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Abstract 

Functional magnetic resonance imaging (fMRI) studies often estimate brain intrinsic 

connectivity networks (ICNs) from temporal relationships between hemodynamic signals using 

approaches such as independent component analysis (ICA). While ICNs are thought to represent 

functional sources that play important roles in various psychological phenomena, current 

approaches have been tailored to identify ICNs that mainly reflect linear statistical relationships. 

However, the elements comprising neural systems often exhibit remarkably complex nonlinear 

interactions that may be involved in cognitive operations and altered in psychiatric conditions such 

as schizophrenia. Consequently, there is a need to develop methods capable of effectively 

capturing ICNs from measures that are sensitive to nonlinear relationships. Here, we advance a 

novel approach to estimate ICNs from explicitly nonlinear whole-brain functional connectivity 

(ENL-wFC) by transforming resting-state fMRI (rsfMRI) data into the connectivity domain, allowing 

us to capture unique information from distance correlation patterns that would be missed by linear 

whole-brain functional connectivity (LIN-wFC) analysis. 
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Our findings provide evidence that ICNs commonly extracted from linear (LIN) relationships 

are also reflected in explicitly nonlinear (ENL) connectivity patterns. ENL ICN estimates exhibit 

higher reliability and stability, highlighting our approach's ability to effectively quantify ICNs from 

rsfMRI data. Additionally, we observed a consistent spatial gradient pattern between LIN and ENL 

ICNs with higher ENL weight in core ICN regions, suggesting that ICN function may be subserved 

by nonlinear processes concentrated within network centers. We also found that a uniquely 

identified ENL ICN distinguished individuals with schizophrenia from healthy controls while a 

uniquely identified LIN ICN did not, emphasizing the valuable complementary information that can 

be gained by incorporating measures that are sensitive to nonlinearity in future analyses. 

Moreover, the ENL estimates of ICNs associated with auditory, linguistic, sensorimotor, and self-

referential processes exhibit heightened sensitivity towards differentiating between individuals 

with schizophrenia and controls compared to LIN counterparts, demonstrating the translational 

value of our approach and of the ENL estimates of ICNs that are frequently reported as disrupted 

in schizophrenia. In summary, our findings underscore the tremendous potential of connectivity 

domain ICA and nonlinear information in resolving complex brain phenomena and revolutionizing 

the landscape of clinical FC analysis. 

Keywords: nonlinear, functional connectivity (FC), distance correlation, independent component 

analysis (ICA), intrinsic connectivity network (ICN), schizophrenia (SZ) 

1. Introduction 

Brain function is underpinned by interacting assemblies of neurons organized at various 

spatial and temporal scales. At the whole-brain level, functional magnetic resonance imaging 

(fMRI) analysis is a non-invasive tool that has commonly been used to estimate coherent neuronal 

ensembles from statistical relationships between blood-oxygenation-level-dependent (BOLD) 

time series, which is often called functional connectivity (FC). Although the relationship between 

the BOLD signal and neural activity is indirect (Logothetis et al., 2003), experimentally induced 

and resting-state BOLD fluctuations are typically associated with changes in local field potentials 

across multiple frequency bands (Logothetis et al., 2001; Magri et al., 2012; Pan et al., 2013; Shi 

et al., 2017), indicating that fMRI FC analysis is a promising tool for advancing the identification 

of task-related and spontaneously emerging networks of interacting brain regions. Moreover, fMRI 

FC analysis is deployable within a wide range of predictive clinical contexts. For example, multiple 

large-scale meta-analyses have shown that FC can be used to distinguish healthy controls (HC) 

from individuals with schizophrenia (SZ) (Dong et al., 2018; Li et al., 2019; Sheffield & Barch, 

2016). Such studies have contributed to an accumulation of evidence for the SZ “dysconnection 
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hypothesis” (Friston et al., 2016), which posits FC alteration as a central endophenotype of the 

disorder resulting from neuromodulatory and synaptic pathogenesis. 

However, FC studies are typically designed to estimate networks that reflect linear statistical 

relationships between brain areas (Friston, 2011; Mohanty et al., 2020). As a result, the 

remarkably complex nonlinear interactions inherent to neural systems have remained largely 

outside of the focal lens of FC research (Friston, 2001; He & Yang, 2021; Singer, 2013). We 

highlight three ways in which bringing nonlinear dependence to the fore has potential to advance 

systems, cognitive, and predictive neuroscientific research. First, the analysis of nonlinear 

statistical relationships may lead to a more precise and thorough characterization of the 

organization and dynamics of neural ensembles at multiple scales (He & Yang, 2021; Iraji et al., 

2022b; Iraji et al., 2023a). Second, nonlinear interactions may have cognitive and behavioral 

relevance. In principle, nonlinearity is thought to underpin a high-dimensional state space capable 

of supporting a set of flexible and diverse neural computations (Friston, 2001; Singer, 2013), such 

that analyzing its functional role may shed light on the structure of cognitive processing and the 

deficiencies associated with psychiatric disorders and symptoms. Third, measures that are 

sensitive to nonlinearity can be leveraged to develop biomarkers that can be incorporated within 

brain-based predictive models of mental illness, or “predictomes” (Rashid & Calhoun, 2020). 

Among available FC analysis methods, independent component analysis (ICA) is a powerful 

multivariate source separation technique that has been applied to fMRI data. ICA assumes that 

the data is a linear mixture of statistically independent source signals and aims to estimate an 

unmixing matrix yielding components that optimally approximate these signals (Adali et al., 2014; 

Comon & Jutten, 2010). In the context of fMRI analysis, spatial ICA (sICA) has commonly been 

used to decompose fMRI time series data into a set of intrinsic connectivity networks (ICNs), 

where the spatial pattern of an ICN describes its distribution across voxels and the temporal 

pattern describes its activity over time (Calhoun et al., 2008; Calhoun et al., 2009; Iraji et al., 

2022a; Seeley et al., 2007). ICNs can be robustly and consistently identified from both resting-

state fMRI (rsfMRI) (Calhoun et al., 2008; Damoiseaux et al., 2006; Iraji et al., 2022a) and task-

based fMRI (tfMRI) time series data (Calhoun et al., 2008; Calhoun et al., 2009; Laird et al., 2011; 

Wu et al., 2021) at different spatial scales (Iraji et al., 2019a; Iraji et al., 2022b; Iraji et al., 2023a). 

