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Abstract: Information Technology has rapidly developed in recent years and software systems

can play a critical role in the symmetry of the technology. Regarding the field of software testing,

white-box unit-level testing constitutes the backbone of all other testing techniques, as testing can be

entirely implemented by considering the source code of each System Under Test (SUT). In unit-level

white-box testing, mutants can be used; these mutants are artificially generated faults seeded in

each SUT that behave similarly to the realistic ones. Executing test cases against mutants results in

the adequacy (mutation) score of each test case. Efficient Genetic Algorithm (GA)-based methods

have been proposed to address different problems in white-box unit testing and, in particular, issues

of mutation testing techniques. In this research paper, a new approach, which integrates the path

coverage-based testing method with the novel idea of tracing a Fault Detection Matrix (FDM) to

achieve maximum mutation coverage, is proposed. The proposed real coded GA for mutation testing

is designed to achieve the highest Mutation Score, and it is thus named RGA-MS. The approach is

implemented in two phases: path coverage-based test data are initially generated and stored in an

optimized test suite. In the next phase, the test suite is executed to kill the mutants present in the SUT.

The proposed method aims to achieve the minimum test dataset, having at the same time the highest

Mutation Score by removing duplicate test data covering the same mutants. The proposed approach

is implemented on the same SUTs as these have been used for path testing. We proved that the

RGA-MS approach can cover maximum mutants with a minimum number of test cases. Furthermore,

the proposed method can generate a maximum path coverage-based test suite with minimum test

data generation compared to other algorithms. In addition, all mutants in the SUT can be covered by

less number of test data with no duplicates. Ultimately, the generated optimal test suite is trained to

achieve the highest Mutation Score. GA is used to find the maximum mutation coverage as well as to

delete the redundant test cases.

Keywords: Fault Detection Matrix; Mutation Score; path coverage-based testing; real coded Genetic

Algorithm; test case generation; test data optimization

1. Introduction

Software is used to control the entire hardware system. Due to this, it has become
part of the most complex components and its use has grown more and more. Indeed, its
growth has caused new algorithms and development methodologies to be implemented,
and thus, software is being applied to a large number of different areas. What is more,
software can also support symmetry as its use has been widespread across entire systems
and independent content. Symmetry can be identified as an extraordinary characteristic
that has been widely deployed in diverse research fields of computer engineering.
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Software testing constitutes the process of executing a software product or a portion
of it in a controlled environment with a given set of input (test cases) [1]. Moreover, it
involves the execution and examination of a program or a software system in order to
identify errors or faults. The main goal of software testing is to determine the errors in a
complete software product (or in a component of it) to ensure a high probability that the
corresponding software is correct [2].

Search-Based Software Engineering (SBSE) is an emerging field of research and practice
in Software Engineering, where the term “search” refers to the metaheuristic search-based
optimization techniques used. SBSE aims to reformulate problems in the area of software
engineering, particularly in software testing problems, into search-based optimization
problems. A comprehensive survey of SBSE is proposed in Ref. [3], where related research
fields are organized into categories drawn from the corresponding ACM subject categories
within the Software Engineering body of knowledge.

In software testing, mutants form simulated and artificially generated faults that
behave in a similar way to the realistic ones [4,5]. In addition, mutants can be used for
test data generation in a software testing activity [6]. These are created by systematic
injection of faults using some predefined mutation operators [7]. Mutation testing is thus
a form of white-box testing initially suggested in Ref. [8] and later explored by different
researchers [9–11]. Execution of a test case (test inputs) against mutants results in the
adequacy score of that test case, where this result is also called the Mutation Score (MS).

In recent years, a number of search-based algorithms, metaheuristic methods, Evo-
lutionary Algorithms (EA) and optimization techniques have already been developed to
automatically generate test data in the area of software testing. Different EAs like Ge-
netic Algorithms (GA), PSO, ACO, Monarch Butterfly Optimization Algorithm (MBO),
Slime Mold Algorithm (SMA), Moth Search Algorithm (MS), RUNge–Kutta method (RUN),
Colony Predation Algorithm (CPA), Weighted Mean of Vectors (INFO), and Harris Hawks
Optimization (HHO) have been proposed in unit level testing to generate optimized test
data for path testing and these path coverage-based testing methods can only generate test
data to traverse target paths [12]. However, these techniques may fail to detect all software
faults because information about fault detection is not incorporated into the process of
generating test data [13]. So, existing path coverage-based techniques may not always
guarantee that the test data can effectively detect all faults in target paths. Hence, it is vital
to implement the best of each test case through Mutation Analysis [14].

