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Abstract

Marsupials exhibit highly specialized patterns of reproduction and development, making them uniquely valuable for comparative
genomics studies with their sister lineage, eutherian (also known as placental) mammals. However, marsupial genomic resources
still lag far behind those of eutherian mammals, limiting our insight into mammalian diversity. Here, we present a series of novel
genomic resources for the fat-tailed dunnart (Sminthopsis crassicaudata), a mouse-like marsupial that, due to its ease of
husbandry and ex-utero development, is emerging as a laboratory model. To enable wider use, we have generated a multi-tissue de
novo transcriptome assembly of dunnart RNA-seq reads spanning 12 tissues. This highly representative transcriptome is
comprised of 2,093,982 assembled transcripts, with a mean transcript length of 830 bp. The transcriptome mammalian BUSCO
completeness score of 93% is the highest amongst all other published marsupial transcriptomes. Additionally, we report an
improved fat-tailed dunnart genome assembly which is 3.23 Gb long, organized into 1,848 scaffolds, with a scaffold N50 of 72.64
Mb. The genome annotation, supported by assembled transcripts and ab initio predictions, revealed 21,622 protein-coding genes.
Altogether, these resources will contribute greatly towards characterizing marsupial biology and mammalian genome evolution.
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Data Description
Background and context

Marsupials are a strikingly diverse mammalian group predominantly found in Australasia (Australia, Tasmania, New Guinea, and nearby
islands), with a number of species also present in the Americas [4, 5]. While many marsupials are convergent in form to eutherian mammals
[6,7,8,9, 10,11, 12, 13, 14], their adaptations to the niches they occupy include vastly specialized physiology [15, 16, 17, 18, 19, 20, 21],
behaviour [22, 23, 24], and modes of reproduction [25, 26, 27, 28, 29, 30], thereby offering a unique perspective on mammalian diversity and
life-cycles. To date, marsupial studies have significantly contributed towards elucidating various aspects of mammalian biology, including:
reproductive physiology [27, 28, 29, 30], sex determination [31, 32, 33, 34, 35, 36, 37], X-chromosome inactivation [38, 39, 40, 41, 27],
age-related obesity [42], postnatal development [43, 44, 18, 19, 20, 21, 45], and genome evolution [46, 47, 48, 49, 50, 51, 52, 53], to name a
few. Consequently, marsupials represent a critical comparative model system through which mammalian biology can be better understood.

In spite of the importance of well-developed marsupial models, marsupial genomic resources still lag far behind those of their eutherian
counterparts. Currently, only seven marsupial species have an annotated genome available: the gray short-tailed opossum (Monodelphis
domestica) [54], the tammar wallaby (Macropus eugenii) [55], the Tasmanian devil (Sarcophilus harrisii) [46], the brown antechinus
(Antechinus stuartii) [56], the koala (Phascolarctos cinereus) [57], the numbat (Myrmecobius fasciatus) [58], and the eastern quoll (Dasyurus
viverrinus) [59], with genome assembly recovery of complete single-copy mammalian BUSCOs (Benchmarking Universal Single-Copy
Orthologs) ranging from 73.1% to 92.4% [59]. The global transcriptomes generated for some of these species have BUSCO scores ranging
from 76.4% to 84% [56, 58]. Annotated genomes and global transcriptomes are of paramount importance for attaching biological meaning
to sequencing data.

Recently, the fat-tailed dunnart (Sminthopsis crassicaudata) has emerged as a key laboratory marsupial model for understanding
mammalian development and evolution [60, 61, 62, 63, 64, 45]. A nocturnal species belonging to the family Dasyuridae , the fat-tailed
dunnart has adapted to a wide range of habitats and can be found across south and central mainland Australia [65] (Figure 1A and B). As
one of the smallest carnivorous marsupials, adults weigh an average of 15 grams. Fat-tailed dunnarts exhibit some of the shortest known
gestation times for mammals (13 days), with much of their development occurring postnatally. Fat-tailed dunnart neonates reside in their
mother’s pouch, thereby allowing continuous and non-invasive experimental access [66, 67]. The extremely altricial state of the dunnart
young, along with very simple husbandry requirements, have facilitated the dunnart’s role as a model species for comparative mammalian
studies and conservation strategies. Nonetheless, the paucity of genomic resources for the fat-tailed dunnart has limited our understanding
of this species at the gene level.

