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Abstract: The musical key serves as a crucial element in a piece, offering vital insights into the tonal
center, harmonic structure, and chord progressions while enabling tasks such as transposition and
arrangement. Moreover, accurate key estimation finds practical applications in music recommenda-
tion systems and automatic music transcription, making it relevant across academic and industrial
domains. This paper presents a comprehensive comparison between standard deep learning architec-
tures and emerging vision transformers, leveraging their success in various domains. We evaluate
their performance on a specific subset of the GTZAN dataset, analyzing six different deep learning
models. Our results demonstrate that DenseNet, a conventional deep learning architecture, achieves
remarkable accuracy of 91.64%, outperforming vision transformers. However, we delve deeper into
the analysis to shed light on the temporal characteristics of each deep learning model. Notably, the
vision transformer and SWIN transformer exhibit a slight decrease in overall performance (1.82%
and 2.29%, respectively), yet they demonstrate superior performance in temporal metrics compared
to the DenseNet architecture. The significance of our findings lies in their contribution to the field of
musical key estimation, where accurate and efficient algorithms play a pivotal role. By examining
the strengths and weaknesses of deep learning architectures and vision transformers, we can gain
valuable insights for practical implementations, particularly in music recommendation systems and
automatic music transcription. Our research provides a foundation for future advancements and
encourages further exploration in this area.

Keywords: music information retrieval (MIR); musical key estimation; deep learning; vision
transformers; convolutional neural networks (CNNs)

1. Introduction

Estimation of musical key plays a fundamental role in music information retrieval
(MIR), finding wide applications in music analysis, recommendation systems, and au-
tomatic music transcription [1,2]. The key of a musical piece serves as the central tonal
reference point, shaping harmonic progressions and providing a foundation for the devel-
opment and resolution of harmonic tension [3]. It represents the precise scale—either major
or minor—upon which a Western music composition is built [4]. Determining the key of a
musical composition is crucial for understanding its tonality and harmonic framework, as
a major or minor key signifies its association with the respective major or minor scale.

The existing academic literature often adopts a similar pipeline for key estimation
methods. The initial step involves generating a spectrogram or constant Q transform,
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which represents the time and frequency components of an audio signal. Subsequently,
a pitch-class profile, also referred to as a chroma feature, is extracted from each time frame.
This profile provides an octave-independent and timbre-invariant representation of pitch
classes. By comparing these accumulated features over time with feature templates for
each key, the global key for the musical piece is estimated. Several systems, such as those
presented in [5-8], have employed this approach. However, it is worth noting that while
this method performs well for many genres, like pop/rock and electronic music, it may not
effectively handle key modulations commonly encountered in classical music.

Beyond standalone musical key estimation, another approach focuses on simultane-
ous estimation of both the key and chords [9-12]. These algorithms aim to enhance the
accuracy of estimations by leveraging the intrinsic relationship between keys and chords
in music. To handle modulations between keys, these systems often estimate local keys.
While dedicated key and chord estimation algorithms currently yield superior results, it
is important to note that these simultaneous estimation approaches have the potential to
provide a more comprehensive understanding of the harmonic content of musical sounds.

To tackle the task of predicting the global key of musical works, various techniques
have been employed, broadly classified as template-based, geometry-based, or probabilistic
algorithms. Template-based approaches, as exemplified by the Krumhansl-Schmuckler
key-finding algorithm [3,8,13] and the Temperley—Kostka—-Payne key-finding algorithm [3],
utilize statistical analysis of pitch-class distributions to estimate the key. Geometry-based al-
gorithms, such as Harte’s key detection algorithm [14], employ Fourier transform and
harmonic templates for key estimation. Probabilistic algorithms like Fujishima’s dy-
namic Bayesian network [15] and MADRIGAL [2] leverage probabilistic models or neu-
ral networks, considering features such as pitch-class distributions, chord progressions,
and melodic contour for key estimation. These algorithms have been applied to both sym-
bolic and audio-based data, with the accuracy and efficiency of the estimation influenced
by the specific characteristics of the music being analyzed.

