayed similar outcomes 
(Wilcoxon signed rank test, CPI: p = 0.0057, Z = 2.7658; HF: 
p = 0.0096, Z = 2.5916, the sympathetic markers exhibited 
divergent trends in relation to the experimental conditions 
(Wilcoxon signed rank test, CSI: p = 0.0018, Z = -3.1142; LF: 
p = 0.0526, Z = 1.9382). Overall, these results demonstrate 
that the CSI and CPI outperform their standard spectral 
counterparts, namely the LF and HF components, in these 
standard experimental conditions of autonomic elicitation. 

Figure 3 presents the calculation of CSI and CPI in a subject 
undergoing the cold-pressor test. In this figure we highlight 
the impact of different time window lengths on these 
computations: specifically, 5, 10, 15, 20, and 25 seconds. Our 
findings reveal that a 5-second time window is inadequate for 
capturing the well-known surge in sympathetic activity 
induced by cold-pressure. However, a 15-second time window 
strikes a good balance, offering both time resolution and the 
ability to capture the gradual fluctuations in HRV within the 
0.04-0.15 Hz range. 

 
Fig. 3.  Estimation of CSI (Cardiac Sympathetic Index) for one subject, for 

different sliding time windows. The window length displayed correspond to 

5, 10, 15, 20 and 25s. The experimental condition involves the cold pressor 

test, with cold pressure initiating at t = 0. 
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The method implementation includes four approaches of 
computation: <exact=, <approximate=, <robust=, and <95%=. 
The exact approach based on the standard covariance matrix, 
the approximate approach based on the short-term standard 
deviation computations, the robust approach based on a 
shrinkage covariance estimator, and the 95% approach based 
on a 5% outliers9 rejection. The CSI estimation of one subject 
undergoing cold-pressure is presented in Figure 4. The 
estimations shown in Figure 4A correspond to the four 
different approaches, with each column representing the 
estimation results when ectopic heartbeats/outliers are 
externally introduced. Our findings indicate that the robust, 
exact, and approximate methods yield qualitatively similar 
estimations, with minor variations in response to the presence 
of ectopic heartbeats, as shown in Figure 4B. On the other 
hand, the 95% approach exhibits a strong resistance to outliers 
but results in a relatively poor overall estimation, which is 
demonstrated in the overall low effect magnitude (differences 
on CSI during the cold-pressor and baseline), but also in the 
high variability of the measurements with respect to the 
presence of outliers, as shown in Figure 4C. 

For illustration, we present in Figure 5 the computation of 
CSI and CPI using k/ = 1,& ,10 and k0 = 1,&,10. The 
coefficients k/ and k0 define the weight of the fast and slow 
HRV oscillations, with respect the changes in the baseline 
heart rate. Autonomic modulations on cardiac dynamics are 
well-documented. Sympathetic modulations primarily impact 
baseline heart rate [27] and also slower changes in HRV [1], 
while parasympathetic modulations are typically characterized 
by quantifying faster HRV changes [1]. In this study, we 
defined as k/ = 10 and k0 = 1, which represents an equal 
weight to heart rate and HRV for sympathetic estimations, and 
a higher weight to HRV for parasympathetic estimations. 

IV. DISCUSSION 

We have introduced a method for the precise and time-
resolved estimation of sympathetic and parasympathetic 
outflows in humans using ECG data. Our findings highlight 
the remarkable consistency of the time-resolved estimations of 
sympathetic and parasympathetic activities across the 
conditions studied. This indicates that our proposed method 
can accurately capture and reproduce the alterations observed 
in sympathetic and parasympathetic activities. 

Our method uses Poincaré plots, which effectively depict 
the beat-to-beat alterations in heart rate, capturing both short-
term and long-term fluctuations in HRV while also accounting 
for nonlinearities [22], [40]. Previous studies have employed 
Poincaré plot-derived measures to examine sympathetic and 
parasympathetic influences on heart rate [16], [41]3[43], 
including investigations into the changes observed in 
pathological conditions [44]3[46]. Our proposal focuses on 
delivering a time-resolved estimation method, enabling a 
comprehensive exploration of the dynamic shifts in autonomic 
regulations.  

Physiological modeling of bodily signals plays a crucial 
role in uncovering the underlying aspects of autonomic 
dynamics by analyzing time-varying modulations of specific 
components. Future investigations can explore additional 
applications of this method, such as investigating the 
sympathetic and parasympathetic components involved in 
brain-heart dynamics [39], considering specific directionalities 
and latencies. Our proposed method, focusing on time-
resolved estimations, facilitates a comprehensive exploration 
of dynamic shifts in autonomic regulations and their potential 
relation with ongoing brain activity [16], [39]. This approach 
holds particular promise for studying pathological conditions 

 
Fig. 4.  Estimation of CSI (Cardiac Sympathetic Index) for one subject. (A) Each row displays the method of estimation used (exact, approximate, robust or 

95%). Each column displays the result of the estimation with the presence of misdetection of R peaks from the ECG. The number of misdetections is indicated 

by n = 0, 2, 6, 10. The dashed line indicates the onset of the cold-pressor at t=0. Horizontal red lines indicate the CSI median before and after the cold-pressor 

onset. Shaded gray areas indicate the timing in which the outliers were introduced. The misdetections were introduced by adding a delay of +30 ms to the 

occurrence of randomly selected R peaks. (B) Effect magnitude measured as the mean CSI during the cold pressor minus the mean CSI during ambient 

temperature, as a function of the number of ectopic heartbeats/outliers introduced. (C). Median and Median absolute deviation (MAD) of the effect magnitude 

among the eleven estimations for the number of outliers n=0,1, &, 10, for each of the four approaches. 
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[47] given the high level of integration in within physiological 
networks, which highlights the significance of modeling 
interoceptive processes to gain insights into multisystem 
dysfunctions [48]. This is supported by previous research has 
already demonstrated the relevance of studying brain-heart 
interactions, as heartbeat dynamics have been implicated in 
various clinical applications [49]. 

It is worth mentioning that our method relies on the 
geometry of the Poincaré plot, which has been criticized due 
to high sensitivity to the presence of outliers and artifacts [50]. 
To overcome this issue, we have implemented within our 
method a correction of potential outliers for a robust 
computation of the covariance matrices [24], [25], which can 
be compared by the users to standard approaches through our 
open-source codes. 

V. CONCLUSION 

Our method holds great potential for advancing our 
understanding of the dynamics of sympathetic and 
parasympathetic fluctuations. This tool for analyzing cardiac 
dynamics may also contribute to the development of 
physiologically inspired models for the understanding of 
autonomic dynamics in different contexts, such as the 
physiological underpinnings of sensorimotor and cognitive 
challenge. By employing a more accurate estimation of the 
ongoing autonomic dynamics we can gain deeper insights into 
the intricate interplay within large-scale neural dynamics. 
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