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Abstract

Phosphorylation is the most studied post-translational modification, and has multiple
biological functions. In this study, we have re-analysed publicly available mass
spectrometry proteomics datasets enriched for phosphopeptides from Asian rice
(Oryza sativa). In total we identified 15,522 phosphosites on serine, threonine and

tyrosine residues on rice proteins.

We identified sequence motifs for phosphosites, and link motifs to enrichment of
different biological processes, indicating different downstream regulation likely
caused by different kinase groups. We cross-referenced phosphosites against the

rice 3,000 genomes, to identify single amino acid variations (SAAVs) within or
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proximal to phosphosites that could cause loss of a site in a given rice variety. The
data was clustered to identify groups of sites with similar patterns across rice family
groups, for example those highly conserved in Japonica, but mostly absent in Aus
type rice varieties - known to have different responses to drought. These resources
can assist rice researchers to discover alleles with significantly different functional

effects across rice varieties.

The data has been loaded into UniProt Knowledge-Base - enabling researchers to
visualise sites alongside other data on rice proteins e.g. structural models from
AlphaFold2, PeptideAtlas and the PRIDE database - enabling visualisation of source

evidence, including scores and supporting mass spectra.

Introduction

Rice is one of the most important crops for human nutrition, acting as staple food for
around a third of the global human population [1]. Asian domesticated rice, Oryza
sativa, has historically been sub-categorised into two major varietal groups: Japonica
and Indica, although further sub-divisions have also been proposed, including Aus
and Admixed families. There is great genetic diversity both within and between
varietal groups. Major efforts are underway to understand that diversity through
genomic techniques, and to exploit diversity to find alleles conferring desirable traits
(such as resistance to biotic and abiotic stresses), which could be bred into high
yielding varieties. The genome sequence of a reference Japonica variety,
Nipponbare, was sequenced by the International Rice Genome Sequencing Project
(IRGSP), with a first release of gene models in 2005 [2]. A group led from China also
sequenced a reference Indica variety (IR-93), and independently annotated gene
models [3]. Despite Indica rice varieties accounting for around six times the size of
international market as Japonica rice varieties [4], the Nipponbare assembly is
generally considered the “canonical reference” genome for research and breeding

efforts.

There are two current, non-synchronised annotations of the Oryza sativa Japonica
(Nipponbare variety) genome assembly: the Rice Genome Annotation Project at
Michigan State University (MSU) [5] and the Rice Annotation Project Database
(RAP-DB) [6]. MSU gene models are no longer updated but still used frequently in

2


https://doi.org/10.1101/2023.11.17.567512
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.17.567512; this version posted November 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

research projects and cited in publications. RAP-DB is regularly updated, and serves
as the source for gene models loaded into other databases such as Ensembl Plants
and Gramene [7, 8] (the two databases being mostly synchronised and using the
same underlying technologies), and the source protein sequences for UniProtKB
(UniProt Knowledge-base) [9], the most popular protein knowledge-base. Over
several years UniProtkKB has performed some manual curation, where improvements
can be identified in protein sequences, meaning that UniProtKB protein sequences
are not identical to Ensembl Plants/Gramene. Other key initiatives and datasets
include the rice 3,000 genomes project [10], which provides a resource for
understanding genetic variants within Oryza sativa. More recently, new rice “platinum
standard” genomes are being sequenced sequenced [11, 12], with new predicted

gene models for these varieties now available in Ensembl Plants and Gramene.

Genetic variation data and GWAS analyses can be key for identifying candidate
genes or chromosomal regions associated with traits of interest. However, discovery
of a SNP (Single Nucleotide Polymorphism) significantly associated with a trait can
give only limited information about associated biological function or mechanism. For
example, to understand why a given trait confers stress resistance involves
understanding the function of proteins, and the pathways and networks they are
involved with. A key component relates to understanding cell signalling, such as fast
responses to the detection of stress, via reversible post-translational modifications
(PTMs) of proteins. The most widely studied reversible modifications include
phosphorylation (by far the most studied one, and our primary focus here),
acetylation, methylation, and attachment of small proteins, such as ubiquitin and
SUMO. There is increasing evidence that sites of PTMs can be important alleles for
breeding efforts, examples including the “green revolution” DELLA genes that have
an altered response to the gibberellin hormone, via loss of PTM sites [13] and root

branching towards water controlled by SUMOylation [14].

In this work, we aim to provide a high-quality resource providing phosphorylation
sites in rice. Phosphosites on proteins are detected and localised on a large scale
using tandem mass spectrometry (MS), via “phosphoproteomics” methods. These
methods generally involve the proteins extracted from samples being digested by
enzymes such as trypsin and phosphorylated peptides being enriched in these

samples using reagents such as TiO2, or other metal ions, attached to a column
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(affinity chromatography), to which phosphate binds preferentially. These bound
peptides are then eluted and analysed using liquid chromatography-mass
spectrometry (LC-MS/MS) [15]. The tandem MS data is then usually queried against
a protein sequence database, via a search algorithm. Scores or statistics are
calculated for the confidence that the correct peptide sequence has been identified
(including the mass of any PTMs), and then for PTM-enriched data, a second step is
usually performed to assess the confidence that the site of modification has been
correctly identified, if there are multiple alternative potential residues in the peptide.
We have recently published an approach to assess the global false localization rate
(FLR) of PTMs using searches for PTMs on decoy amino acids, and demonstrated
its importance for controlling multiple sources of error in the analytical pipeline [16].
We have also extended the model to demonstrate how to combine evidence coming
from multiple spectra, and to combine evidence and control FLR across multiple
studies[17].

