

Formatted: Numbering: Continuous

1 | Astyanax mexicanus surface and cavefish chromosome-scale assemblies for trait
2 variation discovery
3 Wesley C. Warren^{1,2}, Edward S. Rice¹, Maggs X¹, Emma Roback³, Alex Keene⁴, Fergal
4 Smith⁵, Denye Ogeh⁵, Leanne Haggerty⁵, Rachel A. Carroll¹, Suzanne McGaugh³,
5 Nicolas Rohner^{6,7}
6
7 ¹Department of Animal Sciences, Department of Surgery, University of Missouri, Bond
8 Life Sciences Center, Columbia, MO
9 ²Institute for Data Science and Informatics, University of Missouri, Columbia, MO
10 ³Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul,
11 MN
12 ⁴Department of Biology, Texas AM University, College Station, TX
13 ⁵European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome
14 Genome Campus, Hinxton, Cambridge CB10 1SD, UK
15 ⁶Stowers Institute for Medical Research, Kansas City, MO
16 ⁷Department of Molecular and Integrative Physiology, KU Medical Center, Kansas City,
17 KS
18
19 Authors for correspondence: Wesley C. Warren (warrenwc@missouri.edu); Nicolas
20 Rohner (nro@stowers.org)
21 Keywords: *Astyanax mexicanus*, cavefish, chromosome assembly
22

23 **Abstract**

24 The ability of organisms to adapt to sudden extreme environmental changes produces
25 some of the most drastic examples of rapid phenotypic evolution. The Mexican Tetra,
26 *Astyanax mexicanus*, is abundant in the surface waters of northeastern Mexico, but
27 repeated colonizations of cave environments have resulted in the independent evolution
28 of troglomorphic phenotypes in several populations. Here, we present three chromosome-
29 scale assemblies of this species, for one surface and two cave populations, enabling the
30 first whole-genome comparisons between independently evolved cave populations to
31 evaluate the genetic basis for the evolution of adaptation to the cave environment. Our
32 assemblies represent the highest quality of sequence completeness with predicted protein-
33 coding and non-coding gene metrics far surpassing prior resources and, to our
34 knowledge, all long-read assembled teleost genomes, including zebrafish. Whole genome
35 synteny alignments show highly conserved gene order among cave forms in contrast to a
36 higher number of chromosomal rearrangements when compared to other phylogenetically
37 close or distant teleost species. By phylogenetically assessing gene orthology across
38 distant branches of amniotes, we discover gene orthogroups unique to *A. mexicanus*.
39 When compared to a representative surface fish genome, we find a rich amount of
40 structural sequence diversity, defined here as the number and size of insertions and
41 deletions as well as expanding and contracting repeats across cave forms. These new
42 more complete genomic resources ensure higher trait resolution for comparative,
43 functional, developmental, and genetic studies of drastic trait differences within a species.

44

45 **Introduction**

46 Natural trait alterations in the Mexican tetra cavefish *Astyanax mexicanus*, some with
47 extreme phenotypic consequences, have offered insight into how genetic adaptation
48 works (ROHNER 2018) (MCGAUGH *et al.* 2020). This species exists in two distinct forms:
49 a traditional river-dweller and a blind, depigmented cave-dweller. Many studies have
50 highlighted the use of the *A. mexicanus* surface fish to cave-life as an adaptation model to
51 investigate the unique molecular mechanisms underlying various disease traits, such as
52 obesity, sleep disorders, diabetes, heart regeneration, and many others, which has
53 elevated its importance as an evolutionary model and led to its rapidly expanding use

54 (DUBOUE *et al.* 2011; ASPIRAS *et al.* 2015) (OJHA AND WATVE 2018) (STOCKDALE *et al.*
55 2018) (BILANDŽIJA 2019). Furthermore, we envision its wider use with the expansion of
56 *A. mexicanus* genetic resources by taking advantage of a relatively short evolutionary
57 time of transition, ~150,000 years from surface to cave and clearly demarcated
58 phenotypic differences (HERMAN *et al.* 2018).

59 High-quality and nearly complete chromosomes of many species are becoming
60 more readily available, but challenges remain for genomes with difficult structural
61 features, for example, the highly repetitive zebrafish genome (CHERNYAVSKAYA *et al.*
62 2022). Further research has refined best practices across broad phyla to resolve
63 difficulties in building multiple genome assemblies with near gap-free representation
64 (JARVIS *et al.* 2022). To date, few aquatic species have reached these higher levels of
65 contiguity and representation, but recently developed long-read hybrid methods improve
66 de novo assembly (RAUTIAINEN *et al.* 2023). Many recently published aquatic genomes,
67 although significantly more complete in sequence representation, have relied on error-
68 prone long-read reads and their correction with short-reads (MOORE *et al.* 2023)
69 (ROBERTS *et al.* 2023). This new generation of genome assemblies has significantly
70 advanced our knowledge of historically underrepresented sequences, in particular sex
71 chromosomes (IMARAZENE *et al.* 2021) (DU *et al.* 2022).

72 In cavefish, a recent long-read based assembly improved identification of
73 candidate genes underlying QTLs, discovered fixed or variable deletions in each cave
74 form, and guided gene editing experiments (WARREN *et al.* 2021). However, this
75 assembly of a surface-dwelling individual suffered from a high level of gene
76 fragmentation due to the use of high-error long reads. An individual from the Pachón
77 cave-dwelling population was recently assembled with high levels of contiguity and
78 facilitated the discovery of novel sex chromosome origins (IMARAZENE *et al.* 2021).
79 However, given the high phenotypic divergence of the various populations, references of
80 multiple populations are necessary to best perform comparative genomics between
81 surface and cave morphs. To this end, we present here three highly continuous
82 chromosome-scale assemblies of individuals from the Río Choy surface population, as
83 well as the Molino and Tinaja cave populations to complement Pachón and for the first
84 time present more complete references that span demographically unique and

85 independent cave populations. The generation of these resources in *A. mexicanus* will
86 support the community's use of this aquatic model of human disease, particularly those
87 wishing to compare trait diversity in the well-studied zebrafish model.

88

89 **Methods**

90 *Sequencing and assembly.* The *A. mexicanus* DNA samples were obtained from female
91 fishes of surface, Molino, and Tinaja origins (Fig. 1A) reared at the Stowers Institute
92 aquatic facility under IACUC approved protocol (Protocol ID: 2021-126). High
93 molecular weight DNA was isolated using the salting out method described in the 10X
94 genomics demonstrated protocol (10X Genomics; Pleasanton, CA) from muscle tissue to
95 generate single molecular real time (SMRT) sequences using HiFi sequence base calling
96 output mode from the Sequel II instrument (Pacific Biosciences) according to the
97 manufacturer's protocols. From all SMRT sequences, total HiFi coverage ranged from
98 27-46x using a genome size estimate of 1.4Gb with average read lengths across all
99 samples of 21kb (Suppl. Table 1).

