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Abstract

Viruses target mitochondria to promote their replication, and infection-induced stress during
the progression of infection leads to the regulation of antiviral defenses and mitochondrial
metabolism which are opposed by counteracting viral factors. The precise structural and
functional changes that underlie how mitochondria react to the infection remain largely unclear.
Here we show extensive transcriptional remodeling of protein-encoding host genes involved in
the respiratory chain, apoptosis, and structural organization of mitochondria as herpes simplex
virus type 1 lytic infection proceeds from early to late stages of infection. High-resolution
microscopy and interaction analyses unveiled infection-induced emergence of rough, thin, and
elongated mitochondria relocalized at the perinuclear area, a significant increase in the number
and clustering of ER-mitochondria contact sites, and thickening and shortening of
mitochondrial cristae. Finally, metabolic analyses demonstrated that reactivation of ATP
production is accompanied by increased mitochondrial Ca?* content and proton leakage as the
infection proceeds. Overall, the significant structural and functional changes in the
mitochondria triggered by the viral invasion are tightly connected to the progression of the

virus infection.
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Introduction

Mitochondria are double membrane-bound, ATP-producing powerhouses of the cells
comprising approximately 1,000 proteins!, and mitochondrial metabolism produces precursors
for biosynthetic pathways including nucleotides, lipids, and amino acids?>*. The mitochondria
also have a role in the innate immune system including the ability to respond to various types
of internal and external stressors. Both the internal stressors such as genetic, metabolic, and
biochemical factors, as well as external stressors such as environmental agents lead to dynamic

functional and morphological alterations of the mitochondria>®.

One of the external stressors that affect the mitochondria is a viral infection’. Production of
viral proteins is followed by stimulation of mitochondria-mediated immune signaling and cell
death pathways®®. The mitochondria have an important role in the mediation of programmed
cell death, and viruses target this machinery either to ensure the viability of cells for the viral
replication or to destroy them for more efficient spreading of progeny viruses'. Many
mitochondrial changes, including those related to apoptosis, are triggered by calcium influx
from the endoplasmic reticulum. The mitochondria and ER are often physically located next to
each other and connected via specific contact sites, and multiple tethering complexes between
mitochondria and the ER have been identified, including VAPB-PTPIP51!!. Several viruses
have been shown to target the calcium homeostasis between the ER and mitochondria either to
promote or inhibit apoptosis!>~'4. Besides using various mechanisms to evade cellular antiviral
responses, the progression of viral replication relies on the reprogramming of the host cell
mitochondrial metabolism. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

and human immunodeficiency virus (HIV) infections induce disturbance of mitochondrial
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homeostasis, which leads to increased glycolysis and production of metabolites useful in the
synthesis of lipids, nucleotides, and proteins needed during the formation of viral particles'>~
18 Herpes simplex virus type 1 (HSV-1) supports the host cell mitochondrial oxidative and
biosynthetic metabolism by inducing replenishment of tricarboxylic acid cycle intermediates'®.
Another herpesvirus, human cytomegalovirus (HCMV), activates mitochondrial energy

production by increasing glycolysis!?20.

The alpha-herpesvirus HSV-1 is an enveloped double-strand DNA virus that hijacks the
cellular metabolism including mitochondrial biosynthetic pathways to produce precursors
required for replication?!. The regulation of apoptosis to prevent the premature death of the
host cells is essential for the envelopment and nonlytic cellular egress of HSV-1%22-23, The viral
proteins ICP4 and Us3 suppress apoptosis by inhibiting caspase activation and inactivating
proapoptotic proteins, and ICP27 protein counteracts caspase 1-dependent cell death?*-26. The
HSV-1 infection has been shown to cause relocalization of mitochondria towards the nuclei as
well as elongation of mitochondria?’-?%. In the absence of infection, elongation can be induced
by starvation and inflammatory response?’. The elongation can protect mitochondria from

autophagy and lead to an increase in the surface area of cristae to enhance ATP production??.

