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Robust and time-resolved estimation of cardiac
sympathetic and parasympathetic indices

Diego Candia-Rivera*, Fabrizio de Vico Fallani, and Mario Chavez

Abstract— The time-resolved analysis of heart rate (HR) and
heart rate variability (HRV) is crucial for the evaluation of the
dynamic changes of autonomic activity under different clinical
and behavioral conditions. Standard HRV analysis is performed
in the frequency domain because the sympathetic activations tend
to increase low-frequency HRYV oscillations, while the
parasympathetic ones increase high-frequency HRYV oscillations.
However, a strict separation of HRV in frequency bands may
cause biased estimations, especially in the low frequency range.
To overcome this limitation, we propose a robust estimator that
combines HR and HRV dynamics, based on the correlation of the
Poincaré plot descriptors of interbeat intervals from the
electrocardiogram. To validate our method, we used
electrocardiograms gathered from different open databases
where standardized paradigms were applied to elicit changes in
autonomic activity. Our proposal outperforms the standard
spectral approach for the estimation of low- and high-frequency
fluctuations in HRV, which are mostly triggered by sympathetic
and parasympathetic activity, respectively. Our method
constitutes a valuable, robust, time-resolved, and cost-effective
tool for a better understanding of autonomic activity through HR
and HRV in healthy state and potentially for pathological
conditions.

I. INTRODUCTION

HE analysis of autonomic dynamics through heart rate

variability (HRV) is a standard approach for clinical and

fundamental research [1]-[3]. Biomarkers based on HRV
serve for the non-invasive analysis of physiological responses
to different stimuli, which allows the assessment of several
pathological conditions [4]-[6]. Additionally, HRV analysis
can enable the characterization of neural processes, which can
help to enlighten the physiological underpinnings behind
homeostatic regulations, sensorimotor function, and cognition
[7].

Heartbeats are generated from the continuous interactions
within the autonomic nervous system, between sympathetic
and parasympathetic outflows [8]. These interactions occur
specifically on the sinoatrial node, which contains the
pacemaker cells that contract to produce the heartbeats [9].
The fluctuations in the autonomic modulations to the sinoatrial
node cause the heartbeat generation at different rhythms [10],
as a function of the sympathetic and parasympathetic
activations that cause changes in the release rate of
noradrenaline and acetylcholine [11]. The estimation of the
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sympathetic and parasympathetic activities is usually
performed through HRV spectral integration at the low- (LF:
0.04-0.15 Hz) and high-frequency (HF: 0.15-0.4 Hz),
respectively [12], [13]. However, the spectral components of
HRV series can be biased in certain conditions [14].
Specifically, the fixed subdivisions for the frequency ranges
(LF and HF) cannot successfully separate the influences of the
ongoing sympathetic and parasympathetic activities, which are
potentially overlapped in the LF range [1]. To overcome this
issue, alternative strategies have been proposed to estimate
autonomic dynamics and to disentangle the low and high-
frequency HRV oscillations [15]-[18].

We propose a method for a robust estimation of sympathetic
and parasympathetic activities. The method is grounded on the
measurement of the successive changes in interbeat intervals,
by analyzing the changes of the Poincaré plot geometry over
time. Our approach demonstrates its ability to precisely
estimate cardiac sympathetic and parasympathetic responses
in healthy subjects during postural changes and a cold-pressor
test, standard autonomic stimulation protocols. Our method
holds potential for the future development of biomarkers for
clinical conditions related to dysautonomia.

