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Summary 
 
Assessing the impact of SARS-CoV-2 on organelle dynamics allows a better understanding 
of the mechanisms of viral replication. We combine label-free holo-tomographic microscopy 
(HTM) with Artificial Intelligence (AI) to visualize and quantify the subcellular changes 
triggered by SARS-CoV-2 infection. We study the dynamics of shape, position and dry mass 
of nucleoli, nuclei, lipid droplets (LD) and mitochondria within hundreds of single cells from 
early infection to syncytia formation and death. SARS-CoV-2 infection enlarges nucleoli, 
perturbs LD, changes mitochondrial shape and dry mass, and separates LD from 
mitochondria. We then used Bayesian statistics on organelle dry mass states to define 
organelle cross-regulation (OCR) networks and report modifications of OCR that are 
triggered by infection and syncytia formation. Our work highlights the subcellular 
remodeling induced by SARS-CoV-2 infection and provides a new AI-enhanced, label-free 
methodology to study in real-time the dynamics of cell populations and their content. 
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Introduction 
 

The COVID-19 pandemic is caused by the severe acute respiratory syndrome-
coronavirus-2 (SARS-CoV-2)1, inducing a broad spectrum of syndromes from a light cold to 
life-threatening pneumonia2. The search for SARS-CoV-2 treatments is continuing3 and 
reductionist approaches vastly dominate experimental efforts. A stop-motion view of the 
SARS-CoV-2 infection cycle has emerged4 where its impact on the host cell is understood 
through key host/virus molecular entanglements5. Previous studies tackled the impact of the 
virus on a global cellular scale, employing fluorescence and electron microscopy6,7 and as 
such were lacking the dimension of time. Filming the impact of SARS-CoV-2 on an entire 
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cellular system from early infection to death would greatly improve our understanding of 
infection sequences and dynamics, yet the efforts to obtain such knowledge are precluded by 
the limitations of live microscopy. The various types of fluorescence microscopy induce non-
neglectable phototoxicity and molecular perturbations due to the use of chemical or genetic 
labeling8–13. This limits the capacity to observe multiple targets over hours-long periods, 
which is the time scale necessary to capture the cellular changes induced by SARS-CoV-2. 
Classical label-free imaging techniques such as phase contrast or differential interference 
contrast (DIC), while less invasive, provide images plagued by optical aberrations, poor 
contrast, and limited spatial resolution. A new generation of AI-augmented label-free 
microscopic methods has emerged, emulating fluorescence staining for key cellular structures 
in the absence of fluorescence14,15, or bolstering the usage of lower-content, label-free images 
to detect specific cellular states16–18. Holo-tomographic microscopy (HTM) provides high-
content refractive index (RI) images able to capture complex biological processes and 
multiple cellular structures at unprecedented spatial resolution and ultralow-power 
illumination19. When combined with computer vision, HTM can support image-based 
quantitative investigations of cell dynamics over hours at relevant temporal resolutions19. 

 
In this study, we developed a high-content imaging pipeline combining live HTM, 

machine learning and Bayesian statistics to provide a quantitative and dynamic vision of the 
impact of SARS-CoV-2 on the organelle system of hundreds of infected cells in culture. 
 

Results 
 
Label-free microscopy shows virus-induced cellular alterations.  
 

Through key host-viral protein interactions, SARS-CoV-2 reshapes the subcellular 
organization and the organelles of its target cells6,7. SARS-CoV-2 reroutes lipid 
metabolism20–22, fragments the Golgi apparatus7, promotes the formation of double-
membrane vesicles7,23,24 and alters mitochondrial function25, with the goal of boosting virus 
production while delaying antiviral responses26,27. Our aim was to capture the kinetics and 
extent of such alterations in living cells by recording and quantifying cellular and organellar 
dynamics in real time using HTM19. We selected U2OS-ACE2 cells as targets because of 
their high sensitivity to SARS-CoV-2 and their flat shape that facilitates imaging28. Cells 
were first infected with the Wuhan strain and imaged with HTM (Figure 1A and seen here). 
Time lapse experiments were carried for up to two days or until the death of infected cells 
(Figure 1B). Non-infected cells were recorded as a control. The most obvious event visible as 
soon as 10 hours post infection (pi) was the formation of syncytia, a known phenomenon 
where infected cells expressing the viral spike (S) protein at their surface fuse with 
neighboring cells28,29.  
 

Formation of syncytia was used as a marker of productively infected cells. In such 
cells, we noticed a quick clustering of nuclei, visible as soon as two or more cells started to 
fuse. The zone of nuclei clustering apparently hosted groups of growing lipid droplets (LD), 
accumulating over time, while mitochondria were moving away from this region and 
redistributed across the cytoplasm. Within the nuclei, nucleoli appeared denser and rounder 
upon infection (Figure 1C). We next determined which of these cellular events were due to 
the infection itself or the result of syncytia formation. To differentiate between these 
possibilities, we recorded cells that fused together in the absence of SARS-CoV-2, after 
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transient expression of Syncytin-1, a fusogenic protein involved in the formation of placental 
syncytiotrophoblasts30. Infection-independent syncytia did not show the same features. LD 
remained small and rare, and nucleoli were not altered (Figure 1B and 1C). However, we 
detected similar mitochondrial movements in both SARS-CoV-2- and Syncytin-1-induced 
syncytia. As demonstrated before19, we did not detect the Golgi network, the cytoskeleton, 
nor DMVs with HTM since these structures show little RI contrast with their surroundings.  

