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Reversible histone deacetylase activity catalyzes lysine acylation
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Abstract

Starvation and low carbohydrate diets lead to the accumulation of the ketone body, B-hydroxybutyrate (BHB),
whose blood concentrations increase more than 10-fold into the millimolar range. In addition to providing a
carbon source, BHB accumulation triggers lysine B-hydroxybutyrylation (Kbhb) of proteins via unknown
mechanisms. As with other lysine acylation events, Kbhb marks can be removed by histone deacetylases
(HDACs). Here, we report that class I HDACs unexpectedly catalyze protein lysine modification with (-
hydroxybutyrate (BHB). Mutational analyses of the HDAC2 active site reveal a shared reliance on key amino
acids for classical deacetylation and non-canonical HDAC-catalyzed B-hydroxybutyrylation. Also consistent with
reverse HDAC activity, Kbhb formation is driven by mass action and substrate availability. This reverse HDAC
activity is not limited to BHB but also extends to multiple short-chain fatty acids. The reversible activity of class
I HDACs described here represents a novel mechanism of PTM deposition relevant to metabolically-sensitive

proteome modifications.

Glucose is a primary fuel source for energy production across
species. When restricted during prolonged fasting or when
consuming a low-carbohydrate diet, an adaptive starvation
response is triggered to increase ketone body production by the
liver (1). Ketone bodies are short-chain fatty acids (SCFA) that are
utilized in tissues such as the brain, heart, and skeletal muscle to
generate acetyl-coenzyme A (CoA) and for ATP production in a
glucose-depleted state (2). Consequently, ketone concentrations
are highly dynamic, increasing more than 10-fold to reach 1-3 mM
in circulation during fasting.

The most abundant ketone body is B-hydroxybutyrate
(BHB). In addition to its role in ATP generation, this ketone has
been implicated in other cellular functions (3). Prior studies show
that BHB actively inhibits histone deacetylases (HDACs) (4) to
affect gene expression. Others show that BHB stimulates G
protein-coupled receptors at physiological concentrations (5, 6).
Most recently, BHB was identified as a novel protein modification
on lysine, an adduct known as Kbhb (7). The abundance of Kbhb
modifications across the proteome is proportional to BHB
concentration both in cell culture and in vivo in mice (7, 8). Kbhb
is found on numerous proteins in nearly every -cellular
compartment, and many histone Kbhb sites are residues that are
targeted for other acylations (9). However, the machinery

responsible for the deposition of this
modification (PTM) remains poorly understood.

post-translational

Lysine acylations can occur non-enzymatically via direct
reaction with acyl-CoA, are “written” enzymatically by lysine
acyltransferases, and are “erased” by lysine deacylases (10-15).
Histone deacetylases (HDACsS) are a conserved family of enzymes
structurally divided into four classes, with Class I, II, and IV being
Zn2+-dependent, and the Class III Sirtuins being NAD+-
dependent (16). While acetylation is the most prevalent and well-
studied lysine acylation, the basic principle of PTM control
extends to other acyl groups, including lactate (17, 18) and f-
hydroxybutyrate (9). Using biochemical and mass spectrometry
approaches, we set out to identify additional regulators of Kbhb
formation. As reported below, we discover a non-canonical role for
class I HDACs (HDACs 1, 2, and 3) with the ability to reverse
their activity and catalyze the formation of acylated lysine.
Moreover, the same residues in the active site of class | HDAC are
required for both deacetylation and the non-canonical, reversible
reaction P-hydroxybutyrylation. These data identify a new
function of this enzyme class and a new mechanism of PTM
regulation.
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Kbhb formation requires class I HDACs