Here, to address this knowledge gap, we present a comprehensive transcriptome and annotation for the fat-tailed dunnart, supplement-
ing an improved draft genome assembly. This annotation effort, made possible through a multi-tissue transcriptome assembly, yielded
21,622 protein-coding genes. The global transcriptome had a 93.3% recovery of complete mammalian BUSCOs (Benchmarking Universal
Single-Copy Orthologs). This first-draft annotation and global transcriptome can serve as tools with which the genomic architecture of the
fat-tailed dunnart, an emerging marsupial model species, can be better understood. Most importantly, these comprehensive resources

contribute to the growing body of research on marsupial genomics and are therefore invaluable tools for future mammalian studies.

Methods

Draft genome assembly

Fat-tailed dunnart ONT (~171 Gb) and Pacific Biosciences CRL (~18 Gb) long reads [68] and Illumina short reads (~447.5 Gb in 2x150 bp

format) [53] were combined to produce an improved draft genome assembly (v1.1). Briefly, de novo contigs were first assembled from long
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Figure 1. The fat-tailed dunnart (Sminthopsis crassicaudata). (A) Adult fat-tailed dunnart captured in Ned’s Corner, Victoria (Photo credit: David Paul, Museums Victoria). (B)
The fat-tailed dunnart’s range across Australia (CC BY-SA 3.0)[1]. (C) Phylogeny of extant marsupial orders (based on [2] and [3]). The fat-tailed dunnart (blue font) is a
member of the order Dasyuromorphia.
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reads > 10 kilobases using Flye v2.9 [69] (parameters: —pacbio-raw, —genome-size 3g —iterations 2 —scaffold). Uncollapsed haplotypes
were removed using purge_dups [70] with automatic coverage threshold detection. A second round of scaffolding was then performed
using LongStitch v1.0.1 [71] (mode: ntLink-arks with estimated genome size of 3 Gb). The resulting assembly was then polished in two
rounds using Pilon v1.24 [72] (parameters: —vcf —diploid —chunksize 10000000 —fix snps,indels,gaps —minqual 15). To do this, Illumina
short reads were first filtered and trimmed with Trimmomatic v0.38 [73] (parameters: SLIDINGWINDOW:5:30, MINLEN:75, AVGQUAL:30).
Reads were then aligned against the assembly using BWA-MEM2 [74] (parameter: —M) and the resulting alignments were filtered with
samtools view v1.11 [75] (parameters: —h —b —q 30 —F 3340 —f 3). Benchmark mammal ortholog recovery for the assembly was determined

using BUSCO v5.2.2, in genome mode, using the Mammalia_odb v10 database of orthologs (9226 BUSCOs).

Sample collection and sequencing

Adult and fetal fat-tailed dunnart tissues were collected from several individuals for short-read lllumina sequencing. Tissues included: late
pregnancy allantois (n=3), amnion (n=3), distal yolk sac without vasculature (n=2), proximal yolk sac with vasculature (n=2), endometrium
(n=4), ovary (n=3), oviduct (n=2), combined uterus and oviduct (n=1), testis (n=1), liver (n=1), eye (n=1), and prostate gland (n=1).
Multiple RNA samples were pooled in approximately equal proportions for Iso-Seq, namely, allantois, amnion, distal and proximal
yolk sacs, endometrium, oviduct, endometrium, ovary, testis, liver, eye, gastrula-stage conceptus, and late fetus. All RNA samples were
extracted using Qiagen RNeasy Mini or Micro kits according to manufacturer’s instructions, with Illumina and Iso-Seq library construction

and sequencing outsourced to Azenta Life Sciences (USA).

De novo transcriptome assembly

We used a total of 24 dunnart RNA-seq samples, originating from various tissues (liver, testis, prostate, ovary, oviduct, uterus, eye,
whole neonate, allantois, amnion, distal yolk sac, proximal yolk sac, and endometrium). Of these samples, 23 were short-read RNA-seq,
with read lengths ranging from 100-150 bp, and 1 was a long-read Iso-seq sample (mean length of 5,400 bp). All samples were quality
checked using FastQC v0.11.9 [76]. Quality trimming of the RNA-seq reads was carried out using Trimmomatic v0.38 [73] (parameters:
SLIDINGWINDOW:4:28, MINLEN:25, AVGQUAL:28). Post trimming, 464M paired reads remained.