Here, we analyze how the progression of HSV-1 infection influences mitochondrial gene
transcription, ultrastructure, and organization, and how it contributes to mitochondrial function.
We use various microscopical and biochemical tools uniquely suited for specific observing of
detailed changes in mitochondrial organization and function of HSV-I-infected cells. Our
approach provides characterization and quantification metrics for the mitochondrial protein
transcription, mitochondrial structures including cristae, and energy metabolism at the early

and late stages of infection. We demonstrate that late infection-induced significant changes in
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the mitochondrial protein gene transcription are associated with dramatic changes in the
mitochondrial ultrastructure and distribution, ER contacts, and function. Our results illustrate
how a pathogenic DNA-virus infection remodels the structural organization and function of the

mitochondria during the progression of the lytic infection.

Results

The transcription of mitochondria-associated proteins is modified in HSV-1 infection

To explore virus-induced changes in the host cell transcription, we employed a global run-on
sequencing (GRO-seq) analysis of nuclear-encoded genes in green monkey kidney epithelial
(Vero) cells. The clustering of genes in the same pathways (based on the STRING database

(https://string-db.org/) of predicted functional protein-protein interactions) revealed that the

infection-induced changes in the gene transcription were linked to proteins that contribute to
mitochondrial functions such as electron transport, immunity, and apoptosis (Fig. 1a,b). A
substantial increase in functional interactions and regulation of transcription was detected when
infection proceeded from 4 to 8 hpi. (Fig. la,b, Supplementary Fig. la,b). In general, the
transcription of 43 and 59 nuclear-encoded mitochondrial genes (hereinafter simply referred to
as mitochondrial genes) was upregulated, while 22 and 102 were downregulated at 4 and 8 hpi,
respectively, in comparison to the noninfected cells (Supplementary Fig. 1b). Overall, the
progression of infection reduced the transcription of genes involved in energy metabolism. One
of the key components of the electron transport chain, the first enzyme of the respiratory chain,
is complex I (NADH-ubiquinone oxidoreductase)’!. Two and nine of the genes encoding
proteins involved in this 45-protein complex, consisting mostly of nuclear-encoded
mitochondrial proteins (NDUF subunits), were downregulated at 4 and 8 hpi, respectively. As
expected, activation of mitochondrial antiviral defenses led to the regulation of genes

associated with apoptosis and immune response (Fig. la,b, Supplementary Fig. 1b). For
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example, the apoptosis-inducing protein BCL2L11 (also known as BIM), a member of the
BCL2 family regulating the intrinsic, mitochondrion-dependent apoptosis®2, was upregulated
both at 4 and 8 hpi. Transcription of the gene encoding histone deacetylase Sirtuin 1 (Sirtl), a
multifunctional protein regulating apoptosis by controlling the cellular distribution of p5333,
also increased in infected cells (Fig. 1a,b, Supplementary Table 1). In contrast, transcription of
the gene encoding tumor necrosis factor receptor-associated factor 6 (TRAF6), a member of
the TRAF family of proteins mediating signaling pathways regulating inflammatory signaling,
was downregulated both at 4 and 8 hpi. By suppressing cell death complex assembly, TRAF6
can inhibit tumor necrosis factor a (TNF-o)-induced apoptosis and necroptosis3*. Moreover,
the upregulated transcription of ATAD3A of membrane protein AAA domain-containing
protein 3 member A (ATAD3A) at 4 hpi, involved in the removal of damaged mtDNA?3’, is in
line with the HSV-1 infection-induced disintegration of the mtDNAZ27-3¢, Finally, the infection
increased the transcription of mitochondrial calcium voltage-gated channel subunit alphal B

(CACNAI1B) at 4 and 8 hpi.

To further assess the role of mitochondrial genes differentially expressed during the infection,
we performed the gene ontology analysis (GO) according to the PANTHER classification
system for the GO Biological process (http://www.pantherdb.org). The enriched GO terms
associated with the regulation of mitochondrial organization and function were mitochondrial
respiratory chain complex I assembly (GO:0032981), apoptotic mitochondrial changes
(GO:0008637), negative regulation of mitochondrion organization (GO:0010823),
mitochondrial fission (GO:0000266), cristae formation (GO:0042407), and regulation of
mitochondrial membrane permeability (GO:0046902) (Fig. 1c, Supplementary Table 2). The
transcription of genes encoding proteins in the mitochondrial respiratory chain was mostly
downregulated at 8 hpi. The downregulated genes corresponding to complex I proteins