ICNs can also be reliably extracted from FC matrices constructed from second-order statistics 

such as Pearson correlation (i.e., from the connectivity domain) (Iraji et al., 2016; Wu et al., 2018). 

Connectivity domain ICA is a type of feature-based analysis (Calhoun & Allen, 2013) that yields 

cross-validating components and is distinguished from time domain ICA by unique benefits 
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including consistency across changes in particular analysis parameters and reproducibility (Iraji 

et al., 2016). Moreover, the Pearson correlation coefficient is one out of an expanding range of 

FC metrics that can be used to construct the connectivity basis, making connectivity domain ICA 

an incredibly versatile tool (Iraji et al., 2016). 

Connectivity domain and time domain ICA have become valuable tools for investigating fMRI 

data. However, both methods are typically designed to identify ICNs comprised of covarying brain 

regions, reflecting linear FC (Calhoun et al., 2009; Iraji et al., 2016; Wu et al., 2018). Although 

recent advancements have made strides in incorporating nonlinearity (Hyvärinen et al., 2019; 

Morioka et al., 2020) such as learning local spatial or temporal nonlinear structures, the estimated 

functional sources still do not effectively quantify nonlinear FC. Here, we advance a novel 

connectivity domain ICA approach to extract ICNs from explicitly nonlinear whole-brain FC (ENL-

wFC) estimated from distance correlation (Székely et al., 2007) patterns that move beyond those 

constructed from Pearson correlation. Although alternative metrics can be used to quantify fMRI 

connectivity while accounting for higher-order statistics (Bhinge et al., 2019; Motlaghian et al., 

2022; Motlaghian et al., 2023), distance correlation is a powerful and flexible dependence metric 

that remains relatively underexplored in the context of FC research. Moreover, the proposed 

method is unique in that we conceive of ENL-wFC as a global feature of the connectivity space, 

rather than as a composite feature constructed from the explicitly nonlinear associations between 

time series pairs (Motlaghian et al., 2022; Motlaghian et al., 2023). This allows us to leverage the 

potentially valuable information present within global connectivity features that move beyond the 

connectivity features constructed from Pearson correlation. 

We find that our method is capable of effectively extracting ICNs from ENL-wFC. Our results 

show that many ICNs extracted from linear whole-brain FC (LIN-wFC) information are also 

reflected within ENL-wFC, although we find that ENL ICNs are estimated more reliably, and that 

corresponding ICNs exhibit graded spatial variation with greater ENL weight within many core 

regions. We also identify unique ENL and LIN ICNs, indicating that our approach can recover 

ICNs that are hidden from conventional linear FC analyses. Furthermore, we find that ENL ICN 

estimates are more sensitive to differences between HC and SZ overall in addition to being more 

sensitive for specific ICNs that have been previously reported as altered in SZ, demonstrating 

that ENL ICNs can be leveraged within a predictive clinical context. More generally, we 

demonstrate that connectivity domain ICA is a powerful and flexible tool that is uniquely poised to 

transform clinical FC analysis and advance our understanding of brain function. 
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2. Materials and Methods 

2.1. Subject Information, Data Acquisition, and Subject Quality Control Criteria 

We analyzed 3-Tesla resting-state fMRI (rsfMRI) time series data sourced from three 

psychosis projects: Center for Biomedical Research Excellence (COBRE), Functional Imaging 

Biomedical Informatics Research Network (FBIRN), and Maryland Psychiatric Research Center 

(MPRC) (Table 1). Detailed subject recruitment information for COBRE, FBIRN, and MPRC 

studies can be respectively found in Aine et al. (2017), Damaraju et al. (2014), and Adhikari et al. 

(2019). 

Table 1. Subject demographic information. COBRE: Center for Biomedical Research Excellence. FBIRN: 

Functional Imaging Biomedical Informatics Research Network. MPRC: Maryland Psychiatric Research Center. HC: 

healthy control. SZ: schizophrenia. 

Dataset Diagnosis (#) Sex (#) Age (years) mean ± sd Median / range 

COBRE HC (75) Male (56) 39.27 ± 12.13 39 / (65 − 18) 

  Female (19) 35.47 ± 10.02 34 / (58 − 18) 

     

 SZ (51) Male (45) 37.36 ± 15.28 33 / (64 − 19) 

  Female (6) 40.83 ± 17.70 44 / (65 − 20) 

     

FBIRN HC (88) Male (60) 36.58 ± 10.74 39 / (59 − 19) 

  Female (28) 36.61 ± 11.07 33 / (58 − 19) 

     

 SZ (60) Male (52) 39.54 ± 11.12 41 / (60 − 18) 

  Female (8) 35.88 ± 9.85 34 / (51 − 24) 

     

MPRC HC (152) Male (69) 38.99 ± 13.22 41 / (68 − 18) 

  Female (83) 39.93 ± 14.93 43 / (64 − 16) 

     

 SZ (82) Male (57) 36.25 ± 13.54 33 / (63 − 13) 

  Female (25) 44.68 ± 11.92 47 / (61 − 13) 

 
 

Individuals with SZ from the COBRE dataset received a diagnosis of schizophrenia performed 

in consensus by two research psychiatrists via the Structured Clinical Interview for DSM-IV Axis I 

Disorders (SCID) using the patient version of the SCID-DSM-IV-TR (Aine et al., 2017). SZ 

subjects were evaluated for comorbidities and for retrospective as well as prospective clinical 

stability. Individuals with SZ from the FBIRN study were diagnosed with schizophrenia based on 

the SCID-DSM-IV-TR and were clinically stable for at least two months prior to scanning 
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(Damaraju et al., 2014). For MPRC SZ subjects, a diagnosis of schizophrenia was confirmed via 

the SCID-DSM-IV (Adhikari et al., 2019). 

