

Influence of mixed and single infection of grapevine leafroll-associated virus and viral load on berry quality

Wisam Salo^{1,2}, John A. Considine^{1,2}, Michael J. Considine^{1,2,3*}

¹ The UWA Institute of Agriculture, The University of Western Australia, Perth, Australia, 6009

² The School of Molecular Sciences, The University of Western Australia, Perth, Australia, 6009

³ The Department of Primary Industries and Regional Development, Perth, Australia, 6000

* Corresponding Author: michael.considine@uwa.edu.au

1 **1 Abstract**

2 Grapevine leafroll disease (GLD) is a viral disease that affects grapevines (*Vitis*
3 *vinifera* L.) and has a severe economic impact on viticulture. In this study, the effect of
4 grapevine leafroll-associated viruses (GLRaV) on berry quality was investigated in clones of
5 cultivar cv. Crimson Seedless table grapes infected with GLRaV. RT-PCR confirmed the
6 identity of the clones: clone 3236, infected only with GLRaV-3 (termed Single); clone 3215,
7 infected with GLRaV-3, GLRaV-4 strain 9 and grapevine virus A (termed Mixed), and a viral
8 free clone of the same genetic background of the infected clones (termed Control). The
9 berry quality indices of size, sugar, acidity, and anthocyanin content were measured at
10 harvest maturity. RT-qPCR was used to determine viral load. The study was repeated over
11 two years. A two-way, multivariate analysis of variance (MANOVA) was applied with clone
12 and season as independent variables and the measured berry quality parameters as a
13 dependent variable. All dependent variables were significantly affected by viral infection
14 (Wilks, λ , [2,33] = 0.033895, p-value < 0.001), while only titratable acidity (TA) was affected
15 by season. Average berry dry mass decreased (p-value < 0.001). The water content of both
16 infected clones was greater than that of the control (p-value < 0.001). Both infected clones
17 displayed reduced sugar content as a fraction of the berry dry mass (p-value < 0.001). The
18 anthocyanin and the phenol content of the infected clones were significantly reduced
19 compared to the control clone ($p < 0.001$, $p < 0.05$, clone 3236 and clone 3215,
20 respectively). Finally, the viral load was highly variable, and no quantitative relationship
21 between viral load and berry composition was found.

22 **2 Introduction**

23 It is well known that the cultivated grapevine (*Vitis vinifera* L.) is exceptionally
24 vulnerable to viral infection. Grapevine leafroll-associated viruses (GLRaV) are among the
25 most widespread in vineyards (Martinson et al. 2008; Naidu et al. 2014). It has been
26 established that six species of the family *Closteroviridae* are responsible for grape leafroll
27 disease (GLD) (Adiputra et al. 2019; Maree et al. 2013; Sharma et al. 2015; Velasco et al.
28 2014). This disease may result in a severe reduction in fruit yield, vigour and a delay in fruit
29 ripening of wine grapes (Cabaleiro et al. 1999; Naidu et al. 2014). Although extensive studies

30 have been conducted, the mechanism of virus-host interaction that affects the impact on
31 fruit quality is still uncertain. In addition, the majority of reports were conducted with red-
32 berried wine varieties (Alabi et al. 2016; El Aou-ouad et al. 2016; Lee et al. 2009; Lee and
33 Martin 2009; Montero et al. 2016a). Comparatively, few studies have been conducted on
34 table grapes, where the effects on quality and yield are less pronounced or deleterious
35 (Singh Brar et al. 2008). To date, studies of GLD have focused on a single virus species,
36 predominantly GLRaV-3, because of its high impact and virulence. In comparison, the
37 influence of GLRaV-4 strain 9 on berry quality in grapevine has scarcely been reported
38 (Maree et al. 2013), nor has the impact of mixed infections. In both wine and table grapes,
39 viral infection appears to delay ripening (Komar et al. 2010; Lee et al. 2009; Lee and Martin
40 2009), leading to reduced sugars and anthocyanins and an increase in berry weight and
41 volume. Alabi et al. (2016) indicate that the viral effect on sugar levels was more significant
42 at and after véraison than pre-véraison. Thus, changes in berry morphology may be linked to
43 source-sink effects since GLRaV-3 spreads through the phloem and post véraison increase is
44 due almost wholly to the mass flow of phloem solution (Choat et al. 2009; Wang et al. 2003;
45 Zhang and Keller 2017). This study sought to investigate the nature of the influence of single
46 (clone 3236) and mixed (clone 3215) viral infections on the berry quality of cv. Crimson
47 Seedless *Vitis vinifera* L. as an example of table grapes grown under commercial vineyard
48 conditions. Further, it sought to determine whether the viral copy number influenced berry
49 quality.

50 **3 Material and Method**

51 **3.1 Plant material**

52 The study utilised two clones of *Vitis vinifera* L. cv. Crimson Seedless was previously
53 generated by the Department of Agriculture and Food of Western Australia and was used in
54 a previous study. Clone 3236, infected with GLRaV-3 with mild symptoms, will represent the
55 single infection group. Clone 3215, infected with GLRaV-3, GVA, and GLRaV-4 strain 9, will
56 represent the mixed infection group (Alagappan 2011; Singh Brar et al. 2008). Both infected
57 clones were compared to cv. Crimson Seedless viral-free vines (mock-infected). Each group
58 had six vines as a biological replicate. The vines were 15 years old, grafted onto
59 Schwarzmann rootstock and grown in a commercial vineyard located in the Swan Valley in

60 Western Australia (-31.827789, 115.999947). The grapevines were spaced 3.3 m between
61 the rows and 2.4 m between the vines. The infected vines were set in one row in the
62 vineyard; each clone was planted in three replicates, followed by three vines of the other
63 clone, and separated by a healthy vine. The control vines were located in the left adjacent
64 row of the infected clones. The control clones have been checked during two seasons of the
65 study for the presence of the disease symptoms and RT-PCR test has been carried out to
66 confirm the absence of viral infection in the vines. Then the result was confirmed with qPCR
67 in the experiment of the viral load. Moreover, no infection has been reported with other
68 types of viruses to the Department of Primary Industries and Regional Development of WA
69 during the two seasons of the study.

70 **3.2 Berry Sample Collection**

71 Five bunches per vine were randomly collected at the harvest stage of two seasons
72 (EL38, March 2017/18). All the samples were collected on the same day and finished before
73 10:00 am. Finally, °Brix and titratable acidity were measured on the sampling day. The
74 ripening stage of the berries was confirmed using the recommendation of OIV resolution
75 VITI 1/2008 (OIV 2008) and UE Commission Regulation 543/2011. Where table grapes are
76 considered to be ripe at °Brix value higher than 16 °Brix or when the SSC (expressed as
77 g.L⁻¹)/TA (expressed as g.L⁻¹ tartaric acid) ratio is higher than 20; with regards to the
78 exception the case of seedless varieties, ripeness is considered at TSS 14 °Brix. All bunches
79 were checked to be free from any fungus symptoms and any other physical damage. The
80 bunches of each vine were loaded into plastic bags and immediately kept on ice. Randomly,
81 50 berries were selected per vine, weighed and then macerated for 5 minutes in a blender.
82 As demonstrated by Peppi et al. (2006), the filtered juice was used for soluble solids and
83 titratable acidity measurements. An extra ten berries were kept for dry mass measurement.

84 **3.3 Viral status**

85 Virus identification was carried out by reverse transcription PCR using previously
86 designed primers, were the GLRaV's characterised using hHSP70 (Osman and Rowhani,
87 2006, Osman et al. 2007). The GVA virus was characterised by target the cap protein
88 (Minafra and Hadid 1994). The 18srRNA gene used as internal control (Minafra and Hadidi

89 1994). Five petioles, free from any symptoms of fungus, mould, and other physical damage,
90 were randomly sampled per vine at the berry pea-size stage (EL31) (Coombe and lland 2004)
91 December 2016. RNA was extracted using the Spectrum™ Plant Total RNA Kit (Sigma-
92 Aldrich, St. Louis, MO, USA) according to the manufacturer's instructions. DNA was removed
93 by applying the ON-COLUMN DNASE I DIGESTION SET (Sigma-Aldrich, St. Louis, MO, USA).
94 The average concentration for the extracted RNA was 92-150 $\mu\text{g}\cdot\mu\text{L}^{-1}$. The RNA was diluted
95 to 2-5 $\mu\text{g}\cdot\mu\text{L}^{-1}$, and cDNA synthesis was performed using the SuperScript™ IV VILO™ Master
96 Mix (Invitrogen, Carlsbad, CA, USA) following the manufacturer's instructions. Previously
97 designed primers were selected for detecting the viruses. For GLRaV-3, the pairs Lc1/F and
98 Lc2/R have been used (Osman and Rowhani 2006). For GLRaV-4 strain nine and five, the
99 pairs LR9/F, R and LR5HSPC/F, R respectively (Osman et al. 2007). Those sets were targeting
100 the *hHSP70* gene in the leaf roll viruses. On the other hand, the *CP* gene was targeted in the
101 detection of GVA virus using the primer pair GVAC1/F, R that was predicted by Minafra and
102 Hadidi (1994). In addition, 18S rRNA was used as a positive control (Gambino and Gribaudo
103 2006). The reaction mixture and the reaction parameters were modified after optimisation
104 as 5 μL GoTaq Green Mastermix (Promega, Madison, USA) 0.5 μL of 10 mM of each primer,
105 1.5 μL nuclease-free water and 2.5 μL of the cDNA. The amplification steps were: 2 min at
106 94 °C, 35 cycles of 94 °C for 30 s, 58 °C for 45 s, and 72 °C for 60 s, and a final extension at
107 72 °C for 7 min. The electrophoresis was carried out by loading 10 μL of the amplification
108 mix in a 1.5% agarose gel submerged in TAE buffer (40 mM Tris base, 20 mM sodium
109 acetate, 1 mM EDTA pH 8.0). The amplified DNA fragments were visualised on a UV
110 transilluminator following ethidium bromide staining and photographed. Positive and
111 negative controls for the viruses under study were included in each experiment (Sambrook
112 and Russell 2001).

113 3.4 Viral Load

114 The rachis with pedicels attached (here-after, "stalk") were collected with the berries
115 at the harvest stage (EL38, March 2017/18). The RNA was extracted as described for viral
116 identity, with the exception that traces of DNA were removed using Dnase I Amplification
117 Grade (Sigma-Aldrich, St. Louis, MO, USA) according to the manufacturer's instructions. The
118 cDNA synthesis was carried out as described in the manufacturer's instructions of
119 SuperScript™ IV VILO™ Master Mix (Invitrogen, Carlsbad, CA, USA). Then, the cDNA was

120 diluted to supply 10 ng in a 10 μ l reaction volume to be subjected to the ABI 7500 Realtime
121 PCR System (Applied Biosystems, Foster City, CA, USA) using PowerUpTM SYBRTM Green
122 Master Mix and previously designed primers (Osman and Rowhani 2006; Osman et al. 2007,
123 2008). 18S rRNA used as a housekeeping gene (Osman et al. 2008). The reaction was
124 prepared according to the manufacturer's instructions.