Tonality analysis plays a vital role in music information retrieval (MIR) by identifying
the musical key of a piece. The key represents the central tonal center around which the
pitches are organized, and it can undergo shifts known as modulations throughout the
composition [16]. In Western tonal music, these tonal centers give rise to distinct regions of
local keys, which are different from the global key [17]. The global key, also referred to as
the tonality, is defined by the set of pitches that characterize the tonal identity of a musical
work or excerpt [18].

The accurate identification of the musical key is of paramount importance, as it
highlights significant notes and influences the playability, texture, and range of various
instruments. However, research has indicated that individuals with varying levels of
musical expertise may perceive tonality differently, requiring a high degree of perceptual
skill for manual key identification [13]. To tackle this challenge, automated key estimation
and analysis have been developed using diverse approaches, including spectral analysis
and machine learning techniques.

Studies have shown that classical music often exhibits a strong adherence to a global
key within a single piece, as highlighted in [19]. In contrast, tonality in popular music tends
to be more intricate and less clearly defined. Recognizing the importance of automated
key estimation and analysis [20], emphasizing their significance in retrieving music infor-
mation, particularly in the context of popular music. By accurately detecting the key of
a musical piece, music information retrieval systems can enhance the precision of music
recommendation systems, automatic chord identification, melody extraction, and various
other applications.

Advancements in computational intelligence have paved the way for the develop-
ment of surrogate or predictive systems, which exhibit superior accuracy levels [21-24].
These developments span various domains, yielding heuristic implications and observable
utility [25]. Deep learning, a subset of machine learning algorithms, utilizes neural architec-
tures capable of identifying inherent patterns and extracting valuable information from
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data [26,27]. Convolutional neural networks (CNNs), which are prominent architectures in
this domain, have shown promise in the field of music information retrieval (MIR) [28-31].
However, recent advancements in image processing have introduced vision transformers,
which incorporate the fundamentals of convolutional architecture and demonstrated re-
markable performance across diverse domains [32-35]. The literature also suggests their
relevance and utility in MIR, including key estimation [32,34,35]. Building upon our previ-
ous work that enhanced CNNs using Siamese networks and augmentative approaches [36],
we aim to further enhance the deep encoder strategy by leveraging vision transformers.

The primary objective of this study is to explore the feasibility of estimating musical
keys using vision transformers and compare their effectiveness with that of traditional con-
volutional network architectures commonly employed in music information retrieval tasks.
Notably, this study presents novel experiments conducted on the GTZAN dataset utilizing
transformer architectures, which contribute to the existing body of knowledge. The ob-
tained results offer valuable insights to researchers by shedding light on the application of
transformers in music and their potential benefits for key estimation tasks.

Section 2 provides an overview of relevant literature in the field of musical key esti-
mation, highlighting previous research and established techniques. Section 3 outlines the
research methodology employed in this study, including the dataset used for validation and
the evaluated deep learning architectures. In Section 4, we present a detailed analysis of the
obtained results, including performance metrics and outcomes for each architecture, as well
as the time taken for training and testing. Finally, in Section 5, we provide concluding
remarks and discuss the significance of vision transformers in musical key estimation,
along with potential directions for future research.

2. Related Work

This section explores recent papers and research articles that have made notable contri-
butions to the field of music research, with a specific focus on key estimation. The authors
of [37] presented a system for real-time musical accompaniment, wherein a computer-
driven orchestra learns from and follows a soloist using a hidden Markov model and a
Kalman filter-like model. The system generates output audio by phase vocoding a pre-
existing recording. The study showcases examples of the system in action, highlighting
its connection to machine learning and suggesting potential new directions for research.
In [38], the authors provided a comprehensive review of deep learning techniques for
the processing of audio signals, encompassing speech, music, and environmental sound
processing. The review explores the commonalities and distinctions among these domains,
identifies key references, and explores the potential for cross fertilization. It covers topics
such as feature representations, models, and application areas and concludes by addressing
key issues and proposing future directions for deep learning in audio signal processing.