COBRE data were collected at a single site on a Siemens TIM Trio scanner via an echo-planar 

imaging sequence (TR = 2000 ms; TE = 29 ms) (Iraji et al., 2022b). Voxel spacing was 3.75 x 

3.75 x 4.5 mm, the slice gap was 1.05 mm, and the field of view (FOV) was 240 x 240 mm. FBIRN 

data were collected from seven sites (Turner et al., 2013), with six sites utilizing Siemens TIM Trio 

scanners and one utilizing a General Electric Discovery MR750 (Iraji et al., 2022b). All seven sites 

used an echo-planar imaging sequence (TR = 2000 ms; TE = 30 ms). Original voxel spacing was 

3.4375 x 3.4375 x 4 mm, the slice gap was 1 mm, and the FOV was 220 x 220 mm. MPRC data 

were collected from three sites via echo-planar imaging sequences (Friston, 2011; Iraji et al., 

2022b). One site used a Siemens Allegra scanner (TR = 2000 ms; TE = 27 ms; voxel spacing = 

3.44 x 3.44 x 4 mm; FOV = 220 x 220 mm), another used a Siemens TIM Trio scanner (TR = 2210 

ms; TE = 30 ms; voxel spacing = 3.44 x 3.44 x 4 mm; FOV = 220 x 220 mm), and the third site 

used a Siemens TIM Trio scanner (TR = 2000 ms; TE = 30 ms; voxel spacing = 1.72 x 1.72 x 4 

mm; FOV = 220 x 220 mm). 

The following subject quality control criteria (Iraji et al., 2023a) were used for the current study: 

1) maximum head rotations of less than 3⁰ and maximum translations of less than 3 mm, 2) mean 

framewise displacement (FD) less than 0.25, 3) quality registration to an echo-planar imaging 

template, 4) and whole-brain (in addition to the top ten and bottom ten slices) spatial overlap 

between the subject mask and group mask greater than 80%. The final subject pool included 315 

HC and 193 SZ (n = 508). 

2.2. Preprocessing 

Preprocessing was performed primarily within the MATLAB software environment using 

Statistical Parametric Mapping (SPM12; http://www.fil.ion.ucl.ac.uk/spm/) and the FMRIB 

Software Library (FSL v6.0; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). Preprocessing steps included 1) 

rigid body motion and slice timing correction, 2) nonlinear warping to Montreal Neurological 

Institute (MNI) 152 coordinate space, 3) spatial resampling to 3 mm isotropic voxel spacing, 4) 

spatial smoothing with a 6 mm full width at half maximum (FWHM) Gaussian kernel, 5) head 

motion regression, detrending, despiking, low pass filtering, 6) temporal resampling to TR = 2000 

ms, and finally 7) voxel time series Z-scoring to normalize variance. 
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2.3. Constructing Linear and Explicitly Nonlinear Whole-Brain Voxel-Wise Functional Connectivity 

We construct linear as well as explicitly nonlinear global (voxel-wise) FC matrices for every 

subject (Fig. 1) (Iraji et al., 2023b). Let 𝑋 ∈  ℝ𝑛×𝑣  be a sample of rsfMRI data where 𝑛 is the 

number of time points, 𝑣 is the number of voxels within the brain, and 𝑥 and 𝑦 represent any two 

preprocessed voxel time series such that 𝑥, 𝑦 ∈  ℝ1×𝑛. Thus, 𝑥𝑖 is the value of voxel 𝑥 at time point 

𝑖. We estimate each subject’s linear whole-brain FC (LIN-wFC) as the covariance (Cov) across 

all pairs of brain voxels (Eq. 1). Because voxel time courses were Z-scored during preprocessing, 

the pairwise covariance is equal to the pairwise Pearson correlation, which is conventionally used 

to estimate linear FC. 

𝐿𝐼𝑁𝑤𝐹𝐶𝑥,𝑦
= 𝐶𝑜𝑣(𝑥, 𝑦) =  

1

𝑛−1
∑ (𝑥𝑖

𝑛
𝑖=1 )(𝑦𝑖)  (𝐄𝐪. 𝟏) 

Next, we calculate the voxel-wise distance correlation (Székely et al., 2007) to construct 

nonlinear whole-brain FC (NL-wFC). Distance correlation is a representation of the association 

between random vectors based on Euclidean distances between sample observations (Székely 

et al., 2007) (Eq. 2). 

𝑁𝐿𝑤𝐹𝐶𝑥,𝑦
=  𝑑𝐶𝑜𝑟𝑟(𝑥, 𝑦) =

𝑑𝐶𝑜𝑣(𝑥, 𝑦)

√𝑑𝑉𝑎𝑟(𝑥)𝑑𝑉𝑎𝑟(𝑦)
, 𝑤ℎ𝑒𝑟𝑒  (𝐄𝐪. 𝟐) 

𝑑𝐶𝑜𝑣𝑛
2(𝑥, 𝑦) =  

1

𝑛2
∑ ∑ 𝐴𝑗,𝑘𝐵𝑗,𝑘 ,

𝑛

𝑘=1

𝑛

𝑗=1

 𝑎𝑛𝑑 

𝑑𝑉𝑎𝑟𝑛
2(𝑥) = 𝑑𝐶𝑜𝑣𝑛

2(𝑥, 𝑥) =
1

𝑛2
∑ ∑ 𝐴𝑘,𝑙

2

𝑛

𝑙=1

𝑛

𝑘=1

 