To generate a global dunnart transcriptome, the trimmed, paired-end RNA-seq reads were used as input to Trinity v2.13.2 [77]. We
applied default in silico read normalization, and set the minimum assembled contig length to report to 200. Circular consensus reads
were incorporated for Iso-seq long-read correction (parameter: —long_reads). Contig assembly was executed using three different k-mer
settings: 25, 29, and 32. We chose these values because 25 and 32 are the minimum and maximum permitted values for the Trinity contig
assembly step. Assembly statistics were obtained using the Trinity script TrinityStats.pl [77]. A reference-free evaluation of assembly
quality was conducted using RSEM-EVAL, a component package of Detonate v1.11 [78]. RSEM-EVAL provides a weighted quality score
using a probabilistic model. Although these scores are always negative, when comparing two assemblies, a higher value represents a higher
quality assembly. The completeness of the full-length assemblies was evaluated using Benchmarking Universal Single-Copy Orthologs
(BUSCO) [79]. The BUSCO gene sets are comprised of nearly universally distributed single-copy orthologous genes representing various
phylogenetic levels. Here, BUSCO v5.2.2 assessment was carried out in transcriptome mode using the Mammalia_odb v10 database of
orthologs.

To quantify the RNA-seq read representation of the assembly, all reads were mapped back to the global transcriptome assembly using
Bowtie2 v2.4.5 [80], setting a maximum of 20 distinct alignments for each read (parameter: —k 20). Prior to annotation, transcript
redundancy in the global transcriptome was reduced using CD-HIT v4.8.1 [81] with a homology threshold of 1 (parameter: —c 1) to avoid

filtering out true isoforms.
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Transcriptome functional annotation

Functional annotation of the assembled transcripts was conducted using the Trinotate v3.2.2 [77] analysis protocol. First, Transdecoder
v.5.5.0 [77] was used to identify all open reading frames (with a minimum length of 100 amino acids) and predict coding regions within
transcripts. Sequence and domain homologies were captured by running BLAST+ v2.13.0 [82] (parameters: —max_target_segs 1 —outfmt 6
—evalue 1e-5) against a combined protein database consisting of the UniProt/Swiss-Prot non-redundant protein sequences [83] from human
(UP000005640), house mouse (UP000000589), Tasmanian devil (UP000007648), koala (UP000515140), tammar wallaby (txid9315), gray
short-tailed opossum (UP000002280), and numbat (txid55782). Functional domains were identified by running a HMMer v3.3.2 [84]
search against the PFAM v35.0 [85] database using the predicted protein sequences. Signal peptides and transmembrane domains were

predicted using the SignalP v6.0 [86] and DeepTMHMM v1.0.24 [87] software tools, respectively.

Genome annotation

Annotation of the dunnart draft genome was conducted using a combination of ab initio gene prediction algorithms and homology-based
methods (Figure 2). First, genome repeats were masked using RepeatMasker v4.0.6 [88], with complex repeats being hard-masked while
simple repeats were soft-masked. Preliminary gene models were constructed with MAKER2 [89] by aligning the assembled transcriptome
and homologous protein sequences to the masked genome using minimap2 v2.26 [90] and DIAMOND v2.1.8 [91], respectively. Both cDNA
(parameter: —model est2genome) and protein (parameter: —model protein2genome) alignments were polished with Exonerate v2.4.0 [92],
producing high quality alignments with precise intron/exon positions.

These preliminary gene models were then used to train the ab initio gene predictors SNAP [93], Augustus v3.4.0 [94], and GeneMark-EP+
v4.71 [95], all of which generated a statistical model representing the observed intron/exon structure in the genome. The gene model
prediction process was iteratively run with MAKER?2 (3 total rounds of prediction and re-training), thereby optimising the performance
of the ab initio gene predictors. For each round, prediction quality was evaluated using BUSCO scores. Consensus gene models were
identified using EVidenceModeler v2.0.0 [96], with input weights set to 2 for high-quality ab initio predictions, and to 1 for all other ab initio
predictions and transcript/protein alignments. Gene models that lacked mRNA and protein homology support were excluded from the final
annotation file. Lastly, gene names and putative protein functions were assigned using the aforementioned Trinotate output, as well as
curated orthologous group and product names from InterProScan v5.60 [97], EggNOG v5.0 [98], MEROPS v12.4 [99], dbCAN3 v3.0.6 [100],

and EuKaryotic Orthologous Groups (KOGs) [101].