included NADH dehydrogenase subunit 4 (MT-ND4) and several nuclear-encoded NDUF
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subunits, and only the gene encoding NDUFAF1 was upregulated. In general, infection-
induced stress results in cellular and viral pro- and antiapoptotic responses. Viral factors aim
to enhance the envelopment and cellular exit of HSV-1 virions by preventing premature cell
death®”38. On the other hand, we found that cellular proapoptotic processes included the
upregulation of gene encoding apoptosis-inducing protein BCL2L11 and an integral outer
mitochondrial membrane protein SLC25A46 (also known as adenine nucleotide translocator 1,
ANT1). SLC25A46 is a multifunctional protein involved in mitochondrial ultrastructure
alteration including the formation of elongated mitochondria, cristae maintenance, the
enhancement of mitochondrial respiration/glycolysis, reactive oxygen species production,
oxidative stress, and function of mitochondrial/ER contact that facilitates lipid transfer3®4°. In
infected cells, the upregulation of SLC25A46 was also involved in the negative regulation of
mitochondrion organization and regulation of mitochondrial membrane permeability affecting
proton gradient (Fig. 1c, Supplementary Table 2). Moreover, the gene encoding ubiquinol-
cytochrome C reductase complex assembly factor 3 (UQCC3 also known as C110rf83), with a
role in cristae formation*!, was upregulated at 8 hpi. The downregulation of mitochondrial inner
membrane protease (OMAI) is involved in the negative regulation of mitochondrion
organization and cristae formation*?. Activation of OMA 1 during apoptosis and cellular stress
leads to cleavage of another membrane protein, optical nerve atrophy 1 (OPA1), and results in
the remodeling of cristae, the release of cytochrome ¢, and fragmentation of mitochondria#?43.
Also, the genes encoding growth hormone-inducible transmembrane protein (GHITM, also
known as TMBIMS or MICS1), mitochondrial fission process 1 (MTFP1), and the inner
membrane mitochondrial protein (IMMT, also known as Mic60, HMP), with roles in
mitochondria morphology dynamics, fission, cristae organization, and contact sites**47, were

downregulated at 8 hpi.
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Altogether, we conclude that the progression of infection triggers timely responses of
mitochondrial functions through regulation of transcription. The up- and downregulation of
nuclear-encoded mitochondrial genes most likely reflect the balance between the cellular
counteracts against the viral infection and the viral attempts to change cell functions to favor

viral replication.

Infection triggers changes in mitochondrial size and shape

Progression Soft X-ray imaging is a non-invasive method for high-contrast imaging of the
internal structure of intact frozen cells*®. This method allows label-free imaging of carbon- and
nitrogen-containing sub-cellular organelles. The image contrast arises from the attenuation of
soft X-rays when they interact with the cellular internal structures. Specifically, densely packed
proteins or lipids attenuate strongly**!. To create a comprehensive view of virus-induced
changes in the 3D structure and distribution of mitochondria, we analyzed suspended adherent
mouse embryonic fibroblast (MEF) cells in glass capillaries and adherent MEF cells grown on
EM grids using cryo soft X-ray tomography (SXT). Cryo-SXT images of suspended cells
showed the development of elongated mitochondria at 4 hpi and increasingly at 8 hpi (Fig. 2a,
b, Supplementary movie 1). The linear absorption coefficient (LAC) values from the isotropic
reconstructed 3D tomograms, depending on the concentration and composition of
biomolecules such as lipids and proteins, were measured for each voxel of the segmented 3D
mitochondria. The LAC values showed a significant increase at 4 and 8 hpi compared to the
noninfected cells. This suggests that the infection led to an increased density of mitochondrial
biomolecules (Fig. 2¢). Cryo-SXT data analysis also showed that the number of mitochondria
increased at 4 hpi, and then decreased as the infection progressed to 8 hpi, suggesting that the
fragmentation of mitochondria at early infection was followed by their fusion at late stages of
infection (Fig. 2d). However, the average volume of mitochondria increased as infection