The squared sample distance covariance (dCov2) is calculated as the arithmetic average of the 

products 𝐴𝐵. 𝐴 and 𝐵 represent the doubly centered Euclidean distance matrices of rsfMRI voxel 

time series 𝑥 and 𝑦 such that 

𝑎𝑗,𝑘 =  ║𝑥𝑗 −  𝑥𝑘║,           𝑗, 𝑘 = 1, 2, … , 𝑛 

𝑏𝑗,𝑘 =  ║𝑦𝑗 −  𝑦𝑘║,           𝑗, 𝑘 = 1, 2, … , 𝑛 

𝐴𝑗,𝑘 = 𝑎𝑗,𝑘  −  𝑎̅𝑗⋅  −  𝑎̅⋅𝑘  −  𝑎̅⋅⋅, 

𝐵𝑗,𝑘 = 𝑏𝑗,𝑘  −  𝑏̅𝑗⋅  −  𝑏̅⋅𝑘  −  𝑏̅⋅⋅. 
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We note that distance correlation is sensitive to both linear and nonlinear dependence relations, 

and that the distance correlation between random vectors is zero if and only if the vectors are 

independent (Székely et al., 2007). 

Because we are interested in analyzing the distance correlation connectivity patterns not 

present within Pearson correlation patterns, we remove the effect of LIN-wFC on NL-wFC using 

an ordinary least squares approach to estimate the explicitly nonlinear whole-brain FC (ENL-wFC) 

for each subject (Eq. 3). To estimate ENL-wFC, we first vectorize both NL-wFC and LIN-wFC. We 

then remove any linear relationship between NL-wFC and LIN-wFC using a regression-based 

method and reshape the vector of residuals into a 𝑣 × 𝑣 FC matrix. 

𝐸𝑁𝐿𝑤𝐹𝐶 = 𝑣𝑒𝑐−1(𝑣𝑒𝑐(𝑁𝐿𝑤𝐹𝐶) − 𝛼 ×  𝑣𝑒𝑐(𝐿𝐼𝑁𝑤𝐹𝐶)), 𝑤ℎ𝑒𝑟𝑒 (𝐄𝐪. 𝟑) 

min
𝛼

∑((𝑣𝑒𝑐(𝑁𝐿𝑤𝐹𝐶))
𝑖

−  (𝑣𝑒𝑐(𝐿𝐼𝑁𝑤𝐹𝐶))𝑖)2

𝑣2

𝑖=1

 

We treat the estimation of 𝛼 as an ordinary least squares problem by finding the value of 𝛼 which 

minimizes the sum of squared errors between NL-wFC and LIN-wFC. Thus, here we define the 

ENL-wFC for a given subject as the NL-wFC information with the linear effect of LIN-wFC 

removed. For each subject, the goodness of fit of the linear model was evaluated via the 

coefficient of determination (R2). To assess the difference in R2 between HC and SZ cohorts, we 

used a general linear model (GLM) to remove the effect of confounding factors including age, sex, 

site, and mean framewise displacement on the goodness of fit data, and we subsequently 

conducted a two-sided permutation test with 5000 random permutations (Krol, 2023; 

https://github.com/lrkrol/permutationTest). 
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Fig. 1. Schematic of the analysis pipeline. Preprocessed resting-state fMRI (rsfMRI) data is transformed to the 

connectivity domain using covariance (Cov), as a linear functional connectivity (FC) estimator, and distance correlation 
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(dCorr), which is sensitive to both linear and nonlinear associations between voxel time series, as a nonlinear FC 

estimator. Explicitly nonlinear whole-brain functional connectivity (ENL-wFC) is obtained by removing the nonlinear 

whole-brain functional connectivity (NL-wFC) information that is linearly explained by linear whole-brain functional 

connectivity (LIN-wFC). Group-level spatial independent component analysis (gr-sICA) is implemented in the 

connectivity domain on LIN-wFC and ENL-wFC to estimate separate sets of intrinsic connectivity networks (LIN and 

ENL ICNs). Group information-guided ICA (GIG-ICA) is then used to estimate subject-specific ICNs, and statistical 

analysis is conducted on the subject-level spatial maps. 

2.4. Extracting Intrinsic Connectivity Networks (ICNs) 

We used the Group ICA of fMRI Toolbox (GIFT v4.0; http://trendscenter.org/software/gift) (Iraji 

et al., 2021) to implement connectivity domain ICA (Iraji et al., 2016) and obtain separate sets of 

group-level ICNs from the LIN-wFC and ENL-wFC data. The implementation of group-level spatial 

independent component analysis (gr-sICA) was preceded by an initial subject-level multi-power 

iteration (Rachakonda et al., 2016) principal component analysis (PCA) step to reduce 

dimensionality and denoise the data (Erhardt et al. 2011). The 30 principal components (PCs) that 

explained the maximum variance of each subject’s respective LIN-wFC and ENL-wFC were 

retained for further analysis. Subject-level PCs for each FC estimator were concatenated across 

the component dimension, and a group-level PCA step was applied to further reduce the 

dimensionality of the data and decrease the computational demands of gr-sICA (Calhoun et al., 

2009). The 20 group-level PCs that explained the maximum variance of each estimator-specific 

data set were used as the input for gr-sICA. We selected a gr-sICA model order of 20 to obtain 

large-scale ICNs (Iraji et al., 2016; Ray et al., 2013). To ensure the reliability of our results, ICA 

was implemented via the Infomax optimization algorithm (Bell & Sejnowski, 1995) 100 times with 

both random initialization and bootstrapping, and the most stable run was selected for further 

analysis. We evaluated the reliability and quality of ENL and LIN components using the ICASSO 

quality index (IQ), which quantifies component stability across runs (Himberg et al., 2004). To 

assess the difference in stability between ENL and LIN components, we conducted a two-sided 

permutation test with 5000 random permutations on the IQ data. Assessing component reliability 

was a necessary step, as previous work demonstrates that certain components may be 

inconsistently extracted from the data of interest (Himberg et al., 2004). In the context of fMRI 