Results

To generate a genome-level annotation for the fat-tailed dunnart, we began by producing an improved draft genome assembly. We employed
a hybrid approach, which integrated the ONT and PacBio long-read data with Illumina paired-end short reads [53]. This resulted in a 3.23
Gb genome that contains 1,848 scaffolds and has a scaffold N50 of 72.64 Mb. The GC content of this draft genome is 36.2% (Table 1). The
genome assembly had a 94.2% recovery of complete mammalian BUSCOs.

A de novo reconstruction of the dunnart transcriptome was conducted using a set of 24 RNA-seq samples originating from the liver, testis,
prostate, ovary, oviduct, uterus, eye, whole neonate, allantois, amnion, distal yolk sac, proximal yolk sac, and endometrium. To ensure
that the most representative assembly was obtained, we sought to identify the optimal k-mer length for the Trinity contig assembly step,
considering k values of 25, 29 and 32 (Table 2). Given that reference-free transcriptome assembly relies on grouping overlapping sequences
of read fragments of a predetermined size (i.e., the k-mer), identifying the optimal fragment size might yield a more accurate assembly. To
assess this fragment size effect, we computed multiple assembly quality metrics, including the BUSCO completeness score (transcriptome

mode) and the Detonate RSEM-EVAL score for each Trinity run. The RSEM-EVAL score represents the sum of three main factors: likelihood
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Figure 2. Schematic illustrating the de novo transcriptome generation and genome annotation workflow for the fat-tailed dunnart.

Table 1. Assembly statistics for v1.0 and v1.1 of the fat-tailed dunnart genome.

| | Genome assembly v1.0 [68] | Genome assembly v1.1 (this study) |

Genome scaffold total 719 1848
Genome contig total 1154 2569
Genome length 2.84 Gb 3.23Gb
Genome scaffold N50 28.02 Mb 72.64 Mb
Genome scaffold L50 23 15
Genome contig N50 10.93 Mb 11.19 Mb
Genome contig L50 78 81
Max scaffold length 44,2.91 Mb 192.34 Mb
Max contig length 44,29 Mb 60.38 Mb
Number of scaffolds > 50 Kb 321 230
GC (%) 36.25 36.18

estimates of the read representation within the assembly, the assembly prior, which assumes that each contig is generated independently,
and the BIC (Bayesian Information Criterion) penalty [78]. When comparing two assemblies, a higher RSEM-EVAL score is indicative of a
more complete transcriptome assembly. In our comparison, the Trinity run with a k-mer setting of 29 produced the top-scoring assembly,

thus, all subsequent analysis was carried out using this assembly.

This transcriptome assembly was composed of 2,093,982 assembled transcripts (including splicing isoforms), with a GC content of
£40.2% and a mean transcript length of 830 bp (Table 2). Transcript N50 was 1,489 bp, and considering only the top 90% most highly
expressed transcripts (a more accurate proxy for transcriptome quality [102]) gave an EQON50 of 3,430 bp. Sample reads that were mapped
back to the assembly had a very high overall alignment rate (98%) with a high percentage mapped as proper pairs (94%). In addition, the
global transcriptome had a 93.3% recovery of complete mammalian BUSCOs (Mammalia_odb v10 [79]). These values are in line with, or
higher than, those reported from all other available marsupial transcriptome data sets. Specifically, the global transcriptome assembly
for the brown antechinus yielded 1,636,859 transcripts, with a mean length of 773 bp, transcript N50 of 1,367 bp, 96% alignment rate,
and 84% complete BUSCOs [56]. The numbat global transcriptome contained 2,119,791 transcripts, a mean transcript length of 824 bp,

a transcript N50 of 1,393 bp, and a BUSCO completeness score of 76.4% [58]. The Tasmanian devil transcriptome assembly consisted of
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Table 2. Summary of the de novo assembly statistics for the Trinity k-mer optimization.

| | Trinity-k25 | Trinity-k29 | Trinity-k32 |
Total # of assembled Trinity transcripts 2,588,090 2,093,982 1,960,023
Mean transcript length (bp) 731 830 922,
Transcript N50 (bp); E90N50 (bp) 1193;2990 1,489; 3,430 1,260; 3,154
GC content (%) 417 40.2, 40.9
Percentage of mapped RNA-seq PE reads (%) 95 98 97
Total BUSCO score (transcriptome mode) C:92.1%,n:9226 | C:93.3%,n:9226 | C:93.0%,n:9226
Detonate RSEM-EVAL score -6,136.0 x 107 -5,759.0 X 107 -6,110.0 X 107

470,729 transcripts with an N50 of 687 bp and a 95% alignment rate of sample reads to the assembly [103].