 
To go beyond the qualitative nature of these observations and to quantify the cellular 

alterations triggered by SARS-CoV-2, we designed a HTM image quantification pipeline 
where cells and organelles were detected in time-lapse recordings by tailored machine 
learning (ML) approaches (Figure 1D). 
 

Machine learning detects cellular organelles in high-resolution label-free images. 
 

We adapted our ML strategy to the different characteristics of the biological objects 
of interest. Mitochondria that are small, pixel-scale objects, were detected using a two-class 
pixel categorization31 where a trained extra-tree classifier attributes a class to each pixel, 
based on its position in a derived feature space. Such an approach allowed precise and 
accurate detection of these sparse objects within the highly textured HTM images (Figure 
2A). Its large hyperparameter space was not explored through a human in the loop process 
but using the optuna optimization framework32. Larger objects such as nuclei, nucleoli and 
whole cells were optimally segmented with an adapted U-NET33 fully convolutional network 
(Figure 2B). For whole cell segmentation, a sharpening of the outlines was performed by 
object propagation within the RI signal34. LD were segmented using a Nanolive assay which 
automatically detects LD based on their high refractive index, unique signal distribution and 
roundness. 
 

We then validated the automatic segmentations of organelles within RI images by 
labelling the cells with organelle-specific fluorescent markers. Nuclei, nucleoli, LD, and 
mitochondria were stained respectively with Hoechst, Green Nucleolar staining (ab139475), 
lipid spot, and Mitotracker DeepRed (Figure 2C-2G). We used the standard F1 and 
intersection over union (IoU) scores for the strict binary evaluation of masks versus 
references, and the structural similarity index measure (SSIM)35 for a quantification of 
similarity perception. For nuclei and nucleoli that are large and simple objects, matches 
between masks and fluorescent signals were high (Figure 2C and 2G). The LD masks were 
not perfectly matching with the lipid spot fluorescent signal. This was expected, since HTM 
resolving power is better than epifluorescence19 (Figure 2E). This illustrates the challenge of 
objectively quantifying the quality of few-pixels object masks, especially in a live context 
where biological structures move through the succession of acquisition regimes. For these 
reasons, the scores of LD predictions were very good yet slightly lower than those of nuclei 
and nucleoli (Figure 2G).  

 
Similarly, our RI-based mitochondrial predictions were sharper and better resolved 

than the fluorescent signal generated by Mitotracker DeepRed (Figure 2F). The scores 
obtained from comparing our RI-based ML predictions against fluorescence-derived 
references were good (Figure 2G) yet lower than those of the other organelles because of 
unavoidable mismatches between predictions and ground truth. In addition to motion, the 
typical crowding of mitochondria in the perinuclear region generates unresolved36 
Mitotracker epifluorescence signal. Such signal is not optimal for comparison purposes. We 
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thus used an expert-generated segmentation of mitochondria within a RI image to assess 
further the quality of our ML-generated mitochondrial mask (Figure 2G).  
 

To validate the biological relevance of our mitochondrial detection workflow, we 
silenced OPA1, a dynamin-like GTPase protein required for mitochondrial fusion37 whose 
ablation causes mitochondrial fragmentation and inherited optic neuropathy38. Inspection of 
the label-free HTM images revealed an obvious fragmentation of the mitochondrial network 
and our ML-based mitochondrial detection system reported a reduction of mitochondria size 
distribution (Figure S1 and S2). This confirmed our capacity to automatically detect and 
quantify mitochondrial morphology under basal and pathological conditions in a label-free 
manner. 
 

SARS-CoV-2 infected cells display specific organelle dynamics. 
 

We then examined in real-time the subcellular changes induced by infection with two 
different SARS-CoV-2 strains. We recorded movies of U2OS cells infected with either the 
SARS-CoV-2 Wuhan ancestral virus or the Omicron BA.1 variant. As controls, we used 
uninfected cells and cells that underwent intercellular fusion upon Syncytin-1 expression. We 
used our algorithms to follow individual or fused cells and to segment nuclei, nucleoli, LD, 
mitochondria and the cytosol, the latter being defined by the subtraction of all other 
compartments from the cell. This analysis was performed every 12 minutes, from 2 to 48 h 
pi. Our object segmentation was robust, allowing analysis over time within each movie, and 
across movies (Figure 3 and Video S1-19). Of note, the formation of syncytia did not alter the 
quality of our predictions. Nuclei and nucleoli were properly detected despite the appearance 
of compact clusters of nuclei in syncytia (Figure 3A and 3B). LD remained well-defined even 
when their size increased or when they moved from the cytosol to the perinuclear region 
(Figure 3C and 3D). Mitochondria were accurately segmented, despite a large variety in 
length and distribution in infected cells (Figure 3C and 3D).   