Many papers that report phospho-proteomes do not adequately control for site FDR,
and just use ad hoc score thresholds for peptide identification or site localisation
scores. For example, in the popular PhosphoSitePlus resource we estimated that
around ~67% of the phosphosites reported in the database are likely to be false
positives, and those with only an observation from one single study are very unlikely
to be true [18]. To provide FDR-controlled data on phosphosites to the research
community requires reprocessing MS data, using well controlled statistical
procedures, and applying post hoc approaches to control FDR when aggregating

data across multiple studies.

There are several online databases for gaining information about PTMs in plants,
sourced from published studies. The Plant PTM Viewer [19] aggregates results from
published studies that used PTM enrichment and MS, and has good coverage of
studies for a range of PTM types, including phosphorylation, acetylation,
ubiquitination and several others. Over 13,000 rice proteins are reported to be
modified, and >27,000 Arabidopsis thaliana proteins, mapped to ~15,000 genes
(translated from 54,000 transcripts of the 27,600 coding genes). For detailed study of
the A. thaliana phosphoproteome, there also exists the PhosPhAT database [20],
which similarly loads phosphoproteomics data from published studies on

Arabidopsis, containing evidence for 55,000 phosphorylation sites on ~9,000 A.
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thaliana proteins. Plant PTM Viewer and PhosPhAT are useful for community
resources, although by loading data from published studies (rather than re-
processing data), are likely to contain variable data quality and cannot control for

FLR across multiple datasets.

UniProtKB is a leading cross-species resource for studying protein function,
including extensive expert manual curation. For PTM-related data, UniProtKB mostly
loads data by curating individual studies, and has not previously loaded large-scale
MS data reporting on plant PTMs. PTMs are reported on just 320 rice proteins in the
UniProtkKB and on 2,763 Arabidopsis proteins (October 2023, Release 2023 _04).

The PRIDE database at the European Bioinformatics Institute (EMBL-EBI) is the
largest MS-based proteomics data repository [21]. PRIDE is leading the
ProteomeXchange (PX) consortium of proteomics resources, whose mission is to
standardise open data practices in proteomics worldwide [22]. PeptideAtlas is also a
PX member, focused on the consistent reanalysis of datasets [23] for a variety of
species, including recent builds for Arabidopsis [24]. Widespread public deposition of
proteomics data in PX resource now enables meta-analysis studies to be performed,
by reanalysing groups of related datasets. As part of the “PTMeXchange” project,
our consortium aims to complete a large-scale re-analysis of public PTM enriched
datasets, using robust analysis pipelines incorporating strict FDR control, and

correction for FDR inflation in meta-analyses.

In this work, we have re-analysed phospho-enriched rice datasets and integrated
results into PeptideAtlas, PRIDE and UniProtKB, for visualisation of the confident
phosphosites alongside other data on rice proteins. Downstream analysis is also
performed on the confident sites to identify PTMs which may be of biological interest.
These analyses include investigations on common motifs seen around the
phosphosites, pathway enrichment analysis for these motifs and analysis of single
amino acid variations (SAAVSs) identified close by to the confident phosphosites.
From these analyses, we aim to identify rice phosphoproteins which may be of

biological interest.

Methods

Phosphosite identification
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The ProteomeXchange Consortium [25] was used to identify suitable rice
phosphoproteomics datasets, via the PRIDE repository [26]. From this, 111
proteomics datasets were identified for the Oryza sativa species. Of these, 13 were
identified as being enriched in phosphopeptides and then potentially suitable for
reanalysis: PXD000923 [27], PXD001168 [28], PXD000857 [28], PXD002222 [29],
PXD001774 [30], PXD004939 [31], PXD005241 [32], PXD004705 [33], PXD002756
[34], PXD012764 [35], PXD007979 [36], PXD010565 [37] and PXD019291 [38]
(Supplementary table 1). These 13 datasets were investigated further to evaluate
their quality for use within the phosphoproteomics reanalysis. It was found that
PXD001168, PXD001774 and PXD010565 contained very few phosphopeptides for
the size of the dataset, these datasets were therefore excluded from the analysis.
PXD007979 was identified to be a meta-analysis of the PXD002222 and PXD000923
datasets and was therefore also excluded. Finally, PXD000857 was excluded as this
is a relatively old dataset containing only one raw file. This resulted in 8 high quality
datasets being carried forward for the phosphopeptide re-analysis. Sample and
experimental metadata were manually curated and adhering to the Sample-Data

Relationship Format (SDRF)-Proteomics file format [39].

The search database was created consisting of protein sequences derived from the
MSU Rice Genome Annotation Project, the Rice Annotation Project Database (RAP-
DB), including both translated CDS and predicted sequences, and UniProtKB,
including both reviewed and unreviewed sequences. A fasta file was generated from
the combination of these databases, if a protein sequence occurs in more than one
resource, RAP-DB was used as the primary identifier, this was then followed by any
other IDs for that protein. cRAP contaminant sequences were also added to the

database (https://www.thegpm.org/crap/, accessed April 2022) and decoys across all

protein and contaminant sequences were generated for each entry using the de
Brujin method (with k=2) [40]. The database was deposited in PRIDE along with the
reprocessed data files (PRIDE ID: PXD046188).