Monarch Butterfly Optimization Algorithm (MBO) employs the migration behaviors
of butterflies where all monarch butterflies are located at two different lands. These lands
are fixed and unchanged during the whole optimization process. A parameter p is used for
calculation at the beginning stage of the search process [15]. The Slime Mold Algorithm
basically refers to Physarum Polycephalum [16]. It is an eukaryote that inhabits cool and
humid places. Also, the main nutritional stage is considered the Plasmodium; in this stage,
the organic matter in slime mold seeks food, surrounds and secretes enzymes with the aim
of digesting it. In the optimization process, the front end extends into a fan-shape, followed
by an interconnected venous network that allows cytoplasm to flow inside. It can be used
for multiple food sources at the same time to form a venous network connecting them. This
metaheuristic algorithm is mainly used to solve many graph theory problems and also for
generating different networks.

In addition, moths are like butterflies that belong to the order Lepidoptera. The main
features of moths are Phototaxis, signifying movement of an organism towards or away
from a source of light and Levy flights. Taking all the features of moths, a new kind of
metaheuristic algorithm has been developed, called Moths Search Algorithm (MSA) [17].
The phototaxis and levy flights of the moths can be used to build up a general-purpose
optimization method. Also, the Colony Predation Algorithm (CPA) is based on the co-
existence of animals and mimics the supportive behavior of social animals as well as the
predation strategy of hunting animals [18]. The different operations applied in CPA are
communications and collaboration, disperse food, encircle foods, supporting the closest
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individual and searching for foods. Through these five processes, the global optimum
solution can be achieved.

The RUNge–Kutta method (RUN) is an iterative process used to solve the numerical
Cauchy problems for a system of ordinary differential equations. To solve the differential
equations, both the arithmetic and the geometric mean are applied [19]. The most important
strategy of Harris Hawks Optimization (HHO) is catching its prey in order to hunt in groups
and to collaborate with the hawks, as opposed to other predators [20]. In this process,
a number of hawks attack from different ways their chosen prey in collaboration with
simultaneous delusion and approached in a controlled manner. The attack is desired to be
completed in a few seconds and it continues until the hunting is successful or, on the other
hand, the prey manages to completely escape. Finally, the hunting process is completed as
the prey, which has low energy and has lost its defensive abilities, is easily hunted by the
leader. HHO is a population-based optimization technique and it can be applied to any
optimization problem with appropriate limitations and constraints. The optimum solution
can be found in the prey itself.

Although there are various studies related to generating test data for path coverage,
few researchers have proposed techniques to detect faults via path coverage-based test
data. The purpose of this particular research is to generate test data for path coverage as
well as to detect faults lying in the System Under Test (SUT). In the relevant literature, some
of these methods not only generate test data with the aim of covering a single or multiple
paths, but also attempt to find the mutation score of every test case for a specific SUT [21].

In this paper, we propose an SBSE algorithm that can effectively identify the maximum
mutation score (coverage) by taking into account all the corresponding test cases, which
are generated through path coverage-based testing. Initially, path coverage-based test cases
are generated and then the proposed algorithm aims to find the mutation score for every
test case by employing different mutation operators. In particular, a real coded Genetic
Algorithm (GA) is proposed, which automatically generates test data to cover multiple
paths at a time and further exercises the test data to achieve the maximum mutation score.
The proposed algorithm is abbreviated as RGA-MS (Real coded Genetic Algorithm for
maximizing the Mutation Score).

The rest part of the paper is organized in different sections as follows: In Section 2
some basic concepts on mutation testing are described along with some relevant studies. In
Section 3, the steps of the proposed RGA-MS algorithm are outlined. Experimental setup
along with the analysis of the experiment results are discussed in Section 4. The same
Section also presents a comparative study of the proposed approach with other existing
methods focusing on achieving the highest mutation score, and the threats to validity
regarding the proposed technique. Finally, our research’s conclusion and future scopes are
outlined in Section 5.

2. Background

In this section, an overview of mutation testing and GA fields of research is presented.