  
We represented the data as time series of violin plots based on single cells or 

organelles points, to visualize the evolution of the various parameters over time and to allow 
explicit statistical assessment of infection-induced changes (Figure 4). The progression of 
nucleoli/nucleus size ratio was similar in Wuhan-infected and non-infected cells, as well as in 
syncytia triggered by Syncytin-1 (Figure 4A). In agreement with a recent report39, the 
nucleoli of Omicron-infected cells became larger, especially at a late time point of infection. 
This might reflect a recruitment of the nucleolar machinery to facilitate viral translation40,41. 
A massive increase in LD number and size was observed in SARS-CoV-2 Wuhan- or 
Omicron-infected cells but not in control or Syncytin-1-expressing cells (Figure 4B). These 
observations are in line with a SARS-CoV-2-induced remodeling of lipid metabolism20 to 
support pro-virus signaling22 and provide material for the formation of double membrane 
vesicles (DMV) (Figure 4B).  

The obvious effect of SARS-CoV-2 on LD indicated a broad metabolic impact and 
thus led to the question of mitochondrial alterations. In control cells, we detected a modest 
yet significant reduction of mitochondrial size over the 1.5 days of culture, which may reflect 
the changing metabolic state of proliferating cells that progressively consumed culture 
medium (Figure 4C). In both Wuhan and Omicron infected cells, there was a marked 
mitochondria size decrease around 15 h (900 min) pi (Figure 4C), that is likely an infection-
induced imbalance of mitochondrial dynamics42. At later points, the length of the 
mitochondria increased again in infected cells. Contradictory findings of impaired  
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mitochondrial fission and fusion in response to SARS-CoV-2 infection have been 
reported43,44,45.Our results suggest that these events may be temporally distinct.   
 

We then quantified the dry mass, defined as the bulk content in biomolecules (mainly 
proteins, lipids and nucleic acid) that are not water of hundreds of thousands of mitochondria. 
In fact, HTM returns the refractive index of the observed biological structures, which is 
linearly linked to the content in biomolecules of the observed structure. In control cells, we 
observed a stable dry mass per unit of mitochondria size overtime (Figure 4D). This dynamic 
was changed in SARS-CoV-2-infected or Syncytin-1-expressing syncytia, which were 
characterized by an overall slight reduction of the dry mass of single mitochondria. This is in 
line with previous reports45,46 suggesting that SARS-CoV-2 down-regulates the translation of 
mitochondrial genes. The observation that Syncytin-1-expressing cells also displayed a 
decreased mitochondrial dry mass suggests that SARS-CoV-2 could use syncytia formation 
to promote mitochondrial alterations more efficiently. 
 

We next took advantage of our capacity to localize organelles in space and relative to 
each other’s to measure the distance between LD and mitochondria, a marker of the rate of 
fatty acid oxidation and thus of energy production33,34. In uninfected or Syncytin-1-
expressing cells, the proportion of LD in proximity (< 400 nm) of mitochondria increased 
over time (Figure 4E). In contrast, this ratio stayed stable or even decreased in Wuhan and 
Omicron-infected cells. Therefore, infection separates LDs from mitochondria, reflecting a 
probable impact of SARS-CoV-2 on cell metabolism. 
 

Large lipid droplets form in infected cells only. 
 
We next examined the links that may exist between LD, mitochondria, and viral production 
zones, that we identified by immuno-staining with anti-NSP3 or anti-double stranded (ds) 
RNA antibodies.  The viral NSP3 protein plays many roles in the virus life cycle, including 
viral polyprotein processing, formation of the viral replication compartment, viral RNAs 
trafficking and innate immunity antagonism47. Anti-dsRNA antibody selectively recognizes 
viral RNAs and do not detect cellular RNAs. NSP-3 and dsRNA rarely colocalized within 
cells (Figure 5). Correlative HTM and confocal microscopy shows that at 24 h pi, cells that 
accumulated large perinuclear LD were also positive for dsRNA and NSP3 stainings (Figure 
5A and S3), confirming that the accumulation of large LD is a signature of SARS-CoV-2 
infection. dsRNA accumulated next to LD, while NSP3 was excluded from them (Figure 5B 
and 5C). We performed correlative HTM and electron microscopy (CHEM) of non-infected 
or infected cells and focused on areas displaying large LD. The mitochondria surrounded 
large LD in control cells but not in SARS-CoV-2 infected cells (Figure 5D, 5E and S4). 
Altogether, the HTM quantitative analysis, combined with qualitative correlative microscopy 
indicate that LD alteration together with mitochondria relocation is a hallmark of effective 
virus production. 
 
SARS-CoV-2 alters organelles cross-regulations. 
 

We next investigated the dependencies between LD, mitochondria, nuclei, nucleoli, 
and cytosol dry masses using comparative Bayesian networks (BN). BN are an established 
tool for modelling biological datasets48 in fields such as signaling49, genomics50,51

, or 
immunology52, but not, to the best of our knowledge, to model the hierarchy and regulation 
existing between cell organelles. Established BN methods53 allow to search for the 
conditional relationships and probabilities between factors of interest. These methods provide 
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an intuitive visual representation under the form of a directed acyclic graph. We thus 
investigated the likelihood of discretized organelles dry mass, given the dry mass of the other 
organelles. Considering that the dry mass variation of a subcellular compartment reflects 
regulated variations of its protein, lipid, and/or nucleic acid contents, we propose that the 
causal relationship between organelle dry mass captures an integrated level of organelle-
dependent regulation. Henceforth, we will employ the term organelle cross-regulation (OCR) 
rather than referring to dry mass influence diagrams, the latter being less intuitive. As our 
approach relies on organelle detection, and not on gene or protein levels measurements, it is 
blind to organelle-independent global regulations that manifest during infection or cellular 
dysfunction, such as modulations of protein expression and other gene regulations that cannot 
be captured by assessing dry mass variations. 

