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Abstract

Functional magnetic resonance imaging (fMRI) studies often estimate brain intrinsic
connectivity networks (ICNs) from temporal relationships between hemodynamic signals using
approaches such as independent component analysis (ICA). While ICNs are thought to represent
functional sources that play important roles in various psychological phenomena, current
approaches have been tailored to identify ICNs that mainly reflect linear statistical relationships.
However, the elements comprising neural systems often exhibit remarkably complex nonlinear
interactions that may be involved in cognitive operations and altered in psychiatric conditions such
as schizophrenia. Consequently, there is a need to develop methods capable of effectively
capturing ICNs from measures that are sensitive to nonlinear relationships. Here, we advance a
novel approach to estimate ICNs from explicitly nonlinear whole-brain functional connectivity
(ENL-wFC) by transforming resting-state fMRI (rsfMRI) data into the connectivity domain, allowing
us to capture unique information from distance correlation patterns that would be missed by linear

whole-brain functional connectivity (LIN-wFC) analysis.
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Our findings provide evidence that ICNs commonly extracted from linear (LIN) relationships
are also reflected in explicitly nonlinear (ENL) connectivity patterns. ENL ICN estimates exhibit
higher reliability and stability, highlighting our approach's ability to effectively quantify ICNs from
rsfMRI data. Additionally, we observed a consistent spatial gradient pattern between LIN and ENL
ICNs with higher ENL weight in core ICN regions, suggesting that ICN function may be subserved
by nonlinear processes concentrated within network centers. We also found that a uniquely
identified ENL ICN distinguished individuals with schizophrenia from healthy controls while a
uniquely identified LIN ICN did not, emphasizing the valuable complementary information that can
be gained by incorporating measures that are sensitive to nonlinearity in future analyses.
Moreover, the ENL estimates of ICNs associated with auditory, linguistic, sensorimotor, and self-
referential processes exhibit heightened sensitivity towards differentiating between individuals
with schizophrenia and controls compared to LIN counterparts, demonstrating the translational
value of our approach and of the ENL estimates of ICNs that are frequently reported as disrupted
in schizophrenia. In summary, our findings underscore the tremendous potential of connectivity
domain ICA and nonlinear information in resolving complex brain phenomena and revolutionizing

the landscape of clinical FC analysis.

Keywords: nonlinear, functional connectivity (FC), distance correlation, independent component

analysis (ICA), intrinsic connectivity network (ICN), schizophrenia (SZ)

1. Introduction

Brain function is underpinned by interacting assemblies of neurons organized at various
spatial and temporal scales. At the whole-brain level, functional magnetic resonance imaging
(fMRI) analysis is a non-invasive tool that has commonly been used to estimate coherent neuronal
ensembles from statistical relationships between blood-oxygenation-level-dependent (BOLD)
time series, which is often called functional connectivity (FC). Although the relationship between
the BOLD signal and neural activity is indirect (Logothetis et al., 2003), experimentally induced
and resting-state BOLD fluctuations are typically associated with changes in local field potentials
across multiple frequency bands (Logothetis et al., 2001; Magri et al., 2012; Pan et al., 2013; Shi
et al., 2017), indicating that fMRI FC analysis is a promising tool for advancing the identification
of task-related and spontaneously emerging networks of interacting brain regions. Moreover, fMRI
FC analysis is deployable within a wide range of predictive clinical contexts. For example, multiple
large-scale meta-analyses have shown that FC can be used to distinguish healthy controls (HC)
from individuals with schizophrenia (SZ) (Dong et al., 2018; Li et al., 2019; Sheffield & Barch,

2016). Such studies have contributed to an accumulation of evidence for the SZ “dysconnection
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hypothesis” (Friston et al., 2016), which posits FC alteration as a central endophenotype of the

disorder resulting from neuromodulatory and synaptic pathogenesis.