ICN estimation, ICASSO IQ is often used to differentiate reliable components from components 

that are unstable and unfit for further analysis (Iraji et al., 2019b). A component was identified as 

an ICN if and only if 1) it exhibited an ICASSO IQ value exceeding .80, 2) it exhibited high visual 

overlap with gray matter, 3) it exhibited peak weight within gray matter, and 4) it exhibited low 

visual similarity to motion, ventricular, and other known artifacts. To find spatially corresponding 

ICNs, the spatial correlation value was computed between every pair of extracted LIN and ENL 
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components, and components were matched in a greedy fashion. ICNs matched with a spatial 

correlation value exceeding .80 were classified as common (Iraji et al., 2023a) and were labeled 

based on their neuroanatomical distributions and the identification of ICNs from previous studies 

(Iraji et al., 2016). ICNs exhibiting maximum spatial correlation less than .40 were classified as 

unique. We used the Group ICA of fMRI Toolbox (GIFT v4.0) to implement group information-

guided ICA (GIG-ICA) (Du & Fan, 2013) and reconstruct subject-specific ICNs from subject-level 

PCs using the group-level spatial references. 

2.5. Assessment of Spatial Variation Among Corresponding ICNs 

To assess differences in spatial variation between matched ICNs, we conducted voxel-wise 

paired samples two-sided t-tests on their Z-scored subject-level estimates. For a given matched 

ICN pair, statistical comparisons were masked for voxels exceeding Z = 1.96 (p = .05) in either 

group-level map (LIN or ENL), and the False Discovery Rate (FDR) method was used to correct 

for multiple comparisons (q < .05) (Benjamini & Hochberg, 1995). The automated anatomical 

labeling atlas 3 (AAL3) (Rolls et al., 2020) was used to localize clusters of significant voxels to 

anatomically defined brain regions.  

2.6. Assessment of ICN Differences Between HC and SZ 

To assess ICN differences between HC and SZ, we conducted voxel-wise independent 

samples t-tests between the estimates of common and unique ICNs derived from each cohort. 

We first used a GLM to remove the effect of confounding factors including age, sex, site, and 

mean framewise displacement on Z-scored subject-level ICN estimates. Voxel-wise independent 

samples two-sided t-tests were then conducted on the residual spatial maps derived from the HC 

and SZ groups. Common ICN statistical comparisons were masked for voxels exceeding Z = 1.96 

(p = .05) in either of the group-level maps (LIN or ENL), while unique ICN comparisons were 

masked for voxels exceeding the same threshold in the unique group-level map. The FDR method 

(Benjamini & Hochberg, 1995) was used to correct for multiple comparisons (q < .05). The AAL3 

atlas (Rolls et al., 2020) was used to localize clusters of significant voxels to anatomically defined 

brain regions. McNemar’s test or an exact binomial test (for n < 25) was used to assess the 

difference in statistical sensitivity between ENL and LIN estimates for every common ICN as well 

as across all common comparisons. 
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3. Results 

3.1. Goodness of Fit 

Goodness of fit statistics (R2) for linear regression of LIN-wFC on NL-wFC were mean ± 

standard deviation = .5337 ± .2009; maximum − minimum = .9413 − .0173. This indicates that, 

on average, much of the NL-wFC variance is captured by a linear fit. R2 is significantly higher for 

HC vs. SZ (p < .001, observed difference = .1203, Hedges’s g = 0.6971). The observed 

Hedges’s g value indicates the presence of a medium to large effect size. 

3.2. Component Estimation Reliability is Greater for ENL-wFC vs. LIN-wFC 

Components estimated from ENL-wFC exhibit significantly higher estimation reliability 

(ICASSO IQ) compared to components estimated from LIN-wFC (p < .001, observed difference 

= .037, Hedges’s g = 0.6441). The observed Hedges’s g value indicates the presence of a medium 

to large effect size. ENL stability indices were mean ± standard deviation = .9694 ± .0057; 

maximum − minimum = .9800 − .9579. LIN stability indices were mean ± standard deviation = 

.9324 ± .0810; maximum − minimum = .9770 − .6186. 

3.3. Common and Unique ICNs are Identified from ENL-wFC and LIN-wFC 

Within our 20-model-order gr-sICA framework, 13 ENL ICNs and 14 LIN ICNs were identified 

(Fig. 2). Among the identified ICNs, 10 exhibited maximum spatial similarity values exceeding 

0.80 between their ENL and LIN estimates. These ICNs were classified as common to both ENL-

wFC and LIN-wFC based on the defined criterion (Section 2.4.). Among the remaining ICNs, 2 

ENL ICNs and 3 LIN ICNs exhibited maximum spatial similarity values between .40 and .80. 

Although several of the aforementioned ICNs attained relatively high maximum spatial similarity, 

we noticed distinct intensity differences across their neuroanatomical distributions which 

prevented common classification and labeling. Furthermore, our analysis uncovered a LIN ICN 

and an ENL ICN exhibiting maximum spatial similarity less than .40. These ICNs were classified 

as unique based on our uniqueness criterion (Section 2.4.). 
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Fig. 2. Intrinsic connectivity networks (ICNs) obtained from linear whole-brain functional connectivity (LIN-wFC) 

and explicitly nonlinear whole-brain functional connectivity (ENL-wFC) group-level spatial independent component 
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analysis (gr-sICA) in the connectivity domain. ICNs are displayed thresholded at Z = 1.96 (p = .05) on the ch2bet 

template in order of maximum spatial similarity. Common ICNs (maximum similarity > .80) include primary visual (VIS1), 

primary sensorimotor (MTR1), secondary sensorimotor (MTR2), secondary visual (VIS2), right frontoparietal (rFP), 

cerebellum (CER), subcortical (SUB), posterior default mode (pDM), temporal (TEMP), and dorsal attention (ATN). 