 
We also attributed a “regular” or “syncytium” identifying tag, to each cell of our 

control, SARS-COV-2-infected and Syncytin-1 expressing conditions. This allowed us to 
observe the specific impact of syncytia formation on OCR compared to infection. The 
differences between similarly established networks for the three conditions, provides unique 
insights on how SARS-CoV-2 infection or syncytia formation impacts OCR (Figure 6A-6C). 
The nucleus had an expected influence on nucleoli, irrespective of infection or syncytia 
formation. This indicates that our networks can capture relevant functional relationships 
between organelles. Moreover, in control cells, the network has in its center the nucleus dry 
mass. This was also expected, since in freely dividing cells, the cell cycle and thus the 
nucleus DNA content, must be central to all OCRs. We observed that SARS-CoV-2 infection 
rewired the OCR network, likely because it can alter organelles involved in numerous 
processes such as lipid metabolism20–22 and the cell cycle54–57. The main events driving the 
virus-induced OCR network were the formation of syncytia followed by the accumulation of 
LD (Figure 6B). This suggests that the SARS-CoV-2-induced syncytium has a role in 
promoting viral replication, apparently by boosting LD formation. 

 
The formation of a syncytium is a complex, broad phenomenon that implies more 

than the plasma membrane fusion upon which we rely to identify it. The mechanisms at play 
to prepare its formation, cytoskeleton reorganization, nucleus clustering, or rapid mixing of 
different trafficking systems and signaling or metabolic states can be expected to have broad 
consequences that will not be captured as direct causal links but rather be seen in the way 
organelles are wired together. In cells forming syncytia independently of infection, the 
syncytial state had no direct impact on one specific organelle and was only loosely related to 
the rest of the network, with the cytosol dry mass as the sole, and faint, predictive factor 
(Figure 6C). We saw however the same hierarchy than in SARS-CoV-2 infected cells 
between the cytosol, the mitochondria, and the nuclei-nucleoli duo. Thus, the syncytium by 
itself changes how organelles interact together. This suggests that the virus may trigger the 
syncytium for its capacity to establish a broadly favorable OCR system. While the infectious 
and non-infectious syncytia looked similar in HTM images, the non-infectious syncytia lack 
the capacity to promote LD growth. 
 

(Figure 4B and 6B). We used confocal microscopy of tubulin immuno-staining as a 
complementary approach to investigate further potential differences between the two types of 
syncytia. We observed that compared to Syncytin-1-induced syncytia, SARS-CoV-2-induced 
syncytia displayed a flat microtubule signal profile (Figure 7A and 7B) from the clustered 
nuclei towards the syncytium boundaries (Figure 7C). This flat microtubule signal 
distribution was detected in 77% of the infected syncytia and only in 20% of Syncytin-
induced fused cells (Figure 7D). In the remaining 80% of Syncytin-induced fused cells, a 
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gradient was seen, more tubulin was seen surrounding the nuclei cluster than in the cell 
boundaries. Altogether, these results indicate that in addition to the events captured by HTM, 
the cytoskeleton is differentially modified in SARS-CoV-2 infected or Syncytin1-induced 
syncytia, which could modulate LD accumulation and mitochondrial redistribution. 
 

Discussion 
 

We demonstrate here that AI-enhanced label-free microscopy holds great promises for 
the quantitative investigation of pathological processes such as virus infection and offers new 
possibilities to quantitative cell biology in general58. The emergence of high-content 
fluorescence microscopy59 and massively multiplexed labeling methods60 revolutionized our 
understanding of cells’ systems61, whether they are unperturbed, adapting to changing micro-
environments62 or reacting to drug treatments63. Yet, these impressive methods perturb living 
cells and are not suited for the monitoring of fine biological dynamics over long periods of 
time.  

Amongst the currently available label-free microscopy techniques, holotomographic 
microscopy (HTM) produces images whose quality enable effective computer vision 
solutions19. To achieve this aim, it is important to overcome the laborious task of ground truth 
generation64,65 and to choose the adequate object detection technique, where deep learning is 
not always the most effective solution. The ground truth that we could produce for this work 
allowed for a U-NET segmentation of simple, large objects like cells or nucleoli, but fell 
short for a similar detection of mitochondria that are sparser, thinner objects. We speculate 
that the more explicit control of the receptive field in the case of the pixel classification 
approach, which depends on the blurring steps applied on images before feature extraction, 
was more adapted for objects spanning few pixels only. We believe that our work is 
particularly relevant  to the field of quantitative mitochondrial biology36,66,67, given the 
susceptibility of that organelle to phototoxic stress and label-induced perturbations8,68,69. 

 
Our object detection strategy transforms the limitation of HTM, which is the complex 

nature of the images it provides, into an advantage: having access to biologically relevant, 
direct, simultaneous measurements of organelles within single cells. This opens a vast 
landscape of possibilities for system’s investigations. Such dataset is particularity adapted for 
causal investigations due to the reasonable number of dependencies to evaluate. We could 
thus define in this study organelle cross-regulation (OCR) networks.  There are pending 
questions: will the same OCR networks topologies be observed in other cell types or in 
response to other viruses? We believe that a comparative OCR analysis of different cellular 
conditions is essential. Future work will help determining whether we have uncovered 
conserved regulation networks for synchronizing organelles. 

