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Abstract 

Real-time fMRI neurofeedback (rtfMRI-NF) has emerged as a promising intervention for 

psychiatric disorders, yet its clinical efficacy remains underexplored due to limited controls and 

an incomplete mechanistic understanding. This study aimed to elucidate the whole-brain 

mechanisms underpinning the effects of rtfMRI-NF on repetitive negative thinking in depression. 

In a double-blind randomized controlled trial, forty-three depressed individuals underwent NF 

training targeting the functional connectivity (FC) between the posterior cingulate cortex and the 

right temporoparietal junction, linked to rumination severity. Participants were randomly 

assigned to active or sham groups, with the sham group receiving synthesized feedback 

mimicking real NF signal patterns. The active group demonstrated a significant reduction in 

brooding rumination scores (p<0.001, d=-1.52), whereas the sham group did not (p=0.503, d=-

0.23). While the target FC did not show discernible training effects or group differences, we 

found that the interaction between brain activities during regulation and the response to the 

feedback signal was the critical factor in explaining treatment outcomes. Connectome-based 

predictive modeling (CPM) analysis, incorporating this interaction, successfully predicted 

rumination changes across both groups. The FCs significantly contributing to the prediction 

were distributed across broad brain regions, notably the frontal control, salience network, and 

subcortical reward processing areas. These results underscore the importance of considering 

the interplay between brain regulation activities and brain response to the feedback signal in 

understanding the therapeutic mechanisms of rtfMRI-NF. The study not only affirms the 

potential of rtfMRI-NF as a therapeutic intervention for repetitive negative thinking in depression 

but also highlights the need for a more nuanced understanding of the whole-brain mechanisms 

contributing to its efficacy. 
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Introduction 

Real-time fMRI neurofeedback (rtfMRI-NF) - a technique that enables participants to self-

regulate functional brain activation - is considered a potential intervention for psychiatric 

disorders. Applied across various psychiatric conditions, this method's feasibility for self-

regulation of brain activation and its promising impact on symptom management are supported 

by numerous meta-analyses 1-9. Nevertheless, the clinical efficacy of rtfMRI-NF remains to be 

confirmed, as the majority of studies are preliminary, characterized by small sample sizes, the 

absence of stringent control conditions, and a partial understanding of the mechanisms of 

action. Overcoming these research gaps to ascertain the specific efficacy of NF treatments is an 

area of significant interest. 

One strength of rtfMRI-NF is its ability to provide deep insights into whole-brain functional 

processes during self-regulation, extending beyond the targeted brain signal 10. Crucially, whole-

brain analysis of rtfMRI-NF data is instrumental in decoding the mechanisms of action that 

underpin NF training. Emerging research has revealed diverse brain activities implicated in NF-

mediated self-regulation, indicating that NF training encompasses a whole-brain process 

involving prefrontal control regions, the salience network, and reward processing areas 11-14. 

Given that NF training might entail a reinforcement learning process 15, 16, examining brain 

activation in response to feedback signals is a valuable method for shedding light on the 

learning mechanisms driving self-regulation through NF. Investigations into brain responses to 

feedback signals have highlighted the pivotal roles of both prefrontal control regions and 

reward-responsive areas in NF-mediated self-regulation training 14, 17, 18. Significantly, the 

regions engaged during NF training and in response to feedback signals coincide with those 

involved in general skill acquisition 19 and emotion regulation tasks 20, 21. Moreover, these areas 

continue to be active even when a sham NF signal is administered, with participants 

unknowingly trying to control the feedback signal 20, 21. Consequently, these activations appear 
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to represent attempts to modulate the feedback, irrespective of the training outcome. Therefore, 

pinpointing brain activations or connectivity patterns that foretell the success of training is still 

challenging. 

The current study explores the whole-brain mechanisms underlying NF treatment, utilizing data 

from a prior double-blind, randomized controlled trial (RCT) 22. This earlier study demonstrated a 

significant decrease in symptoms of repetitive negative thinking exclusively in the active group 

following connectivity NF training, but not in the sham control group. Specifically, our study 

concentrated on the reduction of symptoms as the primary outcome of NF training, rather than 

on the self-regulation of the targeted brain signal. This approach contrasts with many studies 

that aim to elucidate the mechanisms of NF training, which have focused on identifying the 

neural substrates underpinning the acquisition of self-regulation of the target brain signal.  