ICNs exhibiting maximum similarity between .40 - .80 and unique ICNs (maximum similarity < .40) are also displayed. 

3.4. ENL ICN Uniqueness: Validation 

Although the spatial distribution of a component extracted from LIN-wFC gr-sICA showed 

similarity of .8933 to the ENL ICN that we classified as unique (Fig. 2), the LIN component in 

question was not reliably estimated, exhibiting an ICASSO quality index (IQ) value of .6186, which 

fell below our ICN estimation reliability threshold (.80) (Iraji et al., 2019b). Previous research 

supports the view that this finding strongly suggests the component is inconsistently extracted 

from the LIN-wFC data and unfit to be analyzed as a LIN ICN despite the similarity of its spatial 

distribution (Himberg et al., 2004; Iraji et al., 2019b). To validate this result, we conducted 100 

additional iterations of gr-sICA on the LIN-wFC and ENL-wFC data. For every additional iteration, 

a randomized subset of subjects comprising 80% of the total subject pool was selected for 

analysis. Gr-sICA parameters were identical to those of the full analysis except for the number of 

Infomax runs, which was equal to five. After gr-sICA, the components extracted from each 

iteration were matched based on their spatial correlation values with ENL components extracted 

from the full analysis. Using a spatial similarity threshold of .80 and the ICN inclusion criteria 

specified in Section 2.4., we determined that the ICN of interest was identified in 78/100 of the 

additional ENL-wFC analyses (Fig. 3A), while it was identified in only 9/100 of the additional LIN-

wFC analyses (Fig. 3B). This result indicates that the ICN in question cannot be reliably estimated 

from LIN-wFC data within a 20-model-order gr-sICA framework. 

 

Fig. 3. Scatterplots of nonlinear whole-brain functional connectivity (ENL-wFC) and linear whole-brain functional 

connectivity (LIN-wFC) group-level spatial independent component analysis (gr-sICA) iterations. Each iteration is 
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plotted according to a colormap reflecting the bilinear mapping between the spatial correlation of the component 

matched with the unique ENL ICN and that component’s ICASSO quality index (IQ) value. The broken lines demarcate 

spatial similarity and IQ thresholds of .80. ENL-wFC gr-sICA iterations (A) cluster within the top right quadrant of the 

plot, indicating that matched components extracted from ENL-wFC analyses generally exhibited suprathreshold spatial 

similarity and suprathreshold ICASSO IQ values. This pattern is not observed in the LIN-wFC plot (B), which reveals 

that most LIN-wFC gr-sICA iterations failed to identify the unique ENL ICN.  

3.5. Corresponding ENL and LIN ICNs Exhibit Unique Spatial Patterns 

Our results indicate that matched ENL and LIN ICNs exhibit distinctive spatial distributions 

(Fig. 4A-J). Gradients are visually observed in ICNs associated with both lower and higher 

cognitive functioning, with many spatially central and core ICN regions (defined as regions that 

attain higher values across the spatial distribution) exhibiting greater ENL weight. For the 

subcortical (SUB) ICN (Fig. 4A), LIN weight is significantly greater within the bilateral caudate 

and putamen, while ENL weight is greater within bilateral thalamus. The cerebellum (CER) (Fig. 

4B) exhibits higher ENL values within vermis lobules I-V and higher LIN values within vermis 

lobules VII-IX and the bilateral cerebellar hemisphere. Among networks associated with visual 

(Smith et al., 2009) and auditory and linguistic (Moerel et al., 2014) functioning, we find that ENL 

weight is predominantly greater within spatially central regions, while LIN weight is greater within 

peripheral areas. For instance, the primary visual (VIS1) ICN (Fig. 4C) exhibits a medial-lateral 

ENL-LIN gradient in the bilateral cortex surrounding the calcarine fissure with greater ENL weight 

within the cuneus. The secondary visual (VIS2) ICN (Fig. 4D) shows higher ENL weight within 

the cuneus and higher LIN weight within the bilateral inferior and middle occipital gyri. Temporal 

(TEMP) ICN (Fig. 4E) spatial variation follows a similar center-periphery pattern, with greater ENL 

weight in the superior temporal gyri and greater LIN weight within the supramarginal gyri and 

bilateral inferior frontal triangularis. 
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Fig. 4. Assessment of intrinsic connectivity network (ICN) spatial variation. Warmer hues indicate ENL > LIN, while 

cooler hues indicate LIN > ENL. Contours indicate statistical significance (q < .05). Displayed ICNs include subcortical 
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(SUB) (A), cerebellum (CER) (B), primary (VIS1) (C) and secondary (VIS2) (D) visual, temporal (TEMP) (E), primary 

(MTR1) (F) and secondary (MTR2) (G) sensorimotor, dorsal attention (ATN) (H), posterior default mode (pDM) (I), and 

right frontoparietal (rFP) (J). Results are overlaid on the ch2bet template with X, Y, and Z coordinates listed relative to 

the origin in Montreal Neurological Institute (MNI) 152 space. Dual code visualization was adapted from sample scripts 

provided by Allen et al. (2012). 

Whereas both the primary and secondary sensorimotor ICNs (MTR1 and MTR2) show ENL-

LIN gradients (Fig. 4F-G), MTR1 comparisons reveal a medial-lateral pattern between the 

paracentral lobules and pre- and postcentral gyri, while MTR2 comparisons reveal an inferior-

superior gradient between the superior temporal lobe and pre- and postcentral gyri. ICNs 

associated with higher cognitive functions such as attention (Szczepanski et al., 2013), social 

cognition and self-referential processing (Wang et al., 2020), and executive control (Niendam et 

al., 2012) exhibit core-periphery gradients. The dorsal attention (ATN) (Fig. 4H) ICN shows higher 

ENL weight in the superior parietal lobules and higher LIN weight in the postcentral gyri. The 

posterior default mode (pDM) ICN (Fig. 4I) exhibits higher ENL values in the precuneus and 

bilateral angular gyri with higher LIN values in the middle and posterior cingulate. The right 

frontoparietal (rFP) ICN (Fig. 4J) exhibits higher ENL values within the angular gyri (particularly 

within the left angular gyrus) and higher LIN values within the right inferior parietal lobule, right 

middle frontal gyrus, and right inferior frontal triangularis.  