proceeded which argues against the disintegration (Fig. 2e, Supplementary Fig. 2c). As the
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segmentation of SXT data was challenged by artificial fragmentation of elongated
mitochondria, we decided to apply serial block face scanning electron microscopy (SBF-SEM)
data, which is better suited for 3D analysis of mitochondrial length. We found that the length
of mitochondria increased at 8 hpi (2.8 = 0.4 um) and at 12 hpi (2.9 = 0.2 um) in comparison
to noninfected cells (2.0 + 0.1 um) (Supplementary Fig. 2 a,b). Altogether, this suggests that
the progression of infection triggers mitochondrial elongation accompanied by an increase in
the volume. The cryo-SXT imaging of adherent cells confirmed the infection time-dependent
elongation of mitochondria (Fig. 2f), and 3D reconstructions of the data revealed increased
roughness of the mitochondrial outer surface at 8 and 12 hpi (Fig. 2g, Supplementary Movie
2). By 12 hpi, the mitochondria had moved closer to the nuclear envelope (Fig. 2h) and they
became thinner (Fig. 2i). Finally, the analysis of the ratio between the mitochondrial surface
area and volume confirmed an increase in the surface roughness at late infection (Fig. 2j).
Taken together, the progression of infection resulted in the increased emergence of elongated

and thin mitochondria with a rougher surface that accumulated closer to the nuclear envelope.

ER-mitochondria interplay is increased in infection

The 10-30 nm distance between the ER and mitochondria allows the protein-mediated
tethering of the ER and the outer mitochondria membrane (OMM)32. Multiple functions that
occur at those contact sites include Ca®" signaling, lipid biosynthesis, and mitochondrial
division3. To observe in high resolution the infection-induced changes in the 3D ultrastructure
and specifically in the regions of close contact between the ER and mitochondrial membranes,
we used serial block face scanning electron microscopy (SBF-SEM) (Fig. 3a). The 3D
reconstruction and analyses of the segmented ER and mitochondria from the SBF-SEM data
revealed both smaller and more extensive contact sites (Fig. 3b, Supplementary Movie 3).

Infection-induced changes led to a clear decrease in the distance between the ER and
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mitochondrial membranes at 8 hpi in comparison to noninfected control cells. At 12 hpi the
distance increased in comparison to 8 hpi, showing that ER and mitochondria move further
away from each other in the late stages of infection (Fig. 3c). This was supported by an
increased number of contact sites and contact region area at 8 hpi and a slight decrease at 12
hpi (Fig. 3d,e).To study the ER-mitochondria linkage further, we analyzed the distribution of
tethering protein located on the ER, namely vesicle-associated membrane protein B (VAPB),
by using the ten-fold expansion microscopy>*. In infected cells at 8 hpi VAPB was distributed
heterogeneously and formed clusters along the mitochondria, in contrast to the more uniform
distribution seen in noninfected cells (Fig. 4a). VAPB also moved further away from the
mitochondria in infected cells when compared to noninfected cells (Fig. 4b). Having shown a
change in VAPB distribution, we next analyzed ER-mitochondria contact sites by closeness of
ER-mitochondria tethering proteins VAPB and regulator of microtubule dynamics 3 (RMDN3,
also known as PTPIP51) using proximity ligation assay (PLA). PLA is an immunodetection
technique that generates a fluorescent signal only when two antibodies against the antigens of
interest are closer than 40 nm from each other>>. PLA between VAPB and RMDN?3 antibodies
revealed an increased number of punctate PLA signals as the infection proceeded (Fig. 4c,d).
Notably, the progression of infection also resulted in an increase in the volume of the PLA foci
accompanied by an increased size variation (Fig. 4e). The presence of enlarged foci suggests
that part of the contact sites form discrete clusters on the mitochondrial membrane as the
infection proceeds. Overall, these analyses demonstrated that the progression of infection

results in increased VAPB- RMDN3 tethering and clustering of ER-mitochondria contact sites.

Mitochondrial cristae thicken and shorten as infection proceeds
Our GRO-seq findings demonstrating the wupregulation of positive regulators and
downregulation of negative regulators of cristae formation (Fig. 1c) suggested that the

progression of infection leads to changes in cristae. We used focused ion-beam scanning
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electron microscopy (FIB-SEM) to characterize cristac 3D phenotypes as HSV-1 infection
progresses in MEF cells (Fig. 5a). The mitochondria showed hallmarks of cristae remodeling
at 8 hpi, including thickening and shortening of cristae (Fig. 5b, Supplementary Movie 4).
Analyses of segmented and reconstructed image data showed that the average thickness of the
lamella-shaped cristae increased at 8 hpi when compared to control cells and, specifically, some
of the cristae were visibly swollen. In general, the thickness of cristae was more variable in
infected than in noninfected cells (Fig. 5a, 5b, 5¢). In comparison to noninfected cells, the
progress of infection significantly shortened cristae (Fig. 5d) without changing their total

surface area per mitochondrion (Fig. 5e).