2.1. Mutation Testing

Mutation testing is a fault-based white-box software testing method. Its role is to
evaluate and to improve the quality of test data by killing the active mutants present in
the SUT [22]. During a mutation testing process, the SUT is initially tested with use of
the test cases designed by the coverage-based testing. After the coverage-based testing is
completed, mutation testing is performed. Using this technique, certain mutation operators
are inserted into the code to mutate the program [23]. The mutated program is then tested
against corresponding test cases previously designed to kill the mutants. If any test case
detects a mutant, then this mutant has to be killed; otherwise, it is still considered as being
alive [24]. Therefore, the main goal of mutation testing is to select the most efficient test
data (i.e., those with efficient error detection capabilities) and to distinguish the initial
program from the seeded mutants [25].
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Even though test sets can be selected as well as generated by a tester, these manual
practices are often complex and time-consuming, so the need for automated test case
generation arises. Although test data generation is known to be a complex process, several
researchers have proposed techniques for the automation of this task. In this field, a
systematic mapping study, whose purpose is to identify test data generation approaches
based on mutation testing, can be found in Ref. [26].

Furthermore, Search-based Mutation Testing uses meta-heuristic optimization tech-
niques for mutation testing, like Genetic Algorithm, Hill Climbing, and other evolutionary
approaches. The survey paper in Ref. [27] discusses the challenges and opportunities
faced in applying search-based techniques for mutation testing. It is proven that the major
challenge consists of the computational cost as well as the storage for a large set of mutants.

Mutation testing may overcome some limitations of other testing approaches, but
it is often considered costly. Evolutionary algorithms can be used to reduce the cost of
data generation in different testing methodologies. As a result, the authors in Ref. [28]
introduced a novel strategy with the elitist genetic algorithm for generating efficient test
input data in the context of mutation testing. Search-Based Software Testing (SBST) has
also been applied to the generation of weakly adequate mutation-based test data [29,30].
Specifically, SBST was firstly used with the aim of killing mutants in Ref. [31].

Mutation testing is executed through a variety of different steps, which are summa-
rized in Refs. [22,23,32]:

• Mutants construction regarding the program under test;
• Implementation of the test cases with the use of the mutation system to verify the

program output;
• If the output is incorrect, then the test case detects a fault and the program must be

alternated in order to restart the mutation testing process;
• If the output is found to be correct, then the test case is executed against each live mutant;
• After each test case has been executed against each live mutant, the remaining mutants

are either equivalent or killed. An equivalent mutant always produces the same output
as the original program, so there is no test case to kill it. However, for live mutants,
new test cases must be created and the process is repeated until all mutants are killed;

• The efficiency of the mutation testing can be assessed by utilizing a higher mutation
score, which is defined by the following Equation (1) [32].

MS =
Total Mutants Killed

Total Mutants Present In The Program
× 100 (1)

2.2. Real Coded GA

A Genetic Algorithm is initialized with a number of initial solutions, entitled initial
population. Successively, it forms the new population or new off-springs from the old
population based on the fitness value of the population towards the problem. The more the
fitness value, the more they will be suitable to reproduce [33]. The process of a new off-
spring generation starts with the selection of parents based on a specific selection process.
After the parent selection process, the new off-spring is generated using two different
operators, i.e., crossover and mutation [34].

The most critical task in software mutation testing is to generate test data, which could
kill maximum mutants present in the SUT. In this case, the optimization problem is the
achievement of the highest mutation score with a lesser number of test data. From literature,
many evolutionary algorithms have already been used to solve this particular problem.
So, considering mutation coverage as the test adequacy criteria, the GA-based method is
proposed in this paper to identify the optimized test cases, which give maximum mutation
score. GA is used in terms of automation process and objective function is formulated to
find maximum mutation score for the SUT.
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2.3. Related Work

In literature, different evolutionary algorithms have often been utilized to address
the issues identified in mutation testing. A number of corresponding research approaches,
from the domain of test case generation as well as optimization for mutation testing using
different GA-based techniques, are presented in this section.