125 The positive controls were constructed as plasmid vectors and contained the specific
126 region of hHSP70 for each of the leafroll viruses, CP for the GVA virus and 18S rRNA as a
127 housekeeping gene. These reigns are short sequences between 240 and 280 bp that contain
128 the primer sites. They were chosen from the virus reference genomes on the National
129 Centre for Biotechnology Information website (<https://www.ncbi.nlm.nih.gov/>). The
130 accession numbers are KY821094.1 (GLRaV-3), AY297819.1 (GLRaV-4/9), AF039552.1
131 (GLRaV-4/5), AY244516.1 (GVA) and AF321271.1 (18s rRNA). The designed vectors were
132 aligned and synthesised by Integrated DNA Technology Australia (IDT) (NSW, Australia),
133 providing the PUC IDT-AMP vectors and the vector construction process. All the vectors
134 were supplied in 4 μ g lyophilised powder, and the stock solution was prepared by adding
135 40 μ l of nuclease-free water directly to the lyophilised powder to get 100 $\text{ng} \cdot \mu\text{L}^{-1}$. The
136 working solution with a specific concentration ($10 \text{ ng} \cdot \mu\text{L}^{-1}$) was prepared by taking 3 μL from
137 the stock solution ($100 \text{ ng} \cdot \mu\text{L}^{-1}$) and diluting it in 27 μL nuclease-free water. The copy
138 number per 1 ng was determined by using the equation (1).

$$\text{copy number /ng} = \frac{\text{vector weight ng} * 6.0221 * 10^{23} \frac{\text{molecules}}{\text{mol}}}{\left(\text{vector length} * 660 \frac{\text{g}}{\text{mole}} \right) * \left(1 * 10^9 \frac{\text{ng}}{\text{g}} \right)} \quad (1)$$

139 The standard curves were prepared for all viruses using the working solution to
140 produce ten-fold serial dilutions for 5-6 points in triplicates (10² to 10⁷ copies). The
141 concentration of each dilution was measured by Qubit 4 Fluorometric Quantification and
142 RNA Quantification, broad range Kit (Thermo Fisher Scientific Australia Pty Ltd, VIC,
143 Australia) and then detected by RT-qPCR in two independent assays per virus. Standard
144 curves for each virus were constructed by plotting Ct values versus the logarithm of the RNA
145 copy number (Ct vs the log of the standard sample amount) using the StepOne Software
146 (Applied Biosystems, Foster City, CA, USA).

147 **3.5 Berry quality**

148 Total soluble solids (TSS): The juice filtered through the muslin cloth into the conical
149 flask to exclude berry flesh debris. Finally, TSS was determined using a digital refractometer
150 calibrated in °Brix (g sucrose/100 g solution, Atago, PAL-1 Digital Brix Refractometer, Tokyo,
151 Japan). Titratable acidity (TA): The juice (10 ml) was titrated against 0.1 M NaOH to an
152 endpoint pH8.2. TA was calculated using the formula and expressed as a percentage of
153 tartaric acid equation (2) (Considine and Frankish, 2013; Iland 2004).

$$TA\% = 0.0075 * NaOH\ Vol(ml) * NaOH\ Molarity * \left(\frac{1000}{Sample\ Vol} \right) (ml) \quad (2)$$

154 **°Brix/acid ratio:** For each sample, the °Brix to acid ratio was calculated by dividing
155 the °Brix value by the percentage acidity. **Berry volume:** The berry's size was determined.
156 Callipers were used to determine the vertical diameter (L) and horizontal diameter (l). The
157 volume was determined by matching the berry form to an ellipsoid using the following
158 equation: volume (cm³) = 4 abc/3, where a = b = l/2 and c = L/2 (Río Segade et al. 2013; Río
159 Segade et al. 2011). **Dry weight and water content:** All treatments are arranged into a set of
160 three replicates for each sample. Each replicate contains 10 berries placed in a Petri dish.
161 The initial weight of the samples and the Petri dishes were recorded. Then, the dishes were
162 subjected to 57°C for 21 days in a dry vacuum oven. The weight of all treatments was
163 measured every day until no change in weight was noticed. The dry weight was calculated
164 as illustrated in equation (3), while the total moisture in berries was calculated according to
165 equation (4) (Nielsen 2017):

166

$$\% Dry\ Wt = \frac{Sample\ final\ Wt - Petri\ Wt}{Sample\ initial\ Wt - Petri\ Wt} * 100 \quad (3)$$

167

168

$$\% Moisture = \frac{(Sample\ initial\ Wt - Petri\ Wt) - (Sample\ final\ Wt - Petri\ Wt)}{(Sample\ initial\ Wt - Petri\ Wt)} \quad (4)$$

169 **3.6 Total anthocyanin and phenol determination:**

170 The frozen berries were thawed at 4°C for 2hr. The accurate weight of 50 berries per
171 sample was recorded. The berries were transferred to a 50 mL plastic beaker for
172 homogenisation using an Ultra-Turrax® T25 high-speed homogeniser with an S25N
173 dispersing head (Janke and Kunkel GmbH Co. Germany). The beaker was placed on ice and
174 homogenised at 24,000 rpm for 30 sec. The shaft was cleaned, and the remaining grape

175 tissue was returned to the homogenisation vessel again and homogenised for 15 s. One g of
176 the homogenate was placed in a 15 mL tube. 10 ml of 50 % (v/v) aqueous ethanol pH2 was
177 added. The tube was mixed by inversion for 1 hr and centrifuged at 3,500 rpm for 5 min. The
178 supernatant was collected, and the volume was measured. One ml of the extract was taken
179 and mixed with 100 ml of 1 M HCl and mixed thoroughly. The diluted extract was incubated
180 at room temperature for 3 hr. The absorbance of the acidified diluted extract was measured
181 at 520 nm using a 1.0 M HCl blank on a SPECTROstar Omega reader (BMG LABTECH,
182 Ortenberg, Germany). The anthocyanin mg/berry was calculated (equation (5)) along with
183 total phenolics per berry (absorbance units (au) per berry) as predicted in equation (6) (Iland
184 2004).

185 *Anthocyanin/berry (Mg)=*

$$A \frac{HCl}{520} * \text{dilution factor} * \frac{\text{Final extract}}{100} * \frac{\text{weight of}}{\text{50 berries(g)}} * \frac{1000}{\text{weight of homogenate}} * \frac{1}{50} * \frac{\text{taken for extraction (g)}}{\text{50}} \quad (5)$$

186
187 *Total phenolics/ berry (au)=*
188

$$A \frac{HCl}{280} * \text{dilution factor} * \frac{\text{Final extract}}{100} * \frac{\text{weight of}}{\text{50 berries(g)}} * \frac{1}{\text{weight of homogenate}} * \frac{1}{50} * \frac{\text{taken for extraction (g)}}{\text{50}} \quad (6)$$

189

190 3.7 Statistical Analysis

191 The statistical analysis was performed using the “R” language (<https://cran.r-project.org/>). A two-way multivariate analysis of variance (MANOVA) was conducted using
192 the viral infection type and seasonal influence as independent factors and the measured
193 berry quality characteristics as dependent variables. Tukey post-hoc contrasts have been
194 used to analyse the difference between the means of berry quality parameters and the
195 clones. Furthermore, a simple linear regression was calculated to predict the relationship
196 between the berry mass and sugar mass, titratable acidity (TA), and total soluble solids
197 (TSS). Finally, the ANCOVA test was applied to analyse the viral load and seasons against the
198 berry quality parameters. The figures have been plotted using the R package “ggpubr”
199 (<https://CRAN.R-project.org/package=ggpubr>)

201

202 **Results**

203 **Viral identity**

204 All the samples showed a positive PCR product of 844bp, representing the internal
205 control 18S rRNA (Figure 1). The Control vines failed to amplify PCR products using gene-
206 specific primers for GLRaV-3, GLRaV-4 strain 9 and GVA, confirming the absence of
207 detectable infection of these viruses. The Clone 3236 vines tested positive to GLRaV-3, but
208 not GLRaV-4 strain 9 or GVA. The clone 3215 vines consistently tested positive for GLRaV-3
209 and GVA, which confirmed the mixed infection. However, only four vines amplified bands
210 with the GLRaV-4 strain 9-specific primers. Vines that do not show amplification to GLRaV-4
211 are used as a mixed; hence they still have an infection with GLRaV-3 and GVA. GVA has been
212 mostly related with GLRaV-1 and -3, with the hypothesis that co-infection contributes to the
213 severity of grape symptoms. Previous research (Credi and Babini 1997) predicted that
214 disease severity increased with mixed infections in grapevine, particularly when GVA co-
215 infected with GLRaV-3.

216 **Berry quality**

217 Fruits on infected vines were lighter in colour and larger than those growing on
218 uninfected vines (Figure 2). Having established the identity of viral infections in the vines,
219 berry quality parameters were quantified for two seasons (2017/18). A two-way
220 multivariate analysis of variance (MANOVA) was performed with the viral infection type and
221 the seasonal effect as the independent variables and the quantified berry quality
222 parameters as dependent variables. The viral infection types included three levels viral free
223 (Control), single infection (GLRaV-3) and mixed infection (GLRaV-3, GLRaV-4 strain 9 and
224 GVA), while the seasonal effect consisted of two levels (2017 and 2018). Findings show
225 significant differences for all dependent variables (Wilks λ , $[2,33] = 0.033895$, $p < 0.001$) for
226 the viral infection type, while no significant difference was observed for the seasonal effect,
227 with the exception of TA (Table 1).

228 The mean of the berry mass was strongly dependent on the presence of the
229 infection but was unaffected by season. Tukey post-hoc contrasts showed significant

230 differences between the Control and Single infection groups ($p < 0.000001$) and the control
231 and the Mixed infection ($p < 0.0001$), but not between the two infection groups (Figure 3(a)).

232 Depending on the moisture percentage, a significant increase in berry water
233 accumulation can be noticed in the infected clones compared to the control (Table 1, Figure
234 3(b)). The berry water weight in grams was calculated depending on the moisture
235 percentage. A simple linear regression was calculated to predict the relationship between
236 the berry mass and berry water mass among the control and the infected clones. The linear
237 regression revealed a significant relationship ($F(1, 34) = 3918, p < 0.000001$), with a multiple
238 R^2 of 0.9914. It indicates that the berry mass increases significantly in the infected clones
239 depending on the increase in water accumulation in the berry. However, the relationship
240 between the dry components of the berry and the berry mass needs to be clarified. Since
241 the percentage of the dry mass shows a highly significant difference between the infected
242 clones and the control (Table 1 and Figure 3(c)), the dry berry mass is calculated in gram
243 depending on the dry weight percentage. A linear regression was calculated to predict the
244 relationship between berry mass and dry berry mass. A significant relationship was found (F
245 $(1, 34) = 268.6, p < 0.00000$), with a significant multiple slope value ($R^2 = 0.8867$). However,
246 the individual slope for each clone shows that only the control had a high slope value ($R^2 =$
247 0.91), while the clones 3236 and 3215 had slope values of 0.6 and 0.66, respectively,
248 indicating that the increase in berry mass was due to ectopic accumulation of water rather
249 than dry mass.