In addition to the aforementioned papers, several other studies have made significant
contributions to the field of music research. The authors of [39] employed machine learning
and word feature analysis to identify texts belonging to the Black Fantastic genre within
the HathiTrust Digital Library. This project presents a pilot predictive modeling process
that computationally identifies these texts by leveraging curated word feature sets for
each data class. Another study [40] explored deep learning approaches for estimation of
the difficulty of musical pieces, which is crucial for music learners to choose appropriate
pieces based on their skill level. The study proposes a pipeline that converts MIDI files to
piano roll representations, trains models using corresponding difficulty labels, and achieves
a state-of-the-art F1 score of 76.26% with multiple deep convolutional neural networks.
The implications of these results extend to automated difficulty-controlled music generation.
Furthermore, the work reported in [41] discusses the utilization of artificial intelligence
in music composition to overcome the expenses associated with creating original music
for promotional videos. The authors proposed a globally accessible web-based platform
leveraging multiple machine learning algorithms to recognize pleasing sound combinations
and produce unique music.
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In computer vision, the Orthogonal Transformer [42] has emerged as a prominent
vision transformer backbone, combining global self-attention and local correlations, demon-
strating remarkable performance across various computer vision tasks. Pure transformer
models [43] have shown exceptional performance in video classification tasks, leveraging
spatiotemporal token extraction techniques and regularization methods. The intersection
of quantum computing and music generation was explored by the authors of [44], who
delved into the use of partitioned quantum cellular automata for the creation of original
music compositions, highlighting the potential impact of emerging quantum computing
technology on the music industry. In the domain of music harmonization, the work re-
ported in [45] introduced an innovative methodology for generating new harmonizations
of jazz standards by combining melodies and chords from different songs. These studies
demonstrate the potential of computational creativity and music education in diverse
musical applications.

Table 1 provides a comprehensive summary of existing papers and prominent lit-
erature in the field. Notably, current algorithms predominantly rely on conventional
convolutional architectures, lacking the properties and benefits offered by vision trans-
formers, such as uniform representation across layers, self-attention, and improved feature
representation. While conventional CNNs may be computationally efficient, we conducted
a thorough temporal analysis to investigate the effects of vision transformers.

Table 1. Papers related to the proposed domain of research.

Paper Domain Description

Provides an overview of music genre classification within music
information retrieval, discussing techniques, datasets, challenges,
[46]  Genre Classification  and trends in machine learning applied to music annotation, in
addition to reporting a music genre classification experiment
comparing various machine learning models using Audioset.

Discusses limitations in using deep learning for music generation

and suggests approaches to address these limitations, in addition

to highlighting recent systems that show promise in overcoming
the limitations.

[47] Music Generation

Introduces Deep], an end-to-end generative model for
composing music with tunable properties based on a specific
[48] Music Generation mixture of composer styles, demonstrating a simple technique
for controlling the style of generated music that outperforms the
biaxial long short-term memory (LSTM) approach.

Explores the potential of using deep learning to improve the
accuracy of global tempo estimation, considering the
applications and limitations of evaluation metrics and datasets,
[49] Tempo Estimation including a survey of domain experts to understand current
evaluation practices, in addition to providing a public repository
with evaluation codes and estimates from different systems for
popular datasets.

Proposes a machine learning approach for determining the
musical key of a song, which is important for various music
[50] Key Estimation information retrieval tasks, testing the model with four
algorithms and achieving a maximum accuracy of 91.49% using
support vector machine (SVM).

Proposes novel approaches for music genre classification
utilizing machine learning, transfer learning, and deep learning
concepts, testing five approaches on three music datasets.
[51]  Genre Classification = The proposed BAG deep learning model combines bidirectional
long short-term memory (BiLSTM) with an attention and
graphical convolution network (GCN), achieving a classification
accuracy of 93.51%.
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3. Methodology

In this section, we provide a comprehensive review of the advanced deep learning
architectures utilized in our experimentation, as well as the dataset employed in this study.
Specifically, we integrate ResNet, Vision Transformer, and SWIM Transformer, which are
widely recognized deep learning architectures. The subsequent subsections offer detailed
explanations of these architectures.

