

1 **Engineered odorant receptors illuminate structural principles of odor discrimination**

2

3 Claire A. de March^{1,2*#}, Ning Ma^{3*}, Christian B. Billesbølle^{4*}, Jeevan Tewari¹, Claudia Llinas del
4 Torrent^{4,5}, Wijnand J. C. van der Velden³, Ichie Ojiro¹, Ikumi Takayama^{1,6}, Bryan Faust⁴, Linus
5 Li⁴, Nagarajan Vaidehi^{3#}, Aashish Manglik^{4,5#}, Hiroaki Matsunami^{1,7#}

6

7 1. Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA

8 2. Institut de Chimie des Substances Naturelles, UPR2301 CNRS, Université Paris-Saclay, Gif-
9 sur- Yvette, 91190, France

10 3. Department of Computational and Quantitative Medicine, Beckman Research Institute of the
11 City of Hope, Duarte, CA, USA

12 4. Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA

13 5. Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat
14 Autònoma Barcelona, 08193 Bellaterra, Barcelona, Spain

15 5. Department of Anesthesia and Perioperative Care, University of California, San Francisco,
16 CA, USA

17 6. Department of Biotechnology and Life Science, Tokyo University of Agriculture and
18 Technology, Koganei, Tokyo 184-8588, Japan

19 7. Department of Neurobiology, Duke Institute for Brain Sciences, Duke University, Durham,
20 NC, USA

21

22 *These authors contributed equally

23 #Correspondence to: Claire A. de March (claire.de-march@cnrs.fr), Nagarajan Vaidehi
24 (NVaidehi@coh.org), Aashish Manglik (aashish.manglik@ucsf.edu), or Hiroaki Matsunami
25 (hiroaki.matsunami@duke.edu)

26

27

28 **Abstract**

29 A central challenge in olfaction is understanding how the olfactory system detects and
30 distinguishes odorants with diverse physicochemical properties and molecular configurations.
31 Vertebrate animals perceive odors via G protein-coupled odorant receptors (ORs). In humans,
32 ~400 ORs enable the sense of smell. The OR family is composed of two major classes: Class I
33 ORs are tuned to carboxylic acids while Class II ORs, representing the vast majority of the
34 human repertoire, respond to a wide variety of odorants. How ORs recognize chemically diverse
35 odorants remains poorly understood. A fundamental bottleneck is the inability to visualize
36 odorant binding to ORs. Here, we uncover fundamental molecular properties of odorant-OR
37 interactions by employing engineered ORs crafted using a consensus protein design strategy.
38 Because such consensus ORs (consORs) are derived from the 17 major subfamilies of human
39 ORs, they provide a template for modeling individual native ORs with high sequence and
40 structural homology. The biochemical tractability of consORs enabled four cryoEM structures of
41 distinct consORs with unique ligand recognition properties. The structure of a Class I consOR,
42 consOR51, showed high structural similarity to the native human receptor OR51E2 and yielded
43 a homology model of a related member of the human OR51 family with high predictive power.
44 Structures of three Class II consORs revealed distinct modes of odorant-binding and activation
45 mechanisms between Class I and Class II ORs. Thus, the structures of consORs lay the
46 groundwork for understanding molecular recognition of odorants by the OR superfamily.

47

48

49

50 **Introduction**

51 Vertebrate animals perceive odors primarily through olfactory G protein-coupled receptors
52 (GPCRs) found within sensory neurons of the olfactory epithelium. In humans, olfactory GPCRs
53 account for over half of the class A GPCR family¹⁻³ (**Supplementary Fig. 1a**). Two types of
54 GPCRs are involved in sensing odorants: a large family of odorant receptors (ORs) commonly
55 subdivided further into Class I and Class II types and a separate family of Trace Amine-
56 Associated Receptors (TAARs)^{4,5}. Class II ORs are most prevalent, accounting for 84% of all
57 olfactory GPCRs with 335 identified members. They are followed by Class I ORs (56 members)
58 and TAARs (6 members). ORs are further divided into 17 subfamilies (Class II: 1-14; Class I:
59 51, 52, 56) based on their amino acid sequence similarities⁶.

60

61 The olfactory system needs to detect and discriminate odorants with diverse physicochemical
62 properties and molecular structures. This challenging task is accomplished by combinatorial
63 activation of olfactory GPCRs, wherein a single receptor can be activated by multiple odorants
64 and a single odorant can activate multiple receptors^{7,8}. Each type of olfactory GPCR is
65 responsible for detecting a particular segment of odor chemical space. While TAARs are
66 specialized to amines and Class I ORs are tuned to carboxylic acids, Class II ORs respond to a
67 much larger array of volatile odorants^{9,10}. TAARs and Class I ORs are more abundant in fish,
68 likely because these receptors recognize water soluble odorants. Class II ORs have undergone
69 dramatic expansion in terrestrial vertebrates, likely because they recognize a more diverse set
70 of volatile, poorly water soluble odorants^{11,12}. The anatomical distribution of ORs in amphibian
71 species further supports this mapping of chemical diversity to OR classes. In the model
72 amphibian *Xenopus laevis*, Class I ORs are expressed in olfactory epithelium regions dedicated
73 to the detection of water-soluble molecules, while Class II ORs are found in areas dedicated to
74 the detection of volatile odorants¹³.

75

76 Several advances have started to provide an atomic perspective on how odorants are
77 recognized by the olfactory system. We recently reported the structure of a human odorant
78 receptor, OR51E2, bound to the odorant propionate¹⁴. Like most other Class I ORs, OR51E2
79 responds to carboxylic acids. Additional structural biology studies have reported structures of
80 murine TAARs mTAAR7f¹⁵ and mTAAR9¹⁶ bound to linear and cyclic amines. Despite these
81 foundational insights into odorant recognition, how Class II ORs interact with diverse odorants
82 remains elusive for two reasons: 1) Class II ORs share only 18-34% amino acid identity with

83 OR51E2 and 2) Class II ORs recognize a distinct set of odor chemical space compared to Class
84 I ORs and TAARs^{9,10}.

85
86 To understand how the sequence diversity of ORs enables recognition of diverse odorants, we
87 used a combination of odorant receptor engineering and cryogenic electron microscopy (cryo-
88 EM) to unravel fundamental features of odorant recognition in Class I and Class II ORs. A
89 combination of molecular dynamics simulations and mutagenesis studies revealed key
90 differences in how each of these families recognizes odorants as well as important similarities in
91 how odorants activate their receptors. Furthermore, our engineering strategy to enable structure
92 determination of otherwise technically recalcitrant ORs enables a path to modeling the
93 thousands of ORs encoded across vertebrate genomes.

94
95 **Consensus ORs are robustly expressed**
96 A fundamental challenge in the study of vertebrate ORs is low expression levels of native
97 receptors in heterologous cell systems¹⁷. Our recent structure determination of human OR51E2
98 relied on identification of an OR that is atypically highly expressed in model cell lines, likely
99 because it is ectopically expressed and strongly conserved during evolution¹⁴. The vast majority
100 of other vertebrate ORs have remained recalcitrant to overexpression in heterologous cell lines,
101 even with co-expression of dedicated OR chaperones^{18–20}. Due to these fundamental
102 challenges in biochemical study of OR function, we applied a previously-established
103 “consensus” strategy for engineering thermostable proteins^{21–23}. While initially described for
104 immunoglobulins²⁴ and enzymes²⁵, we previously demonstrated that consensus OR constructs
105 (consORs) can be designed using individual members of a subfamily of human ORs²⁶. Such
106 consORs are expressed in heterologous cells at levels that approach other non-olfactory Class
107 A GPCRs. Importantly, consORs are a robust starting point for modeling individual native ORs
108 as they have high sequence identity to each individual member of an OR subfamily
109 (**Supplementary Table 1**). ConsORs are often activated by similar odorants as their
110 corresponding native ORs.

111
112 We initially applied the consensus approach to study the human OR51 subfamily, which belongs
113 to Class I ORs that recognize carboxylic acid odorants. After aligning 23 members of the OR51
114 subfamily, we designed a consensus construct (consOR51) that retains the most common
115 amino acid at each aligned position (**Fig. 1a**). Phylogenetic analysis of consOR51 compared to
116 the native sequences of OR51 subfamily members shows that the consensus construct lies at

117 the root of the extant sequences, which range from 45% to 74% amino acid identity when
118 compared with consOR51 (**Fig. 1b and Supplementary Table 1**). The vast majority of
119 individual OR51 subfamily members fail to express at measurable levels in HEK293T cells, with
120 the exception of OR51E2 and, to a lesser extent, OR51E1. By contrast, consOR51 expresses at
121 levels higher than OR51E2 (**Fig. 1c and Supplementary Fig. 2**). In a GloSensor cAMP
122 production assay, consOR51 shows significant elevation of the GloSensor signal at baseline,
123 which suggests that the consensus construct has a high basal activity in the absence of an
124 odorant (**Fig. 2d**).

125
126 Encouraged by the surface expression levels of consOR51, we determined a cryo-EM structure
127 of consOR51. Following the successful strategy used for structure determination of OR51E2, we
128 designed a construct fusing consOR51 with a C-terminal miniG_s protein^{14,27}. Because
129 consOR51 is constitutively active, we purified the consOR51-miniG_s fusion protein in the
130 absence of an odorant agonist. Consistent with increased cell surface expression of consOR51
131 compared to OR51E2, we observed significantly greater protein purification yields for
132 consOR51-miniG_s compared to OR51E2-miniG_s. We further added G $\beta_1\gamma_2$ and the stabilizing
133 nanobody Nb35 to produce a complex amenable for single particle cryo-EM studies, which
134 yielded a map of consOR51 bound to the G_s heterotrimer with 3.2 Å resolution (**Fig. 1d**,
135 **Supplementary Fig. 3, and Supplementary Table 2**). Perhaps due to the constitutive activity
136 of consOR51, we did not observe an odorant bound to consOR51 (**Fig. 1e**). Application of the
137 consensus strategy, therefore, enables robust expression of model ORs making them amenable
138 to structure determination.

139
140 **Structure of consOR51 enables dissection of OR51 family**
141 We first compared the structures of consOR51 and human OR51E2 to understand how well
142 consensus OR constructs recapitulate the structure of native ORs. The overall structure of
143 consOR51 and OR51E2 are highly similar, with an overall root mean square deviation (RMSD)
144 of 1.3 Å (**Fig. 2a**). Although the overall architecture of the extracellular loops is highly similar
145 between consOR51 and OR51E2, the intracellular ends of transmembrane helices 5 (TM5) and
146 TM6 deviate slightly between consOR51 and OR51E2. These differences could be due to high
147 basal activity of the consOR51.