II. MATERIALS AND METHODS

A. Datasets description

Twenty-four adults were recruited for the cold-pressor test.
A total of 18 subjects were included in this study (six of them
were discarded because of missing data in their ECG). Three
trials of the cold pressor test were performed. Each trial
consisted in a 5-minute resting period, followed by a 3-minute
immersion of the hand in ice water (0°C) and a 2-minute
recovery through immersion of the same hand in warmer
water (32°C). In this study, the first trial was considered.
Trials were considered in the -120 to 120 s with respect the
onset of the cold-pressor test. ECG was measured using
Finapres NOVA system (Finapres Medical Systems,
Amsterdam, The Netherlands) with a sampling frequency of
200 Hz. The study was approved by the local ethical
committee (Radboud University, ECS17022 and REC18021).
All participants signed informed consent to participate in the
study as required by the Declaration of Helsinki. For further
detail on the experimental procedures, please refer to the
original study [18].
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Fig. 1. Estimation of the fluctuating parameters of the Poincaré plot. (A) The Poincaré plot illustrates the sequential changes in interbeat intervals (IBI). It
allows us to estimate the Cardiac sympathetic (CSI) and parasympathetic indices (CPI) by calculating the minor (SD1) and major ratios (SD2) of the formed
ellipse and the distance (R) from its center to the origin. (B) The estimated CSI and CPI are presented alongside their corresponding spectral counterparts: the
low-frequency (LF) and high-frequency (HF) components of heart rate variability, which are aimed to index sympathetic and parasympathetic activity,

respectively.

Ten adults were recruited for the tilt-table test. The subjects
were initially asked to remain in a horizontal supine position
and to move to a vertical position with the help of either the
tilt-table or by self-stand up. The subjects were part of six
sessions that were sorted randomly between resting periods:
two stand up, two slow tilts (50 s from 0 to 70°), and two fast
tilts (2 s from 0 to 70°), while remaining in each condition for
approximately 3 min. The entire protocol lasted between 55
and 75 minutes for each participant. ECG was measured using
Hewlett-Packard 1500A system (Hewlett-Packard, Palo Alto,
California, United States of America) with a sampling
frequency of 250 Hz. In this study, the trials performed by
each participant were considered as individual measurements
and independently of the vertical positioning procedure (tilt
table or self-stand up). Trials were considered in the -120 to
120 s with respect the onset of the postural change. The study
was approved by the local ethical committee (Massachusetts
Institute of Technology, COUHES 2895 and MIT CRC 512).
All participants signed informed consent to participate in the
study as required by the Declaration of Helsinki. For further
detail on the experimental procedures, please refer to the
original study [19], [20].

B. Estimation of cardiac sympathetic and parasympathetic
indices

The R-peaks from the subject ECGs were detected
automatically using a method inspired in the Pan—Tompkins
algorithm [21]. Consecutively, the detected R-peaks were
manually corrected for misdetections or ectopic beats.
Interbeat interval series (IBI) were constructed, based on the
R-to-R-peak durations. Poincaré plot was used to depict the
fluctuations on the duration of consecutive IBI [22], as shown
in Figure 1A. We quantified three features from Poincaré plot:
R, SD1 and SD2, which correspond to the distance to the
origin, and the ratios of the ellipse representing the short- and

long-term fluctuations of HRV, respectively [23]. Figure 1B
displays the calculations of the Cardiac Sympathetic Index
(CSI) and Cardiac Parasympathetic Index (CPI) for a single
subject undergoing a cold-pressor test. These indices are
derived by integrating the time-resolved estimates of R, SDI,
and SD2. Additionally, these estimates are displayed alongside
their spectral counterparts, LF and HF.

The time-varying fluctuations of the distance to the origin
and the ellipse ratios were computed with a sliding-time
window, as shown in Eq. 1, 2 and 3:

R(t) = ymean(IBl;_n-1)* + mean(IBl;yy,_n)? ()
SDi(t) = /Ao, (L1) @)
SD,(t) = \J20,(2,2) (€)

where A, is the matrix with the eigenvalues of the
covariance matrix of IBI ,, and IBL; ,, with
0p:t-T < t; £ t, and n is the length of IBI in the time
window (2;. The method implementation includes four
approaches to compute SD1 and SD2: “exact”, “robust”,
“95%” and “approximate”. The exact approach computes the
standard covariance matrix giving the covariance between
each pair of elements. The robust approach computes the
covariance matrix using a shrinkage covariance estimator
based on the Ledoit-Wolf lemma for analytic calculation of
the optimal shrinkage intensity [24]. The 95% approach
computes the covariance matrix using the Fast Minimum
Covariance Determinant Estimate [25]. This covariance
estimation method selects h observations out of total n. The
selection of h fulfills the relationship h =~ (1 — OQutlier) -n,
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with Outlier = 0.05. Then the selected points fulfill a
standard covariance matrix with the lowest determinant.