3.6. ENL ICN Estimates Exhibit Enhanced Sensitivity to Differences Between HC and SZ, and 

Unique ENL (but Not LIN) ICN Estimates Reflect Group Differences 

ENL estimates exhibit an overall greater degree of sensitivity to differences between HC and 

SZ compared to LIN estimates (p < .001) in addition to revealing a larger total number of significant 

voxels across all comparisons. Moreover, the ENL estimates of ICNs associated with auditory and 

linguistic (Bhaya-Grossman & Chang, 2022; Moerel et al., 2014; Rupp et al., 2022), sensorimotor 

(Caspers et al., 2021), and self-referential (Wang et al., 2020) processes exhibit enhanced 

sensitivity to differences between HC and SZ (Fig. 5A-C). For example, while both sets of 

comparisons detected differences within TEMP ICN regions comprising the primary auditory and 

auditory association cortex, ENL comparisons are more sensitive (p < .001), revealing clusters 

that are more numerous with augmented volumes and effect sizes (Fig. 5A). LIN and ENL testing 

detected higher HC values within the bilateral superior temporal gyri and temporal poles, bilateral 

insula, bilateral Heschl’s gyrus, bilateral Rolandic operculum, and right middle temporal gyrus 

along with higher SZ values within the right supramarginal gyrus. However, ENL comparisons 

revealed larger numbers of significant voxels across these regions. Additionally, ENL comparisons 

uncovered higher HC values within the left middle temporal gyrus and higher SZ values within the 
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left supramarginal gyrus, both of which were missed for significance by LIN comparisons. We 

visually observe that TEMP regions showing higher values for HC exhibit higher ENL values 

compared to LIN (as revealed by our assessment of spatial variation; Section 3.5.) with the 

exception of the left middle temporal gyrus, while TEMP regions showing higher SZ values exhibit 

higher LIN values relative to ENL. 
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Fig. 5. Statistical comparisons between subject-level temporal (TEMP) (A), secondary sensorimotor (MTR2) (B), 

posterior default mode (pDM) (C), and unique ENL (D) ICN estimates derived from distinct clinical cohorts (HC and 
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SZ). In A-C, results from LIN comparisons are located on the left, while results from ENL comparisons are located on 

the right. Warmer hues indicate HC > SZ, while cooler hues indicate SZ > HC. Contours indicate statistical significance 

(q < .05). Results are overlaid on the ch2bet template with X, Y, and Z coordinates listed relative to the origin in MNI 

152 space. Dual code visualization was adapted from sample scripts provided by Allen et al. (2012). 

A similar pattern of higher ENL sensitivity was obtained for secondary sensorimotor (MTR2) 

(Fig. 5B) (p < .001) and posterior default mode (pDM) (Fig. 5C) (p < .001) comparisons. For 

MTR2, both sets of comparisons revealed greater MTR2 weights for HC in the bilateral postcentral 

gyri. However, ENL comparisons detected more extensive clusters along with the additional 

finding that HC exhibit greater MTR2 values within the bilateral posterior insula. For pDM 

estimates, ENL comparisons revealed clusters of significantly higher values for SZ within the 

precuneus and left angular gyrus, while LIN comparisons identified only two significant voxels. 

Visual inspection reveals that ENL pDM regions showing higher SZ values also exhibit higher 

ENL values within the pDM ENL-LIN spatial gradient (Section 3.5.). We note that LIN estimates 

exhibit a greater degree of statistical sensitivity for cerebellum (CER) (p < .001), primary visual 

(VIS1) (p < .001), secondary visual (VIS2) (p < .001), primary sensorimotor (MTR1) (p < .05), and 

right frontoparietal (rFP) (p < .001) ICNs. While unique LIN ICN comparisons failed to detect any 

significant group differences, we found that unique ENL ICN comparisons revealed a cluster of 

voxels within the left anterior insula that distinguish clinical cohorts, with HC exhibiting significantly 

greater values than SZ (Fig. 5D). Results from all clinical cohort voxel-wise statistical 

comparisons and sensitivity tests can be found in Supplemental Material Table S1 and Table S2. 

4. Discussion 

Linear FC analysis remains a fruitful method for extracting valuable information from fMRI 

data. However, despite its usefulness and ease of interpretation, various brain processes also 

exhibit nonlinear aspects (Friston, 2001; Singer, 2013), suggesting that linear FC provides us with 

a limited view of the data and neurocognitive hypothesis space. While previous rsfMRI studies 

have identified evidence of nonlinearity and its prospective role in differentiating clinical cohorts 

(Morioka et al., 2020; Motlaghian et al., 2022; Motlaghian et al., 2023), here we advance a novel 

approach to estimate ICNs from explicitly nonlinear whole-brain FC (ENL-wFC) constructed from 

residual distance correlation information, demonstrating the potential of connectivity domain ICA 

(Iraji et al., 2016) and nonlinear information to shape the predictive clinical landscape and inform 

systems neuroscience theorizing. 

We find that ICN estimates extracted from ENL-wFC exhibit higher reliability than those 

extracted from LIN-wFC (Section 3.2.), and that unique ICNs are identified from each FC 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2023. ; https://doi.org/10.1101/2023.11.16.566292doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.16.566292
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

estimator (Section 3.3.). Our validation analysis (Section 3.4.) supports these findings. That our 

approach can recover ICNs that would be missed by conventional linear FC analysis underscores 

the importance of bringing nonlinearity within the scope of fMRI FC research, as ICNs estimated 

from connectivity patterns that are not present in LIN-wFC may be altered in psychiatric conditions 

such as SZ. 