To gain insights into the regulation and potential
significance of Kbhb, we treated HEK293T cells with BHB and
immunoprecipitated modified proteins with a validated pan-Kbhb
antibody (Fig. 1, fig. S1, table S1) for global LC-MS/MS analysis.
We used SAINT (/9) analysis to identify significantly enriched
proteins within the Kbhb proteome and found HDAC1 and
HDAC?2 as well as known HDAC1/2-complex proteins including
MTA1-3, RBBP4/7, SIN3A, and NCORI1 (Fig. 1A,B), which were
recently reported to remove Kbhb marks (9). We verified Kbhb
formation on HDAC2 in BHB-treated cells by immunoblotting for
Kbhb after FLAG-IP in cells engineered to express 3xFLAG-
mHDAC?2 (Fig. 1C). To explore the relationship between class I
HDACs and Kbhb in more detail, we treated cells with HDAC
chemical inhibitors trichostatin A (TSA), suberoylanilide
hydroxamic acid (SAHA, clinically known as Vorinostat), MS-275,
and butyrate (20) and found that each of these also blocked Kbhb
formation (Fig. 1D, fig. S2A). Importantly, we observed similar
results in several different human and murine cell lines (fig.
S2B,C). Given that the only HDACs targeted by all four inhibitors
are class THDACs 1, 2, and 3, we used siRNA to knockdown each
of these proteins in HEK293T cells to test their individual
contributions to Kbhb formation (Fig. 1E). Strikingly, Kbhb
induction was almost completely abolished when all three HDACs
were knocked down, with HDAC2 having the single-greatest
effect on Kbhb formation. We observed similar reduction in Kbhb
in cells lacking HDAC1 or HDAC2 using CRISPR/Cas9 (fig.
S2D) although we were unable to generate HDAC1/2 double
knockout cells. These data indicate that HDACs 1, 2, and 3
redundantly contribute to the formation of Kbhb through an
unknown mechanism.

Canonical lysine acylation pathways are not required for
Kbhb formation

The requirement of HDACs for Kbhb modification
prompted us to reevaluate the proposed mechanism of [-
hydroxybutyrylation proceeding through a BHB-CoA-dependent
pathway (fig. S3A) (9). Using cellular extracts, purified bovine
serum albumin (BSA), or histone H3 as model substrates, we
confirmed in vitro that BHB-CoA is sufficient for non-enzymatic
formation of Kbhb, but this was not inhibited by butyrate (fig.
S3B,C). Next, we ruled out the possibility that butyrate blocked
BHB entry into cells with targeted metabolomics (fig. S3D,E).
However, in these analyses we were unable to detect BHB-CoA
even after high-dose BHB treatment (5 mM for 24 hours), and this
was in contrast to butyryl-CoA, which was significantly elevated
in butyrate-treated cells (fig. S3F,G). Moreover, siRNA-mediated
knockdown and chemical inhibition of numerous acyl-CoA
synthetase enzymes had no impact on Kbhb abundance in
HEK293T cells (fig. S3H-L). These data do not support a role for
BHB-CoA as a primary mechanism of Kbhb formation in cells.

Given that BHB-CoA may not be the intracellular BHB
donor for Kbhb formation, we investigated whether
acyltransferases might be involved in this acylation. In contrast to
what was previously shown for specific histone Kbhb sites, we
were unable to find a role for p300 or CBP in Kbhb formation
broadly across the Kbhb proteome (fig. S4) (9, 27). Altogether,

our data suggest an alternative mechanism of f-
hydroxybutyrylation, independent of an acyl-CoA intermediate,
exists and requires HDACs 1, 2, and 3.

HDACSs 1, 2, and 3 are sufficient to catalyze Kbhb formation

We first considered the possibility that global loss of
HDAC activity might indirectly prevent Kbhb formation if, for
instance, the target lysine residues consequently retained
acetylation marks. However, we found no evidence of
corresponding global Kac induction when we treated cells with
HDAC inhibitors (Fig. 1D, fig. S2A-C). In addition, our Kbhb
proteome analysis recovered hundreds of proteins across all
cellular compartments from BHB-treated HEK293T cells (fig. S1),
further decreasing any likelihood that Kbhb sites would be
occupied by other PTMs.