250 The °Brix value can be defined as the mass of sucrose per 100 g of juice, although it
251 measures all soluble solids per 100 g of juice. The MANOVA analysis revealed a significant
252 difference in the °Brix value between the infected clones and the control, where no
253 significant effect was noticed of the season on the °Brix value (Table 1 and Figure 3(d)).
254 Sucrose typically represents around 95 % of the TSS in grape juice. °Brix considers that an
255 acceptable approximate determination of the sugar. Berry sugar was calculated using the
256 method proposed by Vila et al. (2010), (Equation (7)).

$$\text{Sugar } \left(\frac{g}{\text{berry}} \right) = \frac{11.142 * \text{Brix} - 27.367}{(1000 / \text{Berry Weight (g)}) * (0.0046 * \text{Brix} + 0.9927)} \quad (7)$$

257 The ANOVA test was conducted to explain the effect of viral infection on the amount
258 of sugar in the berries, showing a statistical significance ($F(2,3) = 4.170, P < 0.0001$). The

259 amount of sugar/ berry was higher in both infected groups relative to the control, although
260 the °Brix value was lower in the infected clones than the control, which could be related to
261 the berry mass. Analysis of covariance (ANCOVA) confirmed a significant effect of infection
262 type on the berry sugar content after controlling for berry mass ($F(3, 32) = 332.9, P < 0.001$,
263 $R^2 = 0.969$). Figure 4 (a). shows that the relationship is strongly positive and linear. However,
264 previous studies showed that the relationship between the berry sugar content and the
265 berry weight followed the second-order curve (Considine, 2004). Therefore, forcing the line
266 through the origin is reasonable, and as shown in Figure 4 (b), the differences in sugar/berry
267 between the infected and control groups were related to the berry weight.

268 Sugar represents the major component of the TSS. Therefore, analysing the sugar as
269 a fraction of the dry berry mass against the berry mass will clarify the picture of the viral
270 effect on the sugar content. First, the sugar was calculated per berry dry weight as shown in
271 equation (8):

$$\text{Sugar. Dry Mass} = \frac{\text{Sugar. Berry}}{\frac{\text{Dry Mass\%} * \text{Berry Mass}}{100}} \quad (8)$$

272 Then the effect of the infection on sugar as a fraction of dry mass was assessed by
273 ANOVA. The results showed a significant difference between the infected clones and the
274 control ($F(2,32) = 21.4, p = 0.001$; Figure 3 f)). The value of the sugar as a fraction of the dry
275 mass was higher in the control compared to the infected clones. The result was confirmed
276 by Tukey post-hoc contrasts, which showed a significant difference between control versus
277 clone 3236 ($p < 0.001$) and clone 32315 ($p < 0.001$), and no significant difference between the
278 infected clones.

279 Table 1 shows that the TA has a significant difference between the control and the
280 infected clones, whereby TA is lower in the control group than in the infected clones.
281 Moreover, the seasons had a significant effect on the TA (Table 1, Figure 5(a)). Typically, the
282 TSS (°Brix) and TA bear a negative relationship throughout the course of ripening. The
283 relationship between TSS and TA provides an indication of fruit maturity and quality (Figure
284 5 (b)). Interestingly, the two groups of virus infections show a noticeable difference in the
285 regression slope of the TSS: TA (Figure 5(c)). The control shows an inverse relationship
286 between TSS and TA, as expected $y=37-35x$, $R^2 = 0.55$. Clone 3236 reveals almost similar

287 trend to the control, $y=30-20x$, $R^2=0.42$; however, the slope was less sharp than the control.
288 In contrast, clone 3215 shows a considerably weaker relationship where the slope was
289 almost flat, $y=21-3.8x$, $R^2=0.032$ (Figure 5(c)).

290 It is apparent from Figure 2 that virus infection influenced berry colouration. Analysis
291 revealed a significant difference in the amount of anthocyanin among the infection groups
292 (Table 1, Figure 6(a)). Tukey post-hoc contrasts showed that anthocyanin content in clone
293 3236 and clone 3215 was significantly less than the control ($p <0.001$), but there was no
294 difference between the infected clones. A similar trend was evident in total phenols;
295 however, the magnitude of the difference was less pronounced (Figure 6(b)).

296 **The interaction of viral load with berry quality**

297 Viral load was determined for the four assayed viruses by RT-qPCR. As shown before,
298 the berry mass and anthocyanin were the most affected characteristics by the viral
299 infection. A linear regression of berry mass and the anthocyanin against GLRaV-3 load in
300 both infected clones showed a linear relationship. However, the slope value was low for
301 both seasons, suggesting a weak relationship (Figure 7(a) and (b)). An ANCOVA test was
302 applied using the season as the primary variate and the GLRaV-3 load for both infected
303 clones as a covariate against the berry quality parameters (berry mass, °Brix, titratable
304 acidity, dry mass and anthocyanin), to clarify the relationship between the viral load and the
305 berry quality.

306 The results showed no significant differences between the GLRaV-3 virus copy
307 number and the measured berry quality parameters. A similar trend was observed for both
308 GLRaV-4 strain 9 and GVA when the ANCOVA test has performed. Interestingly, the results
309 were similar for the three viruses, as clearly indicated by the p -value shown in Table 2.
310 Moreover, the results indicated by the R^2 and adjusted R^2 , which represent the slope, were
311 very low and mostly null. That refers to the null relationship between the virus copy number
312 and the measured berry quality parameters. On the other hand, the season effect has a
313 considerable impact on titratable acidity, as evidenced by the p value of 0.001 for all viruses.
314 Although the p values in the three viruses were nearly identical, the slope values (R^2) in
315 GLRaV-3 were slightly lower when compared to GVA and GLRaV-4 strain 9, as shown in
316 Table 2.

317 **4 Discussion**

318 Berry quality is an essential standard in table grape production since it is served
319 fresh to the consumers (Rolle et al. 2012). Berry ripening progresses in two growth stages
320 consisting of berry formation and maturation, separated by a lag phase coinciding with
321 véraison (Coombe and McCarthy, 2000). Previous studies indicated that the pre-véraison
322 berries from virus-infected vines do not show a significant difference in quality compared to
323 virus-free vines (Alabi et al. 2016). In contrast, dramatic differences were observed during
324 post-véraison, suggesting that viral infection caused more significant impacts on ripening-
325 related processes starting from véraison (Alabi et al. 2016; Montero et al. 2016; Montero et
326 al. 2016a). As a result, this study concentrated on the final stage of growth, when the virus
327 full effect could be clearly observed on the berries.

328 Berry size is an essential feature in both wine and table grapes. In wine grapes,
329 smaller berries are desired, as the anthocyanin and sugar will be more concentrated in the
330 small berry volume (Abu-Zahra, 2010; Chen et al. 2018a; Ferrer et al. 2014; Melo et al. 2015;
331 Nuzzo and Matthews, 2005; Weaver and Winkler, 1952). However, large berries are more
332 desirable in table grapes considering the berry's density (Río Segade et al. 2013). Increased
333 berry size is the most obvious indication of viral infection in the cv. Crimson Seedless vines
334 (Singh Brar et al. 2008). The berry's size, or fresh weight, is regulated by cell number, cell
335 volume, and the accumulation of organic substances (sugars) in the cell vacuoles (Coombe,
336 1976; Ollat et al. 2002; Robinson and Davies, 2000). Thus, the pulp cells enlarge as a result
337 of an influx of sugars and water into the vacuole. The vacuoles of the pulp cells form about
338 99% of the cell volume (Diakou and Carde, 2001). In the virus-free vines, pulp cells
339 continued to enlarge throughout ripening, undergoing significant structural changes
340 responsible for berry softening late in the harvesting stage (Barnavon et al. 2000; Nunan et
341 al. 2001). In comparison, virus-infected vines frequently exhibit a delay in ripening, one of
342 the most obnoxious symptoms of viral infection (Martínez et al. 2016; Over de Linden and
343 Chamberlain, 1970). A delay in ripening is associated with a prolonged influx of water and
344 sugar into the berry from the leaves. The water and sugar will accumulate in the mesocarp
345 cell vacuoles, leading to an increase in berry weight (Bobeica et al. 2015; Fontes et al. 2011;
346 Rowhani et al. 2015). The increase in berry size has been clearly observed in the present
347 study (Figure3(a)).

348 At the same time, the ripening of grape berries is accompanied by sugar
349 accumulation; these processes play significant roles in the quality of the berries. Sugars are
350 accumulated in the mesocarp vacuoles, which account for 65–91% of the fresh weight of a
351 ripened berry (Fontes et al. 2011; Marty, 1999; Pastore et al. 2011). However, the results
352 show a reduction in the TSS that was measured as °Brix value in both infected vines; GLRaV-
353 3 implied a remarkable decrease in TSS. It could be argued that the fact of sugar
354 accumulation in the berry is controlled by a feedback inhibition mechanism, whereby sugar
355 controls the expression of sugar transporter genes (Koch, 1996; Lecourieux et al. 2014). The
356 feedback mechanism keeps the sugar level balanced with the berry mass (Lemoine et al.
357 2013). As evident in Figure 4(b), sugar was the major contributor to the increase in berry
358 weight. However, the °Brix value was low in the infected berry as a result of the dilution of
359 the sugar concentration by the increase in weight due to water.

360 Tartaric and malic acids are the main organic acids in the berry (Cholet et al. 2016;
361 Kliewer et al. 1967; Lamikanra et al. 1995). Both acids increased rapidly during the pre-
362 véraison stage, reaching their highest levels near véraison, and then declined throughout
363 ripening (Muñoz-Robredo et al. 2011). However, the data shows that the TA% was
364 significantly higher in both infected clones, most notably in the mixed clone Figure 5(a),
365 which is a common sign of GLRaV-3 infection (Alabi et al. 2016; Kliewer and Lider, 1976). The
366 high level of TA in the infected vines was associated with delayed ripening (Martínez et al.
367 2016). The decline of organic acids is controlled by many factors, such as enzymatic
368 degradation (Batista-Silva et al. 2018; Lakso and Kliewer, 1975; Sweetman et al. 2014) the
369 dilution effect, the increase in temperature and the acid salt formation (Kliewer et al. 1967;
370 Ruffner, 1982). Among these, the acid salt formation might explain the delay in the decline
371 of the organic acids in grape berries. Inorganic salts are transported from the root to the
372 leaves through the xylem at the first stage of berry development. After véraison, the salts
373 were transported from the leaves and unloaded into the berries along with sugar via the
374 phloem. The salt content of the berry will decrease because the virus disrupted phloem
375 transport (Ford, 2012; Jayasena and Cameron, 2008; Kliewer, 1966). The relatively low salt
376 content of virus-infected berries will prevent acid salt formation and keep the acidity higher
377 in the infected berries. Interestingly, the seasonal effect on both TA and pH was significant.
378 Similar results were previously reported (Lee et al. 2009; Lee and Martin, 2009), which may

379 have resulted from the influence of different temperatures over the two years; however,
380 this was not explored here (Lakso and Kliewer, 1975).