We also find that corresponding (spatially matched) ICNs exhibit striking ENL-LIN spatial 

gradients (Section 3.5.). Among potential explanations for our findings, the presence of greater 

ENL weight within core ICN regions could be reflective of stronger signal within core areas. 

However, we note that this explanation does not align with the detection of differences between 

HC and SZ cohorts (Section 3.6.). Conceptually, the ICNs extracted from ENL-wFC represent 

independent data sources comprised of elements whose distance correlation values deviate from 

a linear relationship with Pearson correlation. Therefore, the identified gradients may reflect actual 

differences in the complexity of the underlying FC relationships, which would merit further 

investigation of their potential cognitive and clinical significance. Future work will investigate 

potential explanations of the observed gradients. 

Furthermore, the finding that ENL estimates exhibit an overall greater degree of sensitivity to 

differences between HC and SZ compared to LIN demonstrates the potential of nonlinear 

information to play a role within predictive models of diagnosis. The ENL counterparts of specific 

ICNs that have been reported as disrupted in SZ including temporal (TEMP), secondary 

sensorimotor (MTR2), and posterior default mode (pDM) exhibit heightened sensitivity to 

differences between HC and SZ vs. LIN (Section 3.6.). ENL TEMP comparisons revealed larger 

clusters of voxels within auditory and language-related regions that have been previously 

associated with SZ and positive symptoms such as auditory verbal hallucinations in both tfMRI 

(Calhoun et al., 2012; Kim et al., 2009) and rsfMRI (Alderson-Day et al., 2015; Iraji et al., 2019b). 

For example, ENL testing revealed expansive clusters within the superior temporal gyri, which are 

known to implement acoustic-phonetic computations (Bhaya-Grossman & Chang, 2022). Notably, 

ENL TEMP comparisons also identified a sizable volume attaining significantly higher SZ values 

within the right supramarginal gyrus, which has been shown to play a role in phonological 

decision-making (Hartwigsen et al., 2010). By contrast, the right supramarginal gyrus was almost 

entirely missed for significance by LIN TEMP comparisons. We find that ENL MTR2 comparisons 

revealed greater numbers of significant voxels compared to LIN within sensorimotor regions 

previously implicated in SZ (Kaufmann et al., 2015; Iraji et al., 2019b) as well as clusters within 

the bilateral posterior insula hidden from LIN MTR2 comparisons. Moreover, ENL pDM testing 
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revealed SZ hyperconnectivity within the precuneus and left angular gyrus that were missed by 

LIN analysis, which are core regions of the pDM that have been associated with reflective, 

internally focused cognitive processes thought to be relevant to SZ diagnosis and symptoms 

(Garrity et al., 2007). Additionally, unique LIN ICN comparisons failed to distinguish clinical cohorts 

while unique ENL ICN comparisons identified higher values for HC within the left anterior insula, 

which is characteristically associated with an ICN involved in event and stimulus salience 

processing known to be compromised in SZ (Palaniyappan & Liddle, 2012). Overall, our results 

demonstrate that nonlinear statistical dependencies in fMRI data can be leveraged to distinguish 

clinical cohorts and warrant further investigation of the relationship between features extracted 

from measures that are sensitive to nonlinearity and the presentation of psychosis. 

While our previous work proposed this conceptual framework (Iraji et al., 2023b), here we 

advance and rigorously investigate the framework by providing an in-depth quantitative analysis 

of ENL and LIN ICNs, their spatial variation, and their sensitivity to differences between HC and 

SZ cohorts. However, the current analysis has methodological and interpretive limitations that are 

important to recognize. First, we note that alternative models of the relationship between NL-wFC 

and LIN-wFC can be leveraged when estimating ENL-wFC. Therefore, we do not claim that the 

current method of estimation is decisive or definitive to the potential exclusion of methods 

designed to estimate ENL-wFC using alternative models. Future work will investigate the use of 

alternative models with the aim of providing increasingly robust and precise characterizations of 

whole-brain connectivity features not present within linear connectivity patterns. Second, we note 

that while our approach may share certain conceptual similarities with methods that construct 

nonlinear fMRI connectivity using features derived from time series (pairwise) relationships 

(Motlaghian et al., 2022; Motlaghian et al., 2023), we do not necessarily expect the findings of 

these distinct approaches to converge due to substantial differences in methodology (Section 1.). 

Thus, we leave any speculation about the relationship between features extracted from these 

methods as an open empirical question for future investigation. Finally, while our results warrant 

further investigation into the potential neurocognitive and psychiatric roles of ENL ICNs, we 

maintain that going beyond association will likely require developing interventions that can 

effectively tie the extracted features to the causal outcomes of cognitive operations, psychiatric 

diagnosis, and symptoms. 

Ongoing and future work will also focus on replicating our results in large-scale B-SNIP 

transdiagnostic rsfMRI data sets (Meda et al., 2012; Meda et al., 2015), on utilizing ENL ICNs to 

distinguish a broader array of clinical cohorts, on analyzing associations with cognitive and 
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symptom scores, and on analyzing the temporal (Iraji et al., 2021) and spatial (Bhinge et al., 2019; 

Iraji et al., 2020; Long et al., 2021) dynamics exhibited by ENL ICNs during task performance and 

at rest. 

5. Conclusion 

Here, we advance a novel approach to estimate ICNs from explicitly nonlinear whole-brain FC 

(ENL-wFC). We demonstrate that our approach reveals unique spatial variation within the ENL 

estimates of ICNs identified within the existing literature and that spatially common as well as 

unique ENL ICNs thought to be relevant to SZ and its symptoms exhibit heightened sensitivity to 

differences between HC and SZ cohorts. In summary, our research emphasizes the importance 

of bringing nonlinearity within the aperture of fMRI FC analysis and the power of connectivity 

domain ICA to transform predictive clinical and systems neuroscience research. 
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