Since many enzymes catalyze reversible processes, we
next considered the hypothesis that HDACs might directly
catalyze protein B-hydroxybutyrylation. To test this hypothesis,
we developed an in vitro reconstitution assay with recombinant
human HDAC2 (rHDAC2), BHB, and recombinant histone H3.1
(rH3) as a model bait protein (Fig. 2A). Western blot analysis
showed that rH3 is B-hydroxybutyrylated only in the presence of
both rHDAC2 and BHB. The B-hydroxybutyrylation by rHDAC2
is BHB dose-dependent (fig. SSA) and occurs at physiological pH
6.5-8.5 (fig. S5B). Time-course analysis shows that the B-
hydroxybutyrylation on rH3 can occur within 5 minutes and
plateaus by 60 minutes under these conditions (fig. S5C). Pre-
heating rtHDAC?2 or adding the HDAC active site inhibitor TSA
eliminates Kbhb formation, indicating enzymatic activity of
HDAC?2 is necessary for target protein -hydroxybutyrylation (Fig.
2B,C). To verify that this reaction is not specific to H3, we
performed the same experiment with 60°C-inactivated whole cell
lysates and obtained similar results (fig. S5D). We also confirmed
these data with rtHDAC?2 purchased from a different vendor (Fig.
S6). In addition to HDAC2, we investigated whether other
HDACSs could similarly catalyze Kbhb formation. We tested
commercially available rtHDACs 1-8, except for rtHDAC?7, in our
in vitro reconstitution assay (Fig. 2D,E). Consistent with our
HDAC siRNA knockdown experiment (Fig. 1C) we found that
only HDACs 1, 2, and 3 had B-hydroxybutyrylation capability.
These HDAC: also have stronger deacetylation activity than other
HDAC:s (Fig. 2F), as previously reported (22, 23).

Based on our previous study that some histone site-specific Kbhb
antibodies are non-specific (24), we used liquid chromatography—
tandem mass spectrometry (LC-MS/MS) to verify lysine f-
hydroxybutyrylation on rHDAC2 and rH3. These analyses
confirmed a chemical adduct of 86.04 Da on multiple lysine
residues, as expected (Fig. 2G-I, fig. S7, table S2). As the pan-
Kbhb antibody is R-BHB enantiomer-specific and cannot detect
S-BHB (7), we used our purified reconstitution assay with LC-
MS/MS and discovered that HDAC2 can catalyze -
hydroxybutyrylation with both R- and S-BHB enantiomers.
Collectively, our data show that select HDACs are capable of -
hydroxybutyrylating target proteins.
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Fig. 1. Class I HDAC:s are enriched in the Kbhb proteome and are required for Kbhb formation.

(A) Scatter plot of Saint Score and log2(fold-change; FC, Kbhb vs Mock IP). Kbhb IP-enriched proteins were determined based on
criteria as indicated in the Materials and Methods and are indicated in blue. Dots for HDAC-related proteins are indicated with their
name. (B) The network of HDAC-related proteins in the Kbhb proteome are visualized by STRING analysis. Proteins that are in
known HDAC complexes are highlighted in the corresponding color. (C) Validation of Kbhb modification on the HDAC2 complex.
HDAC2 KO HEK293T cells expressing 3XFLAG-mHDAC?2 was treated with or without 10 mM BHB for 24 hours and used for
immunoprecipitation with anti-FLAG beads. Input and IPed samples were analyzed by western blot for Kbhb modification. (D)
Left: Representative western blots of HEK293T cells treated with 10 mM BHB in combination with each HDAC inhibitor at the
indicated concentrations for 24 hours. Representative of N=3 independent experiments. Right: Relative intensities of anti-Kbhb
signals to the lane 2 (10 mM BHB treatment). Signals were normalized to ponceau S staining. Data are represented as mean +/-
SEM of independently performed experiments and each symbol represents an individual experiment. Statistical differences were
calculated by 1-way ANOVA followed by Dunnett’s correction for multiple comparisons. (E) Left: Representative western blots of
HEK?293T cells transfected with siRNA(s). Cells were treated with 10 mM BHB for 4 hours. Representative of N=3 indpendent
experiments. Right: Relative intensities of anti-Kbhb signals to the lane 2 (10 mM BHB treatment). Signals were normalized by
ponceau S staining. Data are represented as mean +/- SEM and each symbol represents an independently performed experiment.
Statistical differences were calculated by 1-way ANOVA followed by Tukey’s test for multiple comparisons. *p<0.05, **p<0.01.