381 Previously, two types of phenolic chemicals found in berries were investigated:
382 tannin and anthocyanin (Adams, 2006). At the initial stage of berry formation, tannin
383 chemicals were collected in the mesocarp. By contrast, anthocyanin accumulates in the skin
384 following véraison (Kennedy et al. 2007). Evidently, anthocyanin is more susceptible to virus
385 infection than other forms of phenols. The result has demonstrated a significant decrease in
386 anthocyanin concentration in infected clones compared to control vines, which was
387 particularly pronounced in clone 3215 (mixed infected clones) (Figure 6(a)). Additionally, the
388 reduction was extended to phenolic compounds and demonstrated the same mechanism,
389 but the difference was less pronounced between the control and the infected clones (Figure
390 6(b)). Although sugars accumulation in skin is very low compared to the pulp, the evidence
391 is growing for some control of polyphenol metabolism by sugars, possibly through crosstalk
392 with genes responsible for sugar regulation (Dai et al. 2013; Smeekens et al. Matsushima et
393 al. 1989; 2010; Solfanelli et al. 2006; Zheng et al. 2009). Previous studies show that sugars
394 modulate anthocyanin biosynthesis pathway genes (Filippetti et al. 2015; Lecourieux et al.
395 2014; Solfanelli et al. 2006). Beyond the effect of delayed ripening, the viral infection seems
396 to have a deleterious influence on anthocyanin synthesis, as indicated by the previously
397 reported up-and down-regulation of several particular genes (Vega et al. 2011).

398 Moreover, research indicates that phloem-specific viruses disturb the leaf minor vein
399 phloem transporting process (Naidu et al. 2015). Disturbing phloem vines leads to
400 aggravating sugar transport from the source (leaves) to the sink (berries) (Pawar and Rana,
401 2019), resulting in an accumulation of sugar in the leaf mesophyll cells, which influences
402 anthocyanin production, leading to red colouration of interveinal areas of infected leaves.
403 These findings are consistent with studies indicating increased levels of anthocyanins in
404 symptomatic leaves of GLD-affected red-berried grapevines (Gutha et al. 2010). Although
405 aspects of the host-virus interaction between GLRaV's and grapevine remain ambiguous, it
406 appears the major influence of the virus on berry quality results from an altered source/sink
407 balance, which in particular affects sugar transport in the phloem vessels after véraison
408 (Alabi et al. 2016; Naidu et al. 2015). The data presented here is consistent with this theory.
409 Moreover, it provides no evidence that viral load is important, but rather the virus proteins

410 play an essential role in reprogramming gene expression. Additionally, the findings reveal
411 that clone 3215 exhibits a modest increase in berry quality variation compared to clone
412 3236. This might be explained as the combined effect of mixed viral infections in clone 3215.
413 However, no statistically significant evidence was found between both clone infections, and
414 most of the effect would belong to the case where GLRaV3 is present.

415

Bibliography

Abu-Zahra, T. R. (2010). Berry size of Thompson seedless as influenced by the application of gibberellic acid and cane girdling. *Pakistan Journal of Botany* **42**, 1755-1760.

Adams, D. O. (2006). Phenolics and ripening in grape berries. *American Journal of Enology and Viticulture* **57**, 249-256.

Adiputra, J., Jarugula, S., and Naidu, R. A. (2019). Intra-species recombination among strains of the ampelovirus Grapevine leafroll-associated virus 4. *Virology journal* **16**, 1-13.

Alabi, O. J., Casassa, L. F., Gutha, L. R., Larsen, R. C., Henick-Kling, T., Harbertson, J. F., and Naidu, R. A. (2016). Impacts of grapevine leafroll disease on fruit yield and grape and wine chemistry in a wine grape (*Vitis vinifera* L.) cultivar. *PLoS One* **11**, e0149666. <https://doi.org/10.1371/journal.pone.0149666>

Alagappan, D. R. (2011) Influence of inceptions of mild isolates of different grapevine viruses on berry colour, texture, flavour and storage life of 'Crimson seedless' table grapes. PhD thesis. School of science. Curtin University. Western Australia, Australia

Barnavon, L., Doco, T., Terrier, N., Ageorges, A., Romieu, C., and Pellerin, P. (2000). Analysis of cell wall neutral sugar composition, β -galactosidase activity and a related cDNA clone throughout the development of *Vitis vinifera* grape berries. *Plant Physiology and Biochemistry* **38**, 289-300.

Batista-Silva, W., Nascimento, V. L., Medeiros, D. B., Nunes-Nesi, A., Ribeiro, D. M., Zsögön, A., and Araújo, W. L. (2018). Modifications in organic acid profiles during fruit development and ripening: correlation or causation? *Frontiers in plant science* **9**, 1689. <https://doi.org/10.3389/fpls.2018.01689>

Bobeica, N., Poni, S., Hilbert, G., Renaud, C., Gomès, E., Delrot, S., and Dai, Z. (2015). Differential responses of sugar, organic acids and anthocyanins to source-sink modulation in Cabernet Sauvignon and Sangiovese grapevines. *Frontiers in plant science* **6**, 382. <https://doi.org/10.3389/fpls.2015.00382>

Cabaleiro, C., Segura, A., and Garcia-Berrios, J. (1999). Effects of grapevine leafroll-associated virus 3 on the physiology and must of *Vitis vinifera* L. cv. Albarino following contamination in the field. *American Journal of Enology and Viticulture* **50**, 40-44.

Chen, W.-K., He, F., Wang, Y.-X., Liu, X., Duan, C.-Q., and Wang, J. (2018a). Influences of berry size on fruit composition and wine quality of *vitis vinifera* L. cv.'Cabernet Sauvignon'grapes. *South African Journal of Enology and Viticulture* **39**, 67-76.

Choat, B., Gambetta, G. A., Shackel, K. A., and Matthews, M. A. (2009). Vascular function in grape berries across development and its relevance to apparent hydraulic isolation. *Plant physiology* **151**, 1677-1687.

Cholet, C., Claverol, S., Claisse, O., Rabot, A., Osowsky, A., Dumot, V., Ferrari, G., and Gény, L. (2016). Tartaric acid pathways in *Vitis vinifera* L.(cv. Ugni blanc): a comparative study of two vintages with contrasted climatic conditions. *BMC plant biology* **16**, 1-18.

Considine, J. A. (2004). Grapevine productivity and yield components: A case study using field vines of Zante currant. *Australian journal of grape and wine research* **10**, 108-115.

Considine, J. A., and Frankish, E. (2014). A complete guide to quality in small-scale wine making. (Academic Press. San Diego, United States).

Coombe, B. G. (1976). The development of fleshy fruits. *Annual Review of Plant Physiology* **27**, 207-228.

Coombe, B. G. and Iland, P .G. (2005) Grape berry development and winegrape quality. In: *Viticulture. Volume 1 – resources*. Eds. P. R. Dryand B. G. Coombe (Winetitles: Adelaide) pp. 210–248.

Coombe, B. G., and McCarthy, M. (2000). Dynamics of grape berry growth and physiology of ripening. *Australian journal of grape and wine research* **6**, 131-135.

Credi, R., and Babini, A. R. (1997). Effects of virus and virus-like infections on growth, yield, and fruit quality of Albana and Trebbiano Romagnolo grapevines. *American Journal of Enology and Viticulture* **48**, 7-12.

Dai, Z. W., Meddar, M., Renaud, C., Merlin, I., Hilbert, G., Delrot, S., and Gomès, E. (2013). Long-term in vitro culture of grape berries and its application to assess the effects of sugar supply on anthocyanin accumulation. *Journal of Experimental Botany* **65**, 4665-4677.

Diakou, P., and Carde, J. P. (2001). In situ fixation of grape berries. *Protoplasma* **218**, 225-235.

El Aou-ouad, H., Montero, R., Medrano, H., and Bota, J. (2016). Interactive effects of grapevine leafroll-associated virus 3 (GLRaV-3) and water stress on the physiology of *Vitis vinifera* L. cv. Malvasia de Banyalbufar and Giro-Ros. *Journal of plant physiology* **196**, 106-115.

Ferrer, M., Echeverría, G., and Carbonneau, A. (2014). Effect of berry weight and its components on the contents of sugars and anthocyanins of three varieties of *Vitis vinifera* L. under different water supply conditions. *South African Journal of Enology and Viticulture* **35**, 103-113.

Filippetti, I., Movahed, N., Allegro, G., Valentini, G., Pastore, C., Colucci, E., and Intrieri, C. (2015). Effect of post-veraison source limitation on the accumulation of sugar, anthocyanins and seed tannins in *Vitis vinifera* cv. Sangiovese berries. *Australian journal of grape and wine research* **21**, 90-100.

Fontes, N., Gerós, H., and Delrot, S. (2011). Grape berry vacuole: a complex and heterogeneous membrane system specialized in the accumulation of solutes. *American Journal of Enology and Viticulture* **62**, 270-278.

Ford, C. (2012). The biochemistry of organic acids in the grape, *The Biochemistry of the Grape Berry*, eds H. Gerós, M. Chaves, and S. Delrot (Illinois, IL: Bentham Science Publishers), 67–88.

Gambino, G., and Gribaudo, I. (2006). Simultaneous detection of nine grapevine viruses by multiplex reverse transcription-polymerase chain reaction with coamplification of a plant RNA as internal control. *Phytopathology* **96**, 1223-1229.

Gutha, L. R., Casassa, L. F., Harbertson, J. F., and Naidu, R. A. (2010). Modulation of flavonoid biosynthetic pathway genes and anthocyanins due to virus infection in grapevine (*Vitis vinifera* L.) leaves. *BMC plant biology* **10**, 1-18.

Iland, P., Brue, N., Edwards, G., Weeks, S. and Wilkes, E. (2004) Chemical analysis of grapes and wine: techniques and concepts (Patrick Iland Wine Promotions: Campbelltown, SA).

Jayasena, V., and Cameron, I. (2008). ° Brix/acid ratio as a predictor of consumer acceptability of Crimson Seedless table grapes. *Journal of Food Quality* **31**, 736-750.

Kennedy, J., Robinson, S., and Walker, M. (2007). Grape and wine tannins: Production, perfection, perception. *Practical Winery and Vineyard*, 57-67.

Kliewer, W. M., and Lider, L. (1976). Influence of leafroll virus on composition of Burger fruits. *American Journal of Enology and Viticulture* **27**, 118-124.

Kliewer, W. M., Howarth, L., and Omori, M. (1967). Concentrations of tartaric acid and malic acids and their salts in *Vitis vinifera* grapes. *American Journal of Enology and Viticulture* **18**, 42-54.