However, FC studies are typically designed to estimate networks that reflect linear statistical
relationships between brain areas (Friston, 2011; Mohanty et al., 2020). As a result, the
remarkably complex nonlinear interactions inherent to neural systems have remained largely
outside of the focal lens of FC research (Friston, 2001; He & Yang, 2021; Singer, 2013). We
highlight three ways in which bringing nonlinear dependence to the fore has potential to advance
systems, cognitive, and predictive neuroscientific research. First, the analysis of nonlinear
statistical relationships may lead to a more precise and thorough characterization of the
organization and dynamics of neural ensembles at multiple scales (He & Yang, 2021; Iraji et al.,
2022b; Iraji et al., 2023a). Second, nonlinear interactions may have cognitive and behavioral
relevance. In principle, nonlinearity is thought to underpin a high-dimensional state space capable
of supporting a set of flexible and diverse neural computations (Friston, 2001; Singer, 2013), such
that analyzing its functional role may shed light on the structure of cognitive processing and the
deficiencies associated with psychiatric disorders and symptoms. Third, measures that are
sensitive to nonlinearity can be leveraged to develop biomarkers that can be incorporated within

brain-based predictive models of mental iliness, or “predictomes” (Rashid & Calhoun, 2020).

Among available FC analysis methods, independent component analysis (ICA) is a powerful
multivariate source separation technique that has been applied to fMRI data. ICA assumes that
the data is a linear mixture of statistically independent source signals and aims to estimate an
unmixing matrix yielding components that optimally approximate these signals (Adali et al., 2014;
Comon & Jutten, 2010). In the context of fMRI analysis, spatial ICA (sICA) has commonly been
used to decompose fMRI time series data into a set of intrinsic connectivity networks (ICNs),
where the spatial pattern of an ICN describes its distribution across voxels and the temporal
pattern describes its activity over time (Calhoun et al., 2008; Calhoun et al., 2009; Iraji et al.,
2022a; Seeley et al., 2007). ICNs can be robustly and consistently identified from both resting-
state fMRI (rsfMRI) (Calhoun et al., 2008; Damoiseaux et al., 2006; Iraji et al., 2022a) and task-
based fMRI (tfMRI) time series data (Calhoun et al., 2008; Calhoun et al., 2009; Laird et al., 2011;
Wu et al., 2021) at different spatial scales (Iraji et al., 2019a; Iraji et al., 2022b; Iraji et al., 2023a).
ICNs can also be reliably extracted from FC matrices constructed from second-order statistics
such as Pearson correlation (i.e., from the connectivity domain) (Iraji et al., 2016; Wu et al., 2018).
Connectivity domain ICA is a type of feature-based analysis (Calhoun & Allen, 2013) that yields

cross-validating components and is distinguished from time domain ICA by unique benefits
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including consistency across changes in particular analysis parameters and reproducibility (Iraji
et al., 2016). Moreover, the Pearson correlation coefficient is one out of an expanding range of
FC metrics that can be used to construct the connectivity basis, making connectivity domain ICA

an incredibly versatile tool (Iraji et al., 2016).

Connectivity domain and time domain ICA have become valuable tools for investigating fMRI
data. However, both methods are typically designed to identify ICNs comprised of covarying brain
regions, reflecting linear FC (Calhoun et al., 2009; Iraji et al., 2016; Wu et al., 2018). Although
recent advancements have made strides in incorporating nonlinearity (Hyvarinen et al., 2019;
Morioka et al., 2020) such as learning local spatial or temporal nonlinear structures, the estimated
functional sources still do not effectively quantify nonlinear FC. Here, we advance a novel
connectivity domain ICA approach to extract ICNs from explicitly nonlinear whole-brain FC (ENL-
wFC) estimated from distance correlation (Székely et al., 2007) patterns that move beyond those
constructed from Pearson correlation. Although alternative metrics can be used to quantify fMRI
connectivity while accounting for higher-order statistics (Bhinge et al., 2019; Motlaghian et al.,
2022; Motlaghian et al., 2023), distance correlation is a powerful and flexible dependence metric
that remains relatively underexplored in the context of FC research. Moreover, the proposed
method is unique in that we conceive of ENL-wFC as a global feature of the connectivity space,
rather than as a composite feature constructed from the explicitly nonlinear associations between
time series pairs (Motlaghian et al., 2022; Motlaghian et al., 2023). This allows us to leverage the
potentially valuable information present within global connectivity features that move beyond the

connectivity features constructed from Pearson correlation.