HDAC B-hydroxybutyrlation capability is coupled to
deacetylation activity

We next sought to identify the molecular mechanism of
B-hydroxybutyrylation by HDAC2 to determine if we could
uncouple it from canonical deacetylation activity. Based on prior
studies that identified several key residues for deacetylation (25),

we generated HDAC2 KO HEK293T cell lines complemented
with stable expression of 3xFLAG-tagged wild type (WT) or
single-point mutants of murine HDAC2 (mHDAC?2) (Fig. 3A).
Specifically, we targeted residues involved in zinc ion binding or
charge-relay, including H141A, H179A, D265N, and Y304F, and
residues in the acetate escape channel, including R35K and C152A
(26). When we expressed these proteins in HEK293T cells,
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Fig. 2. HDACI1, 2, and 3 catalyze lysine p-hydroxybutyrylation vitro.

(A-C) Western blots of an in vitro lysine f-hydroxybutyrylation assay with recombinant HDAC2 (rHDAC?2) and histone H3 (rH3)
and R-BHB. Reaction was performed at 37°C for 1 hour. Protein loading was visualized by ponceau S staining. Kbhb was detected by
anti-Kbhb antibody. rHDAC?2 was inactivated by heating for 1 hour at the indicated temperatures in (B). TSA at 5 uM was added in
the reaction mixture in (C). (D) Phylogenic tree of human HDAC1-11. Recombinant proteins used in (E) and (F) are indicated in bold.
HDAC:s that are capable of lysine B-hydroxybutyrylation in (E) are highlighted in blue. (E) Representative western blots of an in vitro
lysine B-hydroxybutyrylation assay with rHDACI1-8 (except for HDAC7) and rH3 and R-BHB. Approximately 1 pg HDACs were
used for each reaction. (F) Relative deactylation activity of each rHDAC as compared to rHDAC2 was measured by fluorogenic
peptide deacetylation assay. The same amounts of rHDAC as in (E) were used. (G-I) LC-MS/MS analysis on H3 after in vitro lysine
B-hydroxybutyrylation assay. Similar results were obtained from N=2 independent experiments. Detected Kbhb modified sites on H3
are summarized in (G). MS-spectrum of the indicated peptide is shown in (H). Both R- and S-BHB induced Kbhb on lysine 14.
MSMS-spectra for the indicated peptide with detected y and b ions are shown in (I).

combined with siRNA to knockdown HDACs 1 and 3 (to further
enhance HDAC2-dependent Kbhb signal-to-noise), cells
complemented with mutant mHDAC?2 had lower Kbhb abundance
and correspondingly higher Kac in whole-cell lysates (fig. S8). To
evaluate the importance of each mutant more directly, we
immunoprecipitated FLAG-tagged mHDAC?2 to use in our Kbhb
in vitro reconstitution assay (Fig. 3B). We found that WT
3xFLAG-mHDAC?2 induced the most Kbhb on H3 and all mutants
showed different degrees of lower f-hydroxybutyrylation activity
(Fig. 3C). In parallel, we performed deacetylation assays with
each mutant using acetylated lysine-containing fluorogenic
peptides that are susceptible to fluorophore release after

deacetylation. As expected, mutant mHDAC2 proteins also
exhibited impaired deacetylation activity. We found a strong
positive correlation between the deacetylation activity and -
hydroxybutyrylation activity (Pearson correlation coefficient r =
0.9688, Fig. 3D), indicating that the HDAC2 active site within the
deacetylation domain is also responsible for Kbhb formation.