Kliewer, W. M., Howarth, L., and Omori, M. (1967). Concentrations of tartaric acid and malic acids and their salts in *Vitis vinifera* grapes. *American Journal of Enology and Viticulture* **18**, 42-54.

Koch, K. E. (1996). Carbohydrate-Modulated Gene Expression in Plants. *Annual Review of Plant Physiology and Plant Molecular Biology* **47**, 509-540.

Komar, V., Vigne, E., Demangeat, G., Lemaire, O., and Fuchs, M. (2010). Comparative performance of virus-infected *Vitis vinifera* cv. Savagnin rose grafted onto three rootstocks. *American Journal of Enology and Viticulture* **61**, 68-73.

Lakso, A. N., and Kliewer, W. M. (1975). The influence of temperature on malic Acid metabolism in grape berries: I. Enzyme responses. *Plant Physiology* **56**, 370-372.

Lamikanra, O., Inyang, I. D., and Leong, S. (1995). Distribution and effect of grape maturity on organic acid content of red muscadine grapes. *Journal of agricultural and food chemistry* **43**, 3026-3028.

Lecourieux, F., Kappel, C., Lecourieux, D., Serrano, A., Torres, E., Arce-Johnson, P., and Delrot, S. (2014). An update on sugar transport and signalling in grapevine. *Journal of Experimental Botany* **65**, 821-832.

Lee, J., and Martin, R. R. (2009). Influence of grapevine leafroll associated viruses (GLRaV-2 and-3) on the fruit composition of Oregon *Vitis vinifera* L. cv. Pinot noir: Phenolics. *Food chemistry* **112**, 889-896.

Lee, J., Keller, K. E., Rennaker, C., and Martin, R. R. (2009). Influence of grapevine leafroll associated viruses (GLRaV-2 and-3) on the fruit composition of Oregon *Vitis vinifera* L. cv. Pinot noir: Free amino acids, sugars, and organic acids. *Food chemistry* **117**, 99-105.

Lemoine, R., La Camera, S., Atanassova, R., Dédaldéchamp, F., Allario, T., Pourtau, N., Bonnemain, J.-L., Laloi, M., Coutos-Thévenot, P., and Maurousset, L. (2013). Source-to-sink transport of sugar and regulation by environmental factors. *Frontiers in plant science* **4**, 272. <https://doi.org/10.3389/fpls.2013.00272>

Maree, H. J., Almeida, R. P., Bester, R., Chooi, K. M., Cohen, D., Dolja, V. V., Fuchs, M. F., Golino, D. A., Jooste, A. E., and Martelli, G. P. (2013). Grapevine leafroll-associated virus 3. *Frontiers in microbiology* **4**, 82. <https://doi.org/10.3389/fmicb.2013.00082>

Martínez, L., Miranda, C., Royo, J. B., Urrestarazu, J., de Toda, F. M., Balda, P., and Santesteban, L. G. (2016). Direct and indirect effects of three virus infections on yield and berry composition in grapevine (*Vitis vinifera* L.) cv.'Tempranillo'. *Scientia Horticulturae* **212**, 20-28.

Martinson, T., Fuchs, M., Loeb, G., and Hoch, H. (2008). Grapevine leafroll: An increasing problem in the Finger Lakes, the US and the world. *Finger Lakes Vineyard Notes* **6**, 6-11.

Marty, F. (1999). Plant vacuoles. *The Plant Cell* **11**, 587-599.

Matsushima, J., Hiratsuka, S., Taniguchi, N., Wada, R., and Suzuki, N. (1989). Anthocyanin Accumulation and Sugar Content in the Skin of Grape Cultivar 'Olympia' Treated with ABA. *Journal of the Japanese Society for Horticultural Scienc* **58**, 551-555.

Melo, M., Schultz, H. R., Volschenk, C., and Hunter, J. (2015). Berry size variation of *Vitis vinifera* L. cv. Syrah: Morphological dimensions, berry composition and wine quality. *South African Journal of Enology and Viticulture* **36**, 1-10.

Minafra, A., and Hadidi, A. (1994). Sensitive detection of grapevine virus A, B, or leafroll-associated III from viruliferous mealybugs and infected tissue by cDNA amplification. *Journal of Virological Methods* **47**, 175-187.

Montero, R., Mundy, D., Albright, A., Grose, C., Trought, M., Cohen, D., Chooi, K., MacDiarmid, R., Flexas, J., and Bota, J. (2016). Effects of Grapevine Leafroll associated Virus 3 (GLRaV-3) and duration of infection on fruit composition and wine chemical profile of *Vitis vinifera* L. cv. Sauvignon blanc. *Food chemistry* **197**, 1177-1183.

Montero, R., Pérez-Bueno, M. L., Barón, M., Florez-Sarasa, I., Tohge, T., Fernie, A. R., Ouad, H. E. A., Flexas, J., and Bota, J. (2016a). Alterations in primary and secondary metabolism in *Vitis vinifera* 'Malvasía de Banyalbufar' upon infection with Grapevine leafroll-associated virus 3. *Physiologia plantarum* **157**, 442-452.

Muñoz-Robredo, P., Robledo, P., Manríquez, D., Molina, R., and Defilippi, B. G. (2011). Characterization of sugars and organic acids in commercial varieties of table grapes. *Chilean journal of agricultural research* **71**, 452-458.

Naidu, R. A., Maree, H. J., and Burger, J. T. (2015). Grapevine leafroll disease and associated viruses: A unique pathosystem. *Annual Review of Phytopathology* **53**, 613-634.

Naidu, R., Rowhani, A., Fuchs, M., Golino, D., and Martelli, G. P. (2014). Grapevine leafroll: A complex viral disease affecting a high-value fruit crop. *Plant Disease* **98**, 1172-1185.

Nielsen, S. S. (2017). *Food analysis laboratory manual*. (Springer. Cham, Switzerland)

Nunan, K. J., Davies, C., Robinson, S. P., and Fincher, G. B. (2001). Expression patterns of cell wall-modifying enzymes during grape berry development. *Planta* **214**, 257-264.

Nuzzo, V., and Matthews, M. (2005). Berry size and yield paradigms on grapes and wines quality. *Acta Horticulturae* **754**, 423-436.

Ollat, N., Carde, J.-P., Gaudillère, J.-P., Barrieu, F., Diakou-Verdin, P., and Moing, A. (2002). Grape berry development: a review. *Œno One* **36**, 109-131.

Osman, F., and Rowhani, A. (2006). Application of a spotting sample preparation technique for the detection of pathogens in woody plants by RT-PCR and real-time PCR (TaqMan). *Journal of virological methods* **133**, 130-136.

Osman, F., Leutenegger, C., Golino, D., and Rowhani, A. (2007). Real-time RT-PCR (TaqMan®) assays for the detection of Grapevine Leafroll associated viruses 1-5 and 9. *Journal of virological methods*, **141**(1), 22-29. <https://doi.org/10.1016/j.jviromet.2006.11.035>

Osman, F., Leutenegger, C., Golino, D., and Rowhani, A. (2008). Comparison of low-density arrays, RT-PCR and real-time TaqMan® RT-PCR in detection of grapevine viruses. *Journal of virological methods* **149**, 292-299.

OIV. (2008). Resolution VITI 1/2008. OIV Standard on Minimum Maturity Requirements for Table Grapes. In: Organisation Internationale de la Vigne et du Vin Paris. <https://www.oiv.int/public/medias/369/viti-2008-1-en.pdf>

Over de Linden, A., and Chamberlain, E. (1970). Effect of grapevine leafroll virus on vine growth and fruit yield and quality. *New Zealand Journal of Agricultural Research* **13**, 689-698.

Pastore, C., Zenoni, S., Tornielli, G. B., Allegro, G., Dal Santo, S., Valentini, G., Intrieri, C., Pezzotti, M., and Filippetti, I. (2011). Increasing the source/sink ratio in *Vitis vinifera* (cv Sangiovese) induces extensive transcriptome reprogramming and modifies berry ripening. *BMC Genomics* **12**, 631-654.

Peppi, M. C., Fidelibus, M. W., and Dokoozlian, N. (2006). Abscisic Acid Application Timing and Concentration Affect Firmness, Pigmentation, and Color of Flame Seedless' Grapes. *HortScience* **41**, 1440-1445.

Río Segade, S., Giacosa, S., Torchio, F., De Palma, L., Novello, V., Gerbi, V., and Rolle, L. (2013). Impact of different advanced ripening stages on berry texture properties of 'Red Globe' and 'Crimson Seedless' table grape cultivars (*Vitis vinifera* L.). *Scientia Horticulturae* **160**, 313-319.

Río Segade, S., Orriols, I., Giacosa, S., and Rolle, L. (2011). Instrumental texture analysis parameters as winegrapes varietal markers and ripeness predictors. *International Journal of Food Properties*, **14**, 1318-1329.

Robinson, S. P., and Davies, C. (2000). Molecular biology of grape berry ripening. *Australian journal of grape and wine research* **6**, 175-188.

Rolle, L., Siret, R., Segade, S. R., Maury, C., Gerbi, V., and Jourjon, F. (2012). Instrumental texture analysis parameters as markers of table-grape and winegrape quality: A review. *American Journal of Enology and Viticulture* **63**, 11-28.

Rowhani, A., Golino, D. A., Klaassen, V., Sim, S. T., Gouran, M., Al Rwahnih, M. (2015). Grapevine leafroll associated virus 3: Effects on rootstocks, vine, performance, yield and berries. V: Ertunç F. (Ed.), 18th Congress of the International Council for the Study of Viruses and Virus-like Diseases of Grapevine (ICVG) (pp. 161–162). Ankara, Turkey: ICVG

Ruffner, H. (1982). Metabolism of tartaric and malic acid in *Vitis*, A review- Part B. *Vitis* **21**, 247-259.

Sambrook, J., and Russell, D. (2001). Molecular cloning: A laboratory manual. (Cold Spring Harbor Laboratory Press. Cold Spring Harbor, New York, USA).

Sharma, A. M., Baraff, B., Hutchins, J. T., Wong, M. K., Blaisdell, G. K., Cooper, M. L., Daane, K. M., and Almeida, R. P. (2015). Relative Prevalence of Grapevine Leafroll-Associated Virus Species in Wine Grape-Growing Regions of California. *PLoS One* **10**, e0142120. <https://doi.org/10.1371/journal.pone.0142120>

Singh Brar, H., Singh, Z., Swinny, E., and Cameron, I. (2008). Girdling and grapevine leafroll associated viruses affect berry weight, colour development and accumulation of

anthocyanins in 'Crimson Seedless' grapes during maturation and ripening. *Plant Science* **175**, 885-897.

Smeekens, S., Ma, J., Hanson, J., and Rolland, F. (2010). Sugar signals and molecular networks controlling plant growth. *Current Opinion in Plant Biology* **13**, 274-279.

Solfanelli, C., Poggi, A., Loret, E., Alpi, A., and Perata, P. (2006). Sucrose-specific induction of the anthocyanin biosynthetic pathway in *Arabidopsis*. *Plant Physiology* **140**, 637-646.