Infection increases mitochondrial proton leakage and Ca”* content

We next asked whether the remodeling of cristae is associated with the modulation of
mitochondrial energy metabolism. Oxygen consumption rate (OCR) of the host MEF cells was
analyzed using the Seahorse XF24 analyzer (Fig. 6a). During the infection, basal respiration
and ATP production decreased at 4 hpi and restored to the level of noninfected cells at 8 hpi
(Fig. 6b,c). In contrast, the mitochondrial proton leakage into the matrix through the inner
mitochondrial membrane significantly increased only at 8 hpi (Fig. 6d). The coupling
efficiency, which compares how oxygen is distributed between ATP synthesis and proton leak,
demonstrated that ATP synthesis efficiency was best in noninfected cells and decreased
towards 8 hpi (Fig. 6e). Finally, single-cell fluorescence microscopy measurements revealed
that the mitochondrial calcium uptake (Fig. 6f) increased at 4 hpi and even more at 8 hpi (Fig.
6g), which is consistent with the increase in the number of ER-mitochondria contact sites (Fig.
3) mediating Ca?" import to mitochondria from the ER¢. Altogether, ATP production, proton
leakage, and mitochondrial [Ca?"] were more pronounced at 8 compared to 4 hpi suggesting a

progressive change as a result of the progression of virus infection.
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Discussion

In infected cells, there is a dynamic balance between viral reprogramming of cellular
machinery to advance viral replication and counteracting the infection by cellular defenses.
Mitochondrial metabolism and antiviral functions have a central role in this process. Our results
demonstrate that the progression of HSV-1 infection results in extensive remodeling of

mitochondrial gene transcription, organization, interactions, and energy metabolism.

During the early HSV-1 infection, energy is required for the stepwise progression of viral gene
expression, genome replication, and assembly of progeny virions?'7-38 We show that the
progression of HSV-1 infection from early to later phases results in a reduction in the
transcription of genes encoding the proteins of the mitochondrial respiratory chain, specifically
the proteins of complex 1. Consistent with earlier studies, we show that the mitochondria are
reassembled and mitochondrial ATP machinery is reactivated later and remains active until 12
hpi?73%. The ATP production declines later, after 18 hpi, when mitochondria are fragmented
and mitochondrial DNA is released into the cytosol?”3%-%. The low cellular level of ATP is one
of the factors that lead to apoptosis®. The observation of active ATP production at 12 hpi
supports the model that apoptosis is activated only at later stages of HSV-1 infection. However,
we also show that the cellular proapoptotic processes are supported already at 4 and 8 hpi not
only by upregulation of the genes encoding apoptosis-inducing proteins*?3%40 but also
importantly by downregulation genes encoding apoptosis-blocking proteins®*. Therefore, the
preserved ATP production together with viral antiapoptotic factors retain control over the
cellular proapoptotic tools during viral assembly and egress, while this dynamic balance likely

shifts toward activation of apoptosis as the infection proceeds further.
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Our data reveal that the transcription of mitochondrial genes associated with the mitochondrial
organization is extensively regulated during the progression of HSV-1 infection. Specifically,
the downregulation of the genes encoding proteins involved in mitochondrial fission could lead
to mitochondrial elongation (Fig. 7a). This is supported by a recent soft X-ray microscopy
study also showing that HSV-1 infection leads to mitochondrial elongation?8. Elongation has
previously been observed in the dengue virus infection, in which mitochondrial fusion is
induced by the inactivation of mitochondrial fission protein, dynamin-related protein 1
(DRP1)%!. The balance between mitochondrial fusion and fission machinery is changed during
the progression of apoptosis leading to mitochondrial fragmentation and blebbing, activation
of caspases, and cytochrome c¢ release from mitochondria®?. The presence of elongated
mitochondria in HSV-1-infected cells at 8-12 hpi supports our other findings that the early
events of apoptosis including mitochondrial fission have not yet been activated. Notably, our
observation of HSV-1 infection-induced relocalization of mitochondria closer to the nuclear
envelope in fibroblast (Fig. 7a) is supported by studies in neurons and keratinocytes?”-3. It has
been shown earlier that the cytoplasmic distribution of mitochondria in noninfected cells is
regulated by microtubule motor protein contacts with mitochondrial outer membrane protein,
mitochondrial Rho GTPase 1 (MIROI1). Deleting MIRO1 causes the repositioning of
mitochondria close to the nucleus and results in elevated local concentrations of ATP, H,O,,
and Ca”" in the cytoplasm close to the nucleus®®. MIRO1 is a calcium sensor protein and
elevated cytoplasmic [Ca®'] results in a decrease in mitochondrial dynamics or motion
standstill in neurons®>-%, The intracellular [Ca?*] increases in HSV-1 infection of neural cells
and it leads to a significant reduction of MIRO1-mediated mitochondrial mobility at late stages
of infection®”. The HSV-1 infection-induced elevated level of [Ca?'] could also explain the
perinuclear distribution of mitochondria in MEF cells. Moreover, the multifunctional HSV-1