 
There are limitations to our study. Firstly, Bayesian networks are directed acyclic 

graphs and as such cannot be circular or contain feedback loops, which are natural 
components of many biological systems. Thus, the use of causal inference provides a partial 
view of OCR networks. Targeted metabolic or genetic perturbations to challenge the 
hypothesis gathered through network inference will help further characterizing OCR 
dependencies and their perturbations. Also, key OCR network dependencies could be further 
validated through HTM single-cell tracking. Secondly, key subcellular structures such as the 
Golgi or the endoplasmic reticulum are not captured by the current sensitivity of HTM and 
are therefore absent from our analysis. However, HTM can be associated with other label-
free70, fluorescence or electron microscopy in correlative approaches. Such association is 
essential to advance both the label-free and label-based imaging worlds. This is illustrated 
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here by the assessment of mitochondrial localization by CHEM, the colocalization of LD, 
dsRNA and NSP3 by correlative HTM/confocal microscopy, or the characterization of 
tubulin network modifications during SARS-CoV-2 infection and syncytia formation.  
 

In this study, we used U2OS cells expressing the ACE2 receptor to establish a first set 
of discoveries in an uncharted territory. It will be important to extend such analysis to other 
cell types, for instance those that do not or poorly form syncytia upon infection. The use of 
viral strains carrying GFP-tagged viral proteins or other markers will facilitate the 
identification of infected cells71. This will allow to further explore the whole infection 
process and better characterize the role of syncytia during infection. Our work quantitatively 
describes the multiple cellular events associated with SARS-CoV-2 infection in real-time. An 
analysis of cells expressing individual viral proteins, such as for instance ORF9b72, that 
interacts with the mitochondrial protein TOMM7073, or NSP6, that mediates contact between 
DMVs and LDs74, will provide new clues on the impact of SARS-CoV-2 on the dynamics 
and shape of mitochondria. 

 
In summary, we have developed a novel pipeline of analysis combing HTM, AI-

assisted analysis and causality inferences using Bayesian statistics, to assess the impact of 
SARS-CoV-2 on the dynamics of cellular organelles and OCR. We report that the virus 
directly alters LDs, mitochondria, nuclei, and nucleoli as well as how those organelles 
influence each other. We also established that the infectious syncytium is likely favoring a 
pro-virus cellular environment. This approach opens exciting possibilities to analyze any 
pathogen, drug effects, and physiological or pathological events affecting the cell life, 
including nutrient variations, metabolic adaptation, and malignant transformation. It holds 
promise to lead to new insights into the dynamics a vast range of biological processes. 
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Figure titles and legends 
 
Figure 1 SARS-Cov-2 infected cells show subcellular dynamic changes. (A) Refractive 
index (RI) map of U2OS cells infected with SARS-Cov-2, acquired using holotomographic 
microscopy (HTM). (B) Representative images of non-infected cells (Mock), SARS-CoV-2 
infected cells or cells forming syncytia upon expression of the fusogenic protein Syncytin-1 
(C) Magnifications of cellular details available for further ML-aided image analysis, such as 
nuclei (1), mitochondria (2), nucleoli (3), lipid droplets (4) or syncytia nuclei cluster (5). (D) 
Time lapse imaging data projection for 2D computer-vision analysis and qualitative 
assessment of cells. 

Figure 2 Machine learning detects key organelles within HTM images. (A) Mitochondria 
and lipid droplets detection using pixel classification: a feature space of size x*y*N is 
calculated by applying N convolution filters on each image time point (tp) of size x*y. An 
extra tree classifier decides for each pixel if it belongs or not to an organelle signal based on 
its position in the feature space. (B) Nuclei, nucleoli, and cells detection using the 
convolutional network UNET. (C-F) Comparison of (C) nuclei, (D) nucleoli, (E) lipid 
droplet and (F) mitochondria detection within refractive index images with their respective 
fluorescent label signal. Structures are thicker when visualized with epifluorescence 
microscopy compared to holotomography. (G) F1 score, intersection over union (IoU) score 
and structural similarity index measure (SSIM) for each organelle. Nuclei, nucleoli and lipid 
droplet prediction scores are calculated against fluo-derived ground truths. Mitochondria are 
evaluated against fluo-derived ground truth and expert hand labeling of mitochondria within 
the refractive index image. 
 
Figure 3 Automated detections of cellular organelles capture dynamics of SARS-CoV-2-
induced changes. (A) 36 hours-long holotomographic microscopy (HTM) time lapse 
acquisition of U2OS cells infected by the Wuhan SARS-CoV-2 strain. Pink: nuclei. Green: 
nucleoli. (B) Late time point images of time lapse imaging experiments of non-infected cells 
(Mock), Omicron-infected cells and Syncytin-1-expressing cells. Pink: nuclei. Green: 
nucleoli. (C) 36 hours-long holotomographic microscopy (HTM) time lapse acquisition of 
U2OS cells infected by the Wuhan SARS-CoV-2 strain. Red: mitochondria. Green: lipid 
droplet. (D) Late time point images of time lapse imaging experiments of non-infected cells 
(Mock), Omicron-infected cells and Syncytin-1-expressing cells. Red: mitochondria. Green: 
lipid droplet. 

