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Abstract. A dominator coloring of a graph G is a proper coloring in which every vertex of G
dominates every vertex of at least one-color class possibly its own class and each color class is
dominated by at least one vertex. The minimum number of colors required for dominator coloring
of G is called the dominator chromatic number of G and is denoted by y4(G). In this paper, we
have established the relation between dominator chromatic number y;(G), chromatic number
x(G) and domination number y(G). We have investigated results on total graphs of path and cycle

with x4(6) = x (G) + v (6G) and x4(6) = x (G) + v (6) — 1.
Keywords: coloring, domination number, dominator coloring, total graph.

1. Introduction

Theory of domination and graph coloring are among the most fascinating problems in graph
theory, algorithms and combinatorial optimizations. Both the domains are enriched with wide
range of research scope in the field of applied sciences. For comprehensive results of coloring and
domination in graphs, we refer [1-17] respectively. The domination theory is concerned with a
dominating set which requires the minimum set of vertices such that every vertex of a graph not
in the set has a neighbor in it while in the concept of graph coloring, it is required to color the
vertices using different colors in such a way that both the end vertices of the edge receive different
colors. These problems of graph coloring and domination problems are often in relation. These
problems are NP hard problems, and they are explored from the point of approximation algorithms
[18-22] and parameterized complexity [23-25].

We consider a Graph G = (V(G), E (G)) as a simple, finite, connected and undirected graph
with vertex set V(G) and edge set E(G). A function f:V(G) - {1,2, ....,n}is said to be proper n-
coloring of a graph G if f(u) # f(v) for all uv € E(G), where u and v are adjacent vertices in G.
The smallest integer n for which G admits a proper coloring using n colors is known as the
chromatic number y(G). The color class is the group of vertices that share the same color. The set
N(@) = {u € V(G): uv € E(G)} represents the open neighborhood of v € V(G) whereas the set
N[v] = N(v) U {v} represents the closed neighborhood of v. Every vertex in a graph Gthat is
either an element of S or a neighbor of at least one element of S is refereed as a dominating set.
The y-set is called the dominating set with minimal cardinality and its cardinality is the
domination number y(G). If each vertex of the graph dominates every vertex of a certain color
class then the coloring is said to be dominator coloring. The minimum cardinality of colors used
in the graph for dominator coloring is called the dominator chromatic number denoted by y,(G).
It is clear that every vertex dominates its respective color class. The total graph T(G) of G is the
graph with the vertex set V U E and two vertices are adjacent whenever they are either adjacent or
incident in G.

Gera et al. [26] presented the idea of dominator coloring. Kavitha and David [27-29]
determined the dominator chromatic number for several graph families while Arumugam et al.
[30] have thoroughly investigated it. Gera [31] has also explored dominator coloring of bipartite
graphs. Merouane et al. [32] analyze the dominator chromatic number of different graph families.
Vaidya and Shukla [33] have studied the dominator coloring for degree splitting graphs of various
graph families. The dominator coloring of some classes of graphs are obtained by Yangyang
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Zhou et al. [34]. The dominator coloring of some different graphs is explored by T. Manjula
et al. [35]. The dominator coloring of Mycielskian graphs is obtained by A. Mohammed Abid
and T. R. Ramesh Rao [36]. The dominator coloring of central and middle graph of some
special graphs were investigated by J. Arockia Aruldoss and G. Gurulakshmi [37]. Dominator
coloring of regular graphs was derived by T. Manjula and R. Rajeswari [38].

The existing State of art for Various results on some domination coloring of graphs can be
found in [39-41]. Chellali and Volkmann [42] found relations between the lower domination
parameters and the chromatic number of a graph. The concepts of domination and graph coloring
are known to be W-complete [43] and para-NP complete respectively in parameterized
complexity. The theory of domination and graph coloring have wide number of applications which
led to the algorithmic study of numerous variants of these problems. The algorithmic aspects on
dominator coloring of graphs are studied by Arumugam et al. [44].