A hybrid GA (HGA)-based method for test case optimization, which combines the
features of GA along with local search techniques, is proposed in Ref. [35]. This particular
approach is employed in terms of test case generation and optimization regarding path
coverage and mutation analysis. Different mutation operators for calculating the mutation
score have been presented. From the experimental evaluation, the authors proved that the
recommended HGA-based method generates both locally and globally optimal solutions
with rapid convergence. Another work introduces a GA-based technique for mutation anal-
ysis through automatic test case generation [25]. The three following mutation operators,
e.g., Condition Overall Replacement (COR), Condition Statement Replacement (CSR) and
Branch Value Increment (BVI), have been used to kill the mutants. This particular GA-based
approach reduces the number of test cases using the Fault Detection Matrix (FDM).

Authors in a similar work developed a GA-based method to solve their formulated
model and then applied this technique to several real-world programs [36]. The experi-
mental results confirm that the proposed approach can generate test data for traversing
the target path and detecting faults in a SUT. The authors in Ref. [12] presented a novel
method to generate test data for covering multiple paths at a time. The proposed method
can not only simultaneously cover multiple paths but can also detect faults present in the
SUT. A weighted GA-based model is constructed to solve their multi-objective optimization
problem. This technique is compared with different methods, like the random method
and the methods proposed in Refs. [36,37]. The reported results confirm that the proposed
technique can efficiently generate test data for traversing target paths and detect maximum
faults in the SUT.

A novel method for the automatic generation of test data has been pertained in
Ref. [38]. The authors have used GA for mutant analysis to achieve the maximum mutation
score, where the proposed GA-based approach achieves optimized test data without
any redundancy. The reported results in mutation analysis can be benefited from the
Delete operator. The authors in Ref. [39] introduced another GA-based technique for the
automatic generation of test cases. The produced test suite is in addition implemented for
mutation analysis, where the mutation score is computed according to the total number of
mutants killed from a particular test suite. Specifically, only one program for computing the
power value to perform the experiments, has been employed. The derived experimental
results have demonstrated that the utilized method can achieve 100% mutation score,
also achieving better test cases. In another similar work [40], a GA-based method for
optimizing software testing efficiency by taking into account path coverage and boundary
coverage-based test data, has been introduced. A model that reveals faults and kills a
mutant with use of genetic algorithms, is introduced in Ref. [41]. The source program along
with the mutant are instrumented so that each unit’s input as well as output’s behavior
can be tracked, where a checker module is employed in order to compare and track each
unit’s output.

Another hybrid GA (HGA)-based method for the automatic production of test cases
for mutation testing has been introduced in Ref. [42]. Authors utilized SUT data flow
information for the computation of mutation scores. Moreover, the source code of a software
program that generates prime numbers within a specific range for their experiments, has
been utilized along with the development of a tool in C# to generate Control Flow Graph
(CFG) for a particular program developed in C. A comparison of this approach against
both random and GA-based methods has been performed and the results depicted that this
particular HGA-based method generates a maximum mutation score. Moreover, the work
in Ref. [43] suggests dummy variables introduction into some already defined constraints
regarding the specification; the proposed method utilizes the constraints in input as well as
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output variables with the aim of guiding the generation of the test data. This is achieved
on the contrary to the ordinary specification-based testing (SBT) methods that concern
only constraints over input variables. This approach employs the conjunction of three
techniques, e.g., GA, mutation testing, and SBT.

A novel two-way crossover and adaptable mutation method for generating better
offspring was presented in Ref. [44]. Their introduced genetic algorithm is compared with
both normal and random GA methods and proved to identify the optimal test cases in
a smaller number of attempts with higher mutation scores, a fact that leads to reduced
cost of computations. In Ref. [24], a novel approach for mutation testing called Particle
Swarm Optimization along with Mutation Testing (PSO-MT) to generate test data for
killing active mutants, was introduced. More to this point, more extensive programs in
terms of benchmarks from the Software-artifact Infrastructure Repository (SIR) for their
experiments, have been considered. The experimental results have been compared with
GA-based results in test data generation and it has been found that PSO-MT achieved
better than GA-based mutation testing in terms of computational efficiency. Specifically,
five different benchmark programs for the experiments, e.g., triangle, quadratic equation,
TCAS, Schedule 1 and 2, have been employed. The reported results have shown that the
proposed method can achieve a maximum value of mutation score equals to 79.32%.

