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On consequences of finetuning on data with highly
discriminative features

Wojciech Masarczyk!”* Tomasz Trzcinskil*% Mateusz Ostaszewski'

1 Introduction

Deep learning has witnessed remarkable advancements in various domains, driven by the ability of
neural networks to learn intricate patterns from data. One key aspect contributing to their success is
the process of transfer learning, where pre-trained models are fine-tuned on specific tasks, leveraging
knowledge acquired from previous training |Pratt and Jennings| [1996]], Yosinski et al.|[2014]]. This
technique is especially important in the advent of training ever-growing models such as Large
Language Models (LLMs) Devlin et al.|[2019], et al.| [2023b], OpenAl|[2023]] or massive ViTs Zhai
et al.[[2022]], let al.|[2023al]. However, while transfer learning is a powerful tool, it is not without its
nuances.

This work presents a thought-provoking ex-
periment exposing a network’s tendency
to greedily follow the simplest discrimi- o
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take a step further and investigate the im-
plications of this behavior in the realms of
transfer learning.
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To investigate this effect, we train the net- Epochs

work on CIFAR-10 to perfect training ac-

curacy (error-free). Next, we introduce a Figure 1: Feature erosion for VGG-19 on CIFAR-
highly discriminative, class-correlated pat- 10 Introducing a simpler discriminative feature (green
tern to the corner of each dataset image and  a¢ch area) solely focuses the model on that feature (red

proceed with the training. Surprisingly, as cyrve) and abruptly erases previous knowledge about
shown in Fig.[I] despite the model’s perfect the data (blue line).

accuracy, finetuning it on the oversimpli-

fied task causes an abrupt performance loss

(blue curve) and pushes the model to focus solely on the novel pattern. We call this phenomenon
feature erosion. Our analysis shows that during the fine-tuning phase, the pretrained model greedily
abandons salient, generalizing features in favor of the new discriminative ones.

In Section 2] we define details of the experiments and investigate the breadth of the phenomenon [2}
presenting that all tested contemporary neural networks exhibit this behavior. Next, we investigate
the detrimental effect of feature erosion on the model’s representation formation, transfer learning,
and plasticity. Section [3]discusses the phenomenon’s implications, its novelty concerning related
works, and its hazards to real-world applications.
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Figure 2: Feature erosion effect for ResNet18 trained on CIFAR-10 (left) ResNet50 trained of ImageNet
(middle) and VGG-19 trained on ImageNet (right). ImageNet models used pretrained weights provided by
PyTorch. ResNet18 reached 100% training accuracy before introducing the discriminative pattern to the dataset.

2 Experiments and results

In this section, we explore the phenomenon we introduced in the previous section, aiming to
understand its severity and impact on network behavior. We initiate our investigation by examining
the robustness of feature erosion across different network architectures and datasets (Fig. @ Next, we
assess the detrimental effect of the phenomenon on the network’s representations (Fig. [3) and show
that pursuing simpler, discriminative patterns collapse the network’s rank (Fig. ). We hypothesize
that this effect is linked with the loss of plasticity observed in further training of that network (Fig. [5).

Experimental setup We will now delve into feature erosion using ResNet-18, ResNet-50, and
VGG-19 models trained on either the CIFAR-10 or ImageNet dataset. For CIFAR-10, these networks
underwent 160 training epochs, consistently achieving 100% training accuracy before introducing
the oversimplified second task. The same hyperparameters were maintained for an additional 160
epochs during the second task, following recommendations for optimal model performance by Liu et
al.Liu et al.| [2018]].

Regarding the ImageNet models, we utilized PyTorch’s pre-trained weights and randomly selected
a subset of 10 classes from the ImageNet dataset for the oversimplified task. To create this dataset,
we superimposed squares of the same size and placement on the training images, with each square’s
color representing the image’s class. In most of our experiments, we applied these squares to all
training images, the exception is presented in Fig.[6l where we investigated the impact of that ratio on
the model’s performance.

Feature Erosion for different models and datasets

The performance of these models is illustrated in Figure 2]
showcasing test accuracy curves during both the pretrain-
ing phase (white background) and the subsequent fine-
tuning phase on the oversimplified task (green-hatched
background). The results clearly indicate that all neural 15
architectures and datasets exhibit feature erosion, resulting ﬁ
in a noticeable decline in test accuracy on the pre-training 13
dataset. Notably, as the sole distinction between the first 15
and second tasks is the presence of these colored squares, 7
the dramatic shift from near-perfect accuracy in the first 18
task to random-chance accuracy in the second task implies
that the model exclusively focuses on the colored squares.
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Figure 3: Feature erosion impacts CKA
similarity between representations from
Unpacking Feature Erosion: Analyzing Representa- different layers extracted from the model
tions after completing the 1st and 2nd tasks.

. L L The experiment was conducted using the
Having observed significant shifts in model performance vGG-19 model and the CIFAR-10 dataset.

on established benchmarks, our objective is to investigate
the impact of fine-tuning on oversimplified datasets on the model’s representations.

In our subsequent experiment, we perform a comparative analysis of representations at each layer
after training on the first task and subsequent training on the second task. We employ Centered Kernel
Alignment (CKA) Kornblith et al.|[2019] as a metric to quantify similarity. We extract representations



from standard CIFAR-10 datasets (without color squares) for both models to isolate the impact of
weight evolution on model representations.