We find that our method is capable of effectively extracting ICNs from ENL-wFC. Our results
show that many ICNs extracted from linear whole-brain FC (LIN-wFC) information are also
reflected within ENL-wFC, although we find that ENL ICNs are estimated more reliably, and that
corresponding ICNs exhibit graded spatial variation with greater ENL weight within many core
regions. We also identify unique ENL and LIN ICNs, indicating that our approach can recover
ICNs that are hidden from conventional linear FC analyses. Furthermore, we find that ENL ICN
estimates are more sensitive to differences between HC and SZ overall in addition to being more
sensitive for specific ICNs that have been previously reported as altered in SZ, demonstrating
that ENL ICNs can be leveraged within a predictive clinical context. More generally, we
demonstrate that connectivity domain ICA is a powerful and flexible tool that is uniquely poised to

transform clinical FC analysis and advance our understanding of brain function.
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2. Materials and Methods
2.1. Subject Information, Data Acquisition, and Subject Quality Control Criteria

We analyzed 3-Tesla resting-state fMRI (rsfMRI) time series data sourced from three
psychosis projects: Center for Biomedical Research Excellence (COBRE), Functional Imaging
Biomedical Informatics Research Network (FBIRN), and Maryland Psychiatric Research Center
(MPRC) (Table 1). Detailed subject recruitment information for COBRE, FBIRN, and MPRC
studies can be respectively found in Aine et al. (2017), Damaraju et al. (2014), and Adhikari et al.
(2019).

Table 1. Subject demographic information. COBRE: Center for Biomedical Research Excellence. FBIRN:
Functional Imaging Biomedical Informatics Research Network. MPRC: Maryland Psychiatric Research Center. HC:

healthy control. SZ: schizophrenia.

COBRE HC (75) Male (56) 39.27 +12.13 39/(65-18)
Female (19) 35.47 +10.02 34/ (58 - 18)

SZ (51) Male (45) 37.36 + 15.28 33/(64 -19)

Female (6) 40.83 +17.70 44 | (65 - 20)

FBIRN HC (88) Male (60) 36.58 + 10.74 39/(59-19)
Female (28) 36.61 + 11.07 33/(58 - 19)

SZ (60) Male (52) 39.54+11.12 41/ (60 - 18)

Female (8) 35.88 +9.85 34/ (51 -24)

MPRC HC (152) Male (69) 38.99 + 13.22 41/ (68 - 18)
Female (83) 39.93+14.93 43/ (64 - 16)

SZ (82) Male (57) 36.25 + 13.54 33/(63 - 13)

Female (25) 44.68 +11.92 47 /(61 -13)

Individuals with SZ from the COBRE dataset received a diagnosis of schizophrenia performed
in consensus by two research psychiatrists via the Structured Clinical Interview for DSM-1V Axis |
Disorders (SCID) using the patient version of the SCID-DSM-IV-TR (Aine et al., 2017). SZ
subjects were evaluated for comorbidities and for retrospective as well as prospective clinical
stability. Individuals with SZ from the FBIRN study were diagnosed with schizophrenia based on

the SCID-DSM-IV-TR and were clinically stable for at least two months prior to scanning
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(Damaraju et al., 2014). For MPRC SZ subjects, a diagnosis of schizophrenia was confirmed via
the SCID-DSM-IV (Adhikari et al., 2019).