148
149 A potential utility of consORs is that they may enable accurate modeling of the odorant binding
150 pocket of native ORs. We therefore compared how well consOR51 recapitulates the binding

151 pocket of OR51E2 (**Fig. 2b,c**). Although our structure of consOR51 was obtained without an
152 odorant, comparison of the binding pockets of consOR51 and OR51E2 revealed remarkable
153 similarity in the identity of many amino acids in this region and the conformation of side chains
154 that engage odorants. Perhaps most notable is a conserved arginine residue in Class I ORs
155 (R264^{6x59} in consOR51 and R262^{6x59} in OR51E2, superscripts represent the modified
156 Ballesteros-Weinstein numbering system for GPCRs²⁸⁻³⁰). We have previously demonstrated
157 that engaging the carboxylic acid of propionate by R262^{6x59} in OR51E2 is critical for receptor
158 activation¹⁴. In consOR51, we observe that R264^{6x59} is poised to make a similar contact with a
159 carboxylic acid in the odorant binding pocket (**Fig. 2b,c**). More broadly, other residues that
160 engage the propionate carboxylic acid moiety in OR51E2 are similarly poised to interact with a
161 carboxylic acid in consOR51. For OR51E2, we previously demonstrated that hydrophobic
162 interactions between the aliphatic tail of fatty acids and the odorant binding pocket confer fatty
163 acid mediated activity and selectivity. As expected, residues in this region diverge between
164 OR51E2 and consOR51. A notable difference occurs at position 3x37, which is a bulky aromatic
165 in consOR51 (F110^{3x37}) compared to a small aliphatic side chain in OR51E2 (A108^{3x37}). It has
166 already been shown in a mouse OR that bulky amino acids in this area increase the basal
167 activity of ORs³¹. Mutation of consOR51 at this position to glycine (consOR51-F110G) yielded
168 significantly reduced basal activity and a gain of odorant-dependent response. The increased
169 space at position 4x47 (F155 in OR51E2, I157 in consOR51) accommodates longer chain fatty
170 acids¹⁴ and, as expected, consOR51-F110G responds best to medium chain length fatty acids
171 (**Fig. 2d**).
172

173 We next turned to understand whether the consOR51 structure may enable accurate homology
174 modeling of a different OR51 family member, OR51E1 (**Fig. 2e**). While OR51E2 is selective for
175 the short-chain fatty acids acetate and propionate, OR51E1 responds to longer-chain fatty
176 acids^{8,32}. Indeed, in a GloSensor cAMP accumulation assay, we observe that OR51E1 responds
177 to a range of fatty acids, with a preference for pentanoate ($pEC50 = -4.64 \pm 0.03$, **Fig. 2g**). We
178 generated a homology model of OR51E1 using the structure of consOR51 as template, and
179 docked pentanoate into this model (**Fig. 2f**). Similar to the binding pose of propionate in
180 OR51E2, the carboxylic acid of pentanoic acid engages a similar ionic and hydrogen bonding
181 network anchored by R264^{6x59}. A distinct set of residues in the divergent part of the cavity
182 enables the longer aliphatic chain of pentanoate to bind in the OR51E1 pocket. To test this
183 model, we mutated residue I205^{5x43} to alanine, predicting that introducing more space in this

184 region would change the fatty acid preference of OR51E1. Indeed OR51E1-I205^{5x43}A shows a
185 distinct preference for the longer chain heptanoic and octanoic fatty acids (**Fig. 2g**).
186

187 With these studies, we surmise that: 1) consORs likely show high structural similarity to
188 individual native ORs and 2) homology modeling of native ORs from a consOR can enable
189 predictive models of odorant binding.
190

191 **Structure of consOR1 as a representative Class II OR**

192 Our structural insights into ORs have thus far been limited to Class I ORs. Attempts to express
193 and purify Class II ORs have been even more challenging than Class I ORs, likely because
194 Class II ORs are generally more poorly folded and induce stronger ER stress responses³³.
195 Class II ORs recognize a broad range of odorants with significant structural diversity^{8,34-36}.
196 Among Class II ORs, the human OR1A1 receptor has previously been characterized as a
197 broadly tuned receptor that recognizes highly diverse odorants, including allyl phenyl acetate,
198 dihydrojasnone, menthols, and carvones³⁷. We, therefore, sought to understand how the
199 binding pocket of OR1A1 leads to its specific odorant recognition profile.
200

201 We started by using the consensus approach to generate consOR1, a construct that shares
202 63% sequence identity with native OR1A1 (**Fig. 3a**). In contrast to consOR51, consOR1 is not
203 constitutively active and responds robustly to the odorant L-menthol (**Fig. 3b,c, and**
204 **Supplementary Fig. 5**). Like OR1A1, consOR1 responds to a diverse set of odorants,
205 highlighting the unique ability of consensus ORs to recapitulate features of native ORs. Using a
206 similar strategy as for consOR51, we determined a cryo-EM structure of consOR1 bound to L-
207 menthol with a nominal resolution of 3.3 Å (**Fig. 3d, Supplementary Fig. 4, and**
208 **Supplementary Table 2**).
209

210 The binding pocket of consOR1 is largely hydrophobic with a few amino acids that provide
211 either hydrogen bond donors or acceptors. Cryo-EM density for L-menthol supported a binding
212 pose with the hydroxyl group of the odorant engaging N109^{3x37} in the binding pocket (**Fig. 3e**).
213 L-menthol makes van der Waals contacts with many residues in the consOR1 binding pocket.
214 Indeed, alanine mutagenesis experiments show that the majority of residues within 5 Å from the
215 ligand in the binding pocket are important for L-menthol activity at consOR1 (**Fig. 3f**). We
216 conclude that most residues in the consOR1 binding pocket contribute to L-menthol binding and
217 efficacy. It is likely that many other Class II ORs show similar modes of odorant recognition - a

218 combination of many distributed hydrophobic contacts combined with a limited set of hydrogen-
219 bonding interactions.

220

221 **ConsOR1 enabled dissection of a native Class II OR**

222 We next turned to understand odorant recognition by the native receptor OR1A1. Like
223 consOR1, OR1A1 responds to L-menthol with micromolar potency ($pEC_{50} = -4.79 \pm 0.05$,
224 **Supplementary Fig. 5**). We additionally identified several other odorants with activity at
225 OR1A1, and focused on molecular recognition of another terpenoid odorant, R-carvone (**Fig.**
226 **3g**). Compared to L-menthol, R-carvone is more potent at OR1A1 ($pEC_{50} = -6.82 \pm 0.05$,
227 **Supplementary Fig. 5**). Both L-menthol and R-carvone are primarily hydrophobic ligands but
228 harbor a single hydrogen bond donor or acceptor. To understand how OR1A1 recognizes these
229 distinct terpenoids, we generated a homology model of OR1A1 based on the structure of
230 consOR1 bound to L-menthol (**Fig. 3h**). This model was used for docking studies of L-menthol
231 and R-carvone. In both cases, we found that docking did not identify a single pose of the
232 odorant within the OR1A1 binding pocket (**Fig. 3k,l**). Instead, both L-menthol and R-carvone
233 dock to OR1A1 in multiple orientations with a distributed set of van der Waals contacts. Despite
234 the shared terpenoid scaffold of both odorants, docking revealed that L-menthol and R-carvone
235 engage distinct subpockets in OR1A1 that are different from the position of L-menthol bound to
236 consOR1 in the cryo-EM structure. In OR1A1, L-menthol engages residues in TM5 more
237 extensively, while R-carvone engages the other side of the pocket composed primarily of
238 residues in TM3 (**Fig. 3m**).

239

240 To test these docking predictions, we assessed the activity of L-menthol and R-carvone against
241 alanine mutants of each binding pocket residue (**Fig. 3j, Supplementary Fig. 5**). We
242 anticipated that these mutations may differentially affect the activity of L-menthol and R-carvone
243 due to their distinct engagement of the OR1A1 pocket. Two mutations, F206^{5x47}A and
244 H159^{4x60}A, are deleterious for both L-menthol and R-carvone activity (**Supplementary Fig. 5**).
245 Other mutations more selectively affect either L-menthol or R-carvone activity. For example,
246 N155^{4x56}A leads to a ~27-fold worse EC_{50} for R-carvone. By contrast, the same mutation has a
247 negligible effect on potency and ~30% reduced E_{max} for L-menthol (**Fig. 3i**). To more easily
248 capture the combined effects of efficacy and potency, we calculated the integrated area under
249 the dose-response-curve for each mutant (see Methods). Comparison of this metric for L-
250 menthol and R-carvone revealed that OR1A1 mutations have differential effects on the activity
251 of both odorants (**Fig. 3j**). Concordant with our docking analysis, OR1A1 binding pocket

252 mutations in TM3 more strongly affect R-carvone activity, while mutations in TM5 more strongly
253 affect L-menthol activity (**Fig. 3m**).

254

255 These docking and mutagenesis studies highlight the complex mode of odorant recognition for a
256 broadly tuned Class II OR, which likely involves many different odorant binding poses. Different
257 odorants likely engage a single odorant receptor binding pocket in distinct ways, further adding
258 complexity to molecular recognition in the odorant receptor system.

259

260 **Structural flexibility in consOR1 ligand recognition**

261 The flexibility of R-carvone docking to OR1A1 and site-directed mutagenesis data suggest that
262 odorants can bind Class II ORs without a single, well defined binding pose. Our previous studies
263 of OR51E2 showed that propionate is not flexible in its binding site and persistently adopts a
264 single pose that is constrained by an ionic interaction. Compared to highly water soluble Class I
265 odorants like propionate, Class II OR ligands are more hydrophobic, often with only a single
266 hydrogen bond donor or acceptor (**Supplementary Fig. 1a**). We therefore sought to understand
267 the structural dynamics of odorant binding to Class II ORs.

268

269 We turned to all-atom molecular dynamics simulations (MD) to examine the flexibility of L-
270 menthol in the consOR1 binding pocket. To understand how the G protein and ligand influence
271 consOR1 flexibility, we performed simulations under the following conditions: 1) consOR1
272 bound to L-menthol and miniG α_s , 2) consOR1 bound to L-menthol without miniG α_s , and 3)
273 consOR1 alone (**Fig. 4a**). Each simulation was performed in 5 replicates and each replicate was
274 evolved over 1 μ s (**Supplementary Fig. 6**). As expected based on simulations of other
275 GPCRs³⁸⁻⁴⁰, removal of miniG α_s and L-menthol leads to increased structural flexibility of
276 consOR1 (**Fig. 4a**). Notably, L-menthol is highly dynamic within the ligand binding pocket of
277 consOR1 (**Fig. 4b-d**). In the absence of G protein, L-menthol explores a broad range of the
278 odorant binding site with a ligand RMSD of 6.1 \AA when compared to the cryo-EM structure of L-
279 menthol bound to consOR1. In simulations of consOR1 bound to miniG α_s , the flexibility of L-
280 menthol is reduced, with a ligand RMSD of 4.2 \AA . The flexibility of L-menthol stands in stark
281 contrast to the relative stability of propionate bound to OR51E2 (**Fig. 4e-g**). Our previous
282 simulations of propionate bound to OR51E2 revealed an overall ligand RMSD of 2.1 \AA and 2.4
283 \AA for simulations performed with and without the miniG α_s , respectively. The increased flexibility
284 of L-menthol in simulations of consOR1 without miniG α_s is correlated with an increase in the
285 volume of the consOR1 binding pocket. With miniG α_s , L-menthol explores a consOR1 pocket

286 that encloses 250 Å³. In the absence of miniG_a_s, the pocket expands to 450 Å³
287 (**Supplementary Fig. 7**). The increased volume of the consOR1 ligand binding pocket arises
288 from an outward movement of extracellular loop 3 and the extracellular sides of TM6 and TM7.
289

290 Taken together, these simulation and mutagenesis studies suggest that odorants bind to Class
291 II ORs with significantly greater flexibility compared to Class I OR. Furthermore, our simulations
292 also show that binding of the G protein decreases odorant flexibility in a Class II OR binding
293 pocket.
294

295 **A shared Class II OR activation motif**

296 We next sought to expand the consOR strategy to other Class II ORs, with the aim of
297 understanding both shared and distinct features between Class I and Class II ORs. We
298 therefore applied the consensus strategy to other human Class II OR subfamilies: the OR2
299 family (68 members) and the OR4 family (51 members) as shown in **Supplementary Fig. 1**.
300 ConsOR2 and consOR4 respond to the odorants S-carvone and 2-methyl thiazoline (2MT),
301 respectively (**Fig. 5a,b**). We determined cryo-EM structures of consOR2 and consOR4 at 3.2 Å
302 and 3.5 Å, respectively (**Supplementary Figs. 8-9, Supplementary Table 2**). For both
303 receptors, we could identify clear cryo-EM density for the odorant molecules (**Supplementary**
304 **Fig. 10**). Similar to consOR1, our simulations of consOR2 and consOR4 revealed significant
305 flexibility in the binding pose of odorants at these receptors (**Supplementary Fig. 10**)
306

307 With this set of OR structures, we aimed to identify structural features that are unique to Class I
308 and Class II ORs. As expected, the intracellular regions of Class I and Class II ORs are
309 conserved, both in sequence and structure because these regions are critical for G protein
310 coupling in response to odorant binding (**Supplementary Fig. 11**). The overall fold of the
311 extracellular region is similar between Class I and Class II ORs (**Fig. 5c**).
312

313 Despite these similarities, our structural analysis highlighted a common motif in the extracellular
314 region of Class II ORs that is distinct from Class I ORs and is likely important for receptor
315 activation. For OR51E2, we previously demonstrated that a highly conserved arginine residue in
316 Class I ORs (R^{6x59}) at the extracellular tip of TM6 engages the carboxylic acid group of fatty
317 acids. This interaction restrains an otherwise dynamic extracellular loop 3 (ECL3), which is
318 associated with receptor activation (**Fig. 5d**). In structures of Class II consORs, position 6x59 is
319 not conserved. Instead, we identified a highly conserved tyrosine residue in Class II ORs (Y^{6x55})

320 that makes a hydrogen-bonding contact with another Class II-specific conserved acidic residue
321 in ECL2 (D/E^{45x51}). This conserved contact is in proximity to the odorant binding site, which
322 suggests that it might have an important role in connecting odorant binding to receptor
323 activation. To explore this possibility, we used molecular dynamics simulations to examine this
324 conserved Class II OR contact. With the odorant and G protein bound, this contact is
325 maintained in most simulations across all three Class II consORs. In simulations without the
326 odorant and G protein, the interaction between Y^{6x55} and D/E^{45x51} is less stable, with significantly
327 greater distances over the simulation timeframes (**Fig. 5e**). Indeed, for all three consORs,
328 disruption of this interaction by alanine mutation markedly reduces odorant-induced activity (**Fig.**
329 **5f**). We therefore conclude that the conserved interaction between Y^{6x55} and D/E^{45x51} is an
330 important mechanism for odorant-induced activation of Class II ORs.