The investigation into neural substrates of self-regulation may be justified if we assume that 

regulating the targeted brain signal facilitates changes in cognitive function or the symptoms of 

a disorder, thus rendering successful regulation essential for an effective intervention. However, 

this assumption is susceptible to the counterargument that other brain activities concurrently 

altered by training could be the drivers of behavioral changes, as posited by Kvamme, Ros 23. 

Because rtfMRI-NF training relies on the endogenous effort to self-regulate the signal and 

because participants cannot perceive the specific brain activation the feedback signal 

represents, the specificity of the NF intervention cannot be guaranteed. Kvamme, Ros 23 argue 

that we should not automatically assume a causal relationship between self-regulation of the 

target brain signal and the resultant behavioral outcomes. Corroboratively, research examining 

brain activations responsible for PTSD symptom amelioration post left amygdala upregulation 

training via rtfMRI-NF 24 revealed that activity in the dorsomedial prefrontal cortex (dmPFC) and 

middle cingulate cortex4not the amygdala4mediated symptom reduction. This indicates that 

the therapeutic effects may be attributed to brain activations beyond the intended target area.  
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Furthermore, symptomatic or behavioral improvements can occur independently of detectable 

changes in the targeted brain signal during training. Although the feedback signal is designed to 

reflect successful self-regulation, the desired training effect may not always be apparent in the 

targeted region, as evidenced by several neurofeedback studies. For example, Sukhodolsky, 

Walsh 25 utilized rtfMRI-NF to target the supplementary motor area (SMA) in adolescents with 

Tourette syndrome and noted significant symptom improvement in the active neurofeedback 

group, absent in the sham control group, despite a lack of significant SMA activation changes. 

Similarly, our earlier research 22 showed that neurofeedback aimed at enhancing the functional 

connectivity between the posterior cingulate cortex (PCC) and the right temporoparietal junction 

(rTPJ) markedly decreased rumination in depressed participants of the active group, with no 

corresponding change in the sham group, and without a notable difference in the targeted 

connectivity. Crucially, both studies implemented a stringent RCT methodology to ensure the 

effects were attributable to the neurofeedback. These results collectively imply that a 

comprehensive, whole-brain perspective may be essential to fully grasp the therapeutic 

mechanisms of rtfMRI-NF. 

Consequently, the current study investigates the whole-brain mechanism of NF treatment by 

using data from our previous study 22. Our approach employs machine learning predictive 

modeling focusing on two distinct functional connectivity patterns: one during the self-regulation 

task and the other in response to neurofeedback signals. We use connectome-based predictive 

modeling (CPM) 26 to establish the relationship between these patterns and treatment outcome. 

By aggregating univariate features, multivariate predictive modeling techniques such as CPM 

can enhance both the sensitivity and robustness of predictions 27-29. We also examined the 

interplay between connectivity patterns during the task and in response to neurofeedback as a 

potential predictor of treatment success. Given the absence of significant differences in target 

connectivity between the active and sham groups and the consistent control of feedback signal 
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amplitude, the key difference between the conditions may lie in the fidelity of the feedback to the 

participants' actual brain activity. Thus, the interaction between brain activation and feedback 

signals could be critical in explaining the variance in symptom reduction observed between the 

groups. 

Methods 

Participants 

We analyzed the data of the previous NF study for a treatment of repetitive negative thinking in 

depressed participants 22. The original study was registered on ClinicalTrials.gov 

(NCT04941066). In the study, forty-three individuals with Major Depressive Disorder (MDD) 

between 18 and 65 years of age were enrolled. The participants met the fifth edition of the 

Diagnostic and Statistical Manual of Mental Disorders (DMS-5) criteria for unipolar MDD. 

Further details of the inclusion and exclusion criteria were shown in Tsuchiyagaito, Misaki 22, 

and the CONSORT diagram is in the Supplementary Information (SI). All participants provided 

written informed consent. The study protocol was reviewed and approved by the WCG IRB 

(https://www.wcgirb.com) (IRB Tracking Number 20210286). 

Neurofeedback session procedures 

Detailed procedures are described in the SI. Here, we provide an overview of the procedure. 

The participants were divided into the active (N=22) and sham (N=21) groups randomly. The 

active group received the NF of functional connectivity between the PCC and the rTPJ regions. 

The sham group received a feedback signal artificially synthesized to mimic the temporal 

probabilistic structure of the real NF signal in the active group. 