100 We assembled these reads into contigs using hifiasm v0.13-r308 with default
101 options (CHENG *et al.* 2021). To look for haplotigs, we aligned CLR (Circular Long
102 Reads) reads to the contigs using minimap v2.20 with arguments “-ax map-pb”. We ran
103 purge_haplots v1.1.1 (GUAN *et al.* 2020) on all three assemblies; the Molino and Tinaja
104 assemblies had detectable signals of haplotigs but surface did not, so we removed
105 haplotigs from Molino and Tinaja using coverage cutoffs (100, 197, 250) and (30, 193,
106 250), respectively. Haplots represent assembled sequences that are essentially a copy of
107 the other haplotype and thus are removed to avoid redundancy in genome representation.
108 To perform scaffolding a sibling of the reference fish was used to generate and sequence
109 a HiC library developed with the Proximo Hi-C kit (Phase Genomics: Seattle, WA)
110 according to the manufacturers protocol. We next assembled the contigs into scaffolds
111 using a custom pipeline (see Code Availability) that aligns the Hi-C reads to the contigs
112 with bwa mem v0.7.17 (LI AND DURBIN 2009), postprocesses the alignments, and finally
113 scaffolds with SALSA v2.2 (GHURYE *et al.* 2019) and Juicebox (version 1.11.08)
114 (DURAND *et al.* 2016), as previously described (GHURYE AND POP 2019). We curated the
115 scaffolds using a combination of synteny and manual examination of the Hi-C heatmaps

116 (ROBINSON *et al.* 2018; RHIE *et al.* 2021; WARRENLAB. 2022). Agptools was used to
117 finalize chromosome assignments to be consistent with chromosome nomenclature of the
118 surface assembled genome reported in Warren *et al* (WARREN *et al.* 2021).

119 Chromosomes were numbered by aligned synteny to assembled chromosomes of the
120 previously assembled surface form of *A. mexicanus* (WARREN *et al.* 2021). The
121 completeness of gene representation was assessed using BUSCO v4.1.2
122 (Actinopterygii_odb10) (SIMAO *et al.* 2015).

123

124 *Whole genome interspecies and intraspecies analysis.* To better understand shared gene
125 organization with other teleost experimental models and across cave morphs, we first
126 built and visualized syntenic orthology of surface fish chromosomes (AstMex3) to widely
127 used fish experimental models including zebrafish (GRCz11), medaka (ASM223467v1),
128 and platyfish (*X. maculatus*-5.0) chromosomes using the Genespace R package (LOVELL
129 *et al.* 2022). Using the parse annotation function of Genespace we generated the gene bed
130 file from the gff files of each species. After files were parsed, formatted correctly and all
131 headers matched in the protein and gene bed file, we initiated Genespace as described in
132 Lovell (LOVELL *et al.* 2022). We repeated this same Genespace workflow per morph
133 compared to our surface fish assembly to evaluate possible assembly errors or natural
134 structural variation (SV).

135

136 *Gene annotation.* Gene annotation of all of our assemblies, in addition to the previously
137 assembled Pachón (IMARAZENE *et al.* 2021), was carried out by the use of the
138 standardized Ensembl workflows (AKEN *et al.* 2016). However, only the surface genome
139 described in this study was also annotated with the NCBI pipeline (PRUITT *et al.* 2014).
140 Numerous RNAseq data sets that exist in the NCBI sequence archive for surface and
141 cavefish from different tissue sources were used to improve the accuracy of protein-
142 coding and non-coding gene model builds. A full accounting of all gene annotations was
143 generated using AGAT v1.0.0 (J. 2020). We used standard parsing tools to compare lists
144 of gene symbols in all four annotations to one another. Here, we assumed homology of
145 matching gene symbols and ignored duplicates.

146

147 *Gene orthology.* To compare gene orthology with other vertebrates, we ran OrthoFinder
148 version 2.5.4 (EMMS AND KELLY 2019) on fifteen species total (Table 2). To mitigate the effect of multiple transcripts per gene, we used primary
149 transcripts (the longest version) only (Suppl. Table 2), per OrthoFinder recommendations
150 (EMMS AND KELLY 2019). MAFFT was used for multiple sequence alignment and
151 Fasttree for gene tree inference in the OrthoFinder analysis. We ran a secondary analysis
152 for comparison using IQtree for gene tree inference. We generated orthogroups across all
153 species which included protein sequences from primary transcripts of *A. mexicanus*
154 surface genome, zebrafish (*Danio rerio*), Japanese medaka (*Oryzias latipes*), platyfish
155 (*Xiphophorus maculatus*), spotted gar (*Lepisosteus oculatus*), eastern brown snake
156 (*Pseudonaja textilis*), common wall lizard (*Podarcis muralis*), chicken (*Gallus gallus*),
157 human (*Homo sapiens*), chimpanzee (*Pan troglodytes*), mouse (*Mus musculus*), rat
158 (*Rattus norvegicus*), gray short-tailed opossum (*Monodelphis domestica*), western clawed
159 frog (*Xenopus tropicalis*), and a tunicate, *Ciona intestinalis*, as the outgroup. These taxa
160 were chosen 1) because they all have available Ensembl annotations, thus easily
161 compatible with Orthofinder algorithms, and 2) establish an even phylogenetic sampling
162 across amniotes and anamniotes. In addition to the four teleosts, we include the spotted
163 gar because this species originated prior to the teleost whole genome duplication, making
164 it an important bridge for ortholog predictions between teleosts and other vertebrates
165 (BRAASCH *et al.* 2016). We collated orthogroups that contain *A. mexicanus* sequences
166 lacking gene symbols, so that gene symbol annotation can be inferred from that of other
167 members in the orthogroup.

169
170 *Structural variation analysis.* To initially estimate the distribution and number of SVs
171 present in these independently derived cave morph genomes we used Assemblytics 1.2.1
172 (NATTESTAD AND SCHATZ 2016), that estimates tandem or repeat sequence contractions
173 and expansions, as well as deletions or insertions when compared to the surface genome
174 (NATTESTAD AND SCHATZ 2016). This approach can reflect uniqueness to a cave morph
175 or similarity across morphs when compared to the surface genome. The nucmer
176 algorithm of MUMmer release 4.x (KURTZ *et al.* 2004) was run to align assemblies at
177 their contig level to minimize false positives (NATTESTAD AND SCHATZ 2016). The

178 resulting delta file was input into the Assemblytics browser and run using default
179 parameters: a unique contig sequence anchoring size of 10,000 bp, and the variants
180 classified by type and size ranging from 50-500 bp and 500-10,000 bp for plot
181 visualization.

182

183 **Results and Discussion**

184 *Chromosome-scale assembly of the surface and cavefish forms.* We generated reference
185 genomes from single lab-reared *A. mexicanus* surface or cave morphs that are descended
186 from varying Mexico localities, representing independent origins of the cave form from
187 Tinaja and Molino populations as well as a surface Río Choy population. We sequenced
188 and assembled each genome using SMRT CCS (circular consensus sequencing) with a
189 genome coverage depth of 27.4 to 46.2 (RUAN AND LI 2020) (Suppl. Table 1). The final
190 *de novo* assemblies resulted in ungapped assembly length ranges of 1.36-1.41 Gb, total
191 contigs of 123-292, and N50 contig lengths of 12-47Mb (Table 1). Using on average 200
192 million 150bp Hi-C reads for chromosome-scale scaffolding resulted in the generation of
193 25 total chromosomes for the surface and each cave morph. Due to the exceptional
194 contiguity of the surface assembly (47 Mb N50 contig length), we established the
195 chromosome structure of this assembly first, then investigated discrepancies of the other
196 cavefish assemblies using multiple pairwise alignments, including the recently published
197 long-read assembly of the Pachón morph (IMARAZENE *et al.* 2021). Few order or
198 orientation errors were found and corrected; however, three chromosomes with complete
199 orientation differences in all cave forms must be further investigated for possible curation
200 fixes (Suppl. Fig. 1). The surface genome contiguity surpassed all our cave morphs and,
201 to our knowledge, all long-read assembled teleost genomes to date found in the NCBI
202 assembly archive, including the zebrafish (fDanRer4.1). Across all assemblies, only 3.7
203 to 7.4% of sequences could not be properly assigned to chromosomes. These new
204 assemblies contribute 90 Mb in new sequence on average and show a substantial
205 reduction (25-fold) in assembly gaps, when evaluated against the prior version of the
206 surface fish genome (*A. mexicanus*-2.0; Table 1). Our surface assembly exhibits a high
207 level of contiguity and completeness, despite that the total interspersed repeats for the
208 surface genome was 45.8%, which is only slightly lower than zebrafish's 48.4% with a

209 similar estimated genome size of 1.4 Gb.