Dubbed Sentinel [45–48] is a novel multi-objective EA-based approach for automatic
generation of test data with optimal cost reduction strategies for every program. This ap-
proach was evaluated by conducting a thoroughly empirical study from 40 releases of
10 open-source real-world software systems with the execution of 4800 experiments with
the use of quality indicators and statistical significance tests. The reported results have
depicted that strategies computed by the Sentinel approach outperform the baseline strate-
gies in 95% of the cases when considering larger sizes. Furthermore, the proposed method
can automatically generate mutation strategies with reduced mutation testing cost and
simultaneously without affecting its testing effectiveness in terms of mutation score.

An improved fitness evaluation along with the incorporation of elitism as well as a
performance comparison with the existing techniques is performed in Ref. [49]. A GA
variant, by effectively blending the advantages of mutation testing for non-redundant test
suite generation, was implemented. This variant is followed by a novel fitness function that
considers test case complexity in terms of time steps with high fault exposure. GAMuT is
another method for generating a test suite for the testing of Finite State Machines (FSMs) by
using a Genetic Algorithm and mutation testing [50]. A standard mutant dataset tool, called
MutantBench, was employed in Ref. [51] where an Abstract Syntax Tree (AST) was used in
conjunction with a tree-based convolutional neural network (TBCNN) for the classification
of mutants with the aim of reducing the cost of mutation testing in software testing of
android applications.

3. Proposed Algorithm for Mutation Testing (RGA-MS)

The proposed algorithm in this paper is designed to identify and extract a representa-
tive test suite, which achieves maximum path coverage. In the following, this test suite is
exercised for mutation testing, i.e., to find the maximum mutation score. The algorithm
is entitled Real Coded Genetic Algorithm for highest Mutation Score (RGA-MS) and is
outlined in Algorithm 1.

Initially, the RGA-MS generates the test data for maximum path coverage by using
the fitness, which is designed by considering the total number of paths covered by a
chromosome. The fitness for path coverage is defined in following Equation (2) as it is
calculated by the ratio of paths covered by a chromosome given the total number of paths.

f (x) =
Paths Covered By A Chromosome

Total Number Of Paths
× 100 (2)

In the following, the two best populations are selected and the maximum path cov-
erage is calculated. If the maximum path coverage is achieved, then the optimized test
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suite can be printed, otherwise the mutation must be applied and the new chromosomes
should be replaced with their duplicates. The generated test data are exercised to find the
mutation score.

Different mutation operators are inserted in the source code of different SUTs, which
are listed in Table 1.

Algorithm 1 Real Coded Genetic Algorithm for highest Mutation Score (RGA-MS)

1: input Set of basic paths for a specific SUT (Table 1)

2: GA parameters

3: output An optimized test data with maximum Mutation Score (MS)

4: Step 1: Create Initial Population()

5: Step 2: Initialize the Population as Test Suites (where Test Suite = number of Chromo-

somes)

6: Step 3: Calculate Fitness using Equation (2) /* Fitness Value */

7: Step 4: Select two best Populations

8: Step 5: do

9: Average Crossover for selected Chromosomes /* Maximum Path

Coverage */

10: while (Feasible Solution Reached)

11: Step 6: if (Maximum Path Coverage Achieved)

12: Goto Step 8

13: else

14: Apply Mutation()

15: Step 7: do

16: Replace the new Chromosome with the duplicate one

17: while (Critical Path is not f ound)

18: Step 8: if (Maximum Path Coverage Achieved) then

19: Print the optimized Test Suite with 100% Path Coverage

20: else

21: Goto Step 1

22: Step 9: Trace FDM()

23: Step 10: Remove redundant test data covering same mutants

24: Step 11: Calculate Mutant Score MS() using Equation (1)

25: Step 12: Print optimized test data with highest MS

Table 1. SUT’s details.

Program Name Description LOC Paths

P#1: TCP Check the type of the Triangle 28 25
P#2: Max three Find Maximum of three numbers 25 4

P#3: Evaluate XY Determine the value of XY 27 3
P#4: Evaluate X/Y Determine the value of X/Y 38 5

P#5: GCD Returns the greatest common divisor 18 5
P#6: QES Find the roots of Quadratic Equation 42 6

P#7: Calculate Days Find Days between two Dates 153 18
P#8: Binary Search Tree An ordered or sorted binary tree 119 16

P#9: Calculator Find the results of arithmetic operations 60 9
P#10: Accept Saving Banking process to deposit in saving account 24 8
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The proposed algorithm aims to identify the minimum test data that covers all mutants
by eliminating the redundant test data. The redundant test data is traced using a Fault
Detection Matrix (FDM) [25]. A fault-detection matrix contains sufficient information for
finding minimal-length, fault-diagnosis test sets. The necessary condition is that any sub-
matrix of this matrix should not contain equal rows. The flow of the proposed algorithm is
shown in Figure 1.