Finally, the approximate approach computes SD1 and SD2 as
follows [16]:

SD,(t) = E std(IBI'y,)? (4)
SD,(t) = J 2 std(IBl,)? — 5 std(IBI'g,)? (5)

where IBI' is the derivative of IBI, std() refers to the
standard deviation, and Q;:t- T < t; < t. In this study T is
fixed in 15 seconds, as per previous simulation studies in
humans [26], and the validation is performed using the robust
approach. In Figure 3, we provide a single-subject illustration
of estimations using various time window lengths. In Figure 4,
we present another example that employs the four different
approaches for computation under the presence of ectopic
heartbeats.
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The distance to the origin R, and ellipse ratios SDy; and
SD,, for the whole experimental duration are computed to re-
center the time-resolved estimations of R, SD1 and SD2.
Then, the Cardiac Parasympathetic Index (CPI) and the
Cardiac Sympathetic Index (CST), are computed as follows:

D(t) = R(t) + R, (6)
CPI(t) =k, * (SDy(t) + SDyy) + D(t) (7)
CSI(t) =Kk (S_Dz(t) + SDgz) + D(t) (¥

where SD, is the demeaned SD, and D is the flipped D with
respect the mean. The coefficients k,, and kg define the weight
of the fast and slow HRV oscillations, with respect the
changes in the baseline heart rate. In this study, the values
were defined as k, = 10 and k; = 1. Those values were
chosen based on the well-stablished effects of autonomic
modulations on cardiac dynamics: Sympathetic modulations
primarily influence baseline heart rate [27], but also slower
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Fig. 2. Cardiac autonomic indices CSI and CPI, and their spectral counterparts LF and HF under the Tilt-table and Cold-pressor tests. The indices were used to

quantify the autonomic changes triggered by the postural/temperature changes with respect to the baseline. (A) Time course of the computed indices between -

120 to 120 s with respect to the condition change onset. The plot indicates the group median and the shaded areas the median absolute deviation. Time series

were z-score normalized per subject before averaging for visualization purposes. (B) Statistical comparison using a signed rank Wilcoxon test, comparing the
mean 120 s after the condition change with respect to the 120 s before. Dashed lines indicate the group median. All signal amplitude units are arbitrary units.
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Fig. 3. Estimation of CSI (Cardiac Sympathetic Index) for one subject, for
different sliding time windows. The window length displayed correspond to
5, 10, 15, 20 and 25s. The experimental condition involves the cold pressor
test, with cold pressure initiating at t = 0.

HRV changes [1], while parasympathetic modulations are
typically captured by quantifying faster HRV changes [1]. In
Figure 5, we present an example that employs k, = 1,...,10
and k; = 1,...,10 for illustration.

C. Frequency-based estimation of cardiac sympathetic and
parasympathetic activities

The HRV analysis in the frequency domain was computed
following the adapted Wigner—Ville method for estimating the
LF and HF time series [28]. The HRV series were constructed
as an interbeat intervals duration time course. Consecutively,
the HRV series were evenly re-sampled to 4 Hz using the
spline interpolation. The pseudo-Wigner—Ville algorithm
consists of a two-dimensional Fourier transform with an
ambiguity function kernel to perform two-dimensional
filtering, which comprises ellipses whose eccentricities depend
on the parameters vo and 7o, to set the filtering degrees of time
and frequency domains, respectively [29]. An additional
parameter 4 is set to control the frequency filter roll-off and
the kernel tails’ size [28], [29]. The parameters are set as: vo =
0.03, 70 = 0.06 and 4 = 0.3, as per previous simulation studies
[28]. Finally, low-frequency (LF) and high-frequency (HF)
series were integrated withing the 0.04-0.15 Hz and 0.15-0.4
Hz, respectively [12], [13].