210

211 *Structural differences.* One question we wished to address was: is gene order highly
212 conserved among surface and cave morph chromosomes despite their demographic origin
213 differences (Fig. 1A) and up to 190,000 generations of cave morph divergence from their
214 surface ancestor (MORAN R.L. 2022). We find no major chromosomal discrepancies in
215 chromosome order when performing pairwise comparisons of the Pachon, Tinaja, or
216 Molino cave morphs to the representative surface fish ancestor (Suppl. Fig. 1). Also, of
217 interest was: are there examples of unexpected teleost interspecies conservation in
218 chromosome gene order that can aid future studies aimed at understanding cave morph
219 standing genetic variation. The alignments of all 25 *A. mexicanus* chromosomes to three
220 distantly related teleost genomes (zebrafish, platyfish, and medaka) using aligned genes
221 are expected to display patterns of organizational divergence dependent on their
222 phylogenetic relationships. Overall, 56% of *A. mexicanus* chromosomes display complex
223 genomic rearrangements relative to all three distantly related teleost species (Fig. 1B). In
224 one example, the largest *A. mexicanus* chr1 (134 Mb), aligns with four zebrafish
225 chromosomes: 5, 16, 20, and 24 (Fig. 1C), suggesting multiple fissions or fusions
226 occurred throughout teleost genome evolution. In contrast, there were some
227 chromosomes that are nearly syntenic for gene order, such as *A. mexicanus* chr14 versus
228 zebrafish chr17 (Fig. 1C). A separate pairwise alignment of the surface fish and zebrafish
229 genomes (*Danio rerio* GRCz11) support these findings of variable synteny (Suppl. Fig.
230 2). These teleost interspecies alignments confirm earlier studies, and highlight the
231 complex trajectory in the evolution of the teleost genome (VOLFF 2005) (BRAASCH *et al.*
232 2016).

233

234 *Gene annotation.* We first assessed the sequence completeness of the assemblies using
235 benchmarking universal single-copy ortholog (BUSCO) (SIMAO *et al.* 2015) scores and
236 found on average 96.8% of BUSCOs present in their complete and unfragmented form,
237 2.4% missing, and 1.3% duplicated (Suppl. Table 3). Protein-coding genes from all four
238 genomes were predicted using Ensembl (AKEN *et al.* 2016) with the average being
239 26,974. The surface genome was also annotated using the NCBI workflow, with small

240 differences in the total protein-coding genes count (Suppl. Table 4). In contrast, large
241 differences were seen in the surface genome pseudogene annotation, 1,376 versus 183,
242 when comparing the NCBI and Ensembl output (Suppl. Table 4). Interestingly, a small
243 increase in Ensembl predicted pseudogenes in cave morphs compared to the surface is
244 observed (Suppl. Table 4) apart from Pachon. The correct annotation of pseudogenes
245 “non-functional” genes across species is a persistent problem, and especially deserves
246 further attention in cave species genomes given its importance in understanding
247 troglomorphic genetic adaptation (HARRISON 2021). While all these newly annotated *A.*
248 *mexicanus* genomes are improved over prior assemblies (WARREN *et al.* 2021), estimates
249 of non-coding genes were substantially improved (a 36-fold increase; Suppl. Table 4),
250 owing mostly to improved assembly contiguity and accuracy. In total, all these surface
251 and cave morph gene sets show Molino, Tinaja, and Surface have similar numbers of
252 mRNAs, exons, CDSs, and total CDS lengths, but in most comparisons, the increased
253 surface genome contiguity resulted in improved gene annotation, supporting the use of
254 AstMex3_surface as the standard reference for future *A. mexicanus* computational
255 experiments (Suppl. Table 5).

256 In pairwise comparisons, the surface genome had 1,041, 978, and 1,054 gene
257 symbols not found in Pachon, Molino, and Tinaja annotations, respectively (Suppl. Table
258 6). Similarly, each cave population had over 800 gene symbols not found in the surface
259 genome.

260
261 *Gene Orthology.* We targeted a specific span of model species across the vertebrate
262 phylogeny to classify potential orthologs (Fig. 2A). By analyzing all detected gene
263 ortholog relationships, we were able to better understand the utility of *A. mexicanus* for
264 comparative inference across aquatic models and other vertebrates (Fig. 2B). In the
265 OrthoFinder analysis, 95% of all genes were assigned to 20,612 orthogroups (Suppl.
266 Table 7; Fig. 2C). Fifty percent of genes assigned to orthogroups are in orthogroups of 19
267 genes or more, and over 25% of orthogroups contained all species (n = 5,285) (Fig. 2D),
268 of which 20.8% are single copy orthogroups (n = 1,097) (Suppl. Table 7; Fig. 2E). An
269 additional 14.4% of orthogroups (n = 2,988) contained at least one copy from every
270 vertebrate species and zero copies from the outgroup (Fig. 2B). All vertebrates had >96%

271 of their genes assigned to orthogroups (Fig. 2C; Suppl. Table 8). The outgroup, *C.*
272 *intestinalis*, had 66.8% of genes assigned to orthogroups (Suppl. Table 8). For *A.*
273 *mexicanus*, 96.3% of genes were assigned to orthogroups (Suppl. Table 8). We found
274 more one to one orthologs of *A. mexicanus* with humans than for zebrafish with humans
275 (n = 6,341 and n = 5,118, respectively; Fig. 2E). We identified 378 orthogroups between
276 *A. mexicanus* and humans that lack zebrafish orthologs (Fig. 2E). Overall, more
277 orthogroups contain genes from *A. mexicanus* and humans (n = 11,444) than zebrafish
278 and humans (n = 11,272). Addressing specifically orthologous relationships, 16,582
279 human genes (70.5%) have an ortholog with *A. mexicanus*, whereas 16,221 human genes
280 (68.9%) have an ortholog with *Danio rerio*. These findings increase the breadth of
281 orthologs available in an alternative fish model for comparative trait dissection. Zebrafish
282 have more many-to-one and many-to-many orthologs with humans and more species-
283 specific orthogroups than *A. mexicanus* (n = 245 and n = 157, respectively; Fig. 2E). In
284 general, the availability of higher-quality genome assemblies is revealing teleost whole
285 genome duplication to be a pervasive source of genetic variation across these taxa
286 (ALBALAT AND CANESTRO 2016), and understanding the main evolutionary forces
287 impacting *A. mexicanus* gene losses or gains is beyond the scope of this study (ADRIAN-
288 KALCHHAUSER *et al.* 2020). In identifying orthologs, we also estimated the number of
289 duplications across the species tree, both at the tips and internal nodes which could
290 represent differential genome fractionation across lineages stemming from the teleost
291 whole genome duplication or lineage-specific duplications. At the base of teleosts, our
292 analysis identified 2,451 duplicates. In the tip branches of teleosts, we identified 2,647,
293 2,825, 4,812, and 8,509 duplicates for *X. maculatus*, *O. latipes*, *A. mexicanus*, and *D.*
294 *rerio*, respectively. We suspect that teleost whole genome duplication, annotation bias,
295 phylogenetic sampling, and multiple evolutionary events or forces underpin these results.
296 Five orthogroups (OG0000022, OG0000023, OG0000045, OG0000050, and
297 OG0000086) each have over 100 genes from *A. mexicanus*. These uniquely large copy
298 numbers suggest that these genes experienced unique evolutionary pressures in *A.*
299 *mexicanus*. The orthogroup with the largest number of *A. mexicanus* gene copies is
300 OG0000022 (n = 215). This group and the group with the second largest number of *A.*
301 *mexicanus* genes, OG0000023 (n = 205), are dominated by *A. mexicanus* zinc finger