The objective to find a dominator coloring for graph G is to minimize the number of color
classes. Here we outline a significant use of a dominator coloring problem in the social network.
To draw a graph of social network, vertices are denoted as social players while the connection
between them is shown as edges that is two players are joined by an edge if they are friends. Two
strangers can become friends by their mutual friends. Also, each friend wants to serve as a
significant mediator for other strangers in order to help them establish interpersonal relationships
inside the social network. The dominator coloring problem involves finding the minimum groups
of players in the social network with the following characteristics:

1) Players in the same group are strangers.

2) Players in the same group can become friends by at least one common mutual friend.

3) Each player is an intermediary of at least one stranger group.

In the existing literature, the various results on particular graph families are obtained for
dominator colorings of graph. Also, certain characterizations, bounds and its properties are
discussed for the larger graphs. By the observation of existing literature review, we have obtained
the dominator coloring of path and cycle by means of the graph operation as total graph and also,
we have proved our results in context of domination number and chromatic number of respective
graphs.

These results are useful in terms of bounds of dominator coloring for total graph of path and
cycle which can be measured using domination number and chromatic number of a graph. By
using these results, one can solve the problem of social networks, channel assignment and time
table problem.

Using the presented results, we can solve the problems of standard graph families by means of
various graph operations in context of proper coloring and domination number. The new research
directions are open for researchers to solve the open problems of dominator coloring for different
graph families using various graph operations.

The theory of domination and Graph coloring have various applications in the field of
communication, computer, social, biological, air traffic flow network and airline scheduling [45].

2. Preliminaries
Proposition 2.1 [46]

2n
5 )
2n

[?] , n=Z0(mod?5).

n = 0(mod 5),

VTGl = ()

Proposition 2.2 [47]
For any graph G, y(G) = 3 if and only if G has an odd cycle.
Proposition 2.3[48]
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(El. n=2
For the cycle C,,, x4[Cnl = 4 E] +1, n=5,
E] + 2, otherwise.
3. Main Results

Lemma 3.1

2n—1

y[T(B)] = [ ],Vn > 2. )

Proof:

Let {vq, vy, ..., v} be the vertices of path B, and let {u,, u,, ..., u,} be the newly added
vertices corresponding to the edges {ej, ey, ..., e,_1} of B, to obtain T(B,). Thus V[T (B,)] =
{vy, v, ot U Uy, Uy, oo, U1 ). The graph T(B,) will have 2n — 1 vertices and 4n —5
edges. Let S; = {v; € V[T(B,)]:i = 2(mod5)} and S, = {u; € V[T(B,)]:i = 4(mod5)}.

If n =0o0r 3 (mod5) then S = S; U S, is a dominating set of T(B,) and |S| = |'2n5—1]

Ifn= 1or2or4 (mod5)thenS’ =5, US, U{v,}isadominating set of T(B,) and |S'| =
[%] Hence y[T(P,)] < [2n5—1].
. . 2n-1 2n-
Further since y(G) = LLH], it follows that y[T(P,)] = [An+1] > [ ns 1].
2n—-1
Thus, y[T(R)] = [*|
Lemma 3.2

x(T(B))=3n=2 )

Proof:

Let {vq, v, ..., v} be the vertices of path P, and let {u,, us, ..., u,} be the newly added
vertices corresponding to the edges {ey, ey, ..., e,_1} of P, to obtain T(B,).

Thus V[T(P)] = {vi, Vs, oo, Uy, Ug, Uy, oo, Up_1}. The graph T(PB,) will have 2n —1
vertices and 4n — 5 edges.

Casel:n=2

The graph T'(P,), contains an odd cycle. According to Proposition 2.2, [T (P,)] = 3.

By giving the vertices proper coloring as f (v;) = 1, f(v,) = 2, f(u;) = 3.Thus at least three
colors are needed for proper coloring. Hence, y[T(P,)] = 3.

Case2:n >3

By Proposition 2.2, y[T(B,)] = 3 as T(B,) includes an odd cycle. Assign the proper coloring
to the vertices as f(v;) =1,f(u;) =3 for odd i and f(v;) = 2, f(y;) = 4 for even i. Thus,
minimum four colors are required for proper coloring. Therefore y[T(B,)] = 3.

Thus, (T(B)) =3,n > 2.