D. Statistical analysis

To statistically evaluate the performance of the two
methods in discerning the experimental conditions, we used a
two-sided non-parametric Wilcoxon signed-rank test for
paired samples. The time-resolved information for all the
estimated features was condensed as the average value for
each experimental session, and the group-wise descriptive
measures are expressed as medians and median absolute

deviations (MAD). Significance was set to alpha=0.0125,
following Bonferroni correction for multiple comparisons.

E. Data and code availability

All physiological data used in this study are publicly
available. Postural changes and intense exercise data were
gathered from Physionet [19]. Cold-pressor data were
gathered from Donders Institute repository [30]. Codes
implementing the methods of this study are available at
https://github.com/diegocandiar/robust_hrv.

III. RESULTS

We examined cardiac dynamics derived from HR and HRV
in healthy individuals undergoing autonomic elicitation in two
different conditions: tilt-table postural changes and cold-
pressor test. Cardiac sympathetic and parasympathetic indices
(CSI and CPI) were computed using our proposed method
based on Poincaré plot descriptors of RR intervals.

The protocol on individuals undergoing postural changes
consisted in transitioning from a horizontal/supine position to
a vertical/head-up position using a tilt-table [20]. Our findings
indicated that the proposed method precisely captured the
dynamic fluctuations in autonomic activity in response to
postural changes. Consistent with previous literature, we
successfully observed the rise in sympathetic activity during
the transition to an upright position [31]-[35], as depicted in
Figure 2. Notably, when distinguishing between the two
experimental conditions during postural changes, CSI and CPI
exhibited superior performance compared to their spectral
counterparts (Wilcoxon signed rank test, CSI: p < 0.0001, Z =
-6.4686; LF: p = 0.0574, Z = -1.9006; CPI: p < 0.0001, Z =
6.1341; HF: p <0.0001, Z = 4.0051).

The second protocol consisted on a cold-pressor test [18], in
which the subjects immersed their hand in ice cold water. As
shown in Figure 2, our findings revealed that variations in
temperature induce alterations in autonomic activity, where an
increase in sympathetic activity and a decrease in
parasympathetic activity is expected [36]-[39]. While both
parasympathetic markers displayed similar outcomes
(Wilcoxon signed rank test, CPI: p = 0.0057, Z = 2.7658; HF:
p = 0.0096, Z = 2.5916, the sympathetic markers exhibited
divergent trends in relation to the experimental conditions
(Wilcoxon signed rank test, CSI: p = 0.0018, Z =-3.1142; LF:
p = 0.0526, Z = 1.9382). Overall, these results demonstrate
that the CSI and CPI outperform their standard spectral
counterparts, namely the LF and HF components, in these
standard experimental conditions of autonomic elicitation.

Figure 3 presents the calculation of CSI and CPI in a subject
undergoing the cold-pressor test. In this figure we highlight
the impact of different time window lengths on these
computations: specifically, 5, 10, 15, 20, and 25 seconds. Our
findings reveal that a 5-second time window is inadequate for
capturing the well-known surge in sympathetic activity
induced by cold-pressure. However, a 15-second time window
strikes a good balance, offering both time resolution and the
ability to capture the gradual fluctuations in HRV within the
0.04-0.15 Hz range.
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Fig. 4. Estimation of CSI (Cardiac Sympathetic Index) for one subject. (A) Each row displays the method of estimation used (exact, approximate, robust or
95%). Each column displays the result of the estimation with the presence of misdetection of R peaks from the ECG. The number of misdetections is indicated
by n=0, 2, 6, 10. The dashed line indicates the onset of the cold-pressor at t=0. Horizontal red lines indicate the CSI median before and after the cold-pressor
onset. Shaded gray areas indicate the timing in which the outliers were introduced. The misdetections were introduced by adding a delay of +30 ms to the
occurrence of randomly selected R peaks. (B) Effect magnitude measured as the mean CSI during the cold pressor minus the mean CSI during ambient
temperature, as a function of the number of ectopic heartbeats/outliers introduced. (C). Median and Median absolute deviation (MAD) of the effect magnitude