331

332 **Discussion**

333 Our studies of several OR structures and their dynamic movements yield an emerging general
334 model for odorant recognition. Class I ORs recognize carboxylic acids via a conserved arginine
335 residue in TM6 (R^{6x59}). The structure of constitutively active consOR51 captured without an
336 odorant underscores that this residue occupies a conserved position in the binding pocket of
337 activated Class I ORs. Predictive homology modeling of OR51E1 based on consOR51 further
338 supports the following model for class I OR odorant recognition: conserved binding pocket
339 residues that engage the carboxylic acid combined with more divergent binding pocket residues
340 that tune the response profile for fatty acids of varying aliphatic length. Together, these
341 interactions stably position an odorant in the binding site. While odorants bind to the Class II
342 ORs in a similar location as Class I ORs, our studies suggest several distinct mechanisms of
343 odorant recognition between Class I and Class II ORs. First, Class II OR do not harbor a
344 conserved interaction partner analogous to R^{6x59} in class I ORs. Second, odorants make a
345 diffuse set of van der Waals contacts in the Class II OR binding pocket, often with a single
346 hydrogen bonding interaction. For broadly tuned Class II ORs, different odorants are likely to
347 occupy different subpockets of the odorant binding site leading to distinct sets of interactions
348 important for their activity. Third, our studies with consOR1 suggest that odorants bind with
349 significant flexibility in Class II ORs compared to Class I ORs. This likely arises from the more
350 limited set of strong ionic or hydrogen bond contacts in most volatile odorants that activate
351 Class II ORs as compared to the charged water-soluble odorants that activate Class I ORs. An
352 additional factor is likely the increased flexibility of the OR binding pocket in Class II ORs.

353 Recognition of odorants by Class II ORs is therefore also distinct from TAARs, which recognize
354 aminergic odorants via conserved ionic interactions⁴¹.

355 More broadly, the vast majority of small molecule binding class A GPCRs use specific hydrogen
356 bonding or ionic interactions to drive specificity in ligand binding. Class II ORs, by contrast,
357 recognize odorants primarily by van der Waals contacts, with limited hydrogen bonding
358 interactions. Our model for odorant recognition in vertebrate ORs recapitulates recent structural
359 biology studies that have identified a flexible binding mode for odorants at a broadly tuned
360 ionotropic insect olfactory receptor, MhOR5^{42,43}. In both cases, odorant binding is not confined
361 to a single pose. Despite this flexibility, distinct interactions made between the odorant and OR
362 binding pocket can still result in different odorant activity, as outlined by our studies with R-
363 carvone and L-menthol acting at OR1A1. These distinct sets of interactions drive odorant
364 discrimination. While our studies start to explain some features of molecular recognition in Class
365 II ORs, a more complete understanding how the large diversity of odorants is recognized by this
366 set of ORs will require significant further structural interrogation of both broadly and narrowly
367 tuned receptors.

368 Our structural analysis also sheds light on a unifying mechanism of Class I and Class II OR
369 activation by chemically diverse odorants. While the specific motifs that engage odorants are
370 distinct between Class I and Class II ORs, a highly conserved interaction between the
371 extracellular end of TM6 and the odorant or odorant binding pocket stabilizes an inward
372 movement of TM6. For Class I ORs, this interaction is driven by odorant engaging R^{6x59} (**Fig.**
373 **6a**). For Class II ORs, odorants stabilize an interaction between Y^{6x55} and D/E^{45x51} (**Fig. 6b**).
374 Odorant binding in both Class I and Class II ORs causes an inward movement of the
375 extracellular region in TM6. This movement is accompanied by outward movement of the
376 intracellular side of TM6, which creates a cavity for engaging G protein. Odorants can be
377 structurally flexible while bound to Class II ORs. Full activation of the OR with odorant and G
378 protein restrains some of this flexibility. While a more accurate model will require an
379 experimental structure of an inactive OR, our proposed model provides a shared activation
380 mechanism for the broader OR family.

381 A key advance of this study is the broad utility of a consensus engineering approach to
382 understand OR function²⁶. The vast majority of ORs, in both vertebrate and invertebrate
383 species, remain intractable for biochemical and structural studies. With the consensus
384 approach, we obtained four cryo-EM structures of consORs with high sequence identity to a

385 subset of native human ORs. Our comparison of consOR51 to native human OR51E2 highlights
386 that consOR structures not only share virtually identical backbone structures to native OR family
387 members, but also key residue positions in the structures relevant for odorant recognition. While
388 AlphaFold has transformed protein structure prediction⁴⁴, key OR regions critical for odorant
389 recognition (e.g. ECL3) remain poorly predicted, likely because they diverge so widely across
390 the OR family¹⁴. We therefore propose that consOR structures will enable higher quality models
391 of many ORs, used either as templates for AlphaFold or in more classic homology modeling
392 approaches. If we use a threshold of 60% sequence identity as a metric for high quality
393 templates for such modeling⁴⁵, the four consOR structures described here would enable high
394 quality models for 34% of all human ORs (**Fig. 6c and Supplementary File 1**). Additional
395 consOR structures derived from the other major OR families will expand this number further.
396 The ability to capture structures of odorants bound to consORs will likely continue to provide
397 fundamental insights into how vertebrate ORs cope with the immense chemical diversity of
398 odorous molecules.

399 What can the success of consORs reveal about the evolution of the OR family? We previously
400 proposed that the stability of consORs suggests that ancestral OR sequences were likely more
401 stable than the majority of extant OR sequences²⁶. Diversification of OR sequences is enabled
402 by evolutionary capacitance provided by OR-specific chaperones^{46–48}. The high structural
403 similarity between a consOR and a native OR suggests that evolution drives OR diversity within
404 a family primarily by altering contacts with odorants, as opposed to dramatic variation in the
405 overall fold of the OR. This diversity re-tunes odorant specificity. Furthermore, the fact that the
406 consensus strategy yields stable ORs for multiple OR subfamilies suggests that the common
407 ancestor of each major human OR subfamily was likely a more stable receptor - evolution drives
408 diversification for odorant recognition function at the cost of stability. We anticipate that future
409 studies in visualizing OR structures and odorant recognition will yield deeper insight into the
410 importance of such tradeoffs.

411

412

413

414 **METHODS**

415

416 **Expression and purification of consOR-miniG_s protein complexes**

417 Expression and purification of consensus OR constructs was done similarly to OR51E2-
418 miniG_s¹⁴. Briefly, consensus OR sequences²⁶ were cloned into pCDNA-Zeo-TetO with an N-
419 terminal influenza hemagglutinin signal sequence and a FLAG (DYKDDDDK) epitope. The
420 construct included the miniG_{s399} protein²⁷ fused to the C terminus with a human rhinovirus 3C
421 protease cleavage site. The resulting constructs were transfected into inducible Expi293F-TetR
422 cells using the ExpiFectamine 293 Transfection Kit per the manufacturer's instructions. After 16
423 hours, protein expression was induced with 1 µg/mL doxycycline hydiate and the culture was
424 incubated for 36 hours in a shaking incubator maintained at 37 °C and a 5% CO₂ atmosphere
425 prior to cell harvest by centrifugation. The resulting pellet was stored at -80 °C until purification.

426

427 Odorant receptor purification was performed as described previously¹⁴. Cells pellets were
428 thawed with hypotonic lysis in 20 mM HEPES, pH 7.5, 1 mM EDTA, 100 µM tris(2-
429 carboxyethyl)phosphine (TCEP; Fischer Scientific) and one EDTA-free Protease Inhibitor Tablet
430 (Pierce; ThermoScientific) for 10 min at 4 °C. The lysis buffer was supplemented with odorants
431 to stabilize the consOR constructs: 3 mM L-menthol, 1 mM S-carvone and 30 mM 2-
432 methylthiazoline were used for consOR1-miniG_{s399}, consOR2-miniG_{s399} and consOR4-miniG_{s399}
433 purification, respectively. Lysed cells were harvested by centrifugation at 16,000xg for 15 min
434 and immediately dounce-homogenized in ice-cold solubilization buffer comprising 50 mM
435 HEPES, pH 7.5, 300 mM NaCl, 1% (w/v) lauryl maltose neopentyl glycol (L-MNG; Anatrace),
436 0.1% (w/v) cholesteryl hemisuccinate (CHS, Steraloids), 5 mM adenosine 5'-triphosphate (ATP;
437 Fischer Scientific), 2 mM MgCl₂, and 100 µM TCEP. For consOR2-miniG_{s399} and consOR4-
438 miniG_{s399}, the solubilization buffer was supplemented with 1 mM S-carvone and 30 mM 2-
439 methylthiazoline, respectively. Due to the low solubility of L-menthol in aqueous buffers, we
440 generated L-menthol doped L-MNG micelles for consOR1-miniG_{s399} purification with a ratio of
441 0.4 mol% L-menthol in 1% w/v L-MNG. This solution was used in place of 1% L-MNG during
442 purification steps. Solubilized cells were stirred for 1 hour at 4 °C, and the detergent-solubilized
443 fraction was clarified by centrifugation at 16,000xg for 30 min. The detergent-solubilized sample
444 was supplemented with 5 mM CaCl₂ and incubated in batch with homemade M1-FLAG-antibody
445 conjugated CNBr-Sepharose under slow rotation for 1.5 h at 4 °C. The Sepharose resin was
446 transferred to a glass column and washed with 15 column volumes of ice-cold buffer comprising
447 50 mM HEPES, pH 7.5, 300 mM NaCl, 0.05% (w/v) L-MNG or 0.05% (w/v) L-MNG with

448 0.02mol% L-menthol, 0.001% (w/v) CHS, 2.5 mM ATP, 4 mM CaCl₂, 2 mM MgCl₂, 100 μM
449 TCEP and the corresponding odorant. This was followed by 10 column volumes of ice-cold 50
450 mM HEPES, pH 7.5, 150 mM NaCl, 0.0075% (w/v) L-MNG or 0.0075% (w/v) L-MNG with
451 0.003mol% L-menthol, 0.0025% glyco-diosgenin (GDN; Anatrace), 0.001% (w/v) CHS, 4 mM
452 CaCl₂, 100 μM TCEP and corresponding odorant. Receptor-containing fractions were eluted
453 with ice-cold 50 mM HEPES, pH 7.5, 150 mM NaCl, 0.0075% (w/v) L-MNG or 0.0075% (w/v) L-
454 MNG with 0.003mol% L-menthol, 0.0025% (w/v) GDN, 0.001% (w/v) CHS, 5 mM EDTA, 100 μM
455 TCEP, corresponding odorant and 0.2 mg ml⁻¹ FLAG peptide. Fractions containing the
456 consOR–miniG_{s399} fusion protein were concentrated in a 50-kDa MWCO spin filter (Amicon) and
457 further purified over a Superdex 200 Increase 10/300 GL (Cytiva) size-exclusion
458 chromatography (SEC) column, which was equilibrated with 20 mM HEPES, pH 7.5, 150 mM
459 NaCl, 0.0075% (w/v) L-MNG or 0.0075% (w/v) L-MNG with 0.003mol% L-menthol, 0.0025%
460 (w/v) GDN, 0.001% (w/v) CHS, 100 μM TCEP and corresponding odorant. Fractions containing
461 monodisperse consOR–miniG_{s399} were combined and concentrated in a 50-kDa MWCO spin
462 filter.