The analysis was conducted using the pipeline as previously described [16]. Using
the Trans-Proteomic Pipeline (TPP) [41, 42], the dataset files were first searched
using Comet [43]. The resulting files were then combined and processed using
PeptideProphet [44], iProphet [45] , and PTMProphet [46], for each dataset. The files

were searched with the variable modifications: Oxidation (MW), N-terminal
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acetylation, ammonia loss (QC), pyro-glu (E), deamination (NQ) and phosphorylation
(STYA). Phosphorylation on alanine was included as a decoy to estimate false
localisation rate (FLR), using the count of pAla identified, following the methods
previously described by our group [16]. Carbamidomethylation (C) was used as a
fixed modification and the iTRAX8plex label was included for the search on the
PXD012764 dataset. Maximum missed cleavage used was 2, with a maximum
number of modifications per peptide of 5. Table 1 outlines the datasets used and the

tolerance parameters used for each dataset.

The data files obtained from searching with TPP were processed by custom Python

scripts (https://github.com/PGB-LIV/mzidELR). The data was analysed in the same

way as in a previous study [16, 17]. The global FDR was calculated from the decoy
counts and the peptide-spectrum matches (PSMs) were filtered for 1% PSM FDR.
From these filtered PSMs, a site-based file was generated giving individual
localisation scores for each phosphosite found on each PSM, removing PSMs not
containing a phosphate, decoy PSMs and contaminant hits. These site-based PSMs
were ordered by a combined probability, calculated by multiplying the PSM
probability by the localisation probability.

It is common to observe many PSMs giving evidence for sites on the same
peptidoform, where a peptidoform is a peptide sequence with a specific set of
modified residues. In previous work [17], we have shown that collapsing results to
the peptidoform-site level simply by taking the maximum final probability was sub-
optimal as many of the high scoring decoy (and thus false) hits are supported by only
a single PSM. We therefore applied a statistical model for multiple observations of a
PTM site, using a binomial adjustment of the PTM probabilities to collapse these
results by protein position [17]. This adjustment considered the number of times a
specific site has been seen and the number of times this same site has been seen
as a phosphosite, allowing us to give weight to those sites that are supported by
multiple PSMs.

The global FLRs for all the datasets were estimated using the identification of
phosphorylated Alanine (pAla) as a decoy. These are known to be false localisations
and can therefore be used to estimate the FLR, following the method previously

established [16], alongside the binomial adjustment. Global FLR was estimated for
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every ranked site, across all PSMs and in the collapsed protein position site-based
format, from which we can later apply a threshold at the lowest scoring site that
delivers a desired global FLR (e.g. 1%, 5% or 10%), similar to the g-value approach

for standard proteomic database searching.

When aggregating data across multiple studies, we must control the inflation of FLR.
FLR inflation is observed when the same correct sites are seen identified across
multiple studies and tend to accumulate slowly, whereas each study reports different
and random false positives which then accumulate rapidly as more datasets are
added. PTM localisation has been shown to be incomparable between independent
studies [17]. As a result, we developed an empirical approach to categorise sites
based on the observations of sites across datasets at different thresholds; Gold,
Silver and Bronze. Gold represents sites seen in n dataset with <1% FLR, Silver
represents sites seen in m datasets with <1% FLR and Bronze represents any other
sites passing <5% FLR. The values for n and m can be set empirically in a PTM
“build” based on the number of datasets and the counts of decoys following the
aggregation of multiple datasets, and application of possible values of n and m. As
our rice build contains eight datasets, we categorised Gold sites as seen in more
than one dataset with <1% FLR and Silver as only one dataset with <1% FLR. We
then calculated the counts of pAla sites within these sets, allowing us to estimate the

resulting FLR following dataset merging in the different categories.

Dataset deposition and visualisation

The reprocessed data has been deposited in PRIDE in mzldentML format [47], as
well as SDRF-Proteomics files, tab-separated text formatted files (one per dataset)
containing sites detected per PSM, and sites detected for each peptidoform,
following the collapse processed described above (PRIDE ID: PXD046188). To load
all phosphosites into UniProtKB, the identified peptides were mapped to the
canonical protein sequences within the proteome (UP000059680) using an exact
peptide sequence match, following theoretical tryptic digest. The phophosites can be
viewed in the Protein APIs, in the Feature Viewer under Proteomics track and in the

entry page. Decoy sites were not loaded to avoid misinterpretation.
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All results have also been loaded as a PeptideAtlas build, available at

https://peptideatlas.orag/builds/rice/phospho/. The PeptideAtlas interface allows

browsing of all modified peptides from these datasets, including those passing and
not passing the above thresholds. All localization probabilities for all PSMs are
displayed, along with links to the original spectra that may be visualized in the
PeptideAtlas interface. The corresponding mass spectra in PeptideAtlas and PRIDE
(https://www.ebi.ac.uk/pride/archive/usi) can be referenced and accessed via their

Universal Spectrum Identifiers [48].

Downstream analysis
Motif and pathway enrichment analysis

All eight datasets were further investigated using motif and pathway enrichment
analysis. Once the confident phosphosites (5% pAla FLR) from each of the datasets
had been combined and given an FLR ranking (Gold, Silver, Bronze) the enriched
motifs surrounding phosphosites were identified using the R [49] package rmotifx
[50]. 15mer peptides were generated surrounding each of the identified
phosphosites. These phosphopeptides were compared against a background of
15mer peptides with STY at the central position of the 15mer, and matched to the
central residue of the phosphosite motif, to identify the enriched motifs seen around

the confident phosphosites.