ICP34.5 protein which regulates mitochondrial dynamics could have a potential role in the
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positioning of mitochondria. ICP34.5 interacts with mitochondrial phosphatase PGAMS which
is responsible for the transport and perinuclear localization of mitochondria under infection-

induced stress conditions in neural cells®s.

Multiple mitochondrial functions are regulated through the ER-mitochondria membrane
contact sites in the outer mitochondrial membrane®®. Besides being essential for mitochondrial
signaling, buffering cytosolic Ca?" level by uptake, division, and metabolism, the contact sites
are known to be involved in the infection progress-related balancing of cellular pro- and
antiviral responses. Recently Cook et al. elegantly demonstrated that in HCMV, HSV-1,
Influenza A, and beta-coronavirus HCoV-OC43 infection the timely recruitment of ER-
mitochondria linkers (VAPB and RMDN3) is related to the proceeding of the viral
replication’. The proteomics analysis also showed that the late HSV-1 infection results in an
increased number of other ER-mitochondria contact site proteins, ER ribosome-binding protein
1 (RRBP1), and mitochondrial synaptojanin 2 binding protein (SYNJ2BP)771. Consistently,
our volume EM data, expansion microscopy, and PLA interaction analysis revealed an
extensive growth in the number, volume, and density of contact sites at late infection
simultaneously with an increase in mitochondrial membrane roughness and mitochondrial Ca?*
content (Fig. 7b). The increased availability and clustering of contact sites most likely result in
enhanced Ca?" flux from the ER to mitochondriall3* thereby explaining the reactivation of
respiration at late infection and possibly also the perinuclear localization of mitochondria.
These events are supported by our results showing that the expression of the mitochondrial
pore-forming subunit of calcium voltage-dependent calcium channel subunit (CACNA1B) is

upregulated in infection.

In HCMYV infection the increase in ER-mitochondria contact sites and ER-to-mitochondria

transfer of Ca?" are accompanied by cristae remodeling’%’2. Our studies identified HSV-1
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infection-induced upregulation of genes responsible for cristae organization and ATP
generation, and downregulation of genes with a negative impact on cristae formation. Our FIB-
SEM data also demonstrated that the infection-induced elongated mitochondria contained
shorter and thicker lamellar cristae (Fig. 7¢). The shortening and widening of the cristae give
higher overall curvature to them. Notably, it has been shown that the ATP synthases are
preferentially located in the more curved areas, and the energetic efficiency of e.g. heart cells
is supported by increased curvature of their cristae”. This suggests that the structural alteration
of the cristaec shape may support the energy generation in infected cells. Consistently, our
analysis of the energetic metabolism verified that ATP synthesis was maintained at 8 hpi, (Fig.
7¢). Previously published studies showed that the HCMV-induced remodeling of cristae can
stimulate cellular respiration’. We also showed that the HSV-1 infection is accompanied by
increased proton leakage into the mitochondrial matrix independent of ATP synthesis (Fig. 7d).
The activation of ATP production and reduced membrane potential seem to have opposite roles
in viral replication. However, in dengue 2 virus infection the proton leak was accompanied by
an increased ATP generation’s, and the leakage may also benefit infection as it has been shown

to reduce mitochondrial antiviral signaling and response’.

Our multimodal integration of advanced imaging, transcriptomics, and metabolomics draws a
comprehensive picture of time-dependent changes in mitochondria as HSV-1 infection
proceeds from early to late infection. Our results show how the progression of infection shifts
the balance from healthy to diseased cells and leads to profound perturbations in mitochondrial

homeostasis.