Beyond employing an RCT design, the study offered several advantages for controlling the non-

specific effects of neurofeedback training. Strict double-blinding was achieved by having a 
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separate researcher remotely set up the experimental application, who did not interact with 

either the participants or the experimenter who engaged with the participants during the study. 

The sham neurofeedback signal was carefully designed to mimic the genuine neurofeedback 

signal in terms of reinforcement frequency and temporal pattern. The sham signal was 

controlled to avoid any unintended correlation with the target brain signal monitored in real-time. 

A post-session questionnaire confirmed that participants were unaware of their group 

assignment 22. Moreover, comprehensive real-time fMRI processing for noise reduction 

including physiological noise 30 ensured that the neurofeedback signal was free of confounding 

variables unrelated to brain activation, a critical consideration given that connectivity 

neurofeedback is known to be susceptible to physiological noise 31. The study confirmed that 

these confounding variables were effectively eliminated through comprehensive real-time fMRI 

processing 32, 33. 

There were three consecutive NF training runs in the single session for each subject. Each NF 

training run was 8 m long with 90 s initial resting block, followed by 100 s regulation block with 

four consecutive presentations of negative trait words (25 s each) and a 30 s rest. The 

participants were engaged in the emotion regulation task (i.e., regulating negative thoughts 

while viewing the negative self-referential words) while receiving the connectivity NF. A positive 

feedback signal was presented when the target PCC-rTPJ FC reduced. The regulation and rest 

blocks were repeated three time in a run. Each participant also performed a baseline run and a 

transfer run where no feedback signal was presented; we only used the NF training runs for the 

prediction analysis. 

Connectome-based Predictive Modeling (CPM) 

The detailed offline fMRI image preprocessing is described in the SI. After preprocessing, we 

calculated whole-brain functional connectivity using beta-series correlation 34. Specifically, we 

evaluated the beta values for the regressor of the regulation task for each NF regulation block 
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using General Linear Model (GLM) analysis. We formed a series of beta values from the 

regulation task and used this series across blocks and runs to calculate the z-transformed 

Pearson correlation between each region in the Shen 268 atlas 35. Similarly, we estimated the 

betavalues for the response to the feedback signal for each block using GLM analysis (see SI) 

and calculated the beta-series correlation (z-transformed) between the same atlas regions. We 

then calculated the interaction between FCs (z-transformed correlations) for the regulation task 

(RegTask) and the response to the NF signal (RespNF) by multiplying their normalized values. 

It is important to note that the NF signal reflects approximately 6 to 8 seconds of the previous 

brain state due to hemodynamic response delay and fMRI signal acquisition time. As a result, 

TR-wise interaction between RegTask and RespNF connectivity cannot indicate the 

contingency between these responses. Our current approach, which decomposes the signal 

into block-wise series, helps mitigate this issue at the expense of temporal resolution. 

We employed Connectome-Based Predictive Modeling (CPM) analysis to identify brain 

activation patterns during neurofeedback (NF) training that could predict treatment outcomes. 

The target value for prediction was the change ratio of the Ruminative Response Style Brooding 

Subscale (RRS-B) score 36, measured one week after the NF training session, relative to the 

baseline. We focused on the brooding subscale because it specifically leads to worse prognosis 

37. We used the whole-brain FC patterns of the regulation task (RegTask), the response to the 

NF signal (RespNF), and their interaction (RegTask:RespNF) individually to construct the CPM 

model using various combinations. Specifically, we evaluated five different CPM models: 1) 

RegTask, 2) RespNF, 3) RegTask + RespNF, 4) RegTask + RespNF + RegTask:RespNF, and 

5) RegTask + RegTask:RespNF. We included model 5 because we found that the RespNF term 

alone did not provide significant predictive information. The model with RegTask:RespNF alone 

was also tested as a post-hoc evaluation. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2023. ; https://doi.org/10.1101/2023.11.16.567419doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.16.567419
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

Predictive performance was assessed using 5-fold cross-validation with covariate (age, sex, 

head motion) regression and hyperparameter optimization in the nested cross-validation. The 

process was repeated 100 times with different random splitting of the validation set to obtain a 

confidence interval and a reliable estimate of predictive performance. Further details of the 

model training procedures are described in the SI. 

Statistical analyses 

The statistical significance of CPM performance was evaluated using a permutation test. The 

output values (ratio of change in RRS-B relative to baseline: dRRS-B) were randomly permuted 

1000 times, and in each permutation iteration, 5-fold cross-validation was repeated 10 times 

with different random splits. The same covariate regression and hyperparameter optimization 

procedure including the nested cross-validation was also applied during the permutation test. 