Figure 1. Flow of the proposed Algorithm RGA-MS for mutation analysis.

4. Results

4.1. Experimental Setup

The proposed algorithm is first implemented on a particular case study, entitled as
the Greatest Common Divisor (GCD), which produces the greatest common divisor of
any two input numbers. The source code for GCD with two integers as input, namely m
and n, is illustrated in Listing 1. Furthermore, the proposed algorithm is implemented on
different SUTs, as listed in Table 1. Moreover, the Control Flow Graph of the GCD Function
is illustrated in Figure 2.
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Listing 1: Source code of the GCD program

int GCD(int m, int n) {

int r;

if(n>m){

r = m;

m = n;

n = r;

}

r = m % n;

while(r!=0){

m = n;

n = r;

r = m % n;

}

return n;

}

Figure 2. Control Flow Graph (CFG) of the GCD Function.

The various mutation operators [38,44] used for mutation analysis are listed in Table 2.
Three different columns are listed, namely the type, the description, as well as the corre-
sponding symbols. For example, for type equals to NOR, the description is “No Replace-
ment Operator” and these operators present as they are.
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Table 2. Different operators used for mutation analysis.

Type Description Symbols

AOR Arithmetic Operator Replacement +, −, *, /, %
LOR Logical Operator Replacement ==, !=
ROR Relational Operator Replacement >, <, >=, <=
NOR No Replacement Operator Operator present as it is
UOI Unary Operator Insertion ++, − −

CDL Constant Deletion Delete a constant (if present)
ABS Absolute Value Insertion 1 is replaced with 0 and vice versa

Regarding the Control Flow Graph of the GCD function, which is presented in Figure 2,
we notice that one extra path is added in order to perform mutation analysis, as in the GCD
program, the number of linearly independent paths is small, i.e., three. So, the different
paths for GCD are listed below:

• PATH 1: 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14;
• PATH 2: 1, 3, 4, 8, 9, 10, 11, 12, 13, 14;
• PATH 3: 1, 3, 4, 8, 9, 13, 14;
• PATH 4: 1, 3, 4, 5, 6, 7, 8, 9, 13, 14.

Regarding mutation analysis, some faults are inserted in the aforementioned source
code. The proposed method aims to achieve maximum mutation score through the path
coverage-based test data. The following Table 3 introduces the details of mutants inserted
to the GCD program. Concretely, for specific lines of the program, some operators can be
replaced by others and the corresponding mutation will be utilized.

The fitness value proposed before is also considered for computing the maximum
path coverage, as defined in Equation (2). Finally, the optimized path coverage-based test
suite is further exercised for mutation analysis. So, the mutation score of each test data is
calculated using, as previously, Equation (1).

Furthermore, regarding the genetic algorithm operation, Table 4 presents the parame-
ters used for mutation analysis. These parameters have specific values, e.g., the population
size equals 1000, and Gaussian is considered as the mutation type.

Table 3. Operators used in GCD for mutation analysis.

Line Number Operator Present
Replace with

Operator
Mutant Name

4 > != M1
6 = / = M2
8 % / M3
9 != == M4
12 % / M5

Table 4. Parameters used for mutation analysis.

SI. Number Parameters Values

1 Population size 1000
2 Input range 1 to 100
3 Encoding type Real Encoding
4 Crossover Type and Rate Average Crossover (AX), 0.8
5 Mutation Type and Rate Insertion, Gaussian 0.02, 0.07
6 Generation 5

4.2. Result Analysis

The various steps of the proposed algorithm and the results obtained in GA operations
are depicted in Tables 5–8. Specifically, Table 5 presents the initial population for five
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particular test suites, where the corresponding test data, the target path, and the fitness
value are also introduced. The fitness value ranges from 0.25 to 0.75.

Table 5. Initial population.