463
464 Other components of the G protein complex, including G $\beta_1\gamma_2$ and Nb35 were purified as
465 described previously^{14,49}. To prepare active-state complexes for cryo-EM, a 3-fold molar excess
466 or 6-fold molar excess of G $\beta_1\gamma_2$ and Nb35 was added to concentrated consOR4-miniG_{s399} or
467 consOR1-miniG_{s399} and consOR2-miniG_{s399} samples respectively. The resulting preparation was
468 incubated overnight on ice. Complexed samples were purified using a Superdex 200 Increase
469 10/300 GL SEC column in a buffer comprised of 20 mM HEPES, pH7.5, 150 mM NaCl,
470 0.0075% (w/v) L-MNG or 0.0075% (w/v) L-MNG with 0.003mol% L-menthol, 0.0025% GDN, and
471 0.001% w/v CHS, 100 μM TCEP and corresponding odorant. Fractions containing the consOR-
472 G protein complex were collected and concentrated on a 100 kDa MWCO spin filter immediately
473 prior to cryo-EM grid preparation.

474

475 **Cryo-EM vitrification, data collection, and processing**

476 The purified OR–G_s complex was applied to glow-discharged 300 mesh R1.2/1.3 UltrAuFoil
477 Holey gold support films (Quantifoil). Support films were plunge-frozen in liquid ethane using a
478 Vitrobot Mark IV (Thermo Fisher) with a 10-s hold period, blot force of 0, and blotting time

479 varying between 1.5 and 3 s while maintaining 100% humidity and 4 °C. Vitrified grids were
480 clipped with Autogrid sample carrier assemblies (Thermo Fisher) immediately before imaging.
481 Movies were recorded using a Titan Krios Gi3 (Thermo Fisher) with a BioQuantum Energy Filter
482 (Gatan) and a K3 Direct Electron Detector (Gatan). Data were collected using SerialEM 3.8⁵⁰
483 running a 3 × 3 image shift pattern at 0° stage tilt. A nominal magnification of ×105,000 with a
484 100-μm objective was used in super-resolution mode with a physical pixel size as indicated in
485 Supplementary Table 2. Movies were recorded using dose-fractionated illumination with a total
486 exposure of 50 e⁻ Å⁻² over 60 frames yielding 0.833 e⁻ Å⁻² per frame. Movies were motion-
487 corrected and Fourier-cropped to physical pixel size using UCSF MotionCor2⁵¹. Dose-weighted
488 micrographs were imported into cryoSPARC v4.0.3 (Structura Biotechnology⁵²), and contrast
489 transfer functions (CTFs) were calculated using the patch CTF estimation tool. Where indicated
490 (see Extended Data Fig. 3, 4, 8, or 9), a threshold of CTF fit resolution was used to exclude low-
491 quality micrographs. Particles were template picked using a 20 Å low-pass-filtered model that
492 was generated ab initio from data collected on the consOR51 sample (Extended Data Fig. 3).
493 Particles were extracted with a box size of 288 pixels, binned, and sorted by 3D classification
494 with alignment using the heterogeneous refinement tool. Template volumes for each of the four
495 classes were low-pass filtered to 20 Å. The resulting particles were re-extracted with a box size
496 of 288 pixels binned to 144 pixels and where indicated sorted by heterogeneous refinement.
497 Particles from the highest resolution reconstruction were extracted with an unbinned box size of
498 288 pixels and were subjected to homogeneous refinement followed by non-uniform refinement.
499 Where indicated, particles were exported using csparc2star.py from the pyem v0.5 script
500 package⁵³, and an inclusion mask covering the 7TM domain was generated using the Segger
501 tool in UCSF ChimeraX v1.25⁵⁴ and the mask.py tool in pyem v0.5. Particles and mask were
502 imported into Relion v4.0⁵⁵ and sorted by several rounds of 3D classification without image
503 alignment, in which the number of classes and tau factor were allowed to vary. The resulting
504 particles were brought back into cryoSPARC and subjected to non-uniform refinement. Finally,
505 for all datasets a local refinement using an inclusion mask covering the 7TM domain was
506 performed. Pose/shifts Gaussian priors were used with standard deviation of rotational and shift
507 magnitudes set as indicated in Extended data Figs 4, 5, 8, and 9.

508

509 **Site-directed mutagenesis**

510 Generation of OR mutants was performed as previously described⁵⁶. Forward and reverse
511 primers coding for the mutation of interest were obtained from Integrated DNA Technologies.

512 Two successive rounds of PCR using Phusion polymerase (F-549L, Thermo Fisher Scientific)
513 were performed to amplify ORs with mutations. The first round of PCR generated two
514 fragments, one containing the 5' region upstream of the mutation site and the other containing
515 the 3' downstream region. The second PCR amplification joined these two fragments to produce
516 a full open reading frame of the OR. PCR products with desired length were gel purified and
517 cloned into the MluI and NotI sites of the mammalian expression vector pCI (Promega) that
518 contains rho-tag. Plasmids were purified using the ZymoPure miniprep kit (D4212).

519

520 **cAMP signaling assays**

521 The GloSensor cAMP assay (Promega) was used to determine real-time cAMP levels
522 downstream of OR activation in HEK293T cells, as previously described⁵⁷. HEK293T cells
523 (authenticated by short tandem repeat profiling and tested negative for mycoplasma
524 contamination) were cultured in minimum essential medium (MEM; Corning) supplemented by
525 10% FBS (Gibco), 0.5% penicillin–streptomycin (Gibco) and 0.5% amphotericin B (Gibco).
526 Cultured HEK293T cells were plated the day before transfection at 1/10 of 100% confluence
527 from a 100-mm plate into 96-well plates coated with poly-d-lysine (Corning) or tissue-culture
528 coated 96-well plates with 0.001% poly-d-lysine (Sigma). For each 96-well plate, 10 µg
529 pGloSensor-20F plasmid (Promega), 5 µg of RTP1S plasmid (only for OR1A1 and its mutants),
530 and 75 µg of rho-tagged OR in the pCI mammalian expression vector (Promega) were
531 transfected 18–24 h before odorant stimulation using Lipofectamine 2000 (11668019,
532 Invitrogen) in MEM supplemented by 10% FBS. On stimulation day, plates were injected with 25
533 µl of GloSensor substrate (Promega) and incubated for 2 h in the dark at room temperature and
534 in an odor-free environment. Odorants were diluted to the desired concentration in CD293
535 medium (Gibco) supplemented with copper (30 µM CuCl₂; Sigma-Aldrich) and 2 mM l-glutamine
536 (Gibco) and pH adjusted to 7.0 with a 150 mM solution of sodium hydroxide (Sigma-Aldrich).
537 After injecting 25 µl of odorants in CD293 medium into each well, GloSensor luminescence was
538 immediately recorded for 20 cycles of monitoring over a total period of 30 min using a BMG
539 Labtech POLARStar Optima plate reader. The resulting luminescence activity was normalized
540 to an empty vector negative control, and the OR response was obtained by calculating the Area
541 Under the Curve (AUC) by summing the response from all 20 cycles. Dose-dependent
542 responses of ORs were analyzed by fitting a least squares function to the data and by
543 generating EC₅₀ and efficacy using GraphPrism 10. The Area Under the dose response curve
544 was then calculated by summing the response from each concentrations.

545

546 **Evaluating cell-surface expression**

547 Flow cytometry was used to evaluate cell-surface expression of ORs as previously described¹⁹.
548 HEK293T cells were seeded onto 35-mm plates (Greiner Bio-One) with approximately 3.5×10^5
549 cells (25% confluence). The cells were cultured overnight. After 18–24 h, 1,200 ng of ORs
550 tagged with the first 20 amino acids of human rhodopsin (rho-tag) at the N-terminal ends in pCI
551 mammalian expression vector (Promega) and 30 ng eGFP were transfected using
552 Lipofectamine 2000 (11668019, Invitrogen). 18–24 h after transfection, the cells were detached
553 and resuspended using Cell stripper (Corning) and then transferred into 5-ml round bottom
554 polystyrene tubes (Falcon) on ice. The cells were spun down at 4 °C and resuspended in PBS
555 (Gibco) containing 15 mM NaN₃ (Sigma-Aldrich) and 2% FBS. (Gibco). They were stained with
556 1/400 (v/v) of primary antibody mouse anti-rhodopsin clone 4D2 (MABN15, Sigma-Aldrich) and
557 allowed to incubate for 30 min, then washed with PBS containing 15 mM NaN₃ and 2% FBS.
558 The cells were spun again and then stained with 1/200 (v/v) of the phycoerythrin-conjugated
559 donkey anti-mouse F(ab')2 fragment antibody (715-116-150, Jackson Immunologicals) and
560 allowed to incubate for 30 min in the dark. To label dead cells, 1/500 (v/v) of 7-amino-
561 actinomycin D (129935, Calbiochem) was added. The cells were then immediately analyzed
562 using a BD FACSCanto II flow cytometer with gating allowing for GFP-positive, single, spherical,
563 viable cells, and the measured phycoerythrin fluorescence intensities were analyzed and
564 visualized using Flowjo v10.8.1. Empty plasmid pCI is used as negative control.

565

566

567 **Homology model of OR1A1 and docking studies**

568 The OR1A1 homology model was generated with the consOR1 bound to L-menthol and G
569 protein cryo-EM structure as template using Schrödinger Maestro (version 2022-2). The
570 consOR1 cryo-EM structure was prepared using the protein preparation wizard, which involved
571 adding missing side chains and hydrogen atoms. Subsequently, the model was refined through
572 hydrogen bond assignment and energy minimization. A pairwise alignment of consOR1 and
573 OR1A1 sequences was then performed, revealing a 64% sequence identity and identifying a
574 gap at position 194 in consOR1 compared to OR1A1. Lastly, the knowledge-based method
575 within the build homology model module was employed to create the OR1A1 homology model,
576 and the corresponding homology model was further energy minimized.

577

578 For docking studies of R-carvone and L-menthol into the OR1A1 homology model, we followed
579 the Schrodinger induced fit docking protocol, with the following steps: 1. Constrained

580 minimization of the receptor with an RMSD cutoff of 0.18 Å. 2. An RMSD alignment of the
581 consOR1 EM structure onto the OR1A1 homology model is performed, followed by definition of
582 a 25 Å x 25 Å x 25 Å docking grid box centered on the position of L-menthol in consOR1. This
583 step was followed by initial Glide docking of R-carvone and L-menthol using a softened potential
584 and removal of side chains that are within 5 Å of L-menthol. 3. A Prime side-chain prediction for
585 each receptor-ligand pose, to rebuild the side chain conformation. 4. A Prime minimization on
586 the receptor-ligand complex. 5. After removal of the ligand, a rigid Glide redocking is performed
587 to re-dock the ligand back into the ligand binding site. 6. Estimation of the binding energy.

588

589 **Molecular dynamics simulations**

590 Simulations were performed similarly to previous methods¹⁴ using the GROMACS package
591 (version 2022⁵⁸) and the CHARMM36m force field⁵⁹. The following simulation systems were
592 constructed: consOR1-Apo, consOR1-L-menthol bound, consOR1-L-menthol-miniG_a_s subunit
593 bound, consOR2-S-carvone-miniG_a_s subunit bound, consOR2-Apo, consOR4-2MT-miniG_a_s
594 subunit bound, consOR4-Apo. For the miniG_a_s subunit bound simulations, the G_B subunit was
595 removed from the cryo-EM structure to reduce computational time. All ligands were
596 parameterized by ParaChem⁶⁰. The GPCR structures were prepared using the Maestro
597 Schrödinger (version 2022-2) protein preparation wizard module. Missing side chains and
598 hydrogen atoms were added, protein termini were capped with neutral acetyl and methylamide
599 groups, and histidine states were assigned. The complex was then minimized. The simulation
600 box was created using CHARMM-GUI^{61,62}. OR1 and OR1A1 were aligned in the bilayer using
601 the PPM 2.0 function of the Orientation of Proteins in Membranes (OPM) tool⁶³, and the bilayer
602 was filled with 75% palmitoyl-oleoyl-phosphatidylcholine (POPC) and 25% cholesteryl
603 hemisuccinate deprotonated (CHSD). The initial positions of CHSD were taken from our
604 previous study on OR51E2¹⁴. TIP3P water molecules were used for solvation, while 0.15 M
605 potassium chloride ions were added to neutralize the system box. The final system dimensions
606 were approximately 85 Å x 85 Å x 110 Å without the G_a subunit and 100 Å x 100 Å x 150 Å
607 with the miniG_a_s subunit.