The proteins containing these enriched motifs were then carried forward for pathway
enrichment analysis using ClusterProfiler [51]. The proteins containing each enriched
motif was compared against all phosphoproteins in the search database. Similarly, a
comparison was made between all phosphoproteins containing any enriched motif,
for each of the FLR ranking categories, against the background of all phosphorylated

proteins in the search database.

SAAV Analysis

We also explored the phosphosites across all datasets we have re-analysed and

how SAAVs may potentially affect these sites. We compiled a list of unique
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phosphosites (by sites on unique peptides) from the confident phosphosites (5%
pAla FLR) across all eight searches and created a matrix showing which sites were
seen in each dataset. These were then also mapped to the relevant protein sites in
the three search databases: MSU, RAP-DB and UniProtKB. We mapped this list of
unigue phosphosites to known SAAV positions for the 3,000 rice varieties using the
Rice SNP-Seek Database API (Application Programming Interface), for those sites
that mapped to the MSU database. We categorised the phosphosites with relation to
the SAAV sites; where “Category 1” = SAAV at the same position as a phosphosite,
“Category 2" = SAAV at the +1 position to a phosphosite, “Category 3" = SAAV at the
-1 position to a phosphosite and “Category 4” = SAAV at +/-5 amino acids from a
phosphosite (and not in Category 1, 2 or 3). All other sites were assigned “Category
0". For each phosphosite in the unique list across all datasets, the nearest SAAV to
each phosphosite was identified and categorised. For those protein phosphosites
with SAAV data available, we then investigated which alleles carried the SAAV and
the minor allele frequencies for each site. We also added in annotation to show the
genes involved, obtained using the Oryzabase database [52]. From this analysis, we
could identify candidate sites of potential biological importance, which may be
disrupted due to SAAVSs.

A protein multiple sequence alignment was created using Clustalx 2.1, for the
example protein Os09g0135400, versus the same locus in 15 other Oryza sativa
genomes, which have been annotated and deposited in Ensembl Plants and
Gramene [53, 54]. The association of gene models from different cultivars to be the
same locus (a “pan gene cluster”) was created using the GET_PANGENES pipeline
[55].

Results and Discussion
Phosphosite identification

First, we re-analysed each of the rice datasets identified as suitable for phosphosite
identification using TPP as explained in Methods (Figure 1). Our scripts were used to
calculate the FLR across confident PSMs identified (filtered for 1% FDR). We next
collapsed the sites by protein position and remove duplicated hits. The FLR

estimation was then recalculated on these collapsed sites, ordering by the calculated
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probability that a site had been observed, considering evidence across multiple
PSMs (see Methods). The counts of phosphosites passing at different FLR
thresholds are shown in Table 2 and Figure 1a (counts are derived from the unique
combinations of a peptidoform and phosphosites within those peptidoforms, i.e. not

accounting for some peptidoforms mapping to more than one genomic locus (gene)).
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Figure 1: a) Counts of phosphosites before and after (peptidoform) collapse for
removing redundancy at three FLR levels per dataset; b) The count of phosphosites
in each of the three categories (Gold-Silver-Bronze) per residue where A is the
decoy Alanine; c) The overlap of phosphosites reported per protein database: MSU,
RAP-DB or UniProtkKB (UP); d) Counts of phosphosites observed across different

protein counts.

Different datasets contributed between ~700 and ~4,000 sites at the strictest FLR
1% threshold, and between 1,700 and ~14,000 sites at 10% FLR. When performing
PTM site localisation, there is a steep drop off in sensitivity when applying strict FLR
thresholding (at say 1%), compared to weak thresholding (10% FLR) or say
performing no explicit FLR thresholding — indicative of the challenge of confident site
localization. Table 1 displays the counts of sites observed in the original studies and

the statistical controls performed. Site counts ranged from ~2,000 up to ~9,000. In no
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original analysis (as published originally) was global FLR estimated, although this is
not surprising since methods for accurate FLR estimation have not been well
described until recently. While some ad hoc score thresholds were applied for local
(i.e. per PSM) site scoring e.g. PhosphoRS > 0.9, this does not easily translate to a
global (i.e. across the entire dataset) FLR, and thus it is reasonable to assume that

there were variable (sometimes high) rates of FLR in different studies.

The tissues used for each dataset are shown in Table 1. These include flower, leaf,
anther, shoot, panicles (young and mature), root and pollen samples. Although we
can make no quantitative claims about site occupancy in a given tissue, by showing
the tissues present in each dataset, a reader can infer if a given site has been seen

in specific tissues.

We next performed a simple meta-analysis by combining all datasets, and assigned
sites labels based on their scores and occurrences in datasets: Gold-Silver-Bronze
(Table 3, Figure 1b). Decoy identifications of pAla were carried forward, enabling
validation of the false reporting within these subsets. There are only two pAla hits
within the Gold set, indicating that the overall FLR is very low in this subset. The
meta-analysis also demonstrates that within each set, the reported counts for pTyr
are relatively similar to pAla (taking into account that Ala is more abundant than Tyr
in the proteome), indicating that pTyr hits reported for these datasets are likely to be
mostly/entirely false positives, and should be treated with caution when interpreting
any reported observations of pTyr from these datasets in rice. We recorded five
unique Gold category pTyr sites. When looking at the scores of the spectra
supporting these sites (Supplementary Figure 1), it was seen that most of these had

only weak evidence supporting them and may be false positives.