There is prior evidence that BHB interacts directly with HDACs
(4). In 2013 Shimazu et al., showed that BHB inhibits histone
deacetylation by HDACs, with IC50 = 5.3 mM for HDAC1. We
speculated that such a high concentration of BHB might actually
reverse HDAC activity by mass action (Fig. 3E), which could be
interpreted as competitive inhibition given that Kbhb had not yet
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Fig. 3. Lysine p-hydroxybutyrylation requires HDAC deacetylation residues.

(A) Table of residues important for HDAC deacetylation activity, color-coded according to their proposed functions. The numbers
in the HDAC2 column indicate the amino-acid numbers for HDAC2. The amino-acid residues with mutations are shown in italic
and bold. (B) Schematic of experimental workflow. HDAC2 KO HEK293T cells expressing 3XxFLAG-mHDAC?2 were used for
immunoprecipitation with a-FLAG antibody. The immunoprecipitants were used for in vitro lysine f-hydroxybutyrylation assay
and in vitro deacetylation assay. (C) Representative western blots of in vitro lysine B-hydroxybutyrylation with IPed 3xF-mHDAC?2
WT or indicated mutants. (D) Scatter plot of deacetylation and lysine B-hydroxybutyrylation activity for each mutant. Both activities
are relative activity to WT 3xF-mHDAC?2. Data are represented as mean +/- SEM of independently performed experiments. The
line with 95% confidence bands (dotted line) was generated by simple linear regression. N=4 experiments for [3-
hydroxybutyrylation and N=3 experiments for deacetylation. Pearson correlation coefficient (r) with two-tailed p-value is indicated.
(E) Schematic of the hypothesis that excess BHB may promote the lysine B-hydroxybutyrylation reaction. (F-H) Schematic of
experimental workflow (F). Highly acetylated histone proteins (Ac-Histones) were isolated from TSA-treated HEK293T cells, and
Ac-Histones (2.5 ng) and rHDAC2 (0.25 pg) with R-BHB at the indicated concentrations were incubated for 30 mins. The same
isolated histones were pooled and used for all the three experiments. Kbhb and Kac were evaluated by western blot in N=3
independent experiments, with one representative experiment shown in (G). Relative intensities of anti-Kbhb and anti-Kac signals
as compared to each maximum intensity are graphed in (H). Data are represented as mean +/- SD of N=3 independently performed

experiments.

been discovered. To test this hypothesis, we isolated highly-
acetylated histones by acid extraction from TSA-treated
HEK293T cells and incubated them with rHDAC2 and increasing
BHB concentrations in our in vitro reconstitution assay (Fig. 3F).
In agreement with Shimazu et al., BHB inhibited rHDAC2
deacetylation activity in a dose-dependent manner and was most

effective at exceptionally high BHB concentrations of 20-50 mM
(Fig. 3G,H). Importantly, Kbhb on HDAC2 and extracted histones
was detected at lower BHB concentrations and also increased with
BHB concentration. These data support the previous findings and
combined with our mutagenesis data, provide evidence for a
model in which B-hydroxybutyrylation and deacetylation require
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Fig. 4. HDAC2 can acylate target proteins with other short-chain fatty acids in vitro.

(A) Chemical structures of the indicated short-chain fatty acids are shown. (CX) next to each name indicates the number of
carbons in each fatty acid. (B) Comparison of the concentration ranges of short-chain fatty acids in blood based on reported
literature values. (C-F) Representative western blots of in vitro acyations by rHDAC2 with the short-chain fatty acids,
Butyrate (C), Lactate (D), Propionate (E), and Acetate (F), at the indicated concentrations.

the same active site residues and therefore may become mutually
exclusive depending on substrate concentration.

HDAC?2 can catalyze lysine acylation with other short-chain
fatty acids

Next, we investigated whether this new mechanism of HDAC-
catalyzed protein modification would extend to other acylations.
To test this, we examined whether acetate, butyrate, lactate, and
propionate could be transferred to H3 in our in vitro reconstitution
assay (Fig. 4A). These metabolites are present in varying
concentrations in the blood (Fig. 4B) (27-30). Excitingly, we
found that rHDAC?2 can indeed catalyze lysine butyrylation (Kbu)
and lactylation (Kla) wunder similar conditions as f-
hydroxybutyrylation (Fig. 4C,D). In contrast, propionate and
acetate required much higher substrate concentrations (50-100
mM) to detect respective HDAC-catalyzed lysine acylation (Fig.
4E,F). These apparent differences may be driven, in part, by
different SCFA carbon lengths, and different kinetics of
deacylation of each of these modifications (/7).