COBRE data were collected at a single site on a Siemens TIM Trio scanner via an echo-planar
imaging sequence (TR = 2000 ms; TE = 29 ms) (Iraji et al., 2022b). Voxel spacing was 3.75 x
3.75 x 4.5 mm, the slice gap was 1.05 mm, and the field of view (FOV) was 240 x 240 mm. FBIRN
data were collected from seven sites (Turner et al., 2013), with six sites utilizing Siemens TIM Trio
scanners and one utilizing a General Electric Discovery MR750 (Iraji et al., 2022b). All seven sites
used an echo-planar imaging sequence (TR = 2000 ms; TE = 30 ms). Original voxel spacing was
3.4375 x 3.4375 x 4 mm, the slice gap was 1 mm, and the FOV was 220 x 220 mm. MPRC data
were collected from three sites via echo-planar imaging sequences (Friston, 2011; Iraji et al.,
2022b). One site used a Siemens Allegra scanner (TR = 2000 ms; TE = 27 ms; voxel spacing =
3.44 x 3.44 x 4 mm; FOV = 220 x 220 mm), another used a Siemens TIM Trio scanner (TR = 2210
ms; TE = 30 ms; voxel spacing = 3.44 x 3.44 x 4 mm; FOV = 220 x 220 mm), and the third site
used a Siemens TIM Trio scanner (TR = 2000 ms; TE = 30 ms; voxel spacing =1.72 x 1.72 x 4
mm; FOV = 220 x 220 mm).

The following subject quality control criteria (Iraji et al., 2023a) were used for the current study:
1) maximum head rotations of less than 3° and maximum translations of less than 3 mm, 2) mean
framewise displacement (FD) less than 0.25, 3) quality registration to an echo-planar imaging
template, 4) and whole-brain (in addition to the top ten and bottom ten slices) spatial overlap
between the subject mask and group mask greater than 80%. The final subject pool included 315
HC and 193 SZ (n = 508).

2.2. Preprocessing

Preprocessing was performed primarily within the MATLAB software environment using
Statistical Parametric Mapping (SPM12; http://www.fil.ion.ucl.ac.uk/spm/) and the FMRIB
Software Library (FSL v6.0; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). Preprocessing steps included 1)
rigid body motion and slice timing correction, 2) nonlinear warping to Montreal Neurological
Institute (MNI) 152 coordinate space, 3) spatial resampling to 3 mm isotropic voxel spacing, 4)
spatial smoothing with a 6 mm full width at half maximum (FWHM) Gaussian kernel, 5) head
motion regression, detrending, despiking, low pass filtering, 6) temporal resampling to TR = 2000

ms, and finally 7) voxel time series Z-scoring to normalize variance.


https://doi.org/10.1101/2023.11.16.566292
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.16.566292; this version posted November 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

2.3. Constructing Linear and Explicitly Nonlinear Whole-Brain Voxel-Wise Functional Connectivity

We construct linear as well as explicitly nonlinear global (voxel-wise) FC matrices for every
subject (Fig. 1) (Iraji et al., 2023b). Let X € R™™” be a sample of rsfMRI data where n is the
number of time points, v is the number of voxels within the brain, and x and y represent any two
preprocessed voxel time series such that x, y € R, Thus, x; is the value of voxel x at time point
i. We estimate each subject’s linear whole-brain FC (LIN-wFC) as the covariance (Cov) across
all pairs of brain voxels (Eq. 1). Because voxel time courses were Z-scored during preprocessing,
the pairwise covariance is equal to the pairwise Pearson correlation, which is conventionally used

to estimate linear FC.
1
LINyfc,,, = Cov(x,y) = —y i=1(x)(v:) (Eq.1)

Next, we calculate the voxel-wise distance correlation (Székely et al., 2007) to construct
nonlinear whole-brain FC (NL-wFC). Distance correlation is a representation of the association
between random vectors based on Euclidean distances between sample observations (Székely
et al., 2007) (Eq. 2).