Note that the covariate regression for the dRRS-B was performed for the non-permutated data, 

since the test needs to evaluate the null distribution of the model performance apart from the 

covariate effects (see Winkler, Ridgway 38 for further discussion). The median of 10 replicates 

was taken in each iteration to generate a null distribution. 

Symptom change in RRS-B was tested using linear mixed effect (LME) model analysis with the 

fixed effects of session (pre/post), group (active/sham), age, and sex, and the random effect of 

participant to the intercept. The lme4 package 39 with the lmerTest package 40 was used, and 

each contrast was calculated using the emmeans package 41 in the R language and statistical 

computing 42. All the p values reported in the post-hoc contrast analysis were corrected using 

multivariate t distribution41. In these analyses, p < 0.05 (corrected as necessary) was considered 

significant. 
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Results 

Data selection 

The participants with more than 30% censored TRs due to head motion (frame-wise 

displacement [FD] > 0.3 mm) were excluded from the analysis. We further excluded the blocks 

with more than 30% censored TRs within the task block and the participants with less than five 

remaining blocks were also excluded from the analysis. There was no significant difference in 

the number of dropped blocks between groups (t(34)=1.500, p=0.143). As a result, the number 

of analyzed participants were 16 (11 females, mean age 33.5) for the active group and 18 (13 

females, mean age 33.5) for the sham group. For the selected participants, there were no 

significant differences in age (t(32)=0.002, p=0.987) and sex composition (Ç2(1)=0.049, 

p=0.825) between the groups. 

Significant treatment effect on RRS-B for the active group alone without changes in the 

NF target FC 

Significant reduction in RRS-B score was observed for the active group but not for the sham 

group. Figure 1 shows the mean and each participant9s RRS-B scores at the pre and post-

training sessions for each group. While the main effect of group was not significant 

(F[1,30]=0.062, p=0.805), the main effect of session (F[1,32]=12.944, p=0.001) and the 

interaction between the session and group (F[1,32]=7.125, p=0.012) were significant with LME 

analysis. The post-hoc analysis indicated that the post-pre difference was significant for the 

active group (t[32]=-4.31, p<0.001, d=-1.52) but not for the sham group (t[32]=-0.67, p=0.503, 

d=-0.23). 

In contrast to the significant treatment effect on the target symptom score, there was no 

significant effect on the NF target, PCC-rTPJ FC. Figure 2 shows the psychophysiological 

interaction (PPI) beta values for the PCC seed region (x, y, z = -6, -58, 48 mm) to the rTPJ (51, -
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49, 23 mm) region across training sessions (seed and the target regions were defined by 6mm-

radius sphere). An LME analysis with the fixed effects of run, group, age, sex, head motion 

(mean FD), and the random effect of participant for the intercept showed no significant main 

effect of the run (F[4, 478]=0.917, p=0.454), group (F[1, 37]=0.104, p=0.748), and run by group 

interaction (F[4, 478]=0.633, p=0.639) on the NF target connectivity. 

Additionally, Tsuchiyagaito, Misaki 22 identified the other brain region in the retrosplenial cortex 

(RSC, [-7, -53, 11 mm]) that showed a different training effect between the active and the sham 

group. For the presently selected data, the PPI analysis between the RSC-rTPJ revealed no 

significant main effects of the run (F[4, 478]=2.178, p=0.070) and group (F[1, 29]=0.216, 

p=0.645), but significant run by group interaction (F[4, 477]=3.885, p=0.004). Post-hoc analysis 

indicated that the group difference was significant at NF2 (active < sham, t[334] = 2.354, 

p=0.019, d=0.475) and NF3 (acitve > sham, t[352]=-2.958, p=0.003, d=-0.637). However, when 

we calculated the Spearman correlation between the mean RSC-rTPJ beta values in the NF1, 

NF2, NF3 runs and the RRS-B change, no significant correlation was observed (rho=-0.035, 

p=0.843), indicating that the RSC-rTPJ connectivity during the NF training was not predictive of 

symptom change. 

CPM analysis 

Figure 3 shows distributions of CPM analysis results for each model specifications. The median 

prediction performance was not significant for the CPM models with RegTask (median=0.194, 

p=0.988), RespNF (median=0.012, p=0.996), and RegTask+RespNF (median=0.135, p=0.990). 