Data availability
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upon request. GRO-Seq data were deposited into the Gene Expression Omnibus database under
accession number GSE243613 and are available at the following URL: xxx. The reviewer

access token is inwbyckmnbwfrgi.
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Figure 1. HSV-1 infection alters the host transcriptome

Global run-on sequencing (GRO-seq) analysis of nascent RNA levels of mitochondrial and
mitochondria-associated proteins in infected Vero cells at (a) 4 and (b) 8 hpi. The genes
encoding for mitochondrial proteins (square-shaped nodes, bolded titles) and nonmitochondrial
cellular interactor proteins (round-shaped nodes) are shown. The upregulated (orange) or
downregulated (green) transcripts in response to infection are visible together with unregulated
interacting transcripts (grey). The node size correlates with a logarithmic fold change (logFC)
of regulation and the thickness of black lines between nodes is proportional to the interaction
in the STRING database (https://string-db.org/). The main functions of the proteins are denoted
with yellow circles with their size proportional to the number of interactors. (¢) GO term
classification for mitochondrial processes in the infected cells at 4 and 8 hpi. The color bar
indicates upregulation (orange-red) or downregulation (green-blue), and low change of gene
transcription (vertical stripes). The non-significant enrichment is also shown (*).
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Figure 2. The progression of infection leads to thiner and rougher mitochondria

(a) Cryo-soft X-ray tomography (SXT) thin slices (ortho slices) of suspended MEF cells in
glass capillaries and (b) 3D reconstructions of segmented mitochondria (brown) in the
cytoplasm around the nucleus (blue) in noninfected (NI) and infected MEF cells at 4 and 8 hpi.
White and black squares show the magnified mitochondria. Scale bars, 2 um. See also the
Supplementary Movie 1. Box plots of (¢) linear absorption coefficient (LAC) values (grayscale
bar 0.1-0.5 1/microns), (d) number, and (e) volume of mitochondria in noninfected and infected
cells (neepis = 6, Nito = 1349, 2158, and 1713 for NI, 4 and 8 hpi, respectively). (f) SXT images
of adherent MEF cells grown on EM grids and (g) 3D presentations of segmented mitochondria
(brown) and nuclear envelope (blue) in noninfected and infected MEF cells at 8, and 12 hpi.
The magnified mitochondria are shown in white and black squares. Scale bars, 2 um. See also
the Supplementary Movie 2. (h) The distance of mitochondria from the nucleus, (i) the
diameter along the short axis, and (j) surface-to-volume ratio analysis of mitochondrial
roughness in noninfected and infected cells (nges = 12, 4, and 13, np;, = 1089, 364, and 1165
for NI, 8, and 12 hpi, respectively). The box plots show the mean (dashed line) and the
interquartile range. Statistical significance was determined using the Brunner-Munzel test. The
significance values shown are denoted as **** (p<0.0001), * (p<0.05), or ns (not significant).
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Figure 3. ER-mitochondria contacts increase in infection

(a) Representative sections of serial block face scanning electron microscopy (SBF-SEM) of
noninfected and infected MEF cells at 8 and 12 hpi. White squares show the magnified
mitochondria. The pseudocolor lines around the mitochondria show the closeness of ER and
mitochondria, and regions of contact are defined as points where opposed membranes are
within 30 nm of each other (red). Scale bars, 0.5 um. (b) A higher-magnification 3D SBF-SEM
reconstructions show the regions of contacts (distance less than 30 nm, red) between
mitochondria (pseudocolor) and ER (grey). The pseudocolor bar indicates the distance between
the ER and mitochondria. See also the Supplementary Movie 3. Violin and box plots show (c¢)
the ER mitochondria distance, (d) the number (Nb) of contact sites/mitochondrial surface area,
and (e) the area of the contact sites (ny,;,, = 43, 43, and 39 for NI, 8, 12 hpi, respectively). The
box plots show the mean (dashed line) and the interquartile range. Statistical significance was
determined using the Brunner-Munzel test. The significance values are denoted as ****
(p<0.0001), *** (p<0.001), *(p<0.05), or ns (not significant).
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Figure 4. The amounts of ER-mitochondria contact sites increase and they are clustered
in infection