608

609 The system was minimized with position restraints (10 kcal/mol/Å²) on all heavy atoms of the
610 protein, ligand, and head group atoms of lipids, followed by a 1 ns heating step that raised the
611 temperature from 0K to 310K in the NVT ensemble using the Nosé-Hoover thermostat. Next, a
612 1 μs long equilibration in the NPT ensemble was performed. During the heating step and the
613 long equilibration, the same position restraints of 10 kcal/mol/Å² were applied for the first 1 ns,

614 then reduced to 5 kcal/mol/Å², and gradually to 0 kcal/mol/Å² in steps of 1 kcal/mol/Å², with 5 ns
615 of simulations per equilibration window. Afterward, a 50 ns non-restrained equilibration was
616 conducted.

617

618 The final snapshot of the equilibration step served as the initial conformation for five production
619 runs, which were initiated with randomly generated velocities. Pressure was coupled to a 1 bar
620 pressure bath and controlled using the Parrinello-Rahman method⁶⁴. Throughout all simulations,
621 the LINCS algorithm was applied to all bonds and angles of water molecules, with a 2 fs time
622 step employed for integration. Additionally, a 12 Å cutoff was used for non-bonded interactions,
623 and the particle mesh Ewald method⁶⁵ treated long-range L-J interactions. MD snapshots were
624 saved every 20 ps, and all MD analyses were conducted on the aggregated trajectories for each
625 system from the five runs (totaling 5 × 1000 ns = 5000 ns) using VMD (version 1.9.4), PyMOL
626 (version 2.5), GROMACS modules (versions 2019-2022), and Python scripts.

627

628 ***Ligand-receptor interactions analysis***

629 Ligand-receptor contact frequencies were determined using the get_contacts script
630 (<https://getcontacts.github.io/>). Measurements were carried out on trajectories that included
631 solvents. All types of contacts were taken into account, encompassing water-mediated contacts
632 as well. Contact frequencies were visualized as heatmaps using the matplotlib library.

633

634 ***Ligand binding site volume calculations.***

635 To calculate the volume of the ligand-binding site, we first performed protein conformational
636 clustering using the GROMACS cluster module. Clustering was conducted on the C α atoms of
637 proteins, adjusting the RMSD cutoff between 1.5 Å and 1.9 Å until the top 5-10 clusters
638 encompassed more than 60% of all sampled points. The centroid structure of each of the top
639 clusters was then used for ligand-binding site volume calculation. Volume calculations were
640 executed using the Maestro SiteMap module, defining the ligand-binding pocket as being within
641 6 Å of the ligand. For structures obtained from Apo simulations, docking was first performed to
642 insert L-menthol into the pocket. Subsequently, these docked structures underwent the same
643 volume calculation protocol as the others. In the volume calculation, a more restrictive definition
644 of hydrophobicity and fine grid was applied, and the ligand-binding site map was cropped at 4 Å
645 from the nearest site point. The calculated volumes from the top cluster structures were utilized
646 to compute the average and standard deviation of the ligand-binding site volume.

647

648 **Ligand flexibility analysis.**

649 Ligand RMSD values were calculated using the MDAnalysis script, which initially aligned the
650 structure based on protein C α atoms. Then, for each simulation frame, the RMSD matrix was
651 computed using the coordinates of all ligand heavy atoms. Both rotational and translational
652 movements of the ligand were taken into account. The resulting RMSD values were employed
653 to calculate the average RMSD for ligands.

654

655 **D/E^{45x51}-Y^{6x55} distance analysis.**

656 The distance between the D-Y motif was calculated using the MDAnalysis script. This distance
657 was measured as the minimum distance between the carboxylate oxygens of D/E^{45x51} (OD1,
658 OD2 or OE1, OE2 in the CHARMM force field) and the hydroxyl oxygen (OH in the CHARMM
659 force field) of Y^{6x55} in consOR1, consOR2 and consOR4 production trajectories, respectively.
660 The time evaluation of distance from a selected velocity was plotted as a moving average and
661 rolling standard deviation using the matplotlib and scipy library. The overall distances from the
662 production trajectory was represented as a violin plot using matplotlib.

663

664 **Phylogenetic tree, sequence identity and structure comparison**

665 On R 4.3.1, alignment reading and matrix of distance between sequences (by sequence
666 identity) calculation were performed with the Biostrings⁶⁶ and seqinr⁶⁷ packages. Neighbor-
667 Joining tree and tree visualization were realized with packages ape⁶⁸ and ggtree⁶⁹ and the tree
668 is plotted unrooted with the daylight method. Sequence identity and RMSD between structures
669 were calculated with the package bio3D and graphs were made with pheatmap and gtools
670 packages. Conserved positions in aligned sequences of Class I and Class II ORs were
671 visualized with WebLogo3⁷⁰.

672

673 **Data Availability**

674 Coordinates for consOR51, consOR1, consOR2, and consOR4 have been deposited in the
675 RCSB PDB under accession codes 8UXV, 8UXY, 8UY0, and 8UYQ, respectively. EM density
676 maps for consOR51, consOR1, consOR2, and consOR4 have been deposited in the Electron
677 Microscopy Data Bank under accession codes EMD-42786, EMD-42789, EMD-42791, and
678 EMD-42817 respectively. The MD simulation trajectories have been deposited in the GPCRmd
679 database under access codes XXXX.

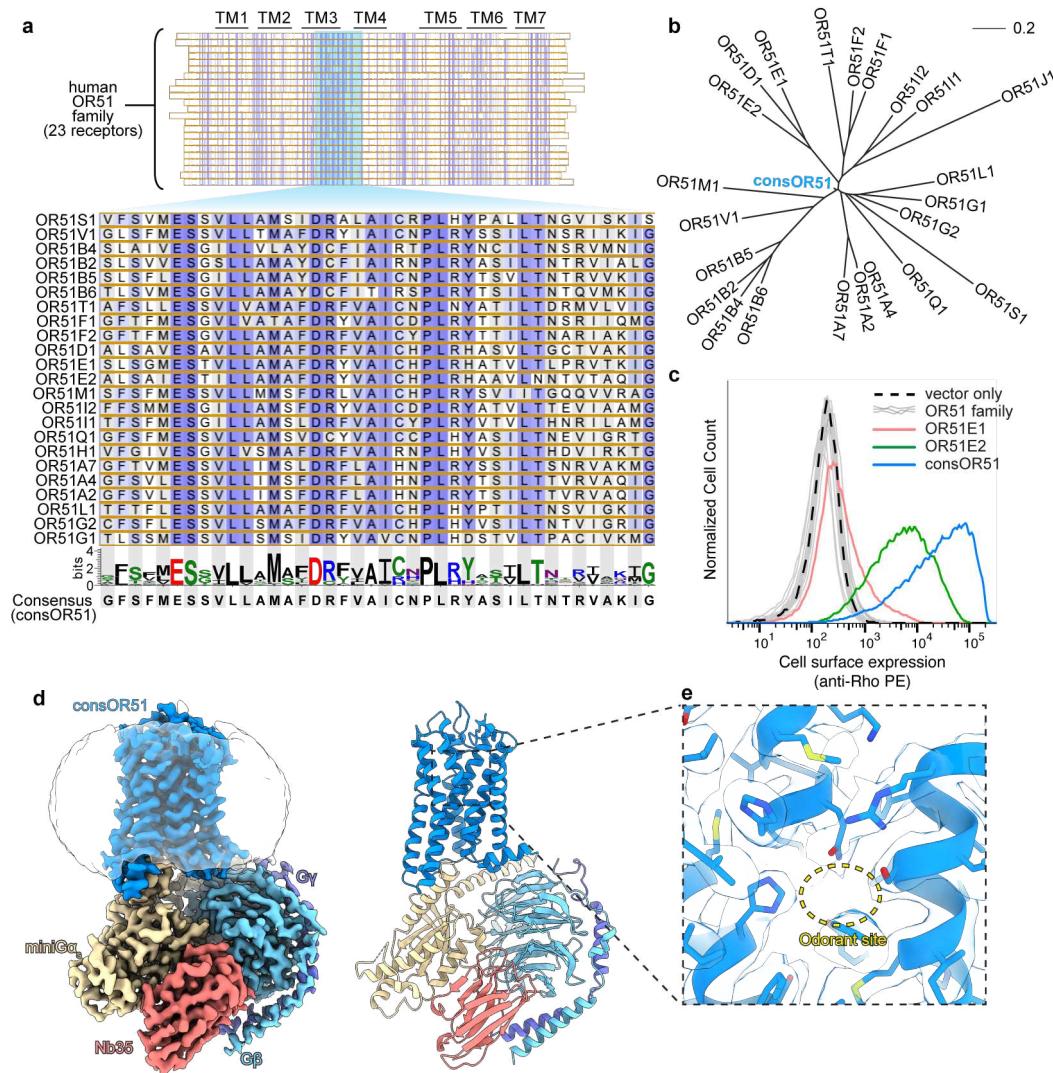
680

681 **Acknowledgements**

682 This work was supported by the National Institutes of Health (NIH) grant R01DC020353 (H.M.,
683 N.V., and A.M.) and K99DC018333 (C.A.D.M.). Cryo-EM equipment at UCSF is partially
684 supported by NIH grants S10OD020054 and S10OD021741. Some of this work was performed
685 at the Stanford-SLAC Cryo-EM Center (S2C2), which is supported by the National Institutes of
686 Health Common Fund Transformative High-Resolution Cryo-Electron Microscopy program (U24
687 GM129541). This project was funded by the UCSF Program for Breakthrough Biomedical
688 Research, funded in part by the Sandler Foundation. A.M. acknowledges support from the
689 Edward Mallinckrodt, Jr. Foundation and the Vallee Foundation. A.M. is a Chan Zuckerberg
690 Biohub San Francisco Investigator.