In contrast, the models with the interaction term RegTask+RespNF+RegTask:RespNF 

(median=0.190, p=0.001) and RegTask+RegTask:RespNF (median=0.272, p<0.001) showed 

significant prediction performances. The performance difference between the models with and 

without RespNF main effect term was significant (p=0.007) with better result by excluding the 

RespNF term. We also evaluated the CPM only with the interaction term, but its performance 
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was significantly worse (p=0.007) than the model with the main effect of RegTask. Thus, the 

model with the FC patterns during the regulation task (RegTask) and its interaction with the FC 

in response to the feedback signal (RespNF) was the best to predict the RRS-B symptom 

change. 

We further examined the connectivity that contributed to the prediction for the best performing 

model. Figure 4 shows the connectivity that were selected 76% times across 100 bootstrap 

model trainings (p < 5e-8 using a binominal test), which corresponds to p<0.001 with Bonferroni 

correction across all the 27028 connectivities. The plots indicate that many connectivities 

remained in spite of this stringent threshold, indicating that the model consistently employed 

broadly distributed connectivity for the prediction. While connectivities that informed prediction 

distributed across the brain, several dense connectivity regions were also observed in the circle 

plot. Supplementary Tables S1 and S2 show the top 10 nodes with the highest sum of absolute 

correlation with RRS-B reduction across their significant connectivities. For the RegTask, 

predictive connectivity was dense in the cingulo-opercular task control regions, salience network 

regions, and the subcortical thalamus and basal ganglia regions. Similarly, for the 

RegTask:RespNF interaction, predictive connectivity was dense in the fronto-parietal task 

Control regions, salience network regions, and the subcortical hippocampus, thalamus, basal 

ganglia regions. 

Figure 5 illustrates the relationship between the mean connectivity (z) for the informative FCs in 

the prediction model and the changes in RRS-B. These plots are intended to investigate the 

potential confounding effect of group differences on the predictions, rather than to present 

statistical analysis of these relationships, which could constitute double-dipping since the FCs 

correlating with RRS-B changes were selected for the CPM. The plots show that group 

differences did not affect the prediction, confirming that the selected FCs effectively predict 

changes in RRS-B scores in both active and sham groups. 
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Association of other factors with RRS-B changes 

We also examined other possibly predictive factors of RRS-B change, including age, sex, head 

motion, self-rating of the regulation success, the duration of the positive feedback presentation, 

the interaction between the self-rating of the regulation success and the group, and the 

interaction between the positive feedback duration and the group. However, linear model 

analysis with these factors on the RRS-B change (ratio relative to the baseline) indicated no 

significant effects in any of these (refer to SI for details). 

Voxel-wise activation analysis for the association with RRS-B change 

Additionally, we conducted a voxel-wise mass univariate analysis on both the RegTask and 

RespNF beta maps, as well as on their interaction map, to determine if voxel-wise activation 

linked with treatment effects was reflected in region-wise responses. Detailed results of this 

analysis are provided in the SI. We observed a significant association between symptom 

change and RegTask activation only. The regions involved were different from the NF target 

areas, but were seen in the lateral occipital, superior frontal, precentral gyrus, and thalamus 

regions. These regions consistently show a decrease in their activation associated with RRS-B 

reduction, suggesting that the effects in these regions may be due to a reduction in task load 

over successive runs (detailed results are available in the SI). 

Discussion 

The primary objective of this study was to investigate the whole-brain mechanisms underlying 

the effects of rtfMRI-NF on repetitive negative thinking, specifically brooding rumination (RRS-

B), in depressed individuals. Our results demonstrated a significant reduction in RRS-B scores 

in the active neurofeedback group but not in the sham group, although no significant changes 

were observed in the targeted FC between the PCC and the rTPJ. Interestingly, CPM analysis 
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revealed that the most effective models for predicting RRS-B reduction incorporated both the 

FC patterns during the regulation task (RegTask) and their interaction with the FC patterns in 

response to the feedback signal (RespNF). These models employed broadly distributed 

connectivity across multiple brain regions, including the cingulo-opercular task control and 

salience network regions. Other potentially predictive factors such as self-rating of regulatory 

success and the duration of the positive feedback signal showed no significant effects on RRS-

B changes. In summary, our findings suggest that the efficacy of rtfMRI-NF in reducing brooding 

rumination is not solely dependent on the modulation of targeted FC but involves a complex 

interplay of whole-brain connectivity patterns, thereby challenging the traditional focus on 

targeted brain regions in neurofeedback research. 