Vega, A., Gutiérrez, R. A., Pena-Neira, A., Cramer, G. R., and Arce-Johnson, P. (2011). Compatible GLRaV-3 viral infections affect berry ripening decreasing sugar accumulation and anthocyanin biosynthesis in *Vitis vinifera*. *Plant Molecular Biology* **77**, 261.-264

Velasco, L., Bota, J., Montero, R., and Cretazzo, E. (2014). Differences of three ampeloviruses' multiplication in plant may explain their incidences in vineyards. *Plant Disease* **98**, 395-400.

Vila, H. F., Paladino, S. C., Nazrala, J. J. B., and Lucero, C. C. (2010). Manual de calidad uva: guía práctica para conocer y evaluar la calidad de uva para vino. <http://hdl.handle.net/20.500.12123/6655>

Wang, Z. P., Deloire, A., Carboneau, A., Federspiel, B., and Lopez, F. (2003). An in vivo experimental system to study sugar phloem unloading in ripening grape berries during water deficiency stress. *Annals of Botany* **92**, 523-528.

Weaver, R. J., and Winkler, A. (1952). Increasing the size of Thompson seedless grapes by means of 4-chlorophenoxyacetic acid, berry thinning and girdling. *Plant physiology* **27**, 626-630.

Zhang, Y., and Keller, M. (2017). Discharge of surplus phloem water may be required for normal grape ripening. *Journal of Experimental Botany* **68**, 585-595.

Zheng, Y., Tian, L., Liu, H., Pan, Q., Zhan, J., and Huang, W. (2009). Sugars induce anthocyanin accumulation and flavanone 3-hydroxylase expression in grape berries. *Plant Growth Regulation* **58**, 251-260.

Table 1. The variation of the berry quality of the infected clones compares with the control. Means, standard deviations, Fisher value and the *p* Value were calculated using MANOVA, where each clone comprise 6 replicates (n=6).

Berry quality	Clones						Seasons						
	Control		Clone 3236		Clone 3215		F	2017		2018		F	
	M	SD	M	SD	M	SD		M	SD	M	SD		
Mass (g)	5.83	0.59	8.70	0.42	8.56	0.35	175.23	***	7.74	1.22	7.66	1.62	0.31
°Brix	19.66	0.70	18.72	0.65	18.68	0.34	11.05	***	18.84	0.67	19.19	0.76	3.39
Titratable acidity (%)	0.51	0.02	0.57	0.02	0.59	0.05	33.04	***	0.58	0.06	0.54	0.03	18.50
Dry Mass (%)	32.73	1.30	28.70	1.19	28.06	0.78	62.24	***	29.95	2.30	29.71	2.47	0.41
H ₂ O (%)	67.27	0.15	71.3	0.09	71.94	0.12	62.24	***	70.05	2.30	70.29	2.47	0.41
Anthocyanin/berry (mg)	1.72	0.19	0.78	0.20	0.58	0.26	86.22	***	1.06	0.56	1.00	0.55	0.44
phenol/berry (aU)	1.15	0.27	1.01	0.31	0.82	0.25	4.54	*	1.02	0.32	0.97	0.29	0.30

*** *p* < 0.001, ** *p* < 0.01, * *p* < 0.05, . *p* < 0.1

M: Mean, SD: Standard Deviation, F: Fisher Value

Table 2. The summary of the ANCOVA test including a season as the primary variate and the GLRaV-3 load for both infected clones as a covariate against the berry quality parameters

GLRaV-3

	Mass		°Brix		Titratable acidity		Dry Mass		Anthocyanin	
	M	p	M	p	M	p	M	p	M	p
(Intercept)	8.48	<0.001	18.55	<0.001	0.61	<0.001	28.41	<0.001	0.66	<0.001
GLRaV-3	0	0.425	0	0.949	0	0.604	0	0.197	0	0.314
Seasons [2018]	0.24	0.136	0.3	0.17	-0.05	0.002***	-0.33	0.441	-0.02	0.844
Observations	24		24		24		24		24	
R^2 / R^2 adjusted	0.115 / 0.030		0.091 / 0.005		0.371 / 0.311		0.118 / 0.034		0.054 / -0.036	

GLRaV-4 strain 9

	Mass		°Brix		Titratable acidity		Dry Mass		Anthocyanin	
	M	p	M	p	M	p	M	p	M	p
(Intercept)	8.33	<0.001	18.78	<0.001	0.62	<0.001	28.64	<0.001	0.73	<0.001
GLRaV-4	0	0.375	0	0.132	0	0.263	0	0.067	0	0.124
Season [2018]	0.27	0.197	0.12	0.535	-0.07	0.007***	-0.32	0.436	-0.05	0.757
Observations	12		12		12		12		12	
R^2 / R^2 adjusted	0.247 / 0.079		0.254 / 0.088		0.597 / 0.508		0.365 / 0.224		0.253 / 0.086	

GVA

	Mass		°Brix		Titratable acidity		Dry Mass		Anthocyanin	
	M	p	M	p	M	p	M	p	M	p
(Intercept)	8.46	<0.001	18.43	<0.001	0.64	<0.001	27.72	<0.001	0.45	0.005
GVA	0	0.709	0	0.071	0	0.355	0	0.03	0	0.062
Season [2018]	0.24	0.327	0.3	0.167	-0.08	0.007***	0.15	0.731	0.1	0.54
Observations	12		12		12		12		12	
R^2 / R^2 adjusted	0.187 / 0.007		0.336 / 0.189		0.578 / 0.485		0.460 / 0.340		0.344 / 0.198	

***p < 0.001, **p < 0.01, *p < 0.05, p < 0.1, M: Mean, p: p value

Figure legends

Figure 1. Agarose gel electrophoresis RT-PCR amplified cDNA products of GLRaV-3 GLRaV-4 Strain 9, GVA and 18s rRNA. L: Ladder DNA Promega 100bp with fragment size 100 to 12000 bp. V1-V6 represent the vines replicates of each clone. Vertically: 18S rRNA represented the amplification of the positive control. GLRaV-3 represent the amplification of HSP70 of the GLRaV-3 (546bp). GVA represent the amplification of CP of the GVA (429bp) GLRaV-4 strain 9 represent the amplification HSP70 of GLRaV-4 strain 9 (393bp), in the Control, Clone 3236, and Clone 3215.

Figure 2. The cv. Crimson Seedless berries on the harvest day, showing the three types of viral infection: (a) shows the individual berries at the harvest stage, where number 1 represents the control, number 2 represents clone 3236 and number 3 represents clone 3215. Figure (b), (c) and (d) shows the corresponding berries on the control vine, clone 3236 and clone 3215 respectively, immediately prior to harvest.

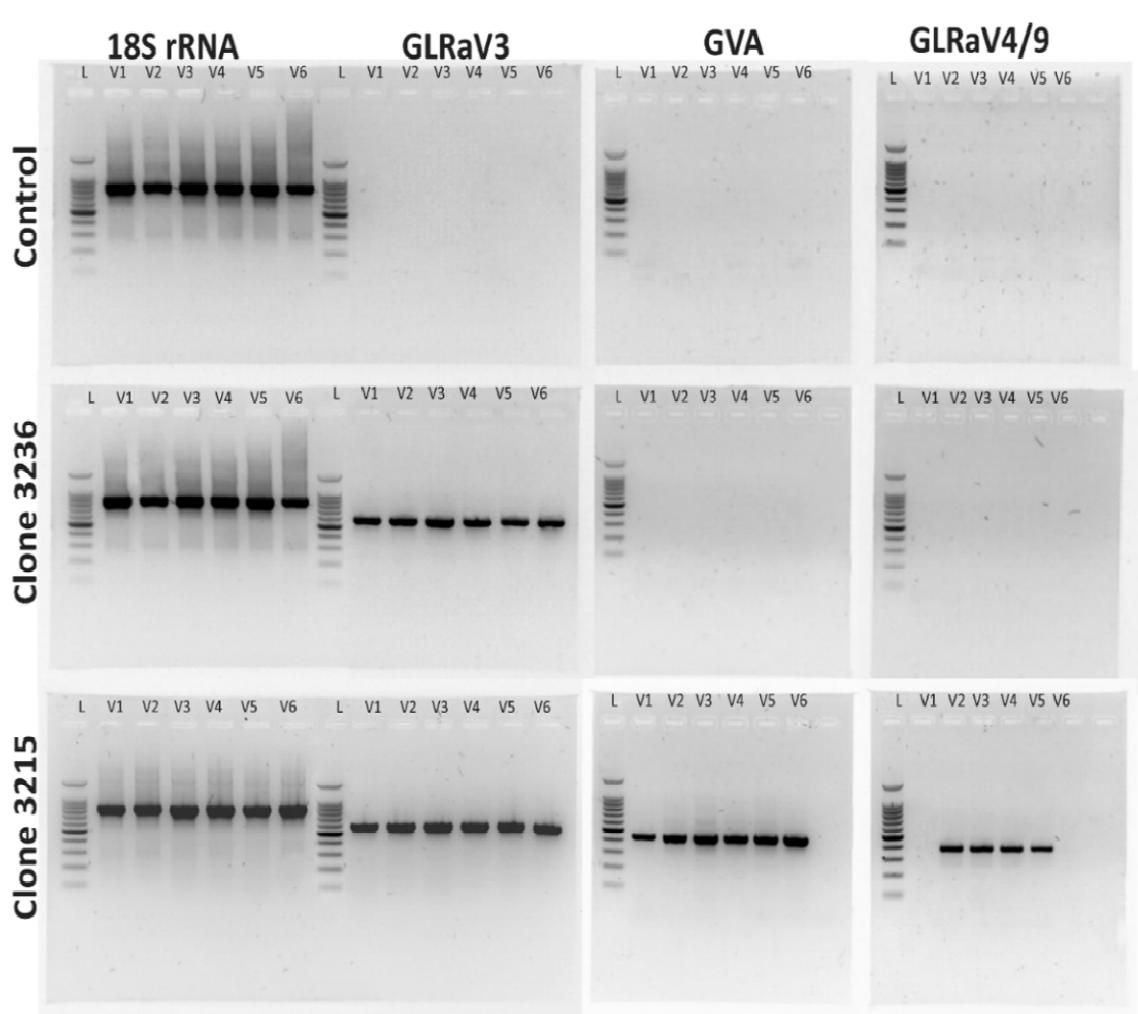

Figure 3. The effect of viral infection on the berry quality among the infected clones (clone 3236 (▲)and clone 3215 (■)) and the control (●), Each clone comprised 6 replicates. (a) The effect viral infection on berry fresh weight, (b). The effect viral infection on moisture percentage, (c). The effect viral infection on berry dry weight, (d). The effect viral infection on total soluble solids, (e). The effect viral infection on sugar content of the berry, and (f). The effect viral infection on sugar content as a fraction of the dry weight %., one-way ANOVA has been calculated along with the plot using ggpubr "R" Package.