HDAC-catalyzed Kbhb formation occurs in vivo

Finally, we tested whether HDAC-dependent J-
hydroxybutyrylation could occur in animals. We addressed this
question in a model of fasting-induced ketogenesis in mice. We
fasted mice for 18 hours, beginning 3 hours into the overnight dark
cycle when mice usually eat (Fig. 5A). The following morning,
we treated male and female mice with SAHA to acutely inhibit all
HDACs. Compared to vehicle-treated mice, SAHA reduced Kbhb
formation in spleen (Fig. 5B-E) and bone marrow (Fig. SF-I), with
corresponding increased Kac in those organs. SAHA treatment

had no major effect on Kbhb in the liver and kidney, but we also
observed minimal induction of Kac in liver and kidney, suggesting
the pharmacological effects of SAHA in these organs were limited
(fig. S9). Altogether, our data reveal a novel function of HDACs
to catalyze B-hydroxybutyrylation, and other acylations, at the
molecular, cellular, and organismal levels.

Discussion

We report a novel regulatory mechanism of post-translational
modifications in which HDACs can operate in reverse to catalyze
protein acylation. Based on our mutant mHDAC2 results,
combined with evidence that Kbhb abundance is proportional to
BHB concentration, this is likely a consequence of shifted mass
action as intracellular BHB concentrations increase. Canonical
deacetylation uses hydrolysis in the HDAC active site to free
acetate (or other specific acyl groups) from lysine. Here we
propose that when an amenable substrate like free BHB is in the
HDAC active site, the reverse condensation reaction can occur to
acylate target lysine residues. Moreover, the acylating activity of
class I HDACs correlates with the permissiveness of their
deacylating activity across multiple short-chain fatty acids.

We suspect reverse HDAC activity was not discovered
earlier because the metabolites that form more well-studied
adducts do not achieve the relative changes in intracellular
concentrations as compared to BHB. In support of this assumption,
non-physiologically high acetate levels can also lead to HDAC2-
catalyzed Kac formation in our reconstitution assay (Fig. 4F). In
addition, canonical deacetylation rates may be fast and more
enzymatically favorable, so outcompeting them could require
extraordinarily high acetate concentrations that do not occur in
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vivo. In contrast, circulating BHB levels can increase 10-20-fold
during fasting or ketogenic diet feeding when blood BHB levels
can reach 2-5 mM, thus creating a wide dynamic range of substrate
concentration. Our data with butyrate, lactate, and propionate
suggest this principle could easily extend to other acylations that
are regulated by HDACs. Future studies are needed to understand
what proportion of acylations are achieved through this
mechanism and how this is controlled in different metabolic
conditions. Additionally, whether other protein modification
enzymes are similarly reversible also has not been explored.

Understanding the impact of HDAC-catalyzed protein
acylation will be an important area for future work. As
deacetylation and B-hydroxybutyrylation require the same active

Mock SAHA

site residues (Fig. 3), it is not yet possible to uncouple
deacetylation and acylation, which would help disentangle the
physiological roles of Kbhb. Currently HDAC inhibitors are used
or being tested clinically in patients with cutaneous T cell
lymphoma, HIV-1, and numerous other tumors/cancers. Similarly,
enthusiasm surrounding potential therapeutic benefits of ketosis
continues to grow so ketone supplement availability is expanding
and clinical trials are ongoing in multiple diseases. Our work
suggests ketone bodies may influence activity of HDAC inhibitors,
or conversely, that HDAC inhibitors will also disrupt the
previously unknown protein acylation activity of class I HDACs.
These are potentially important diet-medication interactions to
consider in disease treatment.
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