In Figure 1c, we display the counts of sites depending in the source database —
13,425 sites were identified on peptides within proteins from all three databases
(MSU, RAP-DB and UniProtKB). The original source of UniProtKB proteins is RAP-
DB (with some later manual curation) — and we can observe 465 sites observed in
RAP-DB and UniProtkB, but not in MSU, giving indications of peptides where the
source RAP-DB gene model is likely superior to the MSU alternative. For the 212
sites that are common to MSU and UniProtKB, but not present in RAP-DB, would

indicate that UniProtKB curators have altered gene models, such that they contain
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peptides identical to MSU. For 112 sites identified in MSU and RAP-DB, but not in
UniProtKB, it is possible that UniProtKB curation has removed correct sections of
gene models, or these sequences are entirely absent from UniProtKB. There are few
phosphosites unique to RAP-DB or to UniProtKB, but 1,302 unique to MSU-derived
protein sequences. The MSU annotation contains a larger count of protein
sequences (48,237) than RAP-DB (46, 665), and many gene models different to the
RAP-DB annotation. The identification of many phosphosites unique to MSU
sequences, gives evidence for gene models that should be added or updated in the
RAP-DB source.

In our mapping process from peptidoforms to proteins, we take the approach that if a
peptide can be matched to proteins from multiple different locus, then all mappings
should be accepted (unlike traditional proteomics approaches where parsimony in
reporting protein identifications is preferred). The rationale is that the evidence
presented is that a given peptidoform has been observed with a phosphosite,
although due to the nature of tandem MS/MS, it is not possible to say definitely
which protein was actually observed (when the peptidoforms matches multiple). If
two proteins with highly similar sequences overall (and in this case an identical
peptide sequence that has been identified), it seems probable that both can be
phosphorylated on the identified position. The counts of phosphosites mapped onto
one or more proteins is displayed in Figure 1d — the vast majority of sites are
mapped to one or two proteins only, with a small count of sites mapped to multiple
proteins, including 71 sites mapped to >=10 proteins. This happens in cases of very
expanded gene families in rice, with paralogues of near identical sequence — it is not

possible to determine which protein was actually observed in the experiment.

Data visualisation

The gold-silver-bronze classified data has been loaded into UniProtKB for
visualisation alongside other datasets and information available for rice. As one
example, the phosphopeptides can be viewed in the context of AlphaFold2 (AF2)
[56] predicted protein structures (Figure 2). The protein visualised in this case is
OSCA1.2 (hyperosmolality-gated calcium-permeable channel 1.2, UniProtKB:
Q5TKG1, MSU: LOC_0s05¢g51630, RAP-DB: Os05t0594700) and has a pSer at
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position 50. The AlphaFold prediction suggests that the serine forms a hydrogen
bond with Arg36. It has been shown that phosphorylation can strengthen hydrogen
bonds with Arg residues [57], and thus the pSer may have a structural role. With the
widespread availability (now) of both phosphosite and structural data from AF2
models in UniProtKB, this provides a significant resource for rice cell signalling

research.

- Frascresscira s |1 Contod

Figure 2: A display in UniProtkKB of protein Q5TKG1 (RAP-DB: Os05t0594700-01;
LOC_0s05g51630.1) showing A) three identified phosphosites in the tabular view

and the B) structural context of the site on an AlphaFold2 prediction.

The build has also been loaded into PeptideAtlas, enabling browsing or searching
the evidence for individual sites, peptides and proteins. An example of evidence
supporting a phosphosite identified on a peptide is shown in the Supplementary
materials (Supplementary Figure 2). We also demonstrate how Universal Spectrum
Identifiers (USIs) can be used to visualise spectra supporting modification positions
and can be a valuable tool to investigate the evidence supporting identified
modifications (Supplementary Figure 3). The USI with the highest site probability for
identified sites can be located in Supp Data File 3. Loading one of these USIs via

https://proteomecentral.proteomexchange.org/usi/ imports the spectra and the
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claimed identification. By altering the position of the modification, it is possible to test

which ions support an alternative hypothesis (site position in the peptide).

Motif and pathway enrichment analysis

We ran motif analysis on the full set of identified pSer or pThr phosphosites
(Gold+Silver+Bronze) using rmotifx (Figure 3), to identify enrichment of amino acids
proximal to phosphosites potentially indicative of kinase families responsible for
those sites (Supplementary Data File 1). Supplementary Figure 4 displays plots of
the most enriched amino acids at each position, relative to the phosphosite for
significant motifs. Numerous motifs are identified, with commonly enriched amino

acids being P at +1 (relative to the target site), D/E at -1, +1, +2 and several others.
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Figure 3: a) Motif logos showing the probability of particular amino acids to be present, surrounding the S/T phosphosites within
Gold, Silver and Bronze datasets (motifs were filtered to be seen in at least 100 unique proteins). b) Heat map displaying significant
motifs versus GO term clusters from Cluster Profiler (y-axis), displaying 1-FDR colour scale for pathway enrichment from proteins
containing that phosphorylation, annotated with the count of unique proteins containing each motif and the count of

phosphorylation sites supporting each motif.
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There is a trade-off where having a higher overall count of true sites is likely to
improve discovery of significant motifs, but too many false positive sites will weaken
statistical power. As such, we also ran rmotifx analysis on “Gold+Silver” and “Gold
only” sets (Supplementary Figures 4 and 5). Supplementary Table 2 displays a
comparison of motifs discovered on different subsets of data (“Gold+Silver+Bronze”
Gold+Silver” vs “Gold only”). The largest number of significant phosphorylation
motifs was found for “Gold+Silver+Bronze”, which were thus used for the main
analysis. We filtered those motifs to those found in at least 100 proteins, as shown in
Figure 3a — indicating five motifs with proline (P) at the +1 position, four motifs with

arginine (R) in a minus position (-1 or -3), and several others.