. dCorr(x.) dCov(x,y) h (Eq.2)
= orr(x,y) = ,Where q.
WFCyy Jadvar(x)dvar(y)
ISR
dcovr%(x’y) = —ZZZA] kB] k» and
n j=1k=1

The squared sample distance covariance (dCov?) is calculated as the arithmetic average of the
products AB. A and B represent the doubly centered Euclidean distance matrices of rsfMRI voxel

time series x and y such that
Gr= - xl, jk=12.,n
big= lyi—wl.  Jjk=12.,n
Ajpy=ajx — Q. — aQyp — a.,

Bj,k = bj,k - b] - b-k - b
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We note that distance correlation is sensitive to both linear and nonlinear dependence relations,
and that the distance correlation between random vectors is zero if and only if the vectors are
independent (Székely et al., 2007).

Because we are interested in analyzing the distance correlation connectivity patterns not
present within Pearson correlation patterns, we remove the effect of LIN-wFC on NL-wFC using
an ordinary least squares approach to estimate the explicitly nonlinear whole-brain FC (ENL-wFC)
for each subject (Eq. 3). To estimate ENL-wFC, we first vectorize both NL-wFC and LIN-wFC. We
then remove any linear relationship between NL-wFC and LIN-wFC using a regression-based

method and reshape the vector of residuals into a v X v FC matrix.

ENLypc = vec Y (vec(NLype) — @ X vec(LINygc)), where (Eq.3)

mnjn Z((vec(NLch))i — (vec(LINypc))i)?
i=1

We treat the estimation of a as an ordinary least squares problem by finding the value of @ which
minimizes the sum of squared errors between NL-wFC and LIN-wFC. Thus, here we define the
ENL-wFC for a given subject as the NL-wFC information with the linear effect of LIN-wFC
removed. For each subject, the goodness of fit of the linear model was evaluated via the
coefficient of determination (R?). To assess the difference in R? between HC and SZ cohorts, we
used a general linear model (GLM) to remove the effect of confounding factors including age, sex,
site, and mean framewise displacement on the goodness of fit data, and we subsequently
conducted a two-sided permutation test with 5000 random permutations (Krol, 2023;

https://github.com/Irkrol/permutationTest).
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Fig. 1. Schematic of the analysis pipeline. Preprocessed resting-state fMRI (rsfMRI) data is transformed to the

connectivity domain using covariance (Cov), as a linear functional connectivity (FC) estimator, and distance correlation
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(dCorr), which is sensitive to both linear and nonlinear associations between voxel time series, as a nonlinear FC
estimator. Explicitly nonlinear whole-brain functional connectivity (ENL-wFC) is obtained by removing the nonlinear
whole-brain functional connectivity (NL-wFC) information that is linearly explained by linear whole-brain functional
connectivity (LIN-wFC). Group-level spatial independent component analysis (gr-sICA) is implemented in the
connectivity domain on LIN-wFC and ENL-wFC to estimate separate sets of intrinsic connectivity networks (LIN and
ENL ICNs). Group information-guided ICA (GIG-ICA) is then used to estimate subject-specific ICNs, and statistical
analysis is conducted on the subject-level spatial maps.

2.4. Extracting Intrinsic Connectivity Networks (ICNs)
We used the Group ICA of fMRI Toolbox (GIFT v4.0; http://trendscenter.org/software/gift) (Iraji