As illustrated in Figure 3] the representa-
tions show substantial dissimilarity. Most

notably, most diagonal elements are black, % ;ZZZ o
indicating minimal similarity between rep- g 50004 o o
resentations within the same layers after S 4000 ] 8
undertaking different tasks. The lighter %3000— Los 8
. <
colors in the top left corner suggest that & 20001 — Accuracy
changes during the fine-tuning phase com- 8 1000 — Rank o4
mence early in the network, particularly in O T 3 4 5 67 8 5 Toli121314151617 18
the bottom layers. Layer

Given the observed dramatic changes in  Fjgure 4: Feature Erosion collapses rank of the hidden
representations across nearly all layers, we  representations and impacts linear probing accuracy of
delve deeper into understanding the under- VGG-19 trained on CIFAR10. Crosses refer to model after
lying dynamics. In Fig.[4] we investigate pre-training, dots refer to the model after finetuning. Blue
feature erosion within each layer using lin- color refer to the test accuracy, orange color refers to the
ear probing and the numerical rank of rep- representations rank.

resentations. A comparison of the linear

probing plots reveals that after fine-tuning (blue dots), the model fully adapts to the new data, with
the second layer achieving accuracy levels comparable to those of the entire model. Furthermore, the
numerical rank of representations experiences a substantial decline at each layer following fine-tuning
(red dots), indicating that the model, starting from the initial layers, probably adheres to the simplicity
bias Morwani et al.|[2023]] and projects the data into smaller subspaces.

Loss of plasticity

To better understand the impact of feature erosion on network performance, we examined the
network’s ability to relearn information from a previous task. We conducted experiments involving a
sequence of three tasks: CIFAR-10 (Task 0), an oversimplified version of CIFAR-10, and the standard
CIFAR-10 once again (Task 2).

Typically, relearning is expected to be faster and require fewer computational resources than training
from scratch. However, our results, as shown in Figure 1, indicate a deviation from this expected
behavior. In this setup, the network not only learns more slowly compared to training from scratch
but also fails to achieve the same level of performance within the same computational budget as
the network trained from scratch. This performance difference is commonly referred to as "loss of
plasticity" and is often associated with the degradation of the penultimate layer’s rank. While we
speculate that this explanation may apply in our case, a thorough investigation of this hypothesis is
beyond the scope of our current research.
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Figure 5: Loss of plasticity. The model is trained on the sequence of 3 tasks. The first (Task 0)
and the last (Task 2) are standard CIFAR-10 datasets. The middle task is CIFAR-10 with correlated
squares.



3 Discussion

In this study, we have uncovered a nuanced aspect of catastrophic forgetting, demonstrating that it
can occur even when the full dataset is present in the new task data. Our experiments, which include
GradCam analysis, reveal that despite achieving 100% training accuracy after introducing highly
discriminative features to the model, it begins to focus exclusively on these new features, leaving
behind previously developed ones. A deeper investigation using techniques such as Centered Kernel
Alignment (CKA) exposes significant changes in representations, along with a deterioration in model
performance indicated by a rank collapse of representations in nearly all layers.

Our research expands our knowledge of the complex relationship between task similarity [Ramasesh
et al., 2020, Braun et al.|[2022]], forgetting, and transfer dynamic [Chen et al.,|2022]]. On the one hand,
recent studies have revealed that intermediate task similarity tends to contribute most to catastrophic
forgetting [Ramasesh et al.l 2020, Braun et al.}2022]. The task similarity is the use of a "data-mixing
framework," which combines images and labels from two distinct datasets of equal size. However, our
experimental setup features identical datasets, differing only in a small image segment transitioning
from random to highly correlated with a specific class. While this does not contradict earlier findings,
it certainly introduces a novel perspective on the phenomenon. On the other hand, our observation
also has implications in light of recent research [Chen et al., [2022], which suggests that less forgetful
representations result in improved performance on new tasks, indicating a robust relationship between
retaining previous information and enhanced learning efficiency. In this context, our toy example
falsifies the reverse implication, i.e., the model exhibits perfectly transferable features yet forgets
them in favor of features with greater predictive power.

In our concluding experiment, extending our analysis 0.8

of feature erosion, we explore the relation between ®

forgetting and the ratio of samples containing over- 064

simplified discriminative patterns. In Fig.[6] we ob- o

serve a non-linear relationship between the number é

of oversimplified samples in the training dataset and & %41

the extent of forgetting. However, even modest ratios uS_ ¢
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The situation we present in this study has practical Ratio of data with colored squares

significance, especially in scenarios involving incre-

mental learning in various domains. Real-world appli- Figure 6: The stronger the discriminative pat-
cations that continually receive new data with limited (o, (higher ratio), the higher the forgetting
human involvement might come across samples con- o the model. Each dot represents a single

taining highly predictive patterns. This can lead t0 | ,04e] trained on CIFAR-10 and fine-tuned
the loss of previously acquired knowledge. For in- o ap oversimplified task with different ratios
stance, in medical imaging, where data artifacts may ¢ images with colored squares.

correlate with task objectives, the phenomenon of
feature erosion could be a frequent concern.

Additionally, our findings connect with existing literature on concepts such as simplicity
bias [Neyshabur et al., 2014} [Shah et al.| [2020] and gradient starvation [Pezeshki et al.| [2021]].
Our results suggest that simplicity bias not only affects generalization but can also disrupt previously
well-functioning representations. The resilience of simplicity bias to approaches like ensembles or
adversarial training raises questions about the effectiveness of common continual learning methods.

Finally, there may be a positive aspect to this phenomenon. In the current era of heightened focus on
Al ethics, machine unlearning [Bourtoule et al.,2021]] and fairness in deep learning [Du et al., 2020]
are prominent topics. Our study prompts the question of whether intentionally introducing highly
discriminatory patterns to unwanted samples can facilitate the intentional forgetting of such samples,
a topic that warrants further exploration.

In summary, our work reveals a novel facet of catastrophic forgetting, challenging conventional
wisdom about its occurrence and implications. These findings have relevance for both the field of
machine learning and practical applications that involve continual learning with evolving data.
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