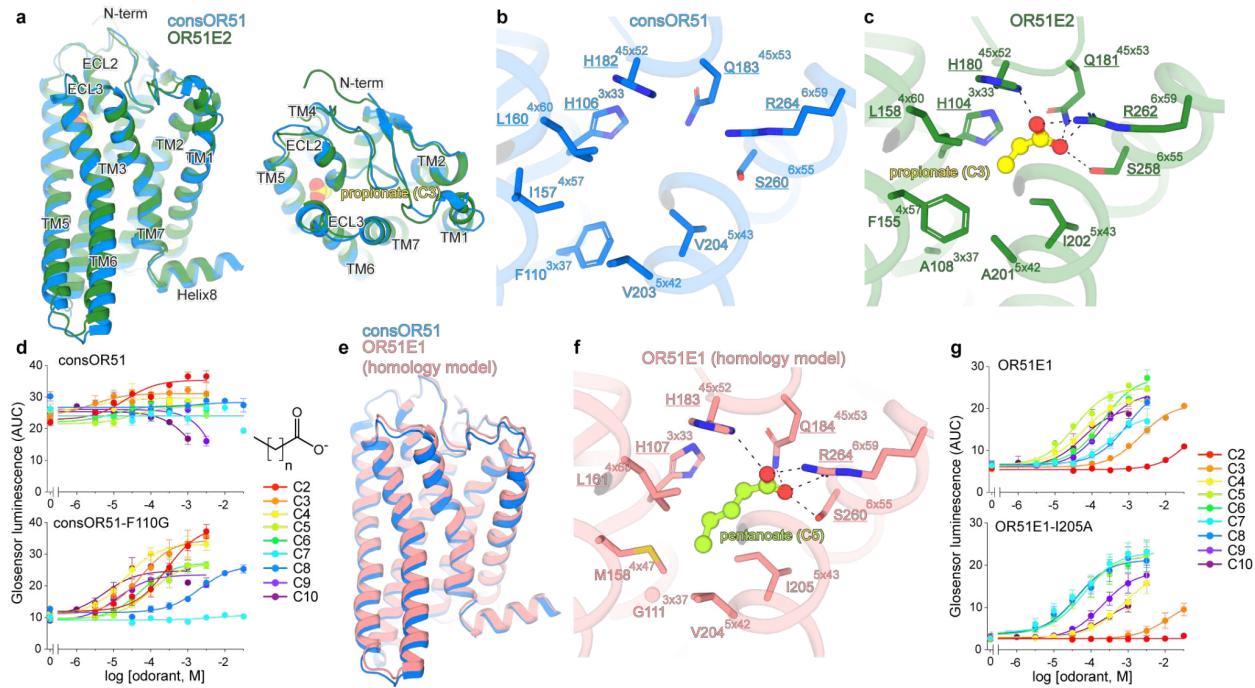
691

692 **Contributions**


693 C.A.D.M. and H.M. designed the consensus OR strategy, and with A.M., outlined a structure
694 determination strategy for consensus ORs. The study was also designed by C.B.B., N.M.,
695 W.J.C.v.d.V, and N.V. Consensus constructs were designed and cloned by C.A.D.M. with input
696 from A.M. C.A.D.M generated the phylogenetic trees. C.B.B. led the effort for structure
697 determination, including cloning constructs, preparing baculoviruses, expressing and purifying G
698 protein complexing reagents. With. C.L.D.T., C.B.B. established conditions to biochemically
699 purify and stabilize consOR1, consOR2, and consOR4 complexes, identified optimal cryo-EM
700 grid preparation procedures, and collected cryo-EM datasets for structure determination. L.L.
701 assisted with protein purifications. A.M. purified the consOR51 complex and collected cryo-EM
702 data with help from B.F. C.B.B. determined high-resolution cryo-EM maps by extensive image
703 processing with input from A.M. and C.L.D.T. A.M. and C.B.B. built and refined models of
704 consOR complexes. C.A.D.M. and J.T. analyzed OR models and sequences to design and
705 clone OR mutants. C.A.D.M., J.T., and I.O. performed Glosensor signaling experiments for OR
706 functional activity, and C.A.D.M., J.T., I.T and I.O. generated OR cell surface expression data by
707 flow cytometry with input from H.M. C.A.D.M and J.T. analyzed and prepared figures and tables
708 for signaling and flow cytometry data. N.M. set up molecular dynamics simulations, ligand
709 docking, and performed binding pocket volume calculations. W.J.C.v.d.V created the homology
710 model of OR1A1. N.M. and W.J.C.v.d.V. analyzed simulation trajectories and prepared figures
711 describing simulation data. N.M., W.J.C.v.d.V. and N.V. provided mechanistic insight from
712 simulation data. C.A.D.M. performed the comparative structure analysis. C.A.D.M., N.M., and
713 A.M. wrote an initial draft of the manuscript and generated figures with contributions from all
714 authors. Further edits to the manuscript were provided by W.J.C.v.d.V., N.M., N.V., and H.M.
715 The overall project was supervised and funded by C.A.D.M., N.V., H.M., and A.M.

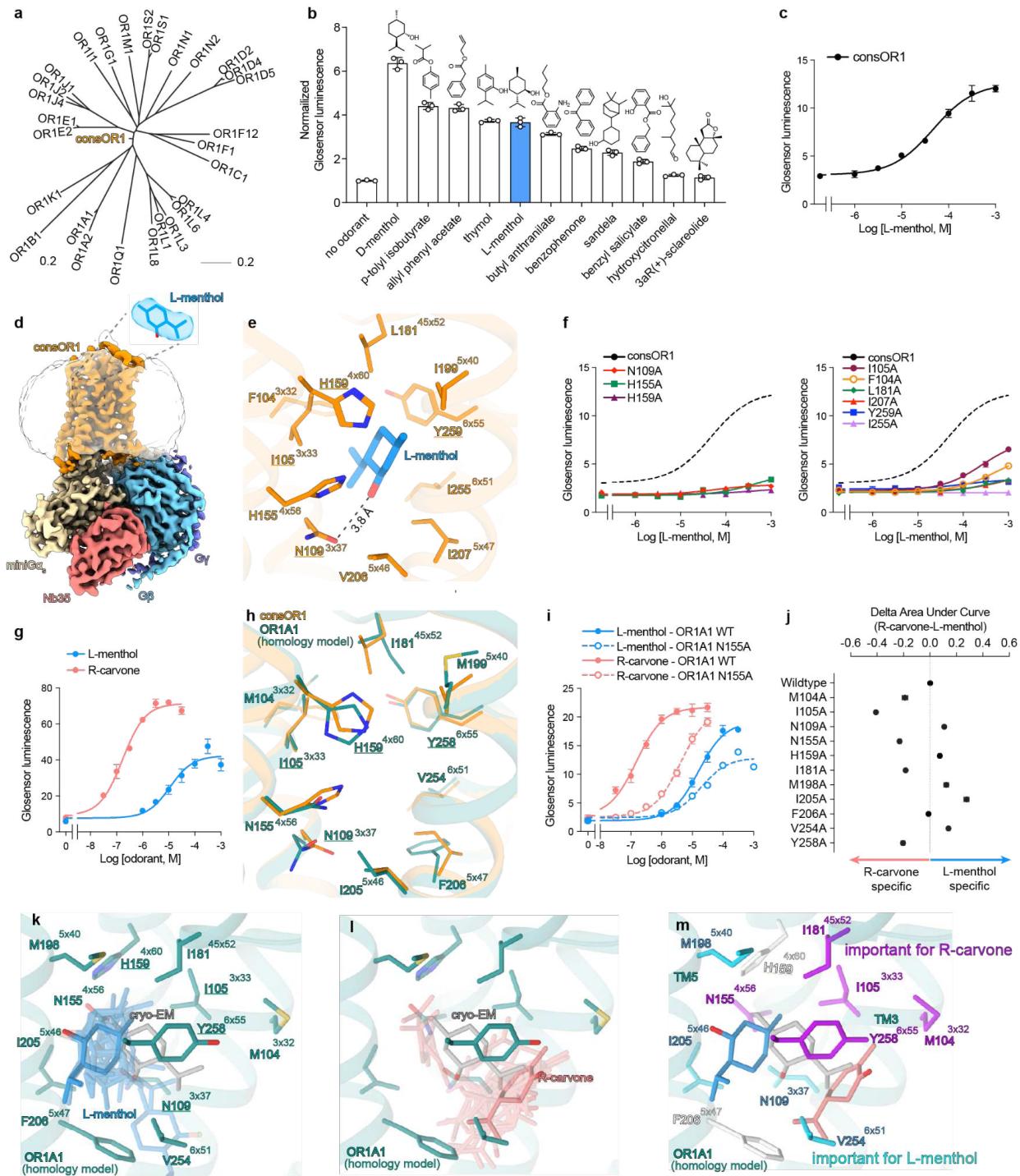
716

717 **Competing Interests**


718 H.M. has received royalties from Chemcom, research grants from Givaudan, and consultant
719 fees from Kao. A.M. is a founder of Epiodyne and Stipple Bio, consults for Abalone, and serves
720 on the scientific advisory board of Septerna.

721 MAIN TEXT FIGURES:

722


723 **Figure 1. Consensus odorant receptor strategy. a)** Consensus odorant receptor (consOR)
724 design strategy. All 23 human OR51 subfamily sequences are aligned and the most conserved
725 amino acid is selected at each position to create a consensus sequence. The conserved region
726 in TM3 of the OR51 subfamily is highlighted here. **b)** Phylogenetic tree of the OR51 subfamily
727 including consensus OR51 (consOR51), which occupies the root of the subfamily tree. **c)** Cell
728 surface expression of HEK293 cells transiently transfected with vector control, individual OR51
729 family members, or consOR51. Most OR51 family members are poorly expressed at the cell
730 surface, with the exception of OR51E2. ConsOR51 shows a dramatic increase in cell surface
731 expression. **d)** Cryo-EM density map of consOR51 in complex with G_s heterotrimer and
732 stabilizing nanobody Nb35. **e)** Zoom in view of the putative odorant binding site in consOR51
733 shows a lack of identifiable density for an odorant.

735

736 **Figure 2. Structure of consOR51 provides insight into native OR51 family members. a)**
737 Comparison of cryo-EM structure of consOR51 to cryo-EM structure of human OR51E2
738 indicates high degree of similarity in the 7TM domains and the extracellular loops. Close-up
739 view of odorant binding pocket in consOR51 (**b**) compared to the propionate binding pocket of
740 OR51E2 (**c**). Conserved side chains show similar rotamers. **d**) ConsOR51 is constitutively
741 active in a Glosensor cAMP production assay. Introduction of the F110G mutation in consOR51
742 leads to suppression of basal activity and response to fatty acids of varying aliphatic chain
743 length. Data points are mean \pm standard deviation from $n = 3$ replicates. **e**) A homology model
744 of human OR51E1 was constructed using consOR51. **f**) Docked structure of pentanoic acid in
745 the OR51E1 homology model. **g**) OR51E1 recognizes long-chain fatty acids, with a preference
746 for pentanoic acid (C5). Selectivity for fatty acid chain length is altered in OR51E1-I205A. Data
747 points are mean \pm standard deviation from $n = 3$ replicates.

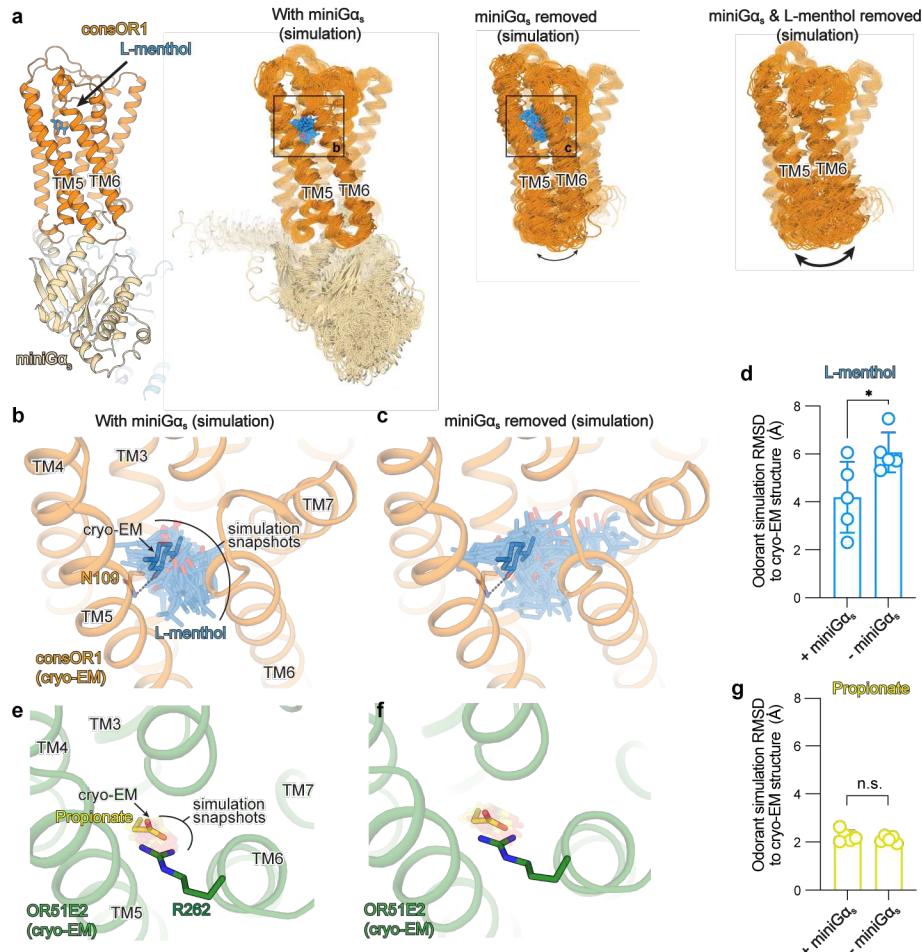
748

749

750 **Figure 3. The structure of consOR1 provides insight into human OR1A1.** **a)** Phylogenetic
751 tree of the human OR1 subfamily including consOR1. **b)** ConsOR1 is activated by diverse
752 odorants as measured by a Glosensor cAMP production assay. Area under the dose response
753 curve was calculated and normalized to the no odorant negative control ($n = 3$). **c)** Dose
754 response for L-menthol activation of consOR1. **d)** Cryo-EM map of the consOR1-G_s complex.
755 Insert shows cryo-EM density for L-menthol. **e)** View of the consOR1 odorant binding pocket

756 within 5 Å with a single hydrogen bond shown as dashed lines. **f)** Mutagenesis studies of
757 consOR1 in a cAMP accumulation assay. **g)** OR1A1 is activated by terpenoids L-menthol and
758 R-carvone. **h)** Homology model of OR1A1 based on consOR1 **i)** The OR1A1-N155A mutation
759 has a larger effect on R-carvone activity as compared to L-menthol. **j)** OR1A1 mutants
760 differentially affect R-carvone or L-menthol activity. Area under the dose-response curve was
761 calculated for each OR1A1 mutant activated by either odorant (n = 3). For each odorant, AUC
762 values were normalized to wildtype OR1A1. Subtraction of normalized AUCs revealed a
763 differential effect of mutations. Docking of L-menthol (**k**) and R-carvone (**l**) docked to the
764 homology model of OR1A1. Top scoring docking results are shown for both odorants as
765 transparent sticks. The best scoring pose is shown as solid sticks. **m)** Mapping the effect of
766 mutations in (j) onto the homology modeled structure of OR1A1 shows that mutations that affect
767 L-menthol and R-carvone cluster in distinct regions of the OR1A1 binding pocket. Every
768 residues with a delta of more than 0.10 are reported colored by the odorant the most affected.
769 For all cell assay, data points are mean ± standard deviation from n = 3 replicates.