Figure 4. The relationship between the berry sugar mass (g) and average berry mass (g). (a). ANCOVA test of the sugar/ berry (g) tested against the berry mass for each clone, clone 3236 (●), clone 3215 (▲) and the control (■) Individual line regression for each infection type. (b). The ANCOVA test show combined relationship by forcing all the lines through the origin point. $F(1, 35) = 28,989.570, p < 0.001$, with an R^2 of 0.999, $n=6$ for each clone.

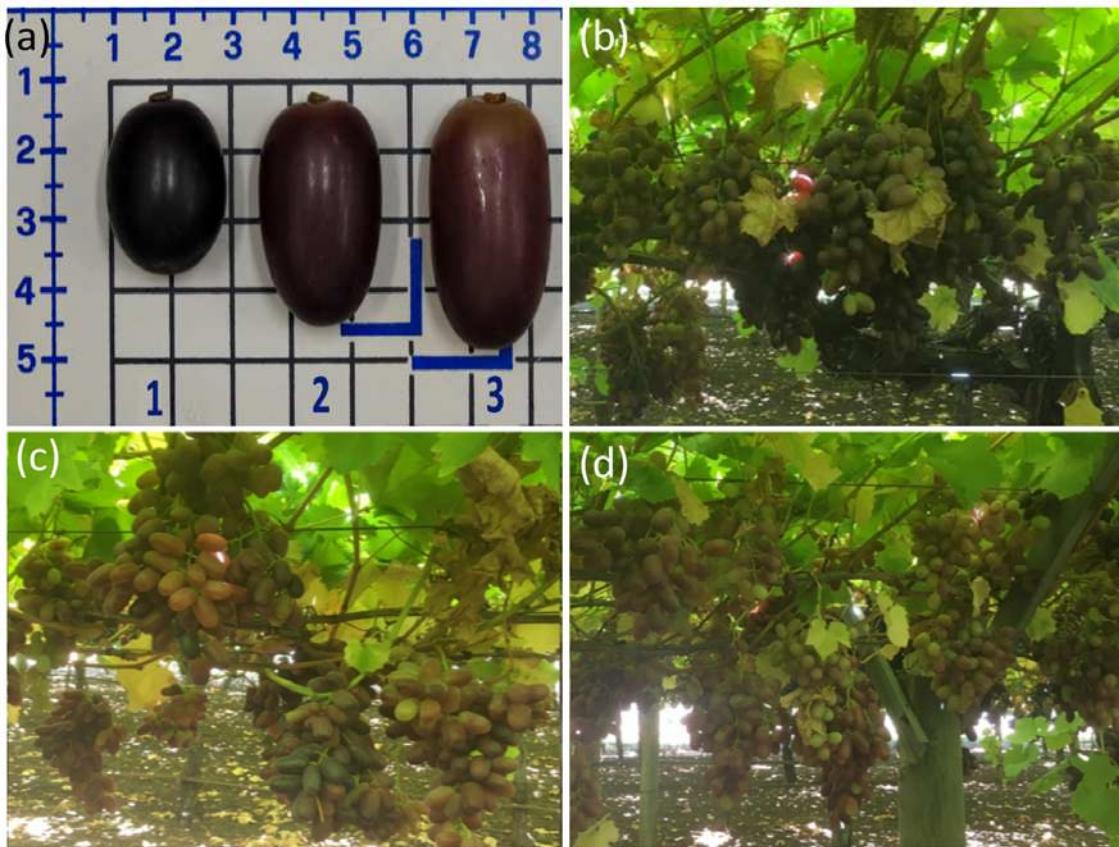
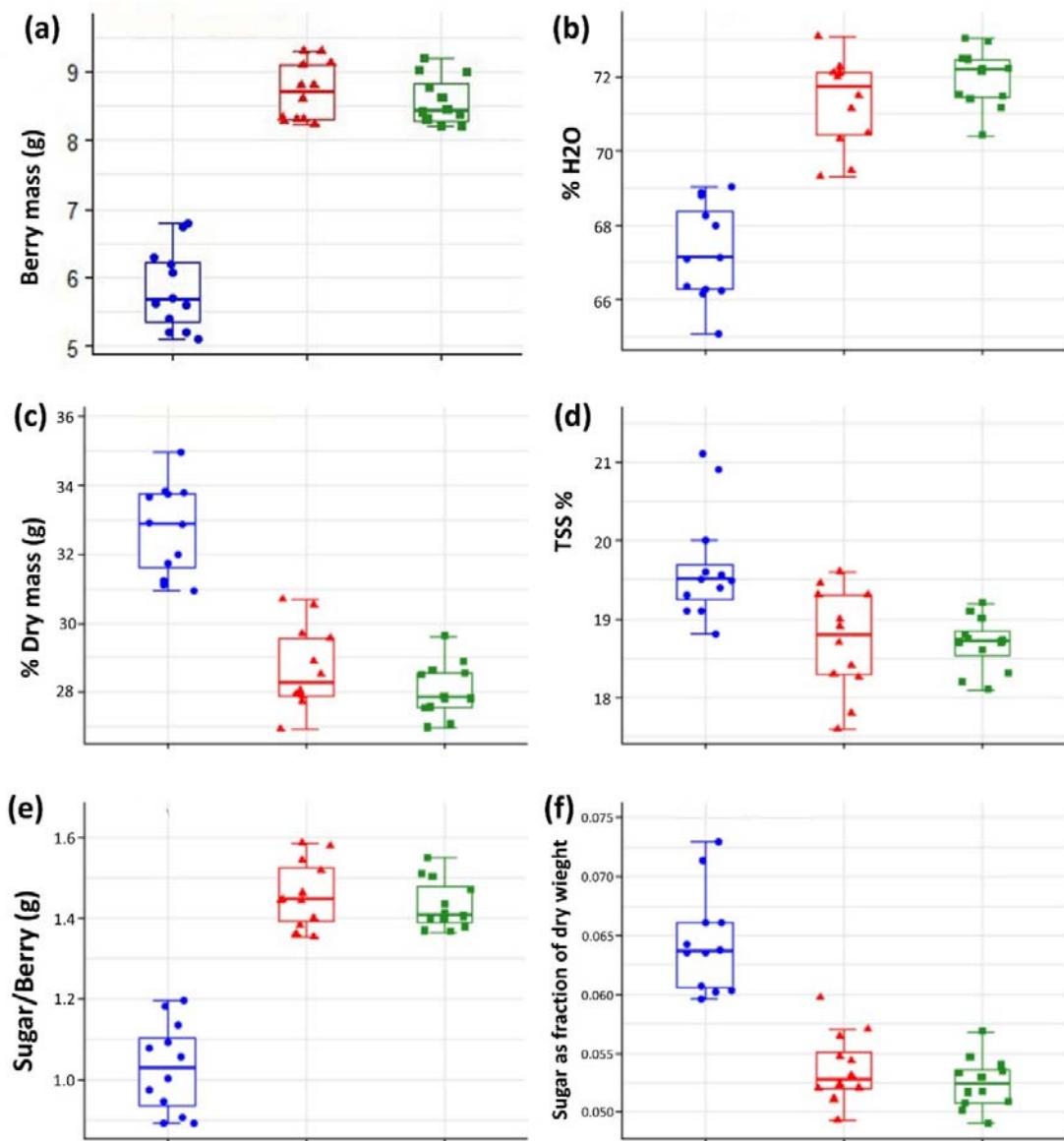
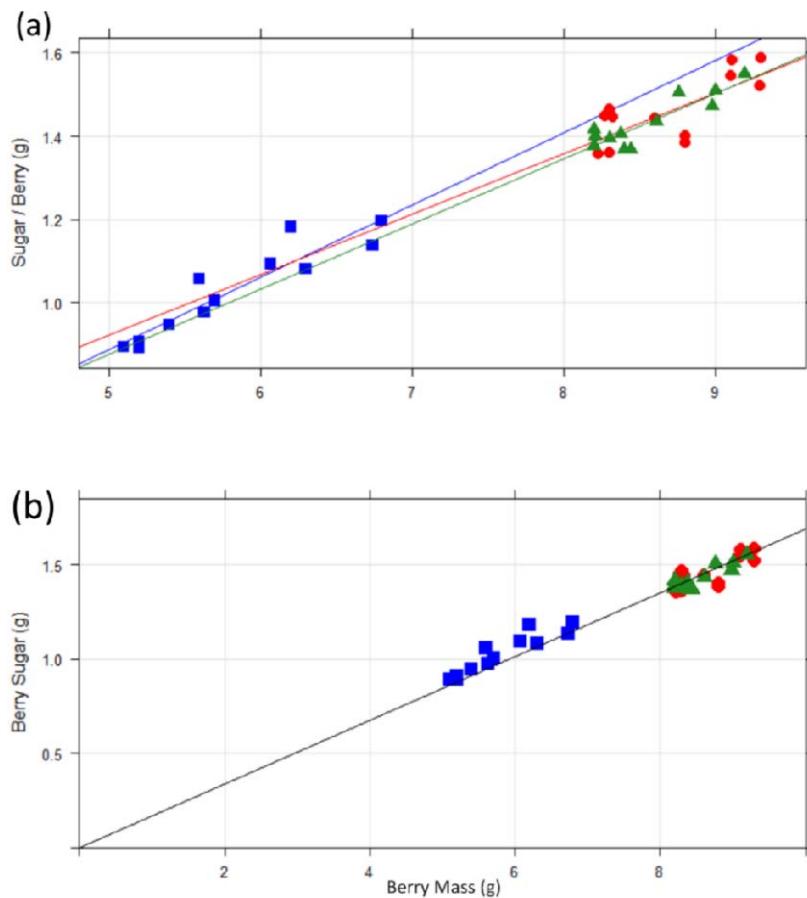
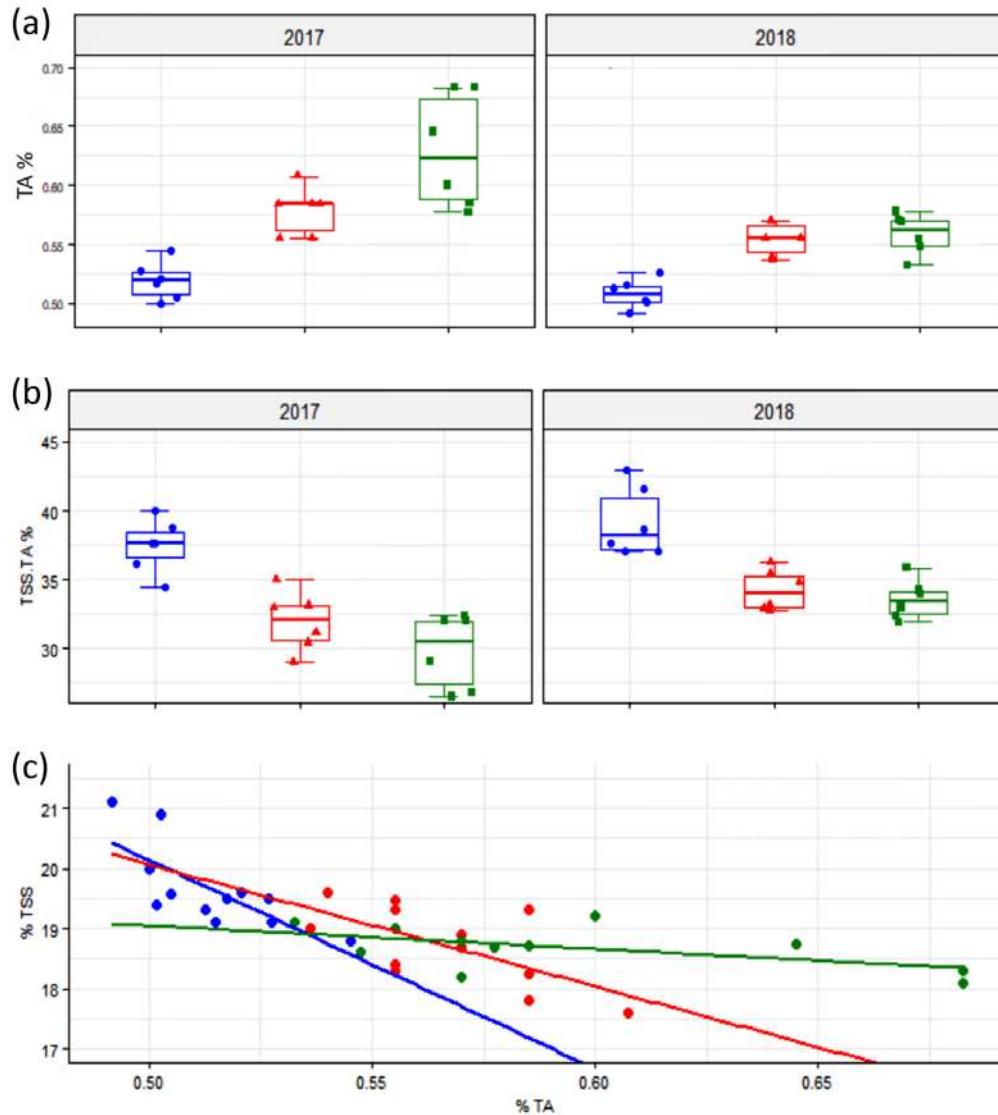
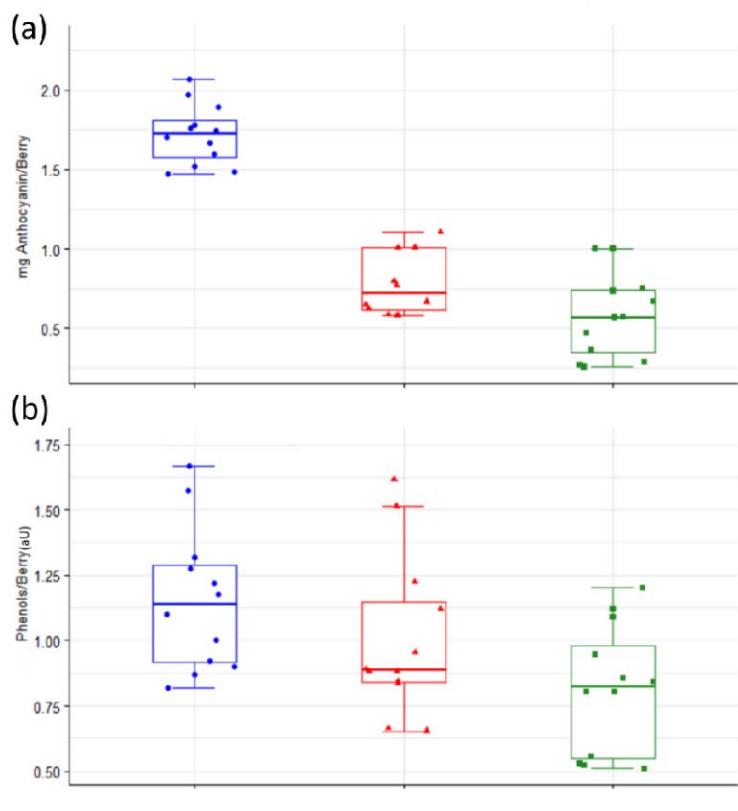