302 proteins. Additional studies using independent tests of gene family expansions and
303 contractions, such as CAFE (Mendes et al. 2021), will be needed to truly resolve
304 duplication events prior to explorations of their functional roles in the *A. mexicanus* cave
305 adaptation. We provide gene symbols for human and *A. mexicanus* orthologs as a
306 resource for comparative studies (Suppl. Table 9). These *A. mexicanus* protein-coding
307 gene resources further efforts to improve genome annotation for *A. mexicanus*, offering
308 another aquatic model beyond zebrafish for human comparative studies. Future research
309 to identify gene duplicates, pseudogenization events, and nonsynonymous protein coding
310 changes unique to *A. mexicanus* within a framework of surface and independent cave
311 morphs will address hypotheses about how this species was adaptable to extreme
312 environmental change.

313

314 *Structural variation.* Cave morphs display many phenotypic differences from their
315 surface ancestor that motivated us to evaluate genome evolution on a finer scale beyond
316 chromosomal gene order evaluated herein and prior studies that have focused on protein-
317 coding gene changes (WARREN et al. 2021) (MORAN R.L. 2022). Discovery of SVs
318 among cave morphs compared to surface has only been estimated using short reads to a
319 less contiguous reference genome (WARREN et al. 2021). To evaluate moderately-sized
320 SVs (50 to 10,000 bp) among these cave morphs compared to the surface genome, we
321 estimated the presence of deletions, insertions, and contractions and expansions of
322 repeats using Assemblytics (NATTESTAD AND SCHATZ 2016). The number of insertions
323 and deletions shows comparable total bases affected across these cave morphs relative to
324 surface regardless of their sequence length distribution (500-10,000 bp Fig. 3; 50-500 bp
325 Suppl. Fig. 3; Suppl. Table 10). The average total size of detected cave morph deletions
326 and insertions was 19.4 MB (1.42% of the genome size) when aligned to the surface
327 genome (Suppl. Table 10). SV divergences unique to each cave morph were also evident.
328 For example, the Tinaja morph had the highest total sequence size for all insertions (12.9
329 MB), followed by Pachón (12.8 Mb) and Molino (10.8 Mb) (Suppl. Table 10). Similarly
330 for all deletions, Tinaja was highest (7.54 MB), then Pachón (7.10 Mb), and Molino
331 (7.08 Mb) (Suppl. Table 10). Interestingly, total inserted sequence by size distribution
332 changes cave morph order with Pachón (9.9 Mb) having the largest amount for the 500 to

333 10,000 bp range followed by Tinaja (9.7 Mb) (Suppl. Table 10). When evaluating the
334 cave morph repeat landscape, we find an even larger percentage of the genome impacted
335 relative to insertions and deletions, with the average repeat expansion or contraction
336 being 3.05 and 2.91% of the total genome, respectively (Suppl. Table 10). These broadly
337 classified SV and repeat results highlight their differences vary by category and cave
338 morph origin, which may be the result of numerous factors, including assembly
339 completeness and accuracy, mixed haplotype assembly architecture, and the diversified
340 origins of each cave morph reference (HERMAN *et al.* 2018).

341

342 *Study conclusions.* The surface-to-cave genomic transitions that occurred in *A. mexicanus*
343 establish a unique model for the study of natural polygenic trait adaptation. Here, we
344 provide initial evidence that these more complete genomes will substantially advance our
345 capability to resolve these signatures of genetic adaption. The availability of nearly
346 complete genome copies of a surface and the independently evolved cave morphs will
347 drive future reevaluations of all types of segregating single nucleotide variants and SVs
348 in a pangenome-dependent manner (SIREN *et al.* 2021).

349

350

351

352 **Acknowledgments.** We thank the Stowers aquatics group for fish care and help with
353 shipments of fish samples. AK, SEM, NR are supported by NIH 1R01GM127872-01.
354 This work was also supported by NIH R24OD011198 to WCW, AK, NR. NSF EDGE
355 Award 1923372 to NR, SEM, and NSF IOS-1933428 to SEM, NR. Some computation
356 for this work was performed on the high-performance computing infrastructure provided
357 by Research Computing Support Services and in part by the National Science Foundation
358 under grant number CNS-1429294 at the University of Missouri, Columbia MO. The
359 Minnesota Supercomputing Institute (MSI) at the University of Minnesota provided
360 resources that contributed to the research results reported within this paper.

361

362

363 **Data availability.** All raw and processed data for this study are available by querying
364 NCBI BioProject accession numbers PRJNA807270, PRJNA819394, and
365 PRJNA819399. In addition, each assembly is available under GenBank numbers
366 GCA_023375975.1, GCA_023375835.1, and GCA_023375845.1. The full availability of
367 orthofinder results are attainable on figshare.

368
369 **Code availability.** Scripts used for this study are available at the following GitHub
370 repositories:
371 <https://github.com/esrice/hic-pipeline>
372 <https://github.com/WarrenLab/purge-haplotigs-nf>
373 <https://github.com/WarrenLab/agptools>

374
375

376 **Literature cited**

377

378 Adrian-Kalchhauser, I., A. Blomberg, T. Larsson, Z. Musilova, C. R. Peart *et al.*, 2020
379 The round goby genome provides insights into mechanisms that may
380 facilitate biological invasions. *BMC Biol* 18: 11.

381 Aken, B. L., S. Ayling, D. Barrell, L. Clarke, V. Curwen *et al.*, 2016 The Ensembl gene
382 annotation system. *Database* 2016.

383 Albalat, R., and C. Canestro, 2016 Evolution by gene loss. *Nat Rev Genet* 17: 379-391.

384 Aspiras, A. C., N. Rohner, B. Martineau, R. L. Borowsky and C. J. Tabin, 2015
385 Melanocortin 4 receptor mutations contribute to the adaptation of cavefish
386 to nutrient-poor conditions. *Proc Natl Acad Sci U S A* 112: 9668-9673.