Figure 4 Label-free quantifications of SARS-CoV-2-induced alterations of organelle 
dynamics. (A) Nucleoli/nuclei size-ratio per cell over time (#of quantified nuclei in light-
gray), (B) Lipid droplet dry mass per cell (#of quantified single cells in light-gray), (C) 
Mitochondria dry mass density (#of quantified mitochondria in light-gray), (D) Mean 
mitochondria length per cell (#of quantified cells in light-gray), (E) the ratio per cell of lipid 
droplets less than 400nm away from the nearest mitochondria (#of quantified cells in light-
gray). Violin plot representation of non-infected, Wuhan-, Omicron-infected and Syncytin-1-
expressing cells. Each violin plot represents the distribution of the segmented single cells or 
organelles contained within the indicated period. Bin-to-bin t-tests p-values are indicated 
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below each experiment. Single cells and organelles studied in each of the mock, Wuhan, 
Omicron and Syncytin-1 are coming from at least 3 different movies (see Videos S1-S19). 
 
Figure 5 Perinuclear lipid droplet accumulation is a marker of infection. (A-C) 
Comparison of the refractive index (RI) signal acquired using holotomographic microscopy 
(HTM) with the double-stranded (ds) RNA and NSP3 immuno-fluorescent signals acquired 
with confocal microscopy. dsRNA spots are detected over and around lipid accumulations 
while the homogenous NSP3 signal is excluded from them. (C) Confusion matrix. Cells with 
perinuclear lipid droplet accumulation have a SARS-CoV-2-induced dsRNA and NSP3 
signals. Cells with no lipid droplets (arrow) show no dsRNA and NSP3 signals. See 
supplementary S3. (D) Correlative holotomography/electron microscopy in infected cells. No 
mitochondria surround infection-induced lipid droplets. See also figure S4. (E) Electron 
microscopy in non-infected cells. Lipid droplets within are close to mitochondria (red stars 
indicate lipid droplets, white arrows indicate mitochondria). 

 

Figure 6 Comparative Bayesian networks show that SARS-CoV-2 infection changes 
organelle cross-regulation. (A, B, C) Bayesian networks representing the causal relationship 
between mitochondria, nuclei, nucleoli, lipid droplets and cytosol dry mass states and the 
syncytial state of (A) non-infected cells (B) infected cells (C) Syncytin-1expressing cells. 

 
Figure 7 SARS-CoV-2-induced syncytia display flat radial tubulin signal. (A,B) 
Representative images of confocal immuno-fluorescence microscopy  in SARS-CoV-2 
Wuhan- or Syncytin-1- induced syncytia. Green: Tubulin. Blue: DAPI. (C) Representative 
tubulin signal profiles from a nuclei cluster towards cell boundaries (D) Occurrence of a flat 
radial actin pattern.  
 

Methods: 
  
Holotomographic microscopy time lapse acquisitions 
All label-free images were acquired using a 3D-Cell Explorer-fluo (Nanolive SA, 
Tolochenaz, Switzerland) microscope. This microscope is equipped with a 520nm laser for 
tomographic phase microscopy, the irradiance of the laser is 0,2nW/µm2 and the acquisition 
time per frame is 45ms. It is equipped with a Blaser ace acA1920-155um camera, and an air 
objective lens (NA = 0.8, magnification 60x). The microscope is equipped with a fluorescent 
module (pE-300ultra, CoolLED) for standard epifluorescence images of the sample in three 
different channels: Cy5 (excitation peak 635 nm), TritC (excitation peak 554 nm) and FitC 
(excitation peak 474nm). The microscope is equipped for long term live cell imaging: 
temperature, humidity, gas composition. The incubator chamber (Okolab) keeps the sample at 
37°C, is closed by a heating glass lid to prevent condensation and is connected to a gas mixer 
(2GF-Mixer, Okolab) to maintain 5% of CO2. The humidity module ensures a 90% relative 
humidity within the chamber.  
 
For imaging, 50’000 cells were plated in a 35mm No.1.5 ibidi polymer coverslip bottom dish. 
After 24 hours, the media was replaced with fresh media containing the indicated dose of 
virus. Dish were then placed in the incubator chamber of the microscope and imaging was 
started 3 hours post-infection. 
 
Live fluorescent controls 
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For mitochondria labeling, TMRE was added to the media for 30 minutes, before washing 
and cell imaging. For siRNA experiments, Dharmacon smartpool siRNA directed against 
human-OPA1 siRNA or a control siRNA was used. For nucleoli labeling, cells were 
transfected using lipo3000 as described by the manufacturer, with GFP-GRI, a subunit of 
Simian Foamy virus that contains a nucleolar localization signal fused with GFP75. 24 hours 
post-transfection cells were imaged using the Nanolive. For lipid droplet labeling, Bodipy 
493/503 was added in serum free media for 15 minutes, before washing and imaging.  
 