Test Suite Number Test Data Target Path Fitness

1 (12,4), (8,27), (45,8), (9,44) 3, 1, 3, 1 0.5
2 (14,9), (23,8), (33,45), (14,5) 2, 2, 2, 3 0.5
3 (49,9), (7,33), (28,5), (39,8) 2, 1, 2, 2 0.5
4 (7,12), (6,18), (16,4), (9,42) 1, 4, 3, 1 0.75
5 (32,6), (44,16), (20,7), (17,12) 2, 2, 2, 2 0.25

In addition, Table 6 introduces the two best populations, which are test suites with
number 1 and 4 having fitness values equal to 0.5 and 0.75, respectively.

Table 6. Best population.

Test Suite Number Test Data Target Path Fitness

1 (12,4), (8,27), (45,8), (9,44) 3, 1, 3, 1 0.5
4 (7,12), (6,18), (16,4), (9,42) 1, 4, 3, 1 0.75

After the crossover process, a new trait has been generated, with a fitness value equal
to 0.75, whereas the test data and the target path have different values than the 5 initial test
data as presented in Table 7.

Table 7. New trait after crossover.

New Trait Test Data Target Path Fitness

1 (9,8), (7,22), (30,6), (19,43) 2, 1, 3, 1 0.75

The optimized test suite that covers maximum path, after the mutation, is presented in
Table 8. As before, the test data and the target path have different values than the 5 initial
test data whereas the fitness value achieves percentage equal to 100%.

Table 8. Optimized test suite after mutation.

Test Suite Test Data Target Path Fitness

(T1, T2, T3, T4) (21,7), (14,9), (7,22), (6,18) 1, 2, 3, 4 100%

The FDM is traced out from the optimized test suite, which indicates the mutant
coverage by individual test cases as shown in Table 9. This table presents all the potential
combinations between the five mutants and the four test suites.

Table 9. FDM for GCD.

Mutant
Test Suite

T1 T2 T3 T4

M1 1 0 1 0
M2 0 0 1 1
M3 0 1 1 0
M4 1 1 1 1
M5 0 1 1 0

Regarding the detection matrix, a value equal to 1 represents the case where a mutant
is covered by the corresponding test case (and otherwise, for a value equal to 0). Next, the
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mutation score is calculated using Equation (1), and the mutation score for every test case
is presented in Table 10. Finally, the redundant test cases, which cover the same mutants,
are eliminated in order to find the optimum test data. We observe that the third test case
achieves a mutation score equal to 100%, while the other three test cases have values equal
to 40% and 60%.

Table 10. Mutation score of test cases.

Test Case ID Mutation Score (%)

T1 40
T2 60
T3 100
T4 40

The proposed algorithm for mutation analysis has been experimented on different
SUTs and executed in Dev C++ IDE-5.11 several times to obtain more accurate results. As a
result, the complexity of the proposed GA-based approach for mutation analysis is equal to
O(gen × pop), where gen is the maximum number of generations and pop is the number of
populations.

The GA process has been executed several times with the same population scale, and
the optimized test data are fetched. As aforementioned, Table 10 showed that T3 is the only
test case that achieves the highest mutation score or full mutant coverage. The following
Figure 3 illustrates the mutation score of each test case for the SUT GCD.

Figure 3. Mutation score of test cases for GCD.

The same process has been applied to other benchmark programs listed in Table 11.
This table records the test case id for each program name and the corresponding mutation
score. From recorded mutation scores, it is observed that duplicate test cases have the same
mutation score for all the System Under Tests (SUTs). So, to remove the duplicates, an
elitism operation has to be implemented in the GA method.
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Table 11. Highest mutation score of test cases for different SUTs.

Program Name Test Case ID Mutation Score (%)

P#1: TCP T4, T5 85.71
P#2: Max three T3 100

P#3: Evaluate XY T2 100
P#4: Evaluate X/Y T2, T5 100

P#5: GCD T3 100
P#6: QES T3, T4 100

P#7: Calculate Days T4, T5, T11, T15, T18 71.42
P#8: Binary Search Tree T3, T5, T8, T10, T11, T15, T16 85.35

P#9: Calculator T3, T6, T8 95
P#10: Accept Saving T4, T7, T8 100

After identifying the test cases with the highest mutation score, it can be clearly seen
that duplicate test cases achieve the same mutation score. So, through the elitism process,
the optimized test case can be found. The optimized test cases with the highest mutation
score are presented in the following Table 12.