Figure 5. The effect of the viral infection on the acidity (TA) of the grape berry and relationship to TSS between the control (●) and the infected clones (clone 3236 (▲)and clone 3215 (■)). (a). The effect on the TA as a percentage in the berry juice. (b). The effect of viral infection on the TSS:TA ratio. (c). The relationship between the °Brix value and the TA among the infection type group.

Figure 6. The effect of viral infection on anthocyanin and phenol levels between the control (●) and the infected clones (clone 3236 (▲)and clone 3215 (■)). (a). The berry anthocyanin content (mg) per berry. (b). The phenol content (mg) per berry. AU: absorbance Unit.


Figure 7. Summary of the linear regression of the viral load. (a). The linear model of the berry's mass (g) against the log10 of the copy number of GLRaV-3 for two seasons 2017 (◇), 2018(◆). (b). The linear model of the berry's anthocyanin (mg) against the log10 of the copy number of GLRaV-3 for two seasons 2017 (◇), 2018(◆), for the infected clones (clone 3236 and clone 3215).


Figure 1. Agarose gel electrophoresis RT-PCR amplified cDNA products of GLRaV-3 GLRaV-4 Strain 9, GVA and 18s rRNA. L: Ladder DNA Promega 100bp with fragment size 100 to 12000 bp. V1-V6 represent the vines replicates of each clone. Vertically: 18S rRNA represented the amplification of the positive control. GLRaV-3 represent the amplification of HSP70 of the GLRaV-3 (546bp). GVA represent the amplification of CP of the GVA (429bp) GLRaV-4 strain 9 represent the amplification HSP70 of GLRaV-4 strain 9 (393bp), in the Control, Clone 3236, and Clone 3215.


Figure 2. The cv. Crimson Seedless berries on the harvest day, showing the three types of viral infection: (a) shows the individual berries at the harvest stage, where number 1 represents the control, number 2 represents clone 3236 and number 3 represents clone 3215. Figure (b), (c) and (d) shows the corresponding berries on the control vine, clone 3236 and clone 3215 respectively, immediately prior to harvest.


Figure 3. The effect of viral infection on the berry quality among the infected clones (clone 3236 (▲) and clone 3215 (■)) and the control (●). Each clone comprised 6 replicates. (a) The effect viral infection on berry fresh weight, (b). The effect viral infection on moisture percentage, (c). The effect viral infection on berry dry weight, (d). The effect viral infection on total soluble solids, (e). The effect viral infection on sugar content of the berry, and (f). The effect viral infection on sugar content as a fraction of the dry weight %., one-way ANOVA has been calculated along with the plot using ggpubr "R" Package.

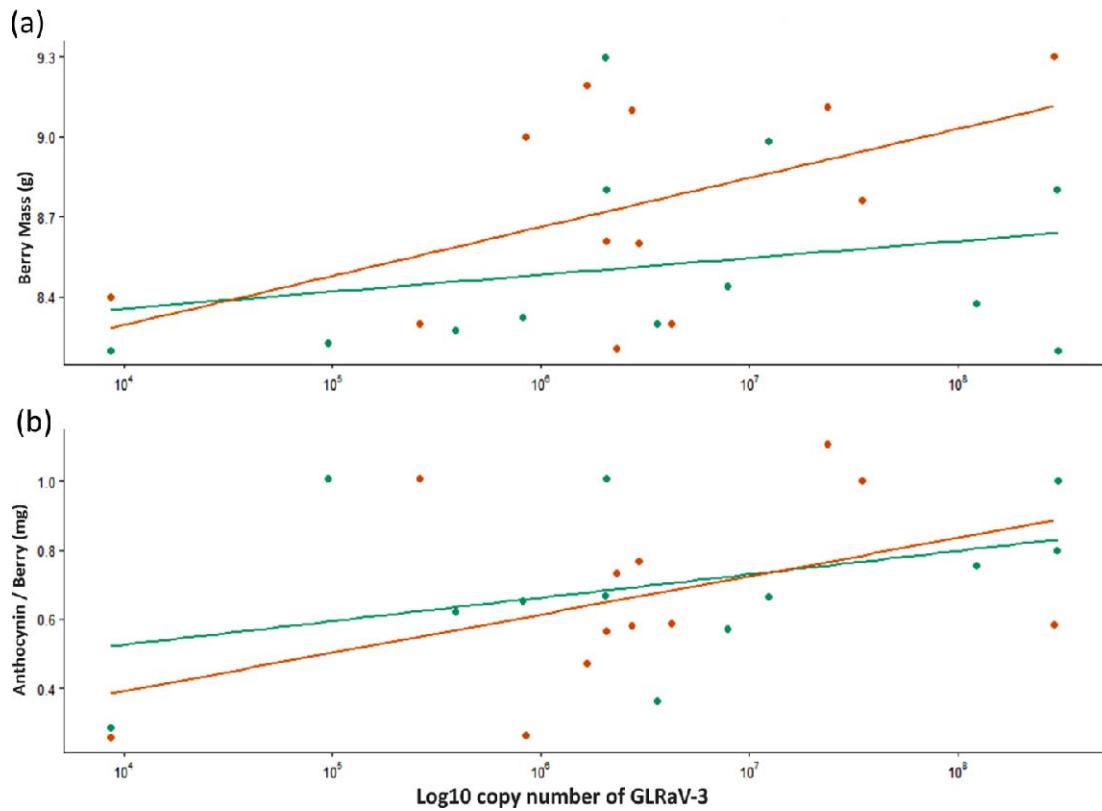

Figure 4. The relationship between the berry sugar mass (g) and average berry mass (g).
(a). ANCOVA test of the sugar/ berry (g) tested against the berry mass for each clone, clone 3236 (●), clone 3215 (▲) and the control (■) Individual line regression for each infection type. **(b).** The ANCOVA test show combined relationship by forcing all the lines through the origin point. $F(1, 35) = 28,989.570, p < 0.001$, with an R^2 of 0.999, $n=6$ for each clone.

Figure 5. The effect of the viral infection on the acidity (TA) of the grape berry and relationship to TSS between the control (●) and the infected clones (clone 3236 (▲) and clone 3215 (■)). (a). The effect on the TA as a percentage in the berry juice. (b). The effect of viral infection on the TSS:TA ratio. (c). The relationship between the °Brix value and the TA among the infection type group.

Figure 6. The effect of viral infection on anthocyanin and phenol levels between the control (●) and the infected clones (clone 3236 (▲)and clone 3215 (■)). (a). The berry anthocyanin content (mg) per berry. (b). The phenol content (mg) per berry. AU: absorbance Unit.

Figure 7. Summary of the linear regression of the viral load. (a). The linear model of the berry's mass (g) against the log10 of the copy number of GLRaV-3 for two seasons 2017 (◆), 2018(◆). (b). The linear model of the berry's anthocyanin (mg) against the log10 of the copy number of GLRaV-3 for two seasons 2017 (◆), 2018(◆), for the infected clones (clone 3236 and clone 3215).