Immunofluorescent labeling 
Infected cells were fixed with 4% PFA for 30 minutes. For correlation with Nanolive 
microscopy, the dish was scrached to provide a visual landmark. They were then imaged on 
the Nanolive. They were permeabilized with 1% Triton for 10 minutes and blocked overnight 
with PBS/1% BSA/0.05% sodium azide. Mouse anti-dsRNA J2 (1:100, RNT-SCI-10010200; 
Jena Bioscience), sheep anti-SARS-CoV-2 nsp3 (1:200, DU67768, MRC PPU) were used 
overnight in blocking buffer. Donkey anti sheep 488 (#A-11015, ThermoFischer Scientific) 
and Donkey anti-mouse 647 (#A-31571, ThermoFischer Scientific) were used at a 1:500 
dilution in blocking buffer for 1 hour. Imaging was performed using a Leica SP8 confocal 
microscope. For cytoskeleton imaging, infection was performed in a 96 well plate (Perkin 
Elmer). Infected cells were fixed with 4% PFA for 30 minutes, permeabilized with 1% Triton 
for 10 minutes and blocked overnight with PBS/1% BSA/0.05% sodium azide. Mouse anti-
tubulin (1:100, ProteinTech 66031-1-Ig) was used overnight in blocking buffer. Goat anti-
mouse 488 (#A-11015, ThermoFischer Scientific, # A-11001) was used at a 1:500 dilution in 
blocking buffer for 1 hour. Imaging was performed using the Operetta Phenix (Perkin Elmer). 
 
Electron microscopy  
50’000 cells were plated in a MatTek 35 mm Dish (P35G-1.5-14-C-GRD). The next day, the 
media was replaced with fresh media containing the indicated dose of virus. After 24 hours, 
they were fixed with 4% PFA for 30 minutes, and imaged using holotomographic 
microscopy. Cells were then fixed in 2.5% Glutaraldehyde (Sigma)  in 1X PHEMS buffer 
overnight at 4°C. Samples were washed 3 times in 1X PHEM buffer and post-fixed in 2% 
OsO4 (Electron Microscopy Sciences)  +1,5% potassium ferrocyanide in water 1h in the dark. 
After 3 washes in water they were incubated 20min in 1% uranyl acetate in ethanol 25%. 
Samples were gradually dehydrated in an ethanol series (50%,75%,95% ,3x100%) and then 
embedded in EMbed-812 epoxy resin (Electron Microscopy Sciences), followed by 
polymerization for 48h at 60°C.Thin sections (70nm) of the region of interest were cut with a 
Leica Ultramicrotome Ulracut UCT stained with uranyl acetate and lead citrate. Images were 
acquired using a Tecnai T12 120 kV (Thermofisher) with bottom-monted EAGLE camera. 
 
Cells 
HeLa, 3T3-derived preadipocytes, HEPG2 and U2OS cells were purchased from ATCC. 
U2OS cells were stably transduced with pLenti6-human-ACE2 as previously described28 or 
with pCW57.1_Syn1. PCW57.1_Syn1 was obtained by cloning the previously described 
phCMV_Syn176 into pCW57.1 (Addgene) using the NheI+AgeI restriction for both plasmids. 
All cells were cultured in DMEM with 10% fetal bovine serum (FBS), 1% 
penicillin/streptomycin (PS). For imaging and infections 25nM HEPES was added to the 
media. 10 µg/ml blasticidin were added to U2OS cells cultures. Cells were routinely screened 
for mycoplasma. 
 
Virus  
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The strain BetaCoV/France/IDF0372/2020 was supplied by the National Reference Centre 
for Respiratory Viruses hosted by Institut Pasteur (Paris, France) and headed by Pr. S. van der 
Werf. The human sample from which the strain was isolated has been provided by Dr. X. 
Lescure and Pr. Y. Yazdanpanah from the Bichat Hospital, Paris, France. The viral strain was 
supplied through the European Virus Archive goes Global (Evag) platform, a project that has 
received funding from the European Union’s Horizon 2020 research and innovation program 
under grant agreement no. 653316. Titration of viral stocks was performed on Vero E6, with 
a limiting dilution technique allowing a calculation of DCP50.  
 
Holotomographic image processing 
All the time points composing the time-lapse imaging experiments were reconstructed and  
stored as 3D volumes by Eve, the software that controls the 3D cell explorer microscope and 
early data management. Custom routines were used to convert 3D volumes into 2D maximal 
projections along the z-axis.  
 
Deep Learning object detection: 
A custom U-Net architecture was used to segment nuclei, nucleoli, and cells. Training 
processes were run for 500 epochs for the nuclei and nucleoli models on an Nvidia RTX3060 
GPU with 12GB of VRAM and for 50 epochs for the cell models on an Nvidia RTX A4000 
16GB of VRAM.  The ground truths for the cells, nuclei, and nucleoli, were made semi-
manually with the help of a custom labeling tool and the guidance of fluorescently stained 
cells. 
 

Nucleus: 
Our nucleoli model was trained with a dataset of 655 holotomographic microscopy images of 
mammalian cells images randomly split into a training set (589 images) and a testing set (66 
images).  These images come from 58 acquisitions and include multiple cell lines. Each 
image contains from 1 to 23 nuclei, all have a size of 480x480 pixel achieved by cropping or 
zero-padding. Probability maps provided by the model are binarize with a 50% probability 
threshold. All objects smaller than 10 pixels are rejected. The training took 4 hours and 19 
minutes. 
 

Nucleoli: 
Our nucleoli model was trained with a dataset of 495 holotomographic microscopy images of 
mammalian cells randomly split into a training set (445 images) and a testing set (50 images). 
Each image contains at least a dozen of nucleoli and have a size of 480x480 pixel achieved 
by cropping or zero-padding. Probability maps provided by the model are binarized with a 
50% probability threshold. All objects smaller than 10 pixels are rejected. Potential 
unspecific signal outside the nucleus is removed thanks to the nucleus masks predicted by our 
nucleus model. The training took 4 hours and 13 minutes. 
 