In agreement with our hypothesis, connectivity associated with the reduction in rumination was 

not localized to a specific region but was widely distributed across the brain, primarily in the 

frontal control, salience network, and subcortical reward processing areas. This finding is 

consistent with a meta-analysis of rtfMRI-NF training studies across different target regions 11. 

The meta-analysis found involvement of a broad array of brain regions during NF training, 

including executive control regions (i.e., ventrolateral prefrontal cortex [vlPFC], dorsolateral 

prefrontal cortex [DLPFC], premotor cortex), salience network regions (i.e., anterior insula, 

anterior cingulate cortex [ACC]), reward processing area (i.e., striatum), temporo-parietal areas, 

lateral occipital regions, and the temporo-occipital junction bilaterally. Investigations into 

functional connectivity with target brain regions like the amygdala have also reported increased 

connectivity with prefrontal areas, including the DLPFC, dorsomedial and ventromedial PFC, as 

well as the ACC 12-14. 

Studies examining responses to feedback signals during rtfMRI-NF training have also 

demonstrated the involvement of these regions. Lawrence, Su 17 examined brain activation 

correlated with the amplitude of the feedback signal during rtfMRI-NF training aimed at 
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increasing right anterior insula activation. They observed a positive correlation with the feedback 

signal in the dorsal ACC and left supramarginal gyrus, and a negative correlation in the inferior 

and rostral regions of the ACC and primary visual cortex. Similarly, Paret, Zahringer 14 analyzed 

brain activation in response to the NF signal during up- and down-regulation training of the right 

amygdala. They found that the medial thalamus was active in monitoring feedback signals 

broadly, while the ventral striatum (VS) responded specifically to the reinforcement signal, with 

VS activation showing a positive correlation with amygdala activation. Skottnik, Sorger 18 also 

showed that self-regulatory performance was correlated with striatal activity. The involvement of 

these regions is consistent with previous research highlighting their role in emotion regulation 20, 

21 and skill learning 19. Taken together, these findings suggest that both prefrontal control 

regions and reward-responsive areas play an important role in NF-mediated self-regulatory 

training. 

However, a previous study also suggested that these regions were activated during sham NF 

and were not necessarily indicative of training success 43. Our results suggest that effective 

treatment occurs when participants not only activate these emotion regulation and skill learning 

networks, but also receive consistent feedback that can guide them toward a desired neural 

state. Given that the interaction between RegTask and RespNF was critical in predicting 

treatment effect, participants who activate these networks in response to the feedback signal in 

a manner consistent with regulatory activation are more likely to experience a successful 

treatment outcome. Thus, effective treatment outcomes may depend on how individuals adapt 

and regulate their brain activation in response to neurofeedback, rather than simply trying to 

regulate it. 

The whole-brain distributed associations also imply that the efficacy of NF treatment does not 

depend solely on the regulation of the target brain signal. Instead, this target signal may act as a 

guide, directing the brain toward a desired state. If this hypothesis proves valid, we may need to 
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rethink our strategy for selecting the NF target signal. Traditionally, the NF target region has 

been identified based on its relationship to the target cognitive function or symptomatic state, 

assuming a causal relationship between the brain signal and the symptomatic state. However, 

the primary criterion for selecting a target region for the NF signal may not be its direct causal 

relationship with the symptoms. Instead, the key factor should be its ability to accurately 

represent the related cognitive and symptomatic states. In our current study, the PCC-rTPJ FC 

was used as the NF target. This FC remained low throughout the NF sessions (see Figure 2), 

with no significant variation observed across sessions. Therefore, on average, participants 

successfully regulated the NF signal in the instructed direction. As this NF signal has been 

associated with rumination in depression 33, it could have served as an indicator of the brain 

state associated with reduced rumination. 

Notably, the present CPM analysis predicted RRS-B reduction in both the active and sham 

groups. Some participants in the sham group who experienced a decrease in RRS-B had FC 

values similar to those of active group responders, as shown in Figure 5. These findings 

suggest that responders in the sham group may be undergoing an adaptive training process 

similar to that of the active group. Pecina, Chen 44 noted that individuals could selectively 

respond to positive feedback while disregarding negative feedback, influenced by treatment 

expectations. Hence, even random NF signals might be leveraged to adjust brain activity 

towards a desired state. Nevertheless, our results, showing a significant difference between 

active and sham groups, underline the necessity of an accurate NF signal for effective brain 

state modulation, while also highlighting the complexity of placebo effects in NF training 44-46. 