387 Bilandžija, H., Hollifield, B., Steck, M., Meng, G., Ng, M., Koch, A.D., Gračan, R., Ćetković,
388 H., Porter, M.L., Renner, K.J., Jeffery, W.R., 2019 Phenotypic plasticity as an
389 important mechanism of cave colonization and adaptation in *Astyanax*
390 cavefish. *bioRxiv*.

391 Braasch, I., A. R. Gehrke, J. J. Smith, K. Kawasaki, T. Manousaki *et al.*, 2016 The
392 spotted gar genome illuminates vertebrate evolution and facilitates human-
393 teleost comparisons. *Nat Genet* 48: 427-437.

394 Cheng, H., G. T. Concepcion, X. Feng, H. Zhang and H. Li, 2021 Haplotype-resolved de
395 novo assembly using phased assembly graphs with hifiasm. *Nat Methods* 18:
396 170-175.

397 Chernyavskaya, Y., X. Zhang, J. Liu and J. Blackburn, 2022 Long-read sequencing of
398 the zebrafish genome reorganizes genomic architecture. *BMC Genomics* 23:
399 116.

400 Du, K., M. Pippel, S. Kneitz, R. Feron, I. da Cruz *et al.*, 2022 Genome biology of the
401 darkedged splitfin, *Girardinichthys multiradiatus*, and the evolution of sex
402 chromosomes and placentation. *Genome Res* 32: 583-594.

403 Duboue, E. R., A. C. Keene and R. L. Borowsky, 2011 Evolutionary convergence on
404 sleep loss in cavefish populations. *Curr Biol* 21: 671-676.

405 Durand, N. C., J. T. Robinson, M. S. Shamim, I. Machol, J. P. Mesirov *et al.*, 2016
406 Juicebox Provides a Visualization System for Hi-C Contact Maps with
407 Unlimited Zoom. *Cell Syst* 3: 99-101.

408 Emms, D. M., and S. Kelly, 2019 OrthoFinder: phylogenetic orthology inference for
409 comparative genomics. *Genome Biol* 20: 238.

410 Ghurye, J., and M. Pop, 2019 Modern technologies and algorithms for scaffolding
411 assembled genomes. *PLoS Comput Biol* 15: e1006994.

412 Ghurye, J., A. Rhie, B. P. Walenz, A. Schmitt, S. Selvaraj *et al.*, 2019 Integrating Hi-C
413 links with assembly graphs for chromosome-scale assembly. *PLoS Comput
414 Biol* 15: e1007273.

415 Guan, D., S. A. McCarthy, J. Wood, K. Howe, Y. Wang *et al.*, 2020 Identifying and
416 removing haplotypic duplication in primary genome assemblies.
417 *Bioinformatics* 36: 2896-2898.

418 Harrison, P. M., 2021 Computational Methods for Pseudogene Annotation Based on
419 Sequence Homology. *Methods Mol Biol* 2324: 35-48.

420 Herman, A., Y. Brandvain, J. Weagley, W. R. Jeffery, A. C. Keene *et al.*, 2018 The role of
421 gene flow in rapid and repeated evolution of cave-related traits in Mexican
422 tetra, *Astyanax mexicanus*. *Mol Ecol* 27: 4397-4416.

423 Imarazene, B., K. Du, S. Beille, E. Jouanno, R. Feron *et al.*, 2021 A supernumerary "B-
424 sex" chromosome drives male sex determination in the Pachon cavefish,
425 *Astyanax mexicanus*. *Curr Biol* 31: 4800-4809 e4809.

426 J., D., 2020 AGAT: Another Gff Analysis Toolkit to handle annotations in any
427 GTF/GFF format., pp. in *Zenodo*.

428 Jarvis, E. D., G. Formenti, A. Rhie, A. Guaracino, C. Yang *et al.*, 2022 Semi-automated
429 assembly of high-quality diploid human reference genomes. *Nature* 611: 519-
430 531.

431 Kurtz, S., A. Phillippy, A. L. Delcher, M. Smoot, M. Shumway *et al.*, 2004 Versatile and
432 open software for comparing large genomes. *Genome Biol* 5: R12.

433 Li, H., and R. Durbin, 2009 Fast and accurate short read alignment with Burrows-
434 Wheeler transform. *Bioinformatics* 25: 1754-1760.

435 Lovell, J. T., A. Sreedasyam, M. E. Schranz, M. Wilson, J. W. Carlson *et al.*, 2022
436 GENESPACE tracks regions of interest and gene copy number variation
437 across multiple genomes. *Elife* 11.

438 McGaugh, S. E., J. E. Kowalko, E. Duboue, P. Lewis, T. A. Franz-Odendaal *et al.*, 2020
439 Dark world rises: The emergence of cavefish as a model for the study of
440 evolution, development, behavior, and disease. *J Exp Zool B Mol Dev Evol*
441 334: 397-404.

442 Moore, B., M. Herrera, E. Gairin, C. Li, S. Miura *et al.*, 2023 The chromosome-scale
443 genome assembly of the yellowtail clownfish *Amphiprion clarkii* provides
444 insights into the melanic pigmentation of anemonefish. *G3 (Bethesda)* 13.

445 Moran R.L., R., E.J., Ornelas-García, C.P., Gross, J.B., Donny, A., Wiese, J., Keene, A.C.,
446 Kowalko, J.E., Rohner, N., McGaugh, S.E., 2022 Selection-driven trait loss in
447 independently evolved cavefish populations. *bioRxiv*.

448 Nattestad, M., and M. C. Schatz, 2016 Assemblylytics: a web analytics tool for the
449 detection of variants from an assembly. *Bioinformatics* 32: 3021-3023.

450 Ojha, A., and M. Watve, 2018 Blind fish: An eye opener. *Evol Med Public Health* 2018:
451 186-189.

452 Pruitt, K. D., G. R. Brown, S. M. Hiatt, F. Thibaud-Nissen, A. Astashyn *et al.*, 2014
453 RefSeq: an update on mammalian reference sequences. *Nucleic Acids Res* 42:
454 D756-763.

455 Rautiainen, M., S. Nurk, B. P. Walenz, G. A. Logsdon, D. Porubsky *et al.*, 2023
456 Telomere-to-telomere assembly of diploid chromosomes with Verkko. *Nat
457 Biotechnol.*

458 Rhie, A., S. A. McCarthy, O. Fedrigo, J. Damas, G. Formenti *et al.*, 2021 Towards
459 complete and error-free genome assemblies of all vertebrate species. *Nature*
460 592: 737-746.

461 Roberts, M. B., D. T. Schultz, R. Gatins, M. Escalona and G. Bernardi, 2023
462 Chromosome-level genome of the three-spot damselfish, *Dascyllus
463 trimaculatus*. *G3 (Bethesda)* 13.