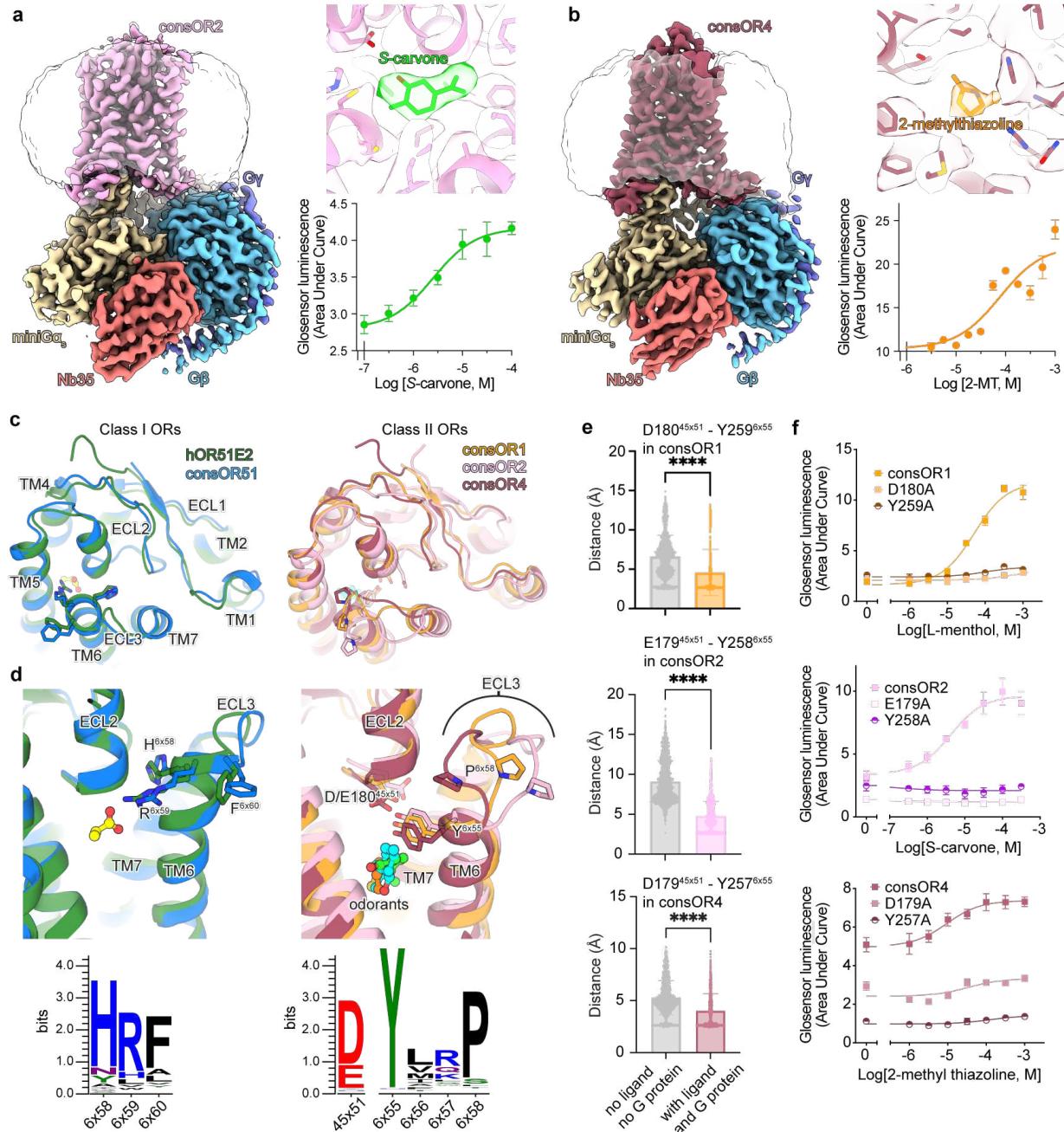
770


771

772

773

774


775

776

777 **Figure 4. Structural flexibility in odorant binding.** **a)** Molecular dynamics simulations were
778 performed for consOR1: with miniG α_s and L-menthol, without miniG α_s but with L-menthol, and
779 without both miniG α_s and L-menthol. Snapshots from 100 ns intervals are shown from a
780 representative simulation. In consOR1, TM5 and TM6 are more flexible in the absence of
781 miniG α_s , and even more dynamic in the absence of miniG α_s and L-menthol. L-menthol is
782 dynamic in the binding pocket of consOR1 in simulations with miniG α_s (**b**), and shows even
783 greater flexibility in simulations without miniG α_s (**c**). **d)** The root mean squared deviation
784 (RMSD) of L-menthol compared to the cryo-EM pose for each simulation replicate is shown. *
785 indicates $p < 0.05$. **e,f)** In simulations of OR51E2, propionate is constrained within the ligand
786 binding pocket and makes a persistent interaction with R262. **g)** The root mean squared
787 deviation (RMSD) of propionate compared to the cryo-EM pose for each simulation replicate is
788 shown. n.s. Indicates not significant.
789

790

791

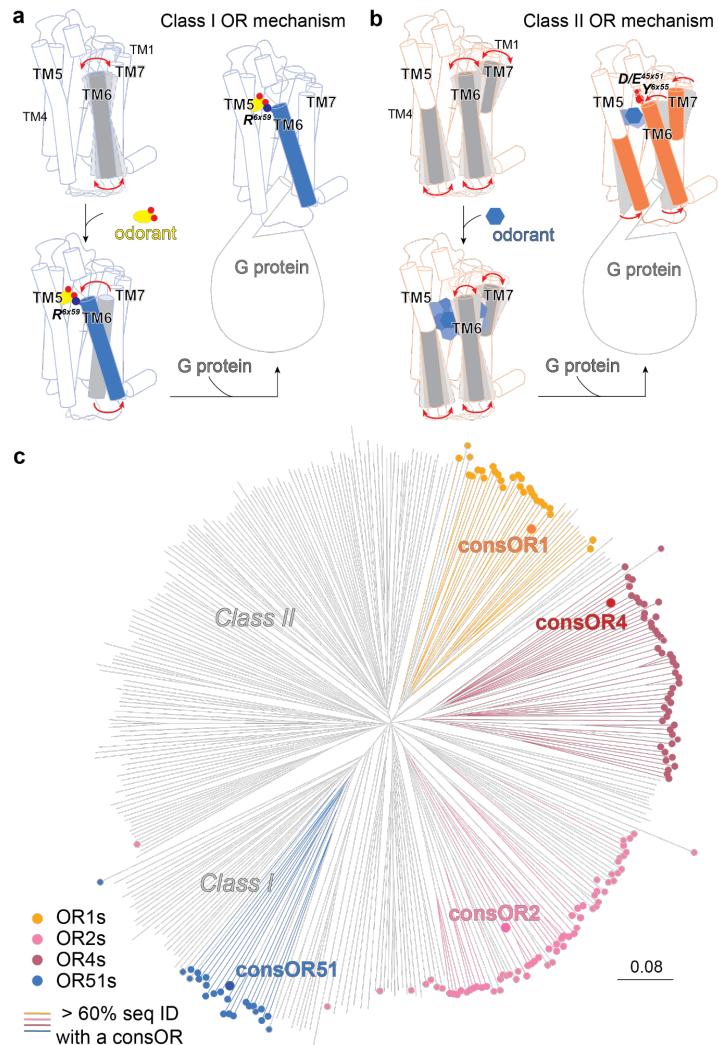
792 **Figure 5. Structures of consOR2 and consOR4 and insights into common features of OR**
 793 **function. a) CryoEM map of consOR2-G_s complex bound to activating odorant S-carvone. b)**

794 **CryoEM map of consOR4-G_s complex bound to activating odorant 2-methylthiazoline (2-MT). c)**

795 **Comparison of Class I and Class II OR structures in the extracellular region. Consensus OR**

796 **structures of Class II ORs show variability in ECL3 conformation. d) Close-up view of ligand**

797 **binding sites in Class I and Class II ORs. Class I ORs recognize carboxylic acids via the R6x59**


798 **residue in the extracellular portion of TM6. Class II ORs bind ligands via a highly conserved**

799 **Y6x55 residue that further engages a conserved acidic residue in ECL2 (D/E^{45x51}). e) The**

800 **interaction between D/E^{45x51} and Y^{6x55} is maintained in simulations of consOR1, consOR2 and**

801 **consOR4 bound to their agonist and miniG_s. Removal of miniG_s and agonist leads to an**

802 increase in distance between these two positions (unpaired t-test, $p < 0.0001$). **f)** Mutation of
803 D^{45x51} and Y^{6x55} in consOR1, consOR2 and consOR4 reduces OR response to odorant in a
804 cAMP production assay. For all cell assay, data points are mean \pm standard deviation from $n = 3$
805 replicates.
806

807
808 **Figure 6. Accessing Class I and Class II OR mechanisms and structures. a)** Model of Class
809 I OR activation mechanism. **b)** Model of Class II OR activation mechanism. **c)** OR phylogenetic
810 tree including the structurally elucidated consORs showing that these structures allow the
811 homology modeling of 34% of the human native ORs. OR belonging to a consOR subfamily are
812 highlighted by a rounded tip and ORs showing at least 60% of sequence identity with a consOR
813 are shown in colored lines. The scale represents the amount of amino acid change for a set
814 distance.

815
816
817
818

971 **REFERENCES**

- 972 1. Malnic, B., Godfrey, P. A. & Buck, L. B. The human olfactory receptor gene family. *Proc. Natl. Acad. Sci. U. S. A.* **101**, 2584–2589 (2004).
- 973 2. Bjarnadóttir, T. K. *et al.* Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. *Genomics* **88**, 263–273 (2006).
- 974 3. Glusman, G., Yanai, I., Rubin, I. & Lancet, D. The complete human olfactory subgenome. *Genome Res.* **11**, 685–702 (2001).
- 975 4. Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. *Cell* **65**, 175–187 (1991).
- 976 5. Liberles, S. D. & Buck, L. B. A second class of chemosensory receptors in the olfactory epithelium. *Nature* **442**, 645–650 (2006).
- 977 6. Olander, T., Jones, T. E. M., Bruford, E. & Lancet, D. A unified nomenclature for vertebrate olfactory receptors. *BMC Evol. Biol.* **20**, 42 (2020).
- 978 7. Malnic, B., Hirono, J., Sato, T. & Buck, L. B. Combinatorial receptor codes for odors. *Cell* **96**, 713–723 (1999).
- 979 8. Saito, H., Chi, Q., Zhuang, H., Matsunami, H. & Mainland, J. D. Odor coding by a Mammalian receptor repertoire. *Sci. Signal.* **2**, ra9 (2009).
- 980 9. Cichy, A., Shah, A., Dewan, A., Kaye, S. & Bozza, T. Genetic Depletion of Class I Odorant Receptors Impacts Perception of Carboxylic Acids. *Curr. Biol.* **29**, 2687–2697.e4 (2019).
- 981 10. Dewan, A., Pacifico, R., Zhan, R., Rinberg, D. & Bozza, T. Non-redundant coding of aversive odours in the main olfactory pathway. *Nature* **497**, 486–489 (2013).
- 982 11. Niimura, Y. On the origin and evolution of vertebrate olfactory receptor genes: comparative genome analysis among 23 chordate species. *Genome Biol. Evol.* **1**, 34–44 (2009).
- 983 12. Bear, D. M., Lassance, J.-M., Hoekstra, H. E. & Datta, S. R. The Evolving Neural and Genetic Architecture of Vertebrate Olfaction. *Curr. Biol.* **26**, R1039–R1049 (2016).