Cells segmentation:  
The first part of our cell segmentation process aims at obtaining a rough cell segmentation 
without a precise cell border detection. This U-Net model was trained with a dataset of 1445 
holotomographic microscopy images of mammalian cells randomly split into a training set 
(1295 images) and a testing set (150 images). Each image contains from 1 to 10 cells and 
have a size of 480x480 pixel achieved by cropping or zero-padding. Probability maps 
provided by the model are binarized with a 50% probability threshold. All objects smaller 
than 10 pixels are rejected. The training took 51 minutes. The second part of our cell 
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segmentation process takes the U-Net produced cell blobs binary masks as a seed for a 
precise cell edges detection using a propagation algorithm approach. 
 
Ensemble pixel classification for mitochondria detection: 
Mitochondria were segmented using a tailored pixel classification approach inspired by 
previous seminal work31. Because the simple refractive index value is not a reliable organelle 
signature, we increased the pixel feature space dimensionality by applying on refractive index 
images a set of convolution filters using the VIGRA Computer Vision Library (v1.11.1) for a 
total of 21 dimensions. Thus, each pixel is described by its respective refractive index value 
and by its value in the 20 convolved images created by applying the following 10 filters on 
the refractive index image at two different sigma values (1.4 and 2.0): gaussian smoothing, 
difference of gaussian, gaussian gradient, gaussian gradient magnitude, hessian of gaussian, 
hessian of gaussian eigenvalue, Laplacian of gaussian, structure tensor eigenvalue, tensor 
determinant, and tensor trace. The probability for each augmented pixel of our images to be 
part of a mitochondria or lipid droplet was then evaluated by an extra-tree classifier (scikit-
learn v1.2.2) diverging from the default hyperparameter setup only by the number of 
estimators that is equal to 200. Each resulting probability image is then transformed into a 
binary mask using an adaptive background removal approach (OpenCV, cv2.threshold). Our 
mitochondria extra-tree classifier was trained thanks to the labeling of 149 images from 2 
different cell lines (CHO and Preadipocytes) coming from 14 different acquisitions. 
 
Detection of lipid droplets: 
Lipid droplets were automatically segmented using Nanolive lipid droplet assay software that 
identifies spherical structures of even signal distribution over specific local refractive index 
maxima. The produced lipid droplet segmentations were further used for custom metrics 
calculations. 
 
Metrics calculation: 
 
The instantiated masks of cells, mitochondria, lipid droplets, nuclei and nucleoli and cytosol 
were used to extract the spatial (shape and size descriptors, centroid position) and RI-derived 
(dry mass, textures) features of each of the mentioned biological objects in each frame of 
each time-lapse experiment (Video S1-S19). This was performed using a scientific python 
environment and the library scikit-image. Each object’s dry mass content was calculated from 
its refractive index value using linear calibration model [32]. The data were exported as a .csv 
file into a Python environment and plotted with the Python library matplotlib for figure 
making or used through the bnlearn python library to establish our organelle cross-regulation 
networks. 
 
Bayesian network structure learning: 
 
We performed our Bayesian network (BN) structure learning using the bnlearn53 python 
package, to determine which BN captures the best the causal links that exists between our 
dataset variables, lipid droplets, mitochondria, nucleus, nucleoli and cytosol dry mass 
densities, as well as the nature of the single cell, normal or syncytium. 
 
The best BN for each condition was defined using a greedy score-based structure learning 
strategy. For this study we used the K2 scoring function and the hill climb search algorithm, 
which incrementally tests BN alternatives in order to improve the K2 scoring that itself 
determines the probability of the BN structure given its training data. 
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The independence test to define edge strengths of our BN was a chi squared statistical test 
using each of the three models and their related data. For each pair of our learned BN, a chi 
squared statistical test is performed to determine its pValue and associated chi squared score. 
The latter defines the thickness of the displayed edges of our organelle cross regulation 
Bayesian networks in Figure 6. 
 
 
Supplemental information titles and legends: 
 
 
Figure S1 Machine learning detects unperturbed or fragmented mitochondria after 
silencing of OPA1. 
 

Figure S2 The effect of OPA1 silencing is quantified through automated mitochondria 
segmentation. 
 
Figure S3 Perinuclear lipid droplet accumulation is a marker of infection. 
 
Figure S4 Lipid droplets of infected cells are not surrounded by mitochondria.  
 

Videos S1-S7: Control uninfected U2OS-ACE2 cells. Seven representative videos of cells 
and organelles masks overlaid on refractive index signal. 
 
Videos S8-S12. U2OS-ACE2 cells infected with SARS-CoV-2 Wuhan strain.  - Five 
representative videos of cells and organelles masks overlaid on refractive index signal. 
 
Videos S13-S16. U2OS-ACE2 cells infected with SARS-CoV-2 Omicron BA.1.  - Four 
representative movies of cells and organelles masks overlaid on refractive index signal. 
 
Videos S17-S19. U2OS-ACE2 cells forming syncytia upon expression of Syncytin-1.  - 
Three representative videos of cells and organelles masks overlaid on refractive index 
signal. 
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