(a) Visualization of the mitochondrial structure by the ten-fold robust expansion microscopy
(TREXx) in noninfected and infected Vero cells at 4, 8, and 12 hpi (n = 6). The distributions of
an ER protein tyrosine vesicle-associated membrane protein B (VAPB, green) located in the
ER-mitochondria contact sites and mitochondria labeled with MitoTracker (red) are shown.
The localization of the viral replication compartment is presented by HSV-1 EYFP-ICP4
(cyan) and the nucleus by the DAPI stain (blue). Scale bars, 1 pm. (b) Violin plots show the
distance between the mitochondria and VAPB. The red dashed line indicates the resolution
threshold. (¢) Proximity ligation analysis (PLA) of contact sites in noninfected and infected
Vero cells at 4, 8, and 12 hpi. The PLA signal between VAPB and regulator of microtubule
dynamics (RMDN3) is visualized by fluorescent spots (yellow). Mitochondria are labeled with
MitoTracker (red), the nucleus with DAPI, and viral replication compartments are visualized
by EYFP-ICP4. Scale bars, 10 um. (d) Box plots showing the number of PLA foci and (e)
volume of the foci per cell (n.s = 27, 27, 28, and 24 for NI, 4, 8, and 12 hpi, respectively).
The box plots show the mean (dashed line) and the interquartile range. Statistical significance
was determined using the Student’s t-test. The significance values are denoted as ****
(p<0.0001), ** (p<0.01), * (p<0.05) or ns (not significant).
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Figure 5. The cristae become thicker and shorter along the progression of the infection
(a) Representative focused ion-beam scanning electron microscopy (FIB-SEM) images of
noninfected and HSV-1-infected MEF cells at 8 hpi. The mitochondrial outer membrane
(yellow) and cristae (green) are shown. Scale bars, 0.5 um. (b) The 3D structure of cristae
(green) reconstructed from FIB-SEM stacks. See also the Supplementary Movie 4. The 3D
quantitative analysis of (c¢) the maximal thickness and (d) the length of cristae calculated using
a watershed algorithm to individualize the cristae lamella in noninfected and infected cells
(Nmito = 8, Nerie = 112 and 121 for NI and 8 hpi, respectively). (e) The surface area of segmented
cristae in each mitochondria. The box plots show the mean (dashed line) and the interquartile
range. Statistical significance was determined using the Student’s t-test. The significance
values are denoted as **** (p<0.0001) or ns (not significant).
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Figure 6. The infection leads to an increase in the mitochondrial proton leakage and Ca?*
content

(a) Seahorse real-time cell metabolic analysis of oxygen consumption rate (OCR) traces of
noninfected and infected MEF cells at 4 and 8 hpi. The arrows mark the addition of oligomycin,
FCCP, and rotenone + antimycin A (n =30 000 cells, 6 replicates). Box plots showing (b) basal
OCR, (c) proton leak (¢) ATP production, and (e) coupling efficiency (ATP/O). (f) The live
cell analysis of the mitochondrial calcium labelled by calcium ion indicator Rhod2-AM (green)
selectively accumulating within mitochondria, and mitotracker (red). The infected cells
selected for imaging were identified by the expression of HSV-1 ICP4 (not shown). Scale bars,
10 um. (g) The quantitive analysis of mitochondrial [Ca?'] in noninfected and infected cells at
4 and 8 hpi (n = 207, 97, and 96 for NI, 4, and 8 hpi, respectively). The box plots show the
mean (dashed line) and the interquartile range. Statistical significance was determined using
the Student’s t-test. The significance values shown are denoted as **** (p<0.0001), **
(p<0.01), *(p<0.05), or ns (not significant).
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Figure 7. Mitochondrial structure and function are altered in response to progression of
herpesvirus infection.

(a) Progression of HSV-1 infection from 4 to 8-12 hpi triggers mitochondrial elongation and
repositioning to the perinuclear region. (b) The number of the ER-mitochondria membrane
contact sites tethered by VAPB and RMDN3 is increased at late infection and mitochondrial
Ca*" content is elevated. (¢) The progression of infection leads to the thickening of
mitochondrial cristae and recovery of ATP production to the level of noninfected cells. (d) At
the same time, the infection stimulates proton leakage across the mitochondrial inner
membrane. VAPB, vesicle-associated membrane protein B; RMDN3, regulator of microtubule
dynamics 3; OMM, outer mitochondrial membrane; IMM, inner mitochondrial membrane.
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