Figure 1 provides a graphical representation of the complete flow of the research paper,
illustrating the different sections and their interconnections.

Audio Signals

Spectograms

Preprocessing

Deep Learning

Evaluation Metrics

Architectures

F1 Score, VisionTransformer,
Recall, SWIN Transformer,
Precision, ResNet,
and and
Accuracy DenseNet

Figure 1. Overview of the proposed methodology.

3.1. Dataset

For our experiments, we utilized the GTZAN dataset [20], a widely recognized dataset
in the fields of music information retrieval (MIR) and audio signal processing. This dataset
consists of 1000 audio tracks, each with a duration of 30 s, evenly distributed across 10 dif-
ferent music genres. To prepare the data for our experiment, we generated spectrograms
for every 7.5 s segment of the audio tracks that had an available global key. The key values
used in our experiment were obtained from [52]. In total, we produced 3348 images, each
sized at 180 x 40 pixels. These images were mapped to 24 global key types, encompass-
ing 12 tonics in both minor and major modes, as well as 9 genre classes. As part of the
preprocessing procedure, the images were converted to grayscale and subjected to image
normalization by dividing the pixel values of each image by 255.

3.2. ResNet

The Residual Network (ResNet) serves as the baseline architecture for our experimental
study. ResNet was introduced in 2015 by researchers at Microsoft Research to address
the issue of vanishing/exploding gradients [53]. This problem arises when training deep
neural networks with a large number of layers, as the gradients become either too small
(vanishing) or too large (exploding), impeding effective learning.
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To overcome this challenge, ResNet incorporates residual blocks, which utilize skip
connections to bypass intermediate layers and connect the activations of a layer to further
layers. By doing so, ResNets enable the network to fit the residual mapping (B(x) = A(x) + x)
instead of the actual mapping (B(x) = A(x)), where A(x) represents the function the network
learns from the input, and x is the input itself. This approach facilitates the movement of
data across layers, allowing deeper networks to be trained without hindering the model’s
capacity to learn. Figure 2 provides a visualization of a residual block.

skip connection

A(X)

—_— weight layer weight layer v ReLU >

A(X) + X

Figure 2. ResNet architecture [53].

The key advantage of skip connections is that if any layer adversely affects the model’s
performance, it can be bypassed, enabling the data to flow through unaffected. The under-
lying concept is that instead of learning to behave like an identity function independently,
which requires selection of appropriate values to produce the desired output, it is simpler
for the network to learn to transform the value of A(x) into zero, effectively imitating an
identity function. ResNets are easier to optimize and train compared to conventional deep
neural networks, resulting in enhanced accuracy for deep learning tasks.

ResNets comprise two fundamental building blocks: the identity block and the con-
volutional block. The identity block keeps the input dimensions unchanged across the
network layers. Specifically, it takes an input tensor with dimensions of H x W x C and
produces an output tensor with the same dimensions. On the other hand, the convolutional
block modifies and reshapes the input tensor to match the output tensor of the identity
block for subsequent addition. The convolutional block receives an input tensor with di-
mensions of H x W x C1 and generates an output tensor with dimensions of H x W x C2,
where C2 represents the number of filters in the convolutional layer. The output tensor
is then combined with the output tensor of the identity block after passing through a
batch normalization layer and a ReLU activation function. This process is repeated over
multiple layers to construct the complete ResNet architecture, which has demonstrated
state-of-the-art performance on various benchmark datasets. In this paper, we used the
ResNet50 architecture, which comprises a total of 50 layers.

3.3. DenseNet

Vanishing gradients have long been a challenge in training deep neural networks,
leading to difficulties in information and gradient flow. While ResNets were introduced to
address this issue, they still have some limitations. In certain variations, many layers in
ResNets contribute very little, resulting in a high number of parameters. To mitigate this
redundancy, DenseNets were developed in [54]. DenseNets aim to maximize information
flow between layers, leverage feature reuse to enhance representational power, and reduce
redundant data without making the architecture excessively deep or wide.