Several limitations of the current study merit discussion. Firstly, our results highlight the 

interaction between FC patterns during the regulation and the response to the NF signal as 

predictive of subsequent treatment effects on rumination. However, the NF signal reflects brain 

activations from several seconds prior, due to the inherent delay in the hemodynamic response 
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and the time required for fMRI imaging. This makes establishing a direct link between regulation 

activity and the NF signal response challenging. To address this, we analyzed prolonged block-

wise responses and calculated beta-series correlations to determine FC, but this method 

sacrifices temporal resolution and inhibits the assessment of learning effects over multiple runs 

due to limited data blocks. Future research should design experiments that tackle these 

challenges while enabling temporal analysis. Another significant limitation is the small sample 

size, necessitating caution in drawing definitive conclusions. While our findings are promising, 

they require validation through larger cohort studies. We employed strict motion thresholds to 

mitigate potential confounding effects on symptom reduction. However, this stringent criterion 

led to a reduced sample size and an attrition rate of approximately 20%. Future studies should 

anticipate and account for such attrition rates. 

In conclusion, this study sought to explore the whole-brain mechanisms underlying the effects of 

rtfMRI-NF on brooding rumination in depression. The results showed that treatment efficacy can 

be predicted by broad patterns of whole-brain FC. In particular, the interaction between 

regulatory activity and response to the neurofeedback signal emerged as a pivotal predictor of 

treatment outcome. This suggests that while rtfMRI-NF may focus on a specific area, its effects 

are distributed, impacting an extensive network of brain regions. Our findings highlight a 

potential oversight in studies that assume direct changes in targeted signals are necessary for 

behavioral improvement, potentially overlooking broader effects of NF. As the field of NF 

research advances, it will be critical to broaden outcome measures to include changes in 

cognitive function or symptomatology. Furthermore, comprehensive whole-brain analysis is 

essential to fully understand the complex neurophysiological changes induced by NF 

training.(4500 words) 
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Figure 1. Rumination scores before (pre) and after (post) NF training for both the active and 

sham groups. The bar plots represent the mean, and the error bars depict the 95% confidence 

interval. Individual participants are denoted by the points, with connecting lines between them. 

RRS-B: Ruminative Response Style, Brooding subscale. 
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Figure 2: Results of the PPI analysis (beta value) for the target (PCC-rTPJ) and proximal RSC 

(RSC-rTPJ) functional connectivity across runs. PCC: posterior cingulate cortex, rTPJ: right 

temporoparietal junction, RSC: retrosplenial cortex. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2023. ; https://doi.org/10.1101/2023.11.16.567419doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.16.567419
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

 

 

Figure 3. Distributions of the CPM prediction performance (as measured by the Spearman 

correlation between true and predicted values) for the RRS-B score change following NF 

training, compared to the baseline assessment. Each point represents a single iteration from the 

5-fold cross-validation results (with a total of 100 iterations using different random splits). The 

violin plot illustrates the distribution curve, and the horizontal lines indicate quartile positions. ***: 

p < 0.001. 
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Figure 4. Plots of the connectivity selected by the CPM model in more than 76% (p < 0.001 with 

Bonferroni correction) of the cross-validation iterations. Line color indicates the connectivity 

correlation with RRS-B. Warm color indicate that the higher the FC the more RRS-B decreased, 

and the cool color was vice versa. The circle plots summarized for each network region. 

Network labels are adapted from Drysdale, Grosenick 47. DMN: Default Mode Network, FPTC: 

Fronto-Parietal Task Control, SN: Salience Network, COTC: Cingulo-Opperculum Task Control, 

D/VAN: Doral Visual Attention Network, MR: Memory Retrieval, LIMB: default mode/limbic, 

SubC: Subcortical, SSM: Sensory SomatoMotor, AV: Auditory-Visual, CBL: Cerebellum. 
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Figure 5. Association between the RRS-B change and the mean connectivity values in the 

informative FCs for CPM prediction, both for positively and negatively related FCs during the 

regulation task (RegTask) and its interaction with the response to the neurofeedback signal 

(RespNF). The line represents the fitted trend, and its shadow indicates the 95% confidence 

interval. 
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