Table 12. Optimized test cases with the highest mutation score for different SUTs.

Program Name Test Case ID Mutation Score (%)

P#1: TCP T4 85.71
P#2: Max three T3 100

P#3: Evaluate XY T2 100
P#4: Evaluate X/Y T2 100

P#5: GCD T3 100
P#6: QES T3 100

P#7: Calculate Days T4 71.42
P#8: Binary Search Tree T3 85.35

P#9: Calculator T3 95
P#10: Accept Saving T4 100

Average MS 93.748

The following Figure 4 depicts the optimized test cases with the highest mutation
score for different SUTs.

Figure 4. Optimized test cases with the highest mutation score.

4.3. Comparison with Related Work

Mutation analysis has been identified as a powerful testing method for revealing faults
in SUTs. In literature, as aforementioned, several similar researches exist for the mutation
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analysis via path coverage testing strategies. Specifically, the authors in Refs. [24,35,36]
have developed different techniques to cover maximum mutation coverage using the path
aware approach. Specifically, authors have utilized different mutation operators to kill the
active mutants present in the SUT. More to the point, the proposed approach also takes the
path coverage test data as input for achieving the maximum mutation score.

However, we can only compare our work with the research proposed in Ref. [35] on
the same domain in terms of mutation operators used to add mutants. Table 13 presents
a comparative study of this previous related work with the proposed approach. Authors
in Ref. [35] have taken different academic and industrial-based programs with various
operators, and their proposed HGA method achieves a mutation score equal to 70%. On the
other hand, our proposed GA-based approach achieves a mutation score equal to 93.74%,
whereas the proposed RGA-MS method is implemented in several academic programs.

Table 13. Comparison with related work.

Algorithm Programs Operators Taken
Mutation
Score (%)

HGA [35]
Academic Industrial

based Programs AOR, LOR, SOR, LOD, ASR 70

RGA-MS Academic Programs
AOR, LOR, ROR, NOR, UOI,

CDL, ABS
93.74

4.4. Threats to Validity

The evaluation of mutation scores in terms of test cases is implemented with the use of
the path coverage-based test data. Therefore, it does not necessarily mean that the results
can be extrapolated to the other coverage-based test data.

The proposed method is tested on some benchmark programs written in C/C++ lan-
guage, and the target paths are found from CFG, which is independent of any programming
language. The programs used for the experiments are small-scale as the flow graphs are
hand coded. So, the approach requires tools that support the task of automatic flow graphs
and path generation.

5. Conclusions and Future Work

The automatic test data generation regarding white box testing is considered vital
in accomplishing both qualitative and reliable software. Although mutation testing is
computationally costly, thus it can improve the test data quality in terms of higher mutation
scores. In addition, it can enhance the reliability of the software by killing the active mutants
present in the source code of a SUT.

In this paper, a Search-Based Software Engineering algorithm, which can effectively
identify the maximum mutation score by considering all the corresponding test cases
generated through path coverage-based testing, is proposed. Initially, path coverage-based
test cases are produced. Using different mutation operators, the proposed algorithm aims
to find the mutation score for every test case. Then, a real-coded Genetic Algorithm is
utilized, automatically generating test data to cover multiple paths simultaneously and
further exercising the test data to achieve maximum mutation score. This proposed Real
coded Genetic Algorithm for maximizing the Mutation Score is called RGA-MS.

The proposed RGA-MS-based method can generate test data for both path testing
and mutation testing. Real coded GA is applied to generate an optimized test suite that
achieves maximum path coverage, and further, the suite is exercised to kill the mutants
present in the SUT. The proposed method can achieve optimized test data with the highest
mutation score.

Regarding future work, we think more tools could be developed towards having
a standardized mutant dataset, as this will increase the research interest in other areas
of mutation testing. Furthermore, more mutation operators like SDL, VDL, ODL, EHF,
OBAF, NPDF, etc., should be used to implement the proposed technique further, and
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the framework could be further developed into an android application to ease access
and increase the use of the model. Lastly, we could implement an additional number
of experiments to ensure that our proposed method can be utilized in different kinds
of programs.
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