We next wished to explore whether such signatures related to differences in the
pathways in which phosphorylated proteins act. We performed enrichment analysis
to identify the pathways in which proteins containing significant motifs were acting
(against a background of all rice phosphoproteins), using clusterProfiler
(summarised in Figure 3b for motifs found in at least 100 proteins, results for all
motifs shown in Supplementary Figure 6 and Supplementary Data File 2). Distinct
enrichment of significant terms was obtained for different motifs. As examples,
[ST]P.R motif-containing proteins were enriched for GO terms related to
microtubules (“microtubule motor activity” (GO:0003777) and “microtubule-based
movement” (GO:0007018)), compared to similar motif R..[ST]P was enriched for GO
terms related to regulation of transcription (“transcription coregulator activity”
(GO:0003712)), DNA and mRNA binding (“DNA polymerase Ill complex”
(G0O:0009360) and “mRNA splicing, via spliceosome” (GO:0000398)). P.[ST]P motif-
containing proteins were enriched for “transcription regulator complex”
(G0O:0005667). R..[ST] motif-containing proteins were enriched in many GO terms,
including “calmodulin binding” (GO:0005516), microtubule related terms, including
“microtubule binding” (GO:0008017), “microtubule motor activity” (GO:0003777) and
“microtubule cytoskeleton” (G0O:0015630), amongst others), proton transport
(“proton-transporting ATP synthase complex” (G0:0045261)) and “histone
deacetylase complex” (GO:0000118). The rice kinome contains ~1,500 kinases [58]
much larger than the kinome in mammalian systems (humans have around 600
kinases for example). Even in humans, accurate assignment of kinase-substrate

relationships is especially challenging, and for rice, given the sparsity of
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experimental data on kinase-substrate relationships, it is not possible to make
accurate predictions about the kinases responsible for individual sites. However, the
motif groups and downstream pathways identified here provided a starting point for
interpreting the high-level different signalling pathways, which presumably

correspond to different families of kinases.

SAAV Analysis

We next assigned all phosphosites into five categories, determined in relationship to
known non-synonymous SNPs (i.e. single amino acid variants — SAAVs) from the
rice 3,000 genome set [59], whereby a category 1 site has an amino acid
polymorphism in the reference genome (Nipponbare), causing a loss of this
phosphosite in some other varieties (Figure 4). In the whole dataset, excluding pA
decoy sites, there are 388 category 1 sites (Figure 4a), which are further explored in
Figure 4b showing the most commonly substituted amino acid. Over-represented
substitutions included S->L. Under-represented substitutions were D/E/H/K/Q/V. SIT-
>D mutations are potentially of great interest as Asp can mimic pSer/pThr as a
constitutively active phosphorylation site, which could be a dominant allele for
breeding. However, in our data, we saw only a single phosphosite (Bronze FLR
category) with a S->D mutation (in LOC_0s10g32980.1 / “Cellulose synthase A7”).
The implied amino acid substitution only observed at very low minor allele frequency
(0.00033 i.e. one single cultivar in the 3,000 set), which could also be a sequencing
error. We thus conclude that pSer -> Asp phospho-mimetic substitutions are
exceedingly rare in the rice proteome. Within the data, there are 25 cases of S->T

and 4 T->S phosphosite SAAVs (which would likely not disrupt phosphorylation).

We also note five observations where the pSer has apparently been substituted with
a stop codon (*) in proteins: LOC_0s03g17084.1 (Gold site on position 21, RAP-DB
ID=0s03t0279000, annotated as “Similar to Histone H2B.1"; LOC_0s02g52780.1
(Gold site on position 98, RAP-DB ID=0s02t0766700-01, annotated as “BZIP
transcription factor”), Bronze sites are seen on proteins LOC_0s02907420.1,
LOC _0s05g39730.1 and LOC_0s01g31010.1. However, in all cases, SNPs were at
very low minor allele frequencies (1 — 3 cultivars only out of the entire 3,000 set),

indicating that phosphosite mutation to a stop codon is an exceptionally rare event in
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the rice pan genome. Supplementary Data File 3 shows the genomic location of all

identified phosphorylation sites along with the SAAV positions and gene annotations.