464 Robinson, J. T., D. Turner, N. C. Durand, H. Thorvaldsdottir, J. P. Mesirov *et al.*, 2018
465 Juicebox.js Provides a Cloud-Based Visualization System for Hi-C Data. *Cell Syst* 6: 256-258 e251.
466
467 Rohner, N., 2018 Cavefish as an evolutionary mutant model system for human
468 disease. *Dev Biol* 441: 355-357.
469 Ruan, J., and H. Li, 2020 Fast and accurate long-read assembly with wtdbg2. *Nat Methods* 17: 155-158.
470
471 Simao, F. A., R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva and E. M. Zdobnov,
472 2015 BUSCO: assessing genome assembly and annotation completeness with
473 single-copy orthologs. *Bioinformatics* 31: 3210-3212.
474 Siren, J., J. Monlong, X. Chang, A. M. Novak, J. M. Eizenga *et al.*, 2021 Pangenomics
475 enables genotyping of known structural variants in 5202 diverse genomes.
476 *Science* 374: abg8871.
477 Stockdale, W. T., M. E. Lemieux, A. C. Killen, J. Zhao, Z. Hu *et al.*, 2018 Heart
478 Regeneration in the Mexican Cavefish. *Cell Rep* 25: 1997-2007 e1997.
479 Wolff, J. N., 2005 Genome evolution and biodiversity in teleost fish. *Heredity (Edinb)*
480 94: 280-294.
481 Warren, W. C., T. E. Boggs, R. Borowsky, B. M. Carlson, E. Ferrufino *et al.*, 2021 A
482 chromosome-level genome of *Astyanax mexicanus* surface fish for comparing
483 population-specific genetic differences contributing to trait evolution. *Nat Commun* 12: 1447.
484
485 Warrenlab., 2022 Nextflow workflow for purging haplotigs from a genome assembly.

486 **Author notes**

487 **Competing interests.** The authors declare no competing interests.

488

489 Figure legends

490 Figure 1. Summary of interspecies chromosomal synteny. A. Geographical representation
491 of the independent cave morph populations and their physical appearance used in this
492 study. Image courtesy of Alex Keene. B. Gene ortholog synteny of *A. mexicanus* against
493 three teleost species. C. Higher resolution image of *A. mexicanus* (surface genome)
494 aligned to the same three teleost species in B.

495

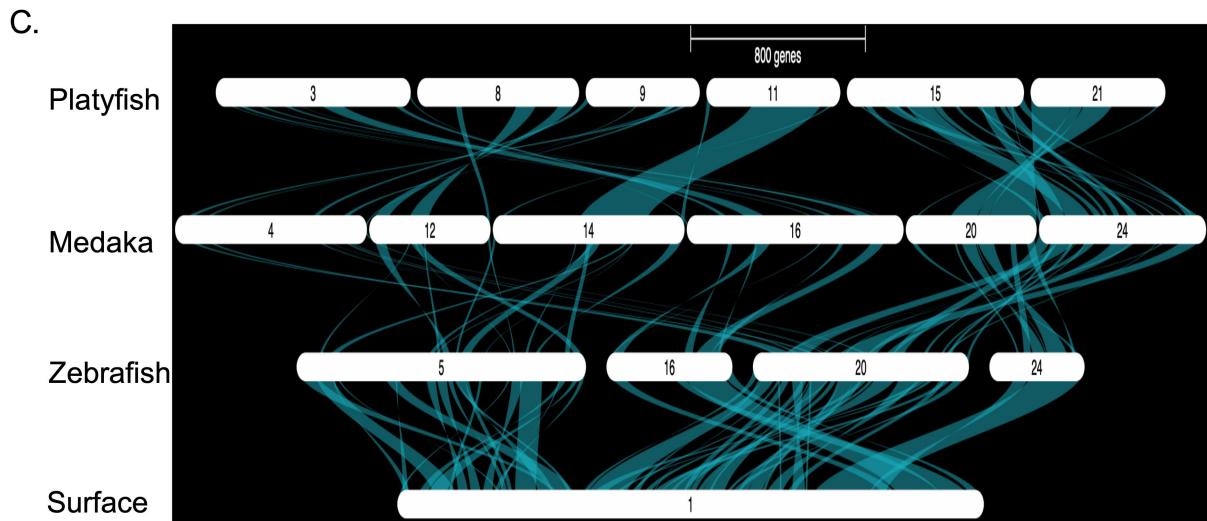
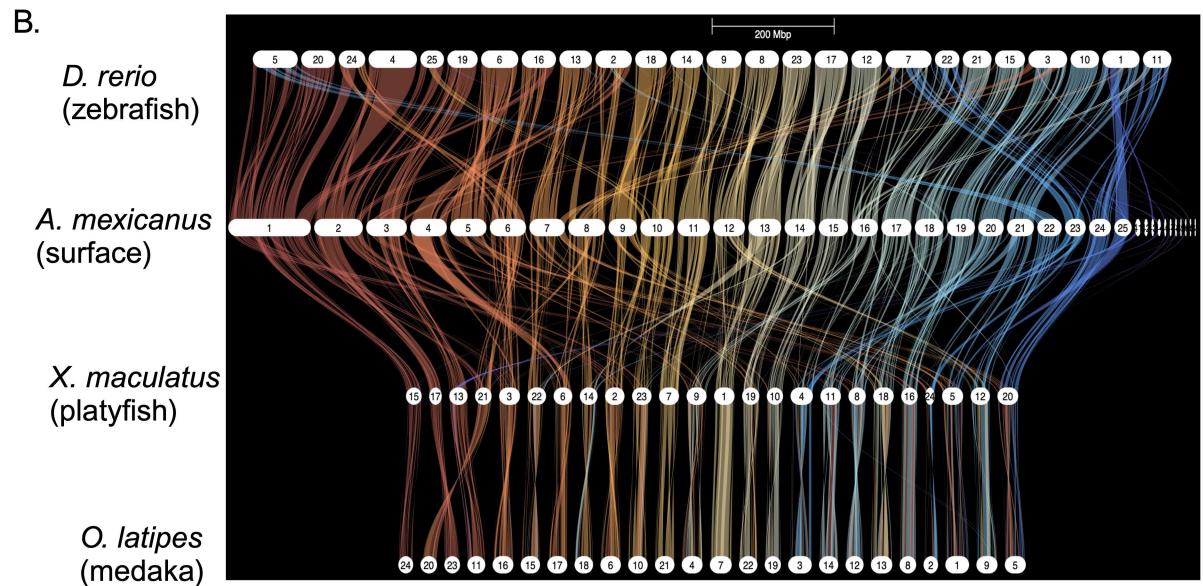
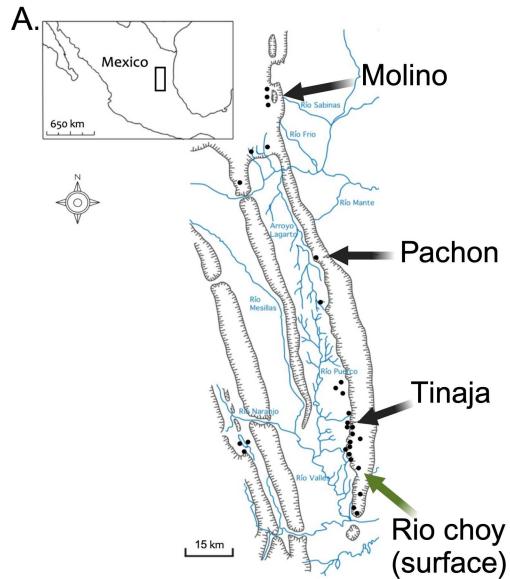
496 Figure 2. Summary of OrthoFinder analysis of vertebrate species *Astyanax mexicanus*,
497 *Danio rerio*, *Oryzias latipes*, *Xiphophorus maculatus*, *Lepisosteus oculatus*, *Pseudonaja*
498 *textilis*, *Podarcis muralis*, *Gallus gallus*, *Homo sapiens*, *Pan troglodytes*, *Mus musculus*,
499 *Rattus norvegicus*, *Monodelphis domestica*, *Xenopus tropicalis*, and *Ciona*
500 *intestinalis*. Bar charts describe data for each species, aligned to the matching species in
501 the tree. A. Phylogenetic tree built with all species using shared gene orthologs. B.
502 Number of orthogroups each classified by type per species. C. Percentage of genes by
503 orthogroups by species. D. Number of species-specific orthogroups per species. E.
504 Ortholog multiplicities for all species.