DenseNets employ a unique feature-reuse technique that combines feature maps from
multiple layers. The mathematical formulation for the I*" layer in the ResNet architecture
can be represented using Equation (1), where B; represents a set of convolutional operations
applied to the output of the previous layer, denoted as x;_1. A key distinction between
DenseNets and ResNets is the concatenation of feature maps, which increases the diversity
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in the input to subsequent layers and improves efficiency. DenseNets are simpler and more
effective than inception networks, which also combine features from multiple layers.

x; = Bi(x;-1) + x4 1)

The resulting DenseNet architecture requires fewer parameters compared to equiva-
lent CNN models. This is because DenseNet layers are narrow, reducing the number of
parameters [54]. With reduced filters and preserved input, gradients and information flow
more freely across the network. Additionally, the last layer has access to both the input
and all feature maps, leading to implicit “deep supervision”. The DenseNet architecture
minimizes overfitting and facilitates training.

DenseNets consist of DenseBlocks, which adjust the number of filters between them
while maintaining a constant feature map size within a block [54]. Transition layers are
inserted between these blocks and perform operations such as 1 x 1 convolution, 2 x 2
pooling for downsampling, and batch normalization.

DenseNets leverage the combination of feature maps, increasing the channel dimen-
sion in each layer, as shown in Equation (2), where x; represents the output feature map
of the Ith layer, and B; is the operator responsible for generating k feature maps in that
layer. The square brackets denote a concatenation operation, where the feature maps from
previous layers (xg, x1,...,x;_1) are combined along a certain axis, allowing them to be
processed together by B; to produce the output feature map (x7).

x; = By[xo,x1,.-.,%_1] ()

The growth rate hyperparameter (k) in Equation (2) regulates the amount of informa-
tion contributed to the network in each layer. Each layer has access to the feature maps
from the preceding layers, enabling every layer in the network to access the collective
knowledge. Feature maps can be seen as the network’s information, and by adding k
feature maps, each layer contributes new insights to this knowledge base. The DenseNet
architecture can be visualized by referring to Figure 3. In our research, we employed the
DenseNet121 architecture, which encompasses a total of 121 layers, as the fundamental
framework for conducting our experiments.

BN-ReLU-Conv2D

concat H BN-ReLU-Conv2D Hconcat }—)

concat H BN-ReLU-Conv2D

Figure 3. DenseNet architecture [54].

3.4. Vision Transformer

Vision Transformer (ViT) was introduced in [55] as a deep learning architecture for
image categorization tasks. Unlike traditional convolutional neural networks (CNNs) that
extract spatial features using convolutional layers, ViT treats images as token sequences.

The image is initially divided into fixed-size patches. A 2D image with dimensions
of H x W is partitioned into N patches, where N = (H x W)/(P x 2). Self-attention has
a quadratic cost if the image size is 48 x 48 and the patch size is 16 x 16, resulting in
9 patches in the image. Dividing the image into patches is necessary because the quadratic
cost of self-attention becomes prohibitively expensive and cannot be scaled to a suitable
input size.

Each patch is then linearly projected to a specified input dimension by flattening the
2D patch into a 1D patch embedding, which concatenates the pixel channels. Position
embeddings are added to the patch embeddings to retain positional information, since
transformers do not inherently capture the structure of the input elements. By including
position embeddings in each patch, the model learns to understand the image’s structure.
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An additional “classification token” is also added to the sequence, which can be learned by
the model. The patch-embedding vectors serve as the input sequence for the transformer
encoder, with the length determined by the number of patches.