We converted category 1 SAAV data into a heat map (Figure 4C), with clustering of
sites by major allele frequency in four rice families: Japonica, Indica, Admixed and
Aus, with a tree cut method to split the dendrogram into sub-groups (Supplementary
Data File 4). Five distinct clusters can be observed (as labelled). 1) high in Japonica
and admixed, low in Indica and Aus families; 2) variable pattern cluster, mostly
medium to low conservation in all families; 3) high in three families, lower in Indica ;
4) high in three families, low in Aus; and 5) high in all families. Supplementary Data
File 4 contains the source data, enabling the data to be filtered to find alleles of
interest, where there are likely significant differences between major varietal groups.
Cluster 4 (Table 4) contains phosphosites that are mostly conserved in Japonica,
Indica and admixed varieties, but lowly conserved in Aus. Aus variety rice cultivars
are generally considered to be resistant to biotic stress, like drought. Source genes
mostly have limited annotation, although genes with annotations include part of the
Tho complex (involved with mRNA transcription, processing and nuclear export) and
a Zinc finger protein (members within this large family of proteins have been
implicated in transcriptional regulation and responses to stress). Phosphosites in
proteins lacking annotation may be good candidates for further study, for potential

roles in Aus-specific phenotypic responses.
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Figure 4 A) Bar chart showing counts of phosphosite by SAAV category; B) Counts
of substituted amino acid in category 1 phosphosites, including the normalised
background distribution of that amino acid (*=stop codon); C) A heat map to show
the assumed major allele frequency (i.e. frequency of Ser / Thr within the 3K
“pseudo-proteins” from the rice 3K SNP set) of the phosphosite in four rice family
groups: Japonica, admixed, Indica and Aus. Allele frequencies are filtered for total
difference between families >0.05 to remove genes showing the same frequency
across all families.

Cluster 1 phosphosites are those present at high allele frequencies in Japonica and
admixed but lower in Indica and Aus type rices — indicating potential cell signalling
differences across the two major branches of Oryza sativa (summarised in Table 5).
Proteins of potential interest for further study include LGD1 (“Lagging Growth and
Development”), “Cullin 1”7 (LOC_0Os03g44900.1), and HSP40. LGD1 has been
implicated in regulation of plant growth and yield [60].

The gene annotated in OryzaBase as OsCullinl (LOC_0s03g44900.1) appears to
have been misnamed in this publication [61], based on apparent shared homology to
Arabidopsis thaliana Cullin 1 (annotated in TAIR [62] to act as a component of
ubiquitin ligase, with roles in response to auxin and jasmonic acid). However,
LOC_0s03g44900.1 has high homology to NOT family transcriptional regulators,

and has characteristic domains of this family, and should be renamed in OryzaBase.
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Figure 5 A) Protein sequence alignment of 0s09g0135400 (RAP-DB),
LOC_0s099g04990 (MSU) alongside protein sequences from other recently
Oryza sativa varieties. B) The results of searching the protein sequence in
InterProScan. The pSer site is nearby to PB1 protein binding domain
(IPR000270, InterPro), and the protein is part of the Tetratricopeptide-like helical
domain superfamily (IPR011990).
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The SAAV analysis presented above generated “pseudo-protein” sequences by
substituting amino acids, based on short DNA read data from the 3K rice genome
set, which have been mapped against the Nipponbare reference genome. There is
thus potential for assumed SAAVs to be incorrect, due to sequencing errors (as the
3K set does not always have high depth of coverage), if gene structure genuinely
differs across different varietal groups, or if the RAP-DB or MSU gene model for
Nipponbare is not correct. To validate the SAAV data, we also mapped the
phosphosites to recently released gene models for 16 new rice varieties, called the
“MAGIC-16" [63]. In Figure 6, we display the protein sequence alignment across
orthologs for cluster 1 protein LOC_0s09g04990.1 (0Os09g0135400) position 427,
with the position of an identified phosphosite marked. It can be observed that the
pSer is present in tropical, sub-tropical, temperate and aromatic varieties, but absent
in all indica varieties, except Zhenshan 97. The equivalent allele frequencies for this
pSer site are trop_ref freq=0.99; temp_ref freq=0.99; admix_ref freq=0.61;
japx_ref _freq=0.99; subtrop_ref freq=0.97; aus_ref freq=0.01; aro_ref freq=0.93;
ind2_ref freq=0.02; indx_ref freq=0.05; ind1B_ref freq=0.08; ind3_ref freq=0.01,;
ind1A_ref freq=0.03 — which appears to be in-line with the genuine protein
sequences from the MAGIC-16 set. Protein sequences for all the MAGIC-16 set are
available from Ensembl Plants and Gramene, enabling any phosphosites identified in
this resource, to be cross-referenced to protein sequences annotated from high-
guality whole genome assemblies, prior to any experimental work being conducted

to validate PTM site differences.

Conclusions

In this work, we have performed a meta-analysis of phosphoproteomics datasets for
rice, mapped onto the reference Nipponbare proteome. The pipeline includes
conservative statistics to avoid reporting false positives, and a simple Gold-Silver-
Bronze metric allowing users of the data to focus understand the likelihood of a site

being correct.

The dataset has been deposited into UniProtKB enabling sites to be analysed
alongside any other data held there about protein structure/function, including

AlphaFold2 predictions for all rice proteins. The data is also available in PeptideAtlas
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and PRIDE, enabling detailed exploration of scores and visualization of source mass

spectra, as a full evidence trail.

We have also mapped the data to variation coming from the 3,000 genome set,
creating a resource for allele mining, where phosphosites are likely to have lost
function due to amino acid substitutions in some rice varieties, with alterations to
downstream cell signalling pathways. We expect this will be a powerful resource for

rice biology, and all datasets are fully open and available for re-analysis.

Supplemental Data

Supplementary Data File 1 — All_motifs: motifs found in each of the three
categories (“Gold, Silver and Bronze”, “Gold and Silver” and “Gold only”) with
enrichment scores and protein counts.

Supplementary Data File 2 - Genomic_site_data_w_SNP_annotation: All
phosphosites identified in the study, along with their mapped genomic position, data
on SNPs, single amino acid variants and functional annotations.

Supplementary Data File 3 - ClusterProfiler GO enrichment GSB motifs:
Enriched GO terms for each motif identified around phosphosites scored in the
“Gold, Silver and Bronze” category.

Supplementary Data File 4 - Figure_4b_heatmap_clusters: Clusters of genes
seen in the heatmap shown in figure 4b.
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Table 2: PSM counts for each dataset at 1% FDR, Phosphopeptide PSM counts at 1% FDR, site counts (excluding pA decoy sites)
for all PSMs collapsed by peptidoform position and at each of the FLR thresholds; 1%, 5% and 10%.

Dataset 1% FDR | 1% FDR | Peptidofo | 1% FLR 5% FLR 10% FLR

PSM Phospho- | rm-site Peptidofo | Peptidofo | Peptidofo

Count peptide count rm Site rm Site rm Site

Count Count Count Count

PXD002222 39092 29086 6762 1935 2951 3649
PXD004939 81254 62935 10701 2156 4094 5348
PXD005241 127696 | 106459 26190 1701 4687 8872
PXD004705 80741 61029 10258 2050 3989 5133
PXD002756 69232 18203 9734 1421 3708 5581
PXD012764 45184 14020 5600 695 1269 1677
PXD000923 14852 12167 5965 2366 3708 4221
PXD019291 31094 30764 22128 4072 11034 13984
32
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Table 4. Phosphosites identified in cluster 4 on Figure 4, defined by the pattern of major allele frequencies (AF) across four varietal e
. . . . . . 8a
groups — Japonica (jap), Indica (ind), admixed (admx) and aus. Annotations are sourced by merging any data held in MSU or RAP- 22
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DB databases for the corresponding gene. Cluster 4 is mostly characterised by high AF in Japonica, Indica, admixed, but low in o B
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Aus. 8 S
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Similar to cDNA clone:001-043-A08, full insert %?':,
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Table 5. Phosphosites identified in cluster 1 on Figure 4, defined by the pattern of major allele frequencies (AF) across four varietal gg
o
groups — Japonica (jap), Indica (ind), admixed (admx) and aus. Annotations are sourced by merging any data held in MSU or RAP- 29
oo
DB databases for the corresponding gene. Cluster 1 is mostly characterised by high AF in Japonica, and admixed, but low in Aus P
P
and Indica. S
220
[SR=
=3Ik
&S0
LR
£38
Protein accession FLR cat PTM PTM | SAAV jap ind admx | aus Annotation(s) %; §
pos res major | major | major | major %g_:_:
O==
AF | AF | AF | AF 26 <
«Q ®©
LOC_0s09g04990.1 Gold 427 S S->P 0.977 | 0.040 | 0.612 | 0.015 | Similar to octicosapeptide/Phox/Bemlp (PB1) domain-containing -‘gg %‘
protein / tetratricopeptide repeat (TPR)-containing g g-g
=T
protein.:PF00564.17; PB1; Domain_427 § %%
s¢ga
LOC_0s09g32540.1 Gold 86 S S->C 0.916 | 0.071 | 0.573 | 0.095 | LGD1; LAGGING GROWTH AND DEVELOPMENT 1; Von § Eg
—_®<
Willebrand factor type A (VWA) domain containing protein, RNA ggg
binding  protein, Regulation of vegetatve growth and § § E
development;_86 g’ﬁ
=N
LOC_0s02g12850.1 Bronze 53 S S->G 0.859 | 0.090 | 0.476 | 0.060 | Nucleotide-binding, alpha-beta plait domain containing -‘c’s_’g
Q >
protein.:PF00076.15; RRM_1; Domain_53 ;;
LOC_0s03g44900.1 Silver 387 S S->P 0.652 | 0.497 | 0.612 | 0.055 | CUL1; CULLIN 1Not CCR4-Not complex component, N-terminal g g
@
domain containing protein.PF04153.11; NOT2_3_5; Family_387 g_%_
>SQ
LOC_0s03g15580.1 Silver 71 T T->A 0.732 | 0.051 | 0.359 | 0.025 | Hypothetical conserved gene.:PF03215.8; Rad17; Family_71 §-§
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LOC_0s01g11952.1 Bronze 339 T->P 0.608 | 0.108 | 0.340 | 0.005 | SET1; SET PROTEIN 1:SDG721; SET-domain group protein 721;
TRITHORAX-like protein, Regulation of H3K4 methylation,
Regulation of plant height and pollen grain
development:PF00856.21; SET; Family_339

LOC_0s04g51080.1 Bronze 84 S->G 0.980 | 0.078 | 0.524 | 0.060 | Scramblase family protein.:PF03803.8; Scramblase; Family_84

LOC_0s11g11490.1 Bronze 81 S->P 0.815 | 0.201 | 0.544 | 0.085 | PF00069.18; Pkinase; Domain_81

LOC_0s01g70250.1 Bronze 252 S->L 0.784 | 0.067 | 0.437 | 0.000 | Molecular chaperone, heat shock protein, Hsp40, DnaJ domain

containing protein.:PF00226.24; DnaJ; Domain_252
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