Theorem 3.3

x[T(P)] +x[T(P)] =1, n=2346,

x[TP)] + x[T ()], n>5mn%6. “4)

xalT (8] = |

Proof:

We keep using the language and notations from Lemma 3.1.
Casel:n =2,3,4,6

Whenn =2

74 MATHEMATICAL MODELS IN ENGINEERING. JUNE 2023, VOLUME 9, ISSUE 2



DOMINATOR COLORING OF TOTAL GRAPH OF PATH AND CYCLE.
MINAL SHUKLA, FORAM CHANDARANA

The graph T(P,) = C3, by proposition 2.3, y4[T(P,)] = 3 = x[T(P,)] + y[T(P,)] — 1.

Whenn =3

In this case the vertex v, is the only one vertex in the y-set of graph T (P;). According to
Lemma — 3.1, y[T(P;)] = 1 and by Lemma — 3.2, y[T(P;)] = 3. Hence, by giving the vertices of
the y-set a number of colors equal to y[T'(P;)], we define the optimal coloring for T(P;).To the
remaining vertices of the graph we give y[T(P;)] — 1 number of colors. We denote the coloring
pattern as f(v,) = 2f(v3) =3, f(vy) =1, f(uy) = 3, f(u,) = 2. So every vertex dominates
the vertices of at least one color class. A dominator coloring is obtained for the corresponding
graphs as a result of this proper coloring. Thus, x4 [T(P;)] = 4 = x[T(P;) + y[T(P;)] — 1.

Whenn =4

In this case the set {v,, u,} is the only y-sets of graph T(P,). According to Lemma — 3.1,
y[T(P,)] = 2 and by Lemma — 3.2, y[T(P,)] = 3. Hence, by giving the vertices of the y-set a
number of colors equal to y[T(P,)], we define the optimal coloring for T(P,).To the remaining
vertices of the graph we give ¥[T(P,)] — 1 number of colors. We denote the coloring pattern as
f)=3,f(vz) =4, f(vy) =1, f(vy) =3, f(uy) = 4,f(uy) = 3, f(u3) = 2 so every vertex
dominates the vertices of at least one color class. A dominator coloring is obtained for the
corresponding graphs as a result of this proper coloring. Thus, x4[T(P,)] =4 = x[T(P,) +
yIT(P)] - 1.

Whenn =6

In this case the set {v;, vg, u,} or {v,, vs,us} are only y-sets of graph T(Pg). According to
Lemma — 3.1, y[T(Pg)] = 3 and by Lemma — 3.2, y[T(Ps)] = 4. Allocating a number of colors
to the vertices of the y-set that is equal to y[T(Py)] in order to determine its optimal coloring.
Now we use [T (Pg)] — 1 number of colors to color the remaining vertices.

The coloring pattern can be defined as f(v,) = f(vy) = f(uy) = f(us) =3, f(v;) =
Lfwe) =f(w) =f(u) =4 () =1,f(uy) = 2,f(vs) = 2, f (uz) = 5. Here every vertex
dominates the vertices of at least one color class. As a result the proper coloring creates a
dominator coloring for the relevant graph. Therefore, y4[T(Pg)] = 6 = x[T(Ps) + v[T(Ps)] — 1.

Case2:n=>4,n+6

Let S; = {v; e V[T(R)]:i = 2(mod5)} and S, = {u; € V[T(B)]:i = 4(mod5)}. If n =
0or3 (mod5) then S=S,US, be ay-setof T(R,). If n=1 or 2 or 4 (mod?5) then § =
S:US, U {v,} beay-set of T(R,).

We start the coloring process by giving the vertices of the y-set a number of colors equal to
y[T(B,)]. For the remaining 2n — |y(T(Pn))| vertices assign y[T(B,)] number of colors. All the
vertices of at least one-color class are dominated by each vertex. This proper coloring pattern
satisfies the condition of dominator coloring. Therefore, y4[T(B,)] = x[T(B)] + v[T(B,)].

A dominator coloring of T (Pg) using six colors is shown in Figure — 1

v V.