The transformer encoder consists of a stack of transformer blocks, each comprising a
feedforward neural network and a multihead self-attention mechanism. The self-attention
mechanism allows the model to attend to different parts of the image while processing each
token, and the attended features are then non-linearly transformed by the feedforward
network. The self-attention process in Vision Transformer (ViT) generates an output feature
map (Z) as represented by Equation (3), where A and B are learned linear projections
of the input features, each with dimensions of (dpoge1 X dx), where dpoqe1 is the model’s
hidden dimensionality, and dy represents the dimensionality of the key vectors. C is another
learned linear projection with dimensions of (dyodel X @model)- The parameter d; denotes
the dimensionality of the key vectors. The feature map (Z) is computed by applying a
softmax operation to the dot product of A and the transpose of B scaled by the square
root of d, then multiplied by C. This operation captures the essence of the self-attention
mechanism. Equation (4) represents the overall operation of Vision Transformer, where
Q, K, and V represent learned embeddings of the input image, each with dimensions of
(num_patches X dpodel), Where dpogel is the model’s hidden dimensionality. The term
num_patches refers to the division of the input image into a grid of patches, and each
patch is treated as a separate input. Meanwhile, W, Wy, W, and W, are learnable weight
matrices, each with dimensions of (diyodel X @model)- The multihead attention function
combines these embeddings using the self-attention mechanism, and the result is then
multiplied by W,. These matrix dimensions, along with the concept of num_patches, are
fundamental to understanding how ViT processes input images and applies self-attention
across multiple heads, ultimately producing meaningful feature representations for various
downstream tasks in computer vision.

ABT
Z = softmax| — |C 3)
( \@)

MultiHead (Attention (qu, KW, va) ) W, @)

Vision Transformer’s classification head consists of a softmax activation function
and a linear projection. The output of the last transformer block is projected to a lower-
dimensional feature space using a linear projection. The final class probabilities are ob-
tained by applying the softmax function to the resulting feature vector [55]. Figure 4
provides a clearer visualization of the Vision Transformer architecture. In our research,
we utilized an alternative lightweight version of Vision Transformer, as presented in [56].
These layers are organized as follows: 2 initial convolutional layers for preprocessing and
21 layers distributed among three MobileNetV2 blocks, each incorporating depthwise sepa-
rable convolution and batch normalization operations. Additionally, MobileViT features
approximately 63 layers encompassing three blocks, each with 2, 4, and 3 transformer
blocks characterized by multihead self-attention and MLP layers for local-global feature
fusion. The architectural design concludes with a classification head consisting of two
layers for global average pooling and dense computations, alongside an output layer for
final predictions.
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Figure 4. ViT Architecture: Image Partitioning with a Classification Token "*" and four distinct
patches, each denoted by a unique color [55].

3.5. SWIN Transformer

The Shifted-Window (SWIN) Transformer [34] is a recent image processing architecture
used for tasks such as image classification and object detection. It addresses two challenges
faced by transformer-based models in image processing: the inefficiency of fixed-size
patches for the processing of large images and the loss of contextual information when
processing patches independently.

The SWIN transformer introduces a novel shifted-window technique to overcome
these challenges. Instead of using fixed-size patches, the shifted-window technique divides
the input image into overlapping patches and shifts each patch by a specific amount in
both the horizontal and vertical directions. This approach maintains contextual infor-
mation between neighboring patches, improving the model’s effectiveness in capturing
spatial relationships.

In the SWIN transformer, each patch is treated as a discrete “token”, and its feature
representation is obtained by concatenating the RGB color channel values of the pixels
within the patch. The raw feature representation of each patch with dimensions of 4 x 4 x 3
for a patch size of 4 x 4 is mapped to a target dimensionality using a linear embedding layer.

The SWIN transformer block consists of two key modules: the multihead self-attention
(MSA) module and the multilayer perceptron (MLP) module, as depicted in Figure 5.
Layer normalization is applied before each MSA and MLP module to address internal
covariate shift, and residual connections ensure the fusion of input and processed infor-
mation [34]. Additionally, the SWIN transformer utilizes a shifted-window partitioning
strategy, whereby successive blocks switch between different window configurations,
enhancing the model’s ability to capture diverse spatial dependencies.
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SWIN ARCHITECTURE
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Figure 5. SWIN transformer architecture [34].