505

506

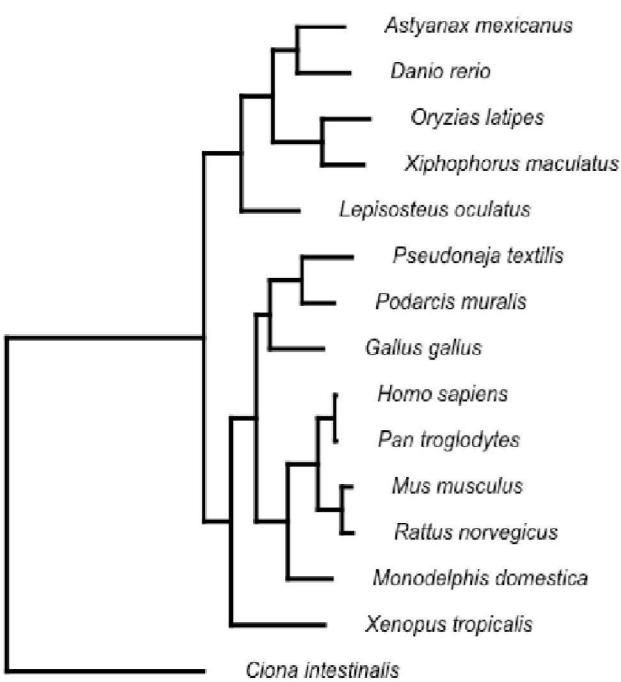
507 Figure 3. Genomic structural variation among *A. mexicanus* cave morph assemblies when
508 compared to surface. Cave morph specific distribution by counts for A. Molino, B.
509 Tinaja, and C. Pachón for the size distribution of 500 to 10,000 bp.

510

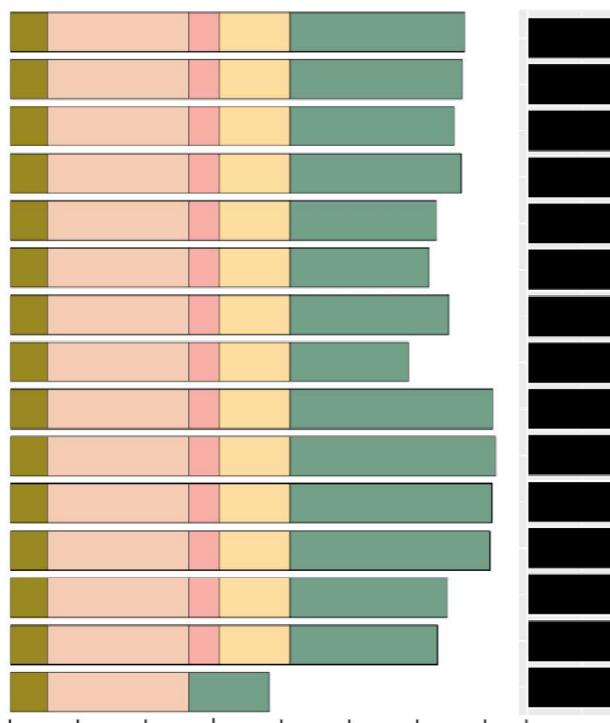



511

512 Table 1. Representative genome assembly metrics for sequenced *A. mexicanus* genomes.

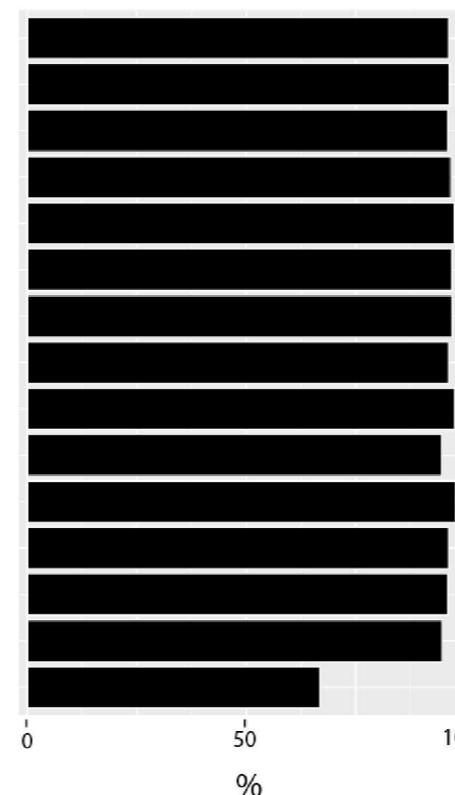
Common name	Assembled version	Total size Mb	Total contigs	Contig N50 length Mb	Unplaced Mb
Surface	Astyanax mexicanus-2.0	1,291	3,030	1.7	394
Río Choy Surface	AstMex3_surface	1,373	123	47	51
Molino	AstMex3_Molino	1,361	252	12	101
Tinaja	AstMex3_Tinaja	1,410	292	26	78
Pachón	AMEX_1.1	1,378	529	14.8	29


513

514



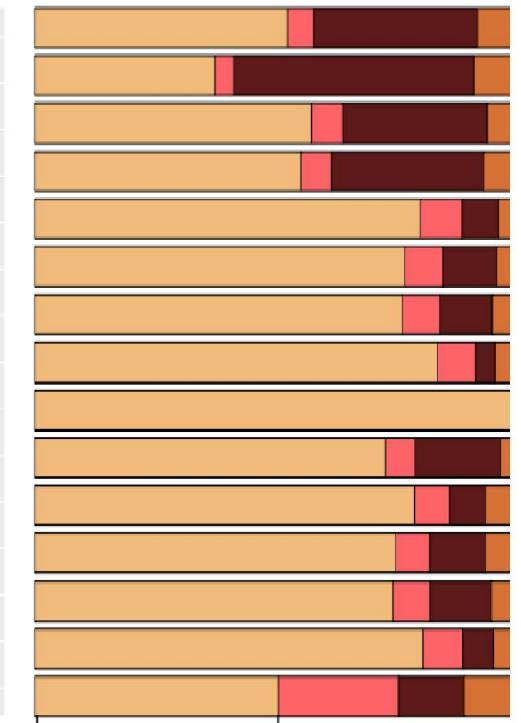
A.


Species Tree

B.