Using a multi-pronged annotation approach of transcript and protein-level alignment, as well as ab initio gene prediction (Figure 3), we
obtained 58,271 putative gene models for the fat-tailed dunnart draft genome (Table 3). Of these gene models, 21,622 were protein-coding
(BLAST hits to UniProt/Swiss-Prot), which is in line with the reported gene numbers for the numbat (21,465) [58], the koala (27,669)
[104], the Tasmanian devil (19,241) [46], the brown antechinus (25,111) [56], the tammar wallaby (15,290) [55], and the gray short-tailed
opossum (21,384) [54] (Table 4). Furthermore, we predicted the putative function of the fat-tailed dunnart proteins using several curated
protein databases (Table 3, Figure 3). We used InterProScan to identify conserved domains and assign Gene Ontology (GO) terms. A total
of 24,366 transcripts were assigned InterProScan terms, and 13,507 unique genes were assigned GO terms. Specifically, GO annotations
totaled 289,985, with a mean annotation level of 7.15 and a standard deviation of 2.7 (Figure 3). Running an HMMer search against the
PFAM database yielded 16,308 domains, while dbCAN3 and MEROPS analyses resulted in 212 and 1,053 predictions, respectively. Altogether,

these results highlight valuable avenues through which we can deepen our understanding of marsupial biology at the gene level.

Table 3. Fat-tailed dunnart gene and feature statistics.

| | Fat-tailed dunnart

General

Protein-coding genes 21,622
Predicted gene models 58,271
Transcript level

mRNA 50,091
tRNA 8,180
Multiple exon transcripts 44,109
Single exon transcripts 5,082
Total exons 246,391
Average exon length 146.1
Functional level

InterProScan terms 24,366
EggNOG terms 29,372
PFAM domains 16,308
dbCAN3 (CAZymes) 212
MEROPS (proteases) 1,053
GO 13,507

Table 4. Fat-tailed dunnart gene counts compared to the numbat, koala, Tasmanian devil, brown antechinus, tammar wallaby, gray short-tailed
opossum, and eastern quoll.

| | Number of putative genes | Number of protein-coding genes |

Fat-tailed dunnart (this study) 58,271 21,622
Numbat[58] 77,806 21,465
Koala(57] 52,384 27,669
Tasmanian devil[46] 40,469 19,241
Brown antechinus[56] 55,827 25,111
Tammar wallaby[55] 122,304 15,290
Gray short-tailed opossum[54] 43,478 21,384
Eastern quoll[59] 29,622 14,293
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Figure 3. Gene ontology (GO) analysis of the fat-tailed dunnart putative genes. (A) GO distribution by category (at level 3) for the fat-tailed dunnart gene set. The ontology
categories are BP (Biological Process), MF (Molecular Function), and CC (Cellular Component). The top 20 terms are listed for each category. (B) Distribution of sequence
annotations for each GO level.
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Conclusion

The increased availability of genomic resources for marsupial species is critical for fostering a deeper understanding of the evolutionary
history of both eutherians and marsupials. In this study, we generated a global de novo transcriptome assembly of the fat-tailed dunnart
using RNA-seq short-read and long-read data, sampled from a diverse range of dunnart tissues. The transcriptome reconstruction contained
2,093,982 assembled transcripts, with a mean transcript length of 830 bp. The transcriptome BUSCO completeness score of 93.3% is the
highest amongst all other published marsupial transcriptome BUSCOs (i.e. numbat and brown antechinus). The high overall alignment
rate of reads from each of the tissues to the transcriptome (98%) further underscores that the de novo transcriptome is a highly accurate
representation of the input reads. The dunnart draft genome annotation revealed 21,622 protein-coding genes, in line with previously
reported marsupial gene counts. Overall, these resources provide novel insights into the unique genomic architecture of the fat-tailed

dunnart, and will therefore serve as valuable tools for future comparative mammalian studies.

Data and Code Availability

The fat-tailed dunnart transcriptome, draft genome, and genome annotation are available through Figshare https://melbourne.figshare.
com/account/home#/projects/183307. The scripts for reproducing the genome annotation workflow have been made available here:
https://gitlab.svi.edu.au/igr-lab/dunnart_genome_annotation. All raw sequencing reads have been deposited at the National Center

for Biotechnology Information (NCBI) Sequence Read Archive under the accession number PRJNA1028148.
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