To optimize batch calculation efficiency, shifted-window partitioning may generate
additional windows. However, a cyclic shifting approach towards the top-left direction
is proposed, maintaining the same number of batched windows as traditional window
partitioning while achieving improved efficiency [34]. Furthermore, the consideration of
relative position bias incorporated during similarity calculation demonstrates better perfor-
mance compared to the use of absolute position embedding or no bias term at all. Absolute
position embedding, when introduced to the input, slightly degrades performance.

Figure 5 provides a visual representation of the SWIN transformer architecture, illus-
trating the shifted-window mechanism and the overall flow of the model. In our research,
we utilized the SWIN transformer model, which includes two initial layers for patch ex-
traction and embedding. Within the SWIN transformer framework, there are 2 instances,
each integrating multiple sublayers, such as normalization, attention, dropout, and MLP
layers. Additionally, the model incorporates a patch-merging layer for spatial consolida-
tion, a global average pooling layer for dimensionality reduction, and a final dense output
layer for classification. The SWIN transformer has shown promising results in various
image processing tasks, highlighting its effectiveness in handling large-scale images with
improved contextual understanding.

4. Results

In this section, we present the outcomes of our empirical analysis, which aimed to eval-
uate the performance and efficiency of several state-of-the-art deep learning architectures
in the context of image classification. A rigorous 4:1 train—test split was employed to ensure
fair training and validation. Each model underwent training for a carefully determined
number of epochs, with early stopping callbacks to identify the best-performing models.
The following key hyperparameters were used across all experiments: a learning rate of
0.001, a batch size of 32, and a total of 50 training epochs.
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4.1. Performance Metrics

The models were evaluated based on a range of performance metrics:

e Accuracy: The percentage of correctly classified images;

®  Precision: The percentage of true-positive predictions among all positive predictions;

*  Recall: The percentage of true-positive predictions among all actual positives;

*  F1 score: The harmonic mean of precision and recall, providing a balanced measure of
a model’s accuracy;

¢ Logloss: A measure of how well the model’s predicted probabilities align with the
actual class labels.

Table 2 summarizes the results in terms of these performance metrics.

Table 2. Performance metrics of the evaluated models.

Model Accuracy (%)  Precision (%) Recall (%) F1 Score (%) Log Loss
DenseNet 91.64 91.89 92.11 91.99 0.46
ResNet 86.87 88.12 87.23 87.67 0.63
Tra'rslxs/\f]cl)lr\lmer 84.64 85.87 84.91 85.38 1.08
ViT 85.22 86.44 85.28 85.85 0.88

DenseNet emerged as the best-performing model, achieving the highest F1 score of
91.99%. The SWIN transformer and Vision Transformer achieved F1 scores of 85.38%
and 85.85%, respectively, showing a slight decrease in performance compared to the
baseline ResNet.

4.2. Training and Testing Efficiency

Efficiency in terms of both training and testing times, as well as the number of model
parameters, was assessed. Training and testing times were measured in minutes, while the
number of parameters was expressed in units of 10°. The results are presented in Table 3.

Table 3. Efficiency metrics of the evaluated models.

Training Time Testing Time Training Parameters
Model . 7 N 5
(min) (min) (in 10°)
DenseNet 0.031 0.0068 69.72
ResNet 0.022 0.0068 235.77
SWIN Transformer 0.023 0.0084 2.01
ViT 0.021 0.0059 13.1

The best-performing model was DenseNet, achieving the highest F1 score of 91.99%,
surpassing the baseline ResNet model by 4.32%. The SWIN transformer and Vision Trans-
former achieved F1 scores of 85.38% and 85.85%, respectively, exhibiting a slight decrease
in performance compared to the baseline ResNet.

Table 3 provides insights into the training and testing times for each model, as well as
the number of training parameters of each model. DenseNet had the longest training time,
and the SWIN transformer exhibited the longest testing time among the models.