- 996 13. Freitag, J., Krieger, J., Strotmann, J. & Breer, H. Two classes of olfactory receptors in
997 *Xenopus laevis*. *Neuron* **15**, 1383–1392 (1995).
- 998 14. Billesbølle, C. B. *et al.* Structural basis of odorant recognition by a human odorant receptor.
999 *Nature* **615**, 742–749 (2023).
- 1000 15. Gusach, A. *et al.* Molecular recognition of an aversive odorant by the murine trace amine-
1001 associated receptor TAAR7f. *bioRxiv* (2023) doi:10.1101/2023.07.07.547762.
- 1002 16. Guo, L. *et al.* Structural basis of amine odorant perception by a mammal olfactory receptor.
1003 *Nature* **618**, 193–200 (2023).
- 1004 17. Lu, M., Echeverri, F. & Moyer, B. D. Endoplasmic reticulum retention, degradation, and
1005 aggregation of olfactory G-protein coupled receptors. *Traffic* **4**, 416–433 (2003).
- 1006 18. Saito, H., Kubota, M., Roberts, R. W., Chi, Q. & Matsunami, H. RTP family members induce
1007 functional expression of mammalian odorant receptors. *Cell* **119**, 679–691 (2004).
- 1008 19. Zhuang, H. & Matsunami, H. Evaluating cell-surface expression and measuring activation
1009 of mammalian odorant receptors in heterologous cells. *Nat. Protoc.* **3**, 1402–1413 (2008).
- 1010 20. Noe, F. *et al.* IL-6-HaloTag® enables live-cell plasma membrane staining, flow cytometry,
1011 functional expression, and de-orphaning of recombinant odorant receptors. *J Biol Methods*
1012 **4**, e81 (2017).
- 1013 21. Sternke, M., Tripp, K. W. & Barrick, D. Consensus sequence design as a general strategy
1014 to create hyperstable, biologically active proteins. *Proc. Natl. Acad. Sci. U. S. A.* **116**,
1015 11275–11284 (2019).
- 1016 22. Desjarlais, J. R. & Berg, J. M. Use of a zinc-finger consensus sequence framework and
1017 specificity rules to design specific DNA binding proteins. *Proc. Natl. Acad. Sci. U. S. A.* **90**,
1018 2256–2260 (1993).
- 1019 23. Porebski, B. T. & Buckle, A. M. Consensus protein design. *Protein Eng. Des. Sel.* **29**, 245–
1020 251 (2016).
- 1021 24. Steipe, B., Schiller, B., Plückthun, A. & Steinbacher, S. Sequence statistics reliably predict

- 1022 stabilizing mutations in a protein domain. *J. Mol. Biol.* **240**, 188–192 (1994).
- 1023 25. Lehmann, M. *et al.* From DNA sequence to improved functionality: using protein sequence
- 1024 comparisons to rapidly design a thermostable consensus phytase. *Protein Eng.* **13**, 49–57
- 1025 (2000).
- 1026 26. Ikegami, K. *et al.* Structural instability and divergence from conserved residues underlie
- 1027 intracellular retention of mammalian odorant receptors. *Proc. Natl. Acad. Sci. U. S. A.* **117**,
- 1028 2957–2967 (2020).
- 1029 27. Nehmé, R. *et al.* Mini-G proteins: Novel tools for studying GPCRs in their active
- 1030 conformation. *PLoS One* **12**, e0175642 (2017).
- 1031 28. Ballesteros, J. A. & Weinstein, H. [19] Integrated methods for the construction of three-
- 1032 dimensional models and computational probing of structure-function relations in G protein-
- 1033 coupled receptors. in *Methods in Neurosciences* (ed. Sealfon, S. C.) vol. 25 366–428
- 1034 (Academic Press, 1995).
- 1035 29. de March, C. A., Kim, S.-K., Antonczak, S., Goddard, W. A., 3rd & Golebiowski, J. G
- 1036 protein-coupled odorant receptors: From sequence to structure. *Protein Sci.* **24**, 1543–1548
- 1037 (2015).
- 1038 30. Isberg, V. *et al.* Generic GPCR residue numbers - aligning topology maps while minding the
- 1039 gaps. *Trends Pharmacol. Sci.* **36**, 22–31 (2015).
- 1040 31. de March, C. A. *et al.* Conserved Residues Control Activation of Mammalian G Protein-
- 1041 Coupled Odorant Receptors. *J. Am. Chem. Soc.* **137**, 8611–8616 (2015).
- 1042 32. Pluznick, J. L. *et al.* Olfactory receptor responding to gut microbiota-derived signals plays a
- 1043 role in renin secretion and blood pressure regulation. *Proc. Natl. Acad. Sci. U. S. A.* **110**,
- 1044 4410–4415 (2013).
- 1045 33. Shayya, H. J. *et al.* ER stress transforms random olfactory receptor choice into axon
- 1046 targeting precision. *Cell* **185**, 3896–3912.e22 (2022).
- 1047 34. Mainland, J. D., Li, Y. R., Zhou, T., Liu, W. L. L. & Matsunami, H. Human olfactory receptor

- 1048 responses to odorants. *Sci Data* **2**, 150002 (2015).
- 1049 35. Kajiya, K. *et al.* Molecular bases of odor discrimination: Reconstitution of olfactory receptors
1050 that recognize overlapping sets of odorants. *J. Neurosci.* **21**, 6018–6025 (2001).
- 1051 36. Grosmaire, X. *et al.* SR1, a mouse odorant receptor with an unusually broad response
1052 profile. *J. Neurosci.* **29**, 14545–14552 (2009).
- 1053 37. Schmiedeberg, K. *et al.* Structural determinants of odorant recognition by the human
1054 olfactory receptors OR1A1 and OR1A2. *J. Struct. Biol.* **159**, 400–412 (2007).
- 1055 38. Ma, N., Lee, S. & Vaidehi, N. Activation Microswitches in Adenosine Receptor A2A
1056 Function as Rheostats in the Cell Membrane. *Biochemistry* **59**, 4059–4071 (2020).
- 1057 39. Dror, R. O. *et al.* Activation mechanism of the β_2 -adrenergic receptor. *Proc. Natl. Acad. Sci.*
1058 *U. S. A.* **108**, 18684–18689 (2011).
- 1059 40. Lee, S., Nivedha, A. K., Tate, C. G. & Vaidehi, N. Dynamic Role of the G Protein in
1060 Stabilizing the Active State of the Adenosine A2A Receptor. *Structure* **27**, 703–712.e3
1061 (2019).
- 1062 41. Li, Q. *et al.* Non-classical amine recognition evolved in a large clade of olfactory receptors.
1063 *Elife* **4**, e10441 (2015).
- 1064 42. Del Mármol, J., Yedlin, M. A. & Ruta, V. The structural basis of odorant recognition in insect
1065 olfactory receptors. *Nature* **597**, 126–131 (2021).
- 1066 43. Butterwick, J. A. *et al.* Cryo-EM structure of the insect olfactory receptor Orco. *Nature* **560**,
1067 447–452 (2018).
- 1068 44. Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature* **596**,
1069 583–589 (2021).
- 1070 45. Bender, B. J., Marlow, B. & Meiler, J. Improving homology modeling from low-sequence
1071 identity templates in Rosetta: A case study in GPCRs. *PLoS Comput. Biol.* **16**, e1007597
1072 (2020).
- 1073 46. Rutherford, S. L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. *Nature*

- 1074 396, 336–342 (1998).
- 1075 47. Wyganowski, K. T., Kaltenbach, M. & Tokuriki, N. GroEL/ES buffering and compensatory
1076 mutations promote protein evolution by stabilizing folding intermediates. *J. Mol. Biol.* **425**,
1077 3403–3414 (2013).
- 1078 48. Agozzino, L. & Dill, K. A. Protein evolution speed depends on its stability and abundance
1079 and on chaperone concentrations. *Proc. Natl. Acad. Sci. U. S. A.* **115**, 9092–9097 (2018).
- 1080 49. Faust, B. *et al.* Autoantibody and hormone activation of the thyrotropin G protein-coupled
1081 receptor. *bioRxiv* 2022.01.06.475289 (2022) doi:10.1101/2022.01.06.475289.
- 1082 50. Mastronarde, D. N. SerialEM: A Program for Automated Tilt Series Acquisition on Tecnai
1083 Microscopes Using Prediction of Specimen Position. *Microsc. Microanal.* **9**, 1182–1183
1084 (2003).
- 1085 51. Zheng, S. Q. *et al.* MotionCor2: anisotropic correction of beam-induced motion for improved
1086 cryo-electron microscopy. *Nat. Methods* **14**, 331–332 (2017).
- 1087 52. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for
1088 rapid unsupervised cryo-EM structure determination. *Nat. Methods* **14**, 290–296 (2017).
- 1089 53. Asarnow, D., Palovcak, E. & Cheng, Y. *asarnow/pyem*: UCSF pyem v0.5. (2019).
1090 doi:10.5281/zenodo.3576630.
- 1091 54. Pettersen, E. F. *et al.* UCSF ChimeraX: Structure visualization for researchers, educators,
1092 and developers. *Protein Sci.* **30**, 70–82 (2021).
- 1093 55. Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure
1094 determination. *J. Struct. Biol.* **180**, 519–530 (2012).
- 1095 56. Bushdid, C., de March, C. A., Matsunami, H. & Golebiowski, J. Numerical Models and In
1096 Vitro Assays to Study Odorant Receptors. *Methods Mol. Biol.* **1820**, 77–93 (2018).
- 1097 57. Zhang, Y., Pan, Y., Matsunami, H. & Zhuang, H. Live-cell Measurement of Odorant
1098 Receptor Activation Using a Real-time cAMP Assay. *J. Vis. Exp.* (2017) doi:10.3791/55831.
- 1099 58. Berendsen, H. J. C., van der Spoel, D. & van Drunen, R. GROMACS: A message-passing

- 1100 parallel molecular dynamics implementation. *Comput. Phys. Commun.* **91**, 43–56 (1995).
- 1101 59. Huang, J. *et al.* CHARMM36m: an improved force field for folded and intrinsically
- 1102 disordered proteins. *Nat. Methods* **14**, 71–73 (2017).
- 1103 60. Vanommeslaeghe, K. *et al.* CHARMM general force field: A force field for drug-like
- 1104 molecules compatible with the CHARMM all-atom additive biological force fields. *J.*
- 1105 *Comput. Chem.* **31**, 671–690 (2010).
- 1106 61. Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface
- 1107 for CHARMM. *J. Comput. Chem.* **29**, 1859–1865 (2008).
- 1108 62. Jo, S., Lim, J. B., Klauda, J. B. & Im, W. CHARMM-GUI Membrane Builder for mixed
- 1109 bilayers and its application to yeast membranes. *Biophys. J.* **97**, 50–58 (2009).
- 1110 63. Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM database
- 1111 and PPM web server: resources for positioning of proteins in membranes. *Nucleic Acids*
- 1112 *Res.* **40**, D370–6 (2012).
- 1113 64. Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: A new molecular
- 1114 dynamics method. *J. Appl. Phys.* **52**, 7182–7190 (1981).
- 1115 65. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: An $N \cdot \log(N)$ method for Ewald
- 1116 sums in large systems. *J. Chem. Phys.* **98**, 10089–10092 (1993).
- 1117 66. Pagès, H., Aboyoun, P., Gentleman, R. & DebRoy, S. Biostrings: Efficient manipulation of
- 1118 biological 370 strings. 10.18129/B9. bioc. Preprint at (2022).
- 1119 67. Charif, D. & Lobry, J. R. SeqinR 1.0-2: A Contributed Package to the R Project for
- 1120 Statistical Computing Devoted to Biological Sequences Retrieval and Analysis. in *Structural*
- 1121 *Approaches to Sequence Evolution: Molecules, Networks, Populations* (eds. Bastolla, U.,
- 1122 Porto, M., Roman, H. E. & Vendruscolo, M.) 207–232 (Springer Berlin Heidelberg, 2007).
- 1123 68. Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and
- 1124 evolutionary analyses in R. *Bioinformatics* **35**, 526–528 (2019).
- 1125 69. Xu, S. *et al.* Ggtree : A serialized data object for visualization of a phylogenetic tree and

- 1126 annotation data. *iMeta* (2022) doi:10.1002/imt2.56.
- 1127 70. Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence logo
1128 generator. *Genome Res.* **14**, 1188–1190 (2004).
- 1129 71. Dang, S. *et al.* Cryo-EM structures of the TMEM16A calcium-activated chloride channel.
1130 *Nature* **552**, 426–429 (2017).

1131