1 2 Y Y5 %

%
0O 0O

\
Y e U Y, u

Fig. 1. T(Pg)and its dominator coloring

Lemma 3.5
dren =5 2% 5)
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Proof:

Let vy, v,, ..., v, be the vertices of cycle C,, and let uq, u,, ..., u, be the newly added vertices
corresponding to the edges ej, e, .....,e, of C, to obtain T(C,). Then, |[V[T(C,)]| = 2n and
[E[T(CO]l = 4n.

Case 1: Forn =3

According to Proposition 2.2, ¥[T(C5)] = 3 as the graph T(C3) has an odd cycle. To give
proper coloring to the nodes f(v,) = f(u3) = 2, f(v,) = f(uy) = 1, f(v3) = f(u,) = 3. Thus,
proper coloring is possible with minimum three colors. Hence, y[T(C5)] = 3.

Case2: Forn > 4

Using Proposition — 2.2, ¥[T(C,,)] = 3 as the graph T(C,;) has an odd cycle. To assign proper
coloring to the nodes as f(v,) =3,f(v,) =1,0dd i, f(v)) = 2,evenif(u,) =2,f(w;) =
3,0dd i, f(u;) = 4,eveni. By proper coloring at least 4 colors are required. Therefore,
x[T(C)] = 4.

Thus, ¥[T(C,)] = {i ns ij
Theorem 3.6
Forn>3
xalT(C)] = x[T(C)] +y[T(CI] - 1. (6)
Proof:

We continue with the terminology and notations used in Lemma — 3.5.

Case 1: Whenn = 3

The set {v;, u3} is one of the y-set of graph T(C3). According to Proposition 2.1, y[T(C5)] =
2 and by Lemma — 3.5, y[T(C;)] = 3. Hence, by giving the vertices of the y-set a number of
colors equal to y[T(C3)]. We specify the optimal coloring for T(C3). Next, we use y[T(C3)] — 1
no. of colors to color code the remaining vertices. The coloring pattern can be summarized as
fw)=1fw,) =f) =3,f(v3) = f(uy) =4,f(uz) = 2. This coloring meets the
requirement for dominator coloring. Thus, y4[T(C5)] = 4.

Case 2: Whenn =4

The set {vy, v3} in this instance is a member of the y-set of graph T(C,). Proposition — 2.1
states that y[T(C,)] = 2 and Lemma — 3.5 states that y[T(C,)] = 4. As a result, by giving the
vertices of the y-set a no. of colors equal to y[T(C,)], we specify the ideal coloring for [T (C,)].
The remaining vertices are then given colors using y[T(C,)] — 1 no. of colors f(v;) = 1, f(v3) =
2, f(wy) =fu) =3,f(v,) = f(uz) = 4, f(uy) = f(u,) =5 are the coloring pattern defined.
The dominator coloring requirement is met by this coloring. Therefore, y4[T(C,)] = 5.

Case 3: Whenn > 5

Let S; = {v; € V(T(Cy):i = 1(mod5)} and S, = {w; € V(T(C,)):i = 3(mod5)}. Then,
S =5,U S, be ay-sets of T(C,).

The coloring process is started by allocating the vertices of the y-set a no. of colors equal to
y[T(C,)]. Then using ¥[T(C,)] — 1 no. of colors, we apply the colors to the remaining 2n —
ly[T(C,)]| vertices because each vertex predominates over at least one color class worth of
vertices. For the relevant graphs, this proper coloring pattern results in a dominator coloring. As
aresult, xq[T(C)] = x[T(C)] +y[T(CI] - 1.

A dominator coloring of T'(Cs) using five colors is shown in Figure 2.
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ud
Fig. 2. T(Cs) and its dominator coloring

4. Concluding Remarks

In graph theory, vertex coloring and theory of domination have many applications in computer
and communications network such as cell-phone network, vehicular ad hoc network, wireless
sensor network etc. The amalgamation of domination and coloring of graphs called the dominator
coloring can be used in the study of interconnections networks. Many research papers are
published in the era of dominator coloring in which different authors have discussed about the
bounds and the dominator chromatic number of standard graph families whereas in our paper, we
have obtained the dominator chromatic number for total graph of path and cycle with the help of
chromatic number and domination number. That is the characterization of graphs in two classes

as xa(G) = x(6) +y(G)and x4(G) = x(G) +y(G) — 1.
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