et al., 2021) to implement connectivity domain ICA (Iraji et al., 2016) and obtain separate sets of
group-level ICNs from the LIN-wFC and ENL-wFC data. The implementation of group-level spatial
independent component analysis (gr-sICA) was preceded by an initial subject-level multi-power
iteration (Rachakonda et al., 2016) principal component analysis (PCA) step to reduce
dimensionality and denoise the data (Erhardt et al. 2011). The 30 principal components (PCs) that
explained the maximum variance of each subject’s respective LIN-wFC and ENL-wFC were
retained for further analysis. Subject-level PCs for each FC estimator were concatenated across
the component dimension, and a group-level PCA step was applied to further reduce the
dimensionality of the data and decrease the computational demands of gr-sICA (Calhoun et al.,
2009). The 20 group-level PCs that explained the maximum variance of each estimator-specific
data set were used as the input for gr-sICA. We selected a gr-sICA model order of 20 to obtain
large-scale ICNs (Iraji et al., 2016; Ray et al., 2013). To ensure the reliability of our results, ICA
was implemented via the Infomax optimization algorithm (Bell & Sejnowski, 1995) 100 times with
both random initialization and bootstrapping, and the most stable run was selected for further
analysis. We evaluated the reliability and quality of ENL and LIN components using the ICASSO
quality index (I1Q), which quantifies component stability across runs (Himberg et al., 2004). To
assess the difference in stability between ENL and LIN components, we conducted a two-sided
permutation test with 5000 random permutations on the 1Q data. Assessing component reliability
was a necessary step, as previous work demonstrates that certain components may be
inconsistently extracted from the data of interest (Himberg et al., 2004). In the context of fMRI
ICN estimation, ICASSO IQ is often used to differentiate reliable components from components
that are unstable and unfit for further analysis (Iraji et al., 2019b). A component was identified as
an ICN if and only if 1) it exhibited an ICASSO IQ value exceeding .80, 2) it exhibited high visual
overlap with gray matter, 3) it exhibited peak weight within gray matter, and 4) it exhibited low
visual similarity to motion, ventricular, and other known artifacts. To find spatially corresponding

ICNs, the spatial correlation value was computed between every pair of extracted LIN and ENL
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components, and components were matched in a greedy fashion. ICNs matched with a spatial
correlation value exceeding .80 were classified as common (Iraji et al., 2023a) and were labeled
based on their neuroanatomical distributions and the identification of ICNs from previous studies
(Iraji et al., 2016). ICNs exhibiting maximum spatial correlation less than .40 were classified as
unique. We used the Group ICA of fMRI Toolbox (GIFT v4.0) to implement group information-
guided ICA (GIG-ICA) (Du & Fan, 2013) and reconstruct subject-specific ICNs from subject-level

PCs using the group-level spatial references.

2.5. Assessment of Spatial Variation Among Corresponding ICNs

To assess differences in spatial variation between matched ICNs, we conducted voxel-wise
paired samples two-sided t-tests on their Z-scored subject-level estimates. For a given matched
ICN pair, statistical comparisons were masked for voxels exceeding Z = 1.96 (p = .05) in either
group-level map (LIN or ENL), and the False Discovery Rate (FDR) method was used to correct
for multiple comparisons (g < .05) (Benjamini & Hochberg, 1995). The automated anatomical
labeling atlas 3 (AAL3) (Rolls et al., 2020) was used to localize clusters of significant voxels to

anatomically defined brain regions.

2.6. Assessment of ICN Differences Between HC and SZ

To assess ICN differences between HC and SZ, we conducted voxel-wise independent
samples t-tests between the estimates of common and unique ICNs derived from each cohort.
We first used a GLM to remove the effect of confounding factors including age, sex, site, and
mean framewise displacement on Z-scored subject-level ICN estimates. Voxel-wise independent
samples two-sided t-tests were then conducted on the residual spatial maps derived from the HC
and SZ groups. Common ICN statistical comparisons were masked for voxels exceeding Z = 1.96
(p = .05) in either of the group-level maps (LIN or ENL), while unique ICN comparisons were
masked for voxels exceeding the same threshold in the unique group-level map. The FDR method
(Benjamini & Hochberg, 1995) was used to correct for multiple comparisons (g < .05). The AAL3
atlