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Abstract

Reconstructing temporal cellular dynamics from static single-cell transcriptomics

remains a major challenge. Methods based on RNA velocity, often in combination

with non-linear dimensionality reduction, have been proposed. However, inter-

preting their results in the light of the underlying biology remains difficult, and

their predictive power is limited. Here we propose NeuroVelo, a method that cou-

ples learning of an optimal linear projection with a non-linear low-dimensional

dynamical system. Using dynamical systems theory, NeuroVelo can then identify

genes and biological processes driving temporal cellular dynamics. We bench-

mark NeuroVelo against several current methods using single-cell multi-omic
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data, demonstrating that NeuroVelo is superior to competing methods in terms

of identifying biological pathways and reconstructing evolutionary dynamics.

Keywords: single-cell transcriptomics, RNA velocity, neural networks, dynamical
systems

Main text

Single-cell transcriptomic (scRNA-seq) technologies have transformed our under-
standing of cellular diversity and heterogeneity[1], yet their destructive nature poses
fundamental limits to their ability to capture temporal biological dynamics. Inferring
dynamic information from the static snapshots of scRNA-seq has been a major focus
of computational research in the last decade. While most early efforts used advanced
machine learning techniques to order cells along a pseudo-time trajectory [2–5], more
recently the concept of RNA-velocity [6] offered a more mechanistic, biophysically
grounded approach to solve the problem.

RNA-velocity leverages the (surprisingly abundant) pre-mRNA reads present in
many scRNA-seq data sets, and uses a simple linear ordinary differential equation
(ODE) model to deduce whether a gene is transcriptionally activated or repressed. This
idea enables researchers to capture a shadow of cellular dynamics even in static data
sets. Recent years have witnessed a flourishing of both applications and extensions of
the RNA velocity framework [7–12]; nevertheless, both the biochemical foundations
and the biological interpretation of RNA-velocity have been questioned [13, 14].

We propose NeuroVelo, a new approach which provides a more readily interpretable
and highly effective way to infer cellular dynamics from scRNA-seq data. NeuroVelo
combines ideas from Neural Ordinary Differential Equations (ODE) [15, 16] and RNA
velocity in a physics-informed neural network architecture. Figure 1(a) illustrates the
basic concept of NeuroVelo. scRNA-seq data consisting of both spliced and unspliced
reads are encoded to a low dimensional space through two dimensionality reduction
channels: one is a non-linear 1D encoder learning a pseudo-time coordinate associ-
ated with each cell, while the second is a linear projection to an effective phase space

for the system. Cellular dynamics is defined through an autonomous system of dif-
ferential equations parametrised by a neural network (a neural ODE). The resulting
dynamics can be extremely rich; to further constrain it, we impose the RNA veloc-
ity principle as a further penalty in the loss function in the spirit of physics-informed
neural networks. Notice that this constraint is applied locally to each cell, thus remov-
ing limiting assumptions on global transcriptional dynamics which are often a major
problem for RNA velocity approaches. Because the effective phase space is defined via
a linear projection, the RNA velocity constraint can be applied exactly in the reduced
dimensional space. A second major benefit of the linearity of the phase space is that
standard techniques for the analysis of low-dimensional non-linear dynamical systems
can be applied to the trained model. The resulting insights, thanks to the linearity of
the model, can readily be translated in terms of genes; we propose a novel rank-based
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Fig. 1 (a) Schematic representation of the neuroVelo model: two autoencoders, a linear one to define
the phase space, and a non-linear 1-D one to define pseudotime, are coupled in latent space through
a non-linear neural ODE. RNA-velocity constraints are added as an additional penalty in the loss
function. NeuroVelo (b), UniTVelo (c) and scVelo (d) results on the bone marrow data set. Inferred
pseudotime (e) and velocity field (f) on the mouse cancer data set, as well as scatterplot of the
neuroVelo pseudotime against the fitness signature (inferred from barcoding information) (f). The
Spearman correlation coefficient and associated p-value are inset in panel (f).

statistic to provide a robust way to identify genes associated with dynamical changes
in cellular state (see Methods section).

To test NeuroVelo, we utilize two recent scRNA-seq data sets: a human bone mar-
row hematopoiesis data set [5] and a CRISPR-based lineage barcoded mouse cancer
data set [17], which was used to develop the specialised trajectory inference PhyloVelo.

Figure 1(b-d) shows a visualisation of the inferred velocity fields for NeuroVelo
and two competing methods, UniTVelo[9] and scVelo [7], on the human bone barrow
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hematopoiesis dataset we considered[5]. While all methods provide a good separa-
tion of the cell types and treatments, it is worth noticing that only NeuroVelo and
UniTVelo could capture the correct dynamics of early differentiation in the bone mar-
row data set. As a more stringent test, we show the results on the mouse cancer data
set in the bottom row of Figure 1; this is modelled on Supplementary Figure 20 of the
original PhyloVelo paper [17], which shows comparisons of PhyloVelo with five other
methods [7–9, 11, 12], including scVelo and UniTVelo. Figure 1 (e-f) shows visualisa-
tions of the cells coloured by the inferred pseudo-time (e) and by cell-type together
with the velocity fields (f). NeuroVelo broadly obtains an accurate reconstruction of
both pseudo-time and velocity field. The velocity reconstruction in the early times is
retrieved incorrectly (and in the same direction as most other RNA-velocity methods);
this suggests that at the very early stages of this dynamical process lineage barcoding
information (which is used by PhyloVelo) is indeed essential. Nevertheless, NeuroVelo
achieves the highest Spearman correlation between inferred pseudo-time and fitness
signature (Figure 1 (g), cf Supplementary Figure 20 in [17]), substantially higher than
the other RNA-velocity methods and even marginally higher than PhyloVelo itself. A
similar visualisation for another cancer data set from [17] is given in Suppl. Fig. 1,
once again showing a very high consistency with the fitness signature and an excellent
reconstruction of the velocity field.

To test NeuroVelo’s ability to provide interpretable results, we turned to a single-
cell Multiome dataset (nuclear transcriptome + chromatin accessibility - ATAC)
of patient-derived colorectal cancer organoids treated with different drugs[18]. The
organoid line was generated from a colorectal cancer clinical trial[19]. The parental
organoid line was exposed to three different drug regimens: an AKT inhibitor (capi-
vaserib), a MEK inhibitor (trametinib) and finally a sequence of first the AKT
inhibitor followed by the MEK inhibitor. Because in this analysis we focus on inter-
pretability, we restrict our comparisons to scVelo [7] and UniTVelo [9], which provide
lists of high velocity genes. Other deep-learning based methods are less straightfor-
ward to interpret as they combine non-linear projections/ embeddings with non-linear
dynamics. NeuroVelo, instead, relies only on a low-dimensional non-linear dynamical
system, which can be analysed by standard spectral methods. The resulting eigenvec-
tors can then be embedded in the original gene space using the linear embedding (see
Methods), providing a list of genes that can be interpreted via standard methods.

Figure 2 (a) shows a visualisation of the neuroVelo latent space. The treatments
are clearly separated, and the inferred velocity fields correctly identify an evolutionary
process which diverges from a (subset of) the parental cells towards the resistant
cells. Similar visualisations for scVelo and UniTVelo are shown in Supplementary
Figure 2; notice however that neuroVelo obtains a clearer evolutionary trajectory than
the competing methods. We then interrogated the gene lists obtained by the various
methods. The genes identified to drive the cellular dynamics in resistant organoid
lines by neuroVelo (Figure 2(b) and Supplementary Figure 3) are indeed significantly
enriched for meaningful pathways in this case involved in carcinogenesis. By contrast,
both scVelo and UniTVelo return very short lists of high velocity genes, which do
not identify any significantly enriched pathway, and the top scoring pathways contain
fewer cancer related pathways (Figure 2(b); indeed, UniTVelo’s list of high velocity
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genes is too short to provide any meaningfully enriched pathways). As an example, we
look in detail at the FoxO pathway, which is identified both by neuroVelo and scVelo.
NeuroVelo identifies a large gene set with a strong enrichment score (Fig. 2(c) top),
while the high velocity genes identified by scVelo in the FoxO pathway do not exhibit
a particularly coordinated behaviour, obtaining an overall modest enrichment score
(Fig. 2(c) bottom).

We then focussed on the 10 most important genes found by the different methods.
Notice that the three methods identify almost entirely non-overlapping sets of genes
(only one gene is shared between NeuroVelo and UniTVelo and between neuroVelo and
scVelo). Figure 2 (d) shows that the most important genes identified by NeuroVelo have
higher expression levels than those identified with scVelo or UniTVelo. In particular,
scVelo identifies genes that have very low expression values, and hence of unclear bio-
logical significance. To seek more biological validation of these gene sets, we correlated
the expression of the genes identified by NeuroVelo with the chromatin accessibility
of their corresponding genomic regions. This was substantially higher than the other
methods (Figure 2(e)). Figure 2 (f-g) shows a visual representation of expression (f)
and open region probability ((g), see Methods for how we compute this quantity) for
the BNIP3 gene, showing a clear correlation between the two measurements.

Taken together, these data provide strong evidence that NeuroVelo can capture
biological dynamics from complex single-cell transcriptomic data, in a manner that is
both accurate and interpretable in terms of underlying genes driving the dynamics. We
believe NeuroVelo will therefore become an important tool in characterising biological
dynamics in single-cell experiments.
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Fig. 2 (a) UMAP visualisation of the latent space inferred by neuroVelo, colored by cell type and
with overlaid velocity field. (b) Gene set enrichment analysis of neuroVelo and scVelo genes. (c)
NeuroVelo and scVelo respectively gene set enrichment analysis of common pathways of the two
methods. (d) Expression of top 10 genes from the three methods in different treatments. (e) Smoothed
R-squared between gene expression and open probabilities for associated promoters (cisTopic) for the
top 10 genes from the three methods in different treatments. TSNE of expression of the BNIP3 gene
(f) and open probability (g) for the associated promoters
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[3] Haghverdi, L., Büttner, M., Wolf, F.A., Buettner, F., Theis, F.J.: Diffusion pseu-
dotime robustly reconstructs lineage branching. Nature methods 13(10), 845–848
(2016)

[4] Campbell, K.R., Yau, C.: Uncovering pseudotemporal trajectories with covariates
from single cell and bulk expression data. Nature communications 9(1), 2442
(2018)

[5] Setty, M., Kiseliovas, V., Levine, J., Gayoso, A., Mazutis, L., Pe’Er, D.: Char-
acterization of cell fate probabilities in single-cell data with palantir. Nature
biotechnology 37(4), 451–460 (2019)

[6] La Manno, G., Soldatov, R., Zeisel, A., Braun, E., Hochgerner, H., Petukhov, V.,
Lidschreiber, K., Kastriti, M.E., Lönnerberg, P., Furlan, A., et al.: Rna velocity
of single cells. Nature 560(7719), 494–498 (2018)

[7] Bergen, V., Lange, M., Peidli, S., Wolf, F.A., Theis, F.J.: Generalizing rna velocity
to transient cell states through dynamical modeling. Nature biotechnology 38(12),
1408–1414 (2020)

[8] Chen, Z., King, W.C., Hwang, A., Gerstein, M., Zhang, J.: Deepvelo: Single-
cell transcriptomic deep velocity field learning with neural ordinary differential
equations. Science Advances 8(48), 3745 (2022)

[9] Gao, M., Qiao, C., Huang, Y.: Unitvelo: temporally unified rna velocity reinforces
single-cell trajectory inference. Nature Communications 13(1), 6586 (2022)

[10] Gayoso, A., Weiler, P., Lotfollahi, M., Klein, D., Hong, J., Streets, A., Theis, F.J.,
Yosef, N.: Deep generative modeling of transcriptional dynamics for rna velocity
analysis in single cells. Nature Methods, 1–10 (2023)

[11] Li, S., Zhang, P., Chen, W., Ye, L., Brannan, K.W., Le, N.-T., Abe, J.-i., Cooke,
J.P., Wang, G.: A relay velocity model infers cell-dependent rna velocity. Nature
biotechnology, 1–10 (2023)

[12] Qiao, C., Huang, Y.: Representation learning of rna velocity reveals robust
cell transitions. Proceedings of the National Academy of Sciences 118(49),
2105859118 (2021)

[13] Barile, M., Imaz-Rosshandler, I., Inzani, I., Ghazanfar, S., Nichols, J., Marioni,
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Methods

Model architecture

NeuroVelo is a neural network architecture that consists of a linear auto-encoder ini-
tialized with PCA and neural ODEs architecture in the latent representation of the
data. The main idea of NeuroVelo is to construct drug-specific cell dynamics from
scRNA-seq data in the latent space.

We used spliced and unspliced reads of scRNA-seq data and embedded them using
the same encoder function into a latent space z = (zs, zu) of dimension l. The encoder
is initialized using the principal components of the spliced reads. This step is mainly
for dimensionality reduction and feature extraction of the highly dimensional gene
space to a much smaller latent space (50 by default).

Part of the encoder is also used to estimate the pseudotime of the cells. Both
pseudotime and latent representation of the cell are used to train nonlinear neural
ODEs.

Once we project the cells into a lower-dimensional space, we use a set of neural
ODEs to describe the cellular dynamics in this latent space

dz
(d)
s (t)

dt
= f (d)(z(d)

s (t), t), (1)

where f (d) : Rl → R
l is a two layers neural network with nonlinear activation function,

this neural ODE describes the dynamics of cells treated with a particular drug d. Using
the nonlinear ODEs in the latent space helps to capture the essential and complex
dynamics of drugs in this space.

Notice that, since we are learning both the pseudotime and the generator function
of the dynamics (the f function), one could reverse simultaneously the pseudotime
and the sign of f without altering the trajectories. This ambiguity may be resolved
either by prior knowledge or by inverting both signs a posteriori.

The encoder latent representation is decoded with a linear decoder network (ini-
tialized with the same principal components as well) to create a reconstruction of the
original spliced and unspliced inputs (X̂s, X̂u), learning another function that maps
from latent space to gene space.

Model training

The tasks learnt by neural networks are based on what loss function the network is
optimizing. To ensure that the cellular dynamics learned by the network have biological
meaning, we propose a loss function that puts biophysical constraints on the data and
does not require any parameter fine-tuning.

The first part of the loss is the usual mean squared error (MSE) of autoencoders
network, we want our spliced and unspliced inputs to match their reconstructed coun-
terparts from the decoder and so the first loss part is a sum of MSE of spliced and
unspliced reads.

The second part of the loss is what puts a biophysical constraint on the neural
ODEs in the same fashion of physics-informed neural networks. The idea is to make
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the derivative of latent spliced reads żd
s (t) align with the splicing dynamics from the

RNA velocity but in latent representation (eβzu− eγzs), There is an exponential of ´
(and µ) because they are analogy of splicing and degradation rate and they must be
positive.

The final loss is written as follows:

L = MSE(Xs, X̂s) +MSE(Xu, X̂u) +

D
∑

d=1

MSE
(

f (d)(z(d)
s (t), t), eβz(d)

u − eγz(d)
s

)

(2)

Where the sum over d is the sum over specific drugs/treatments. ż(t)ds is the
function that describes the splicing dynamics of drug d in the latent space. zds and zdu
are the projected spliced and unspliced reads of treatment d. Notice that the final term
in the loss enforces the RNA-velocity constraint, so that the role of the transcription
rate is modelled flexibly and learnt directly from the data.

In this way, we are able to investigate complex and specific cellular dynamics by
learning splicing dynamics constrained nonlinear ODEs in a reduced space and without
the need to fine tune parameters on the level of the loss function as well.

Interpretation

Any dynamical process is generally governed by a nonlinear ODE, we can understand
the behavior of a system by linearizing the ODE around a given point which is in this
case an average cell or group of cells, the linearized system is:

żs(t) = Jzs(t), J =







∂f1
∂z1

. . . ∂f1
∂zl

...
. . .

...
∂fl
∂z1

. . . ∂fl
∂zl






(3)

We perform eigenanalysis on the Jacobin matrix. The eigenvalues give the impor-
tant directions of the correspondent eigenvectors in the latent space, then we use the
decoder function to map these important directions in the latent space to the gene
space. The output of this decoder is a list of ranked genes based on their importance
in a particular direction.

The main issues related to using neural networks are interpretability and robust-
ness, the former is not a problem because NeuroVelo uses both linear embedding and
projection, thus the interpretation of the latent space into the gene space is straight-
forward. The robustness part is more of a concern because a different initialization
leads to a different local minima which makes biological interpretation uncertain. Here
we propose a geometrical and statistical approach that gives a solid gene list by using
many trained models.

The first step is to find the set of eigenvectors from other models that align the most

with an eigenvector of a current model v⃗
(m)
i , the alignment is based on the absolute

value of the cosine similarity. This set of the most aligned eigenvectors is given by the
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following equation:

U
(

v⃗
(m)
i

)

=

{

max
j

∣

∣

∣
Sc

(

v⃗
(m)
i , v⃗

(m′)
j

)
∣

∣

∣
, for m′ ̸= m

}

where Sc is the cosine similarity function and m′ is the index of the trained model.
We take the ranked genes of the aligned eigenvectors, and we average the ranks

gene-wise. The output is a list of genes ranked based on the average rank across the
aligned eigenvectors from different trained models. This indicates that the genes that
are at the top of the list hold significant importance for the dynamics learned by
various models and vice versa. A set of different analyses can be performed on these
average-ranked genes for validation.

0.1 Smoothed R-squared

The smoothed coefficient of determination R2 is computed between the gene expres-
sion and the probability of open chromatin in the associated region. It is smoothed
R2 because we take the average gene expression around the cell neighborhood (20
neighbors)

Implementation

NeuroVelo is implemented in Python machine learning framework PyTorch 2.0 and
using torchdiffeq package for ODE solvers in PyTorch.

Velocity field visualizations are done with ScVelo

Gene set enrichment analysis is done with ”GSEApy: Gene Set Enrichment Anal-

ysis in Python” gseapy. Passing a dataframe of genes and their average rank as a
ranking metric to prerank function. The enrichment analysis plots are all generated
by the same package.

Datasets

Patient-derived colorectal cancer organoids

10X multiomics sequencing data has been processed with cellranger-arc count version
2.0.2 [20]. In order to get spliced and unspliced read quantification we run velocyto[6]
on the in mode run10x on the output of cellranger.

After aligning and generating the spliced and unspliced count of this dataset. We
picked the top 7000 highly variables gene (as the number of cells was greater than
30, 000) we used normalized counts for both training and validation.

Chromatin open probabilities for pre-selected genomic regions were obtained by
using the cisTopic latent Dirichlet allocation model [21], using the implementation in
[22].

Mouse lung cancer

This dataset is CRISPR/Cas9-based lineage tracing dataset from a genetically-
engineered mouse model (GEMM) of lung adenocarcinoma. We used it to compare
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NeuroVelo to PhyloVelo, mainly using two tumors (3726 NT T1 and 3435 NT T1).
The published processed count contained only spliced reads, thus we downloaded the
fastq files and used nf-core/scrnaseq pipeline [23] to align (using STAR) and gener-
ate RNA velocity count matrix. The number of cells used in PhyloVelo was in order of
700 thus we only picked the top 1000 highly variable genes to run NeuroVelo. Normal-
ized spliced and unspliced counts were used for training and post-training pseudotime
inference.

Human bone marrow hematopoiesis

The human bone marrow dataset is downloaded from ScVelo package. The bone
marrow is the primary site of new blood cell production or haematopoiesis. It is com-
posed of hematopoietic cells, marrow adipose tissue, and supportive stromal cells. The
dataset is already processed and contains spliced and unspliced counts. We picked the
top 2000 highly variables gene and we used moments instead of counts for training.
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