Orthogroup Types

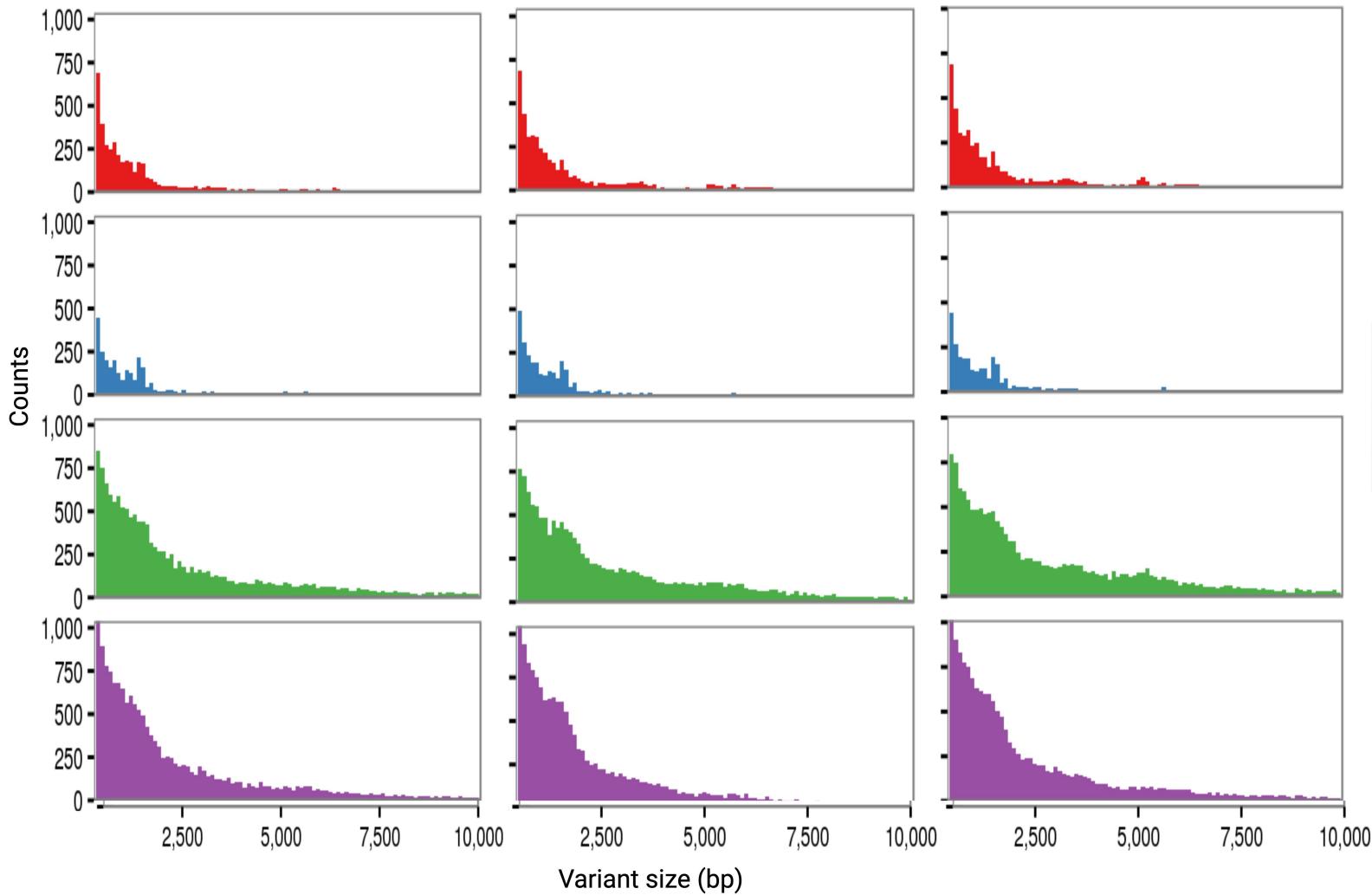
C.


% Genes in Orthogroups

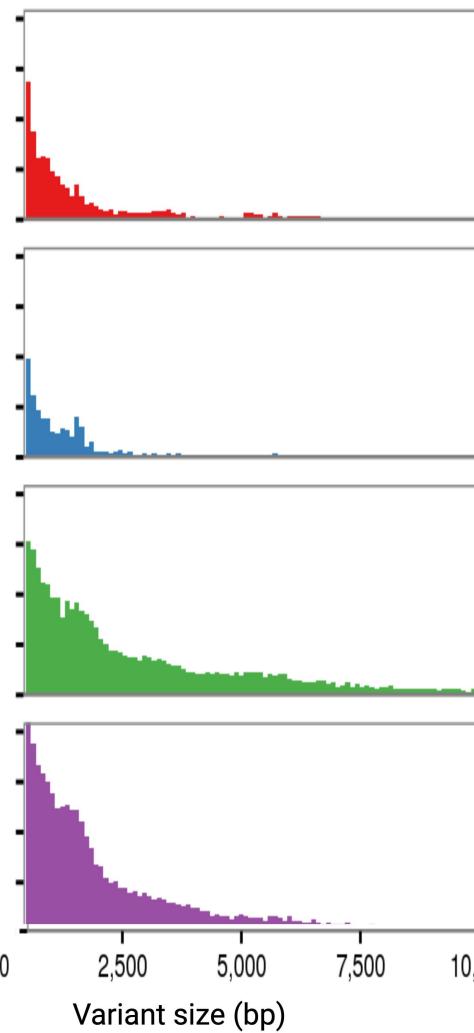
D.

Species-Specific Orthogroups

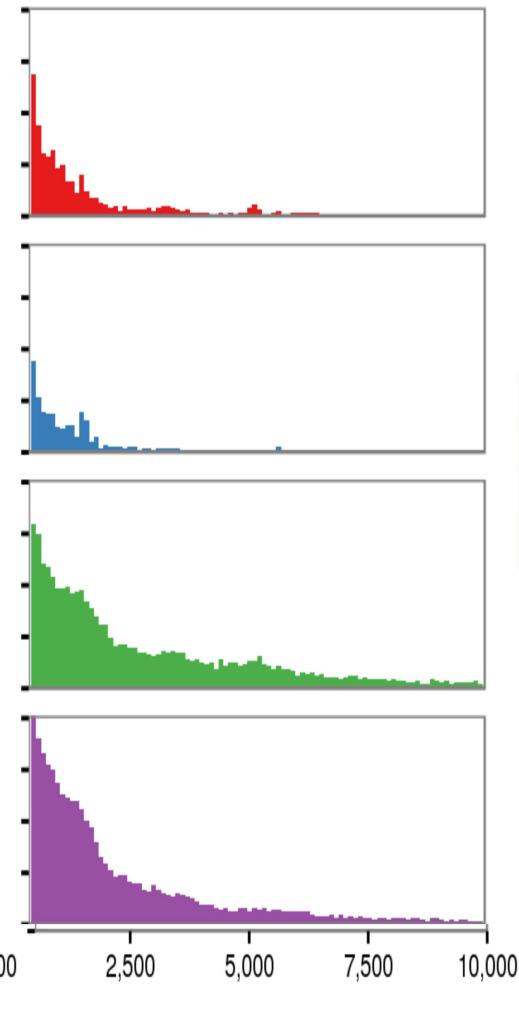
E.


Multiplicity

Homo sapiens


■ 1:1 OGs with all species present
 ■ other OGs with all species present
 ■ vertebrates only 1:1 OGs
 ■ other OGs with all vertebrates present
 ■ other OGs containing species

■ 1 : 1
 ■ 1 : many
 ■ many : 1
 ■ many : many


A. Molino

B. Tinaja

C. Pachon

- Insertions
- Deletions
- Repeat expansion
- Repeat contraction