among the eleven estimations for the number of outliers n=0,1, ..

The method implementation includes four approaches of
computation: “exact”, “approximate”, “robust”, and “95%”.
The exact approach based on the standard covariance matrix,
the approximate approach based on the short-term standard
deviation computations, the robust approach based on a
shrinkage covariance estimator, and the 95% approach based
on a 5% outliers’ rejection. The CSI estimation of one subject
undergoing cold-pressure is presented in Figure 4. The
estimations shown in Figure 4A correspond to the four
different approaches, with each column representing the
estimation results when ectopic heartbeats/outliers are
externally introduced. Our findings indicate that the robust,
exact, and approximate methods yield qualitatively similar
estimations, with minor variations in response to the presence
of ectopic heartbeats, as shown in Figure 4B. On the other
hand, the 95% approach exhibits a strong resistance to outliers
but results in a relatively poor overall estimation, which is
demonstrated in the overall low effect magnitude (differences
on CSI during the cold-pressor and baseline), but also in the
high variability of the measurements with respect to the
presence of outliers, as shown in Figure 4C.

For illustration, we present in Figure 5 the computation of
CSI and CPI using k, =1,..,10 and kg =1,...,10. The
coefficients k,, and k define the weight of the fast and slow
HRYV oscillations, with respect the changes in the baseline
heart rate. Autonomic modulations on cardiac dynamics are
well-documented. Sympathetic modulations primarily impact
baseline heart rate [27] and also slower changes in HRV [1],
while parasympathetic modulations are typically characterized
by quantifying faster HRV changes [1]. In this study, we
defined as k, = 10 and k; = 1, which represents an equal
weight to heart rate and HRV for sympathetic estimations, and
a higher weight to HRV for parasympathetic estimations.

., 10, for each of the four approaches.

IV. DiscusSIiON

We have introduced a method for the precise and time-
resolved estimation of sympathetic and parasympathetic
outflows in humans using ECG data. Our findings highlight
the remarkable consistency of the time-resolved estimations of
sympathetic and parasympathetic activities across the
conditions studied. This indicates that our proposed method
can accurately capture and reproduce the alterations observed
in sympathetic and parasympathetic activities.

Our method uses Poincaré plots, which effectively depict
the beat-to-beat alterations in heart rate, capturing both short-
term and long-term fluctuations in HRV while also accounting
for nonlinearities [22], [40]. Previous studies have employed
Poincaré plot-derived measures to examine sympathetic and
parasympathetic influences on heart rate [16], [41]-[43],
including investigations into the changes observed in
pathological conditions [44]-[46]. Our proposal focuses on
delivering a time-resolved estimation method, enabling a
comprehensive exploration of the dynamic shifts in autonomic
regulations.

Physiological modeling of bodily signals plays a crucial
role in uncovering the underlying aspects of autonomic
dynamics by analyzing time-varying modulations of specific
components. Future investigations can explore additional
applications of this method, such as investigating the
sympathetic and parasympathetic components involved in
brain-heart dynamics [39], considering specific directionalities
and latencies. Our proposed method, focusing on time-
resolved estimations, facilitates a comprehensive exploration
of dynamic shifts in autonomic regulations and their potential
relation with ongoing brain activity [16], [39]. This approach
holds particular promise for studying pathological conditions
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