4.3. Discussion

The empirical analysis of various deep learning architectures and methodologies
presented in the previous section provides valuable insights into their performance and
efficiency for image classification tasks. The results highlight the strengths and weaknesses
of each model and offer a basis for further discussion.
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DenseNet emerged as the top-performing model, achieving the highest F1 score of
91.99%. This result is particularly noteworthy, as it surpassed the baseline ResNet model
by 4.32%. DenseNet’s success can be attributed to its ability to leverage dense connections
between layers and efficiently reuse features. This not only enhances its predictive power
but also underscores its high parameter efficiency and reduced redundancy, making it a
compelling choice for image classification tasks, where both accuracy and model size matter.

The results also shed light on the inherent tradeoff between model efficiency and
performance. In this specific evaluation, the models with fewer parameters did not fare
well, suggesting that for complex image classification tasks, sacrificing model size may not
be advisable.

The Vision Transformer (ViT) and SWIN transformer models, which leverage self-
attention mechanisms for image analysis, demonstrated competitive performance. How-
ever, their F1 scores showed a slight decrease compared to the baseline ResNet model.
While transformer-based models hold promise for image classification tasks, further opti-
mization and exploration of hyperparameters may be required to unlock their full potential
in this context.

Efficiency in terms of training and testing times, as well as the number of model param-
eters, was also assessed. DenseNet showed longer training times, which are attributed to its
deeper architecture and dense connectivity. The SWIN transformer exhibited longer testing
times, likely due to its shifted-window mechanism and the need to consider positional
biases during similarity calculations.

In conclusion, the results of this analysis underscore the importance of selecting an
appropriate deep learning architecture based on the specific requirements of the image
classification task. While DenseNet showcased superior performance in this evaluation,
there may be scenarios in which other models such as ViT or the SWIN transformer could
provide more suitable solutions, especially when a balance between accuracy and model
size is crucial. Ultimately, the choice of model should align with the specific constraints
and objectives of the given image classification problem.

5. Conclusions and Future Work

In this research study, we conducted a comprehensive comparative analysis of deep
learning model architectures for estimation of musical key. Our study encompassed tra-
ditional deep learning architectures and prominent vision transformer methodologies
executed using the GTZAN dataset.

Among the evaluated models, DenseNet emerged as the standout architecture, achiev-
ing an impressive F1 score of 91.99%. This exceptional accuracy underscores the effective-
ness of DenseNet in estimating musical key. In contrast, the vision transformer architectures,
while promising in other domains, displayed suboptimal performance for this specific task.
Notably, the SWIN transformer performed worse than Vision Transformer in terms of both
accuracy and training time, indicating that vision transformers might be more suitable for
music-related tasks.

Taking into account both accuracy and time efficiency, vision transformers hold
promise as the most suitable deep learning architectures for estimation of musical key.
This is especially true in scenarios where computational resources are constrained.

The findings of this study have substantial implications for the development of auto-
mated music analysis tools and can benefit researchers and practitioners in music-related
fields. The utilization of vision transformers in music analysis tasks shows promise and
merits further exploration.

Our future work will encompass several key areas of focus. First, we will undertake
architectural exploration. This involves investigating a broader range of deep learning
architectures—both traditional and transformer-based—in various musical domains. We
aim to assess their applicability and performance on tasks beyond musical key estimation.
Specifically, we plan to delve into the potential of deeper transformer models and assess
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their ability to improve both accuracy and prediction time compared to the current state-of-
the-art DenseNet architecture [57-60].

Secondly, we will concentrate on refining audio signal transformation techniques.
Our objective is to reduce information loss during the transformation process and, in turn,
enhance classification accuracy. We will explore alternative transformation methods to
achieve this goal, seeking innovative ways to effectively represent audio data.

Lastly, we will develop a unified model capable of predicting not only the musical key
but also other relevant audio characteristics, such as genre and tempo. This involves adopt-
ing a multilabel classification approach, enabling a single model to identify multiple audio
attributes simultaneously. This approach has the potential to streamline the classification
process and reduce computational complexity.

By pursuing these future directions in our research, we anticipate advancing the field
of automated music analysis. Our aim is to develop more efficient and accurate models not
only for estimating musical key but also to address other pertinent audio characteristics.
This research contributes to the continued evolution of automated music analysis tools,
benefiting a wide range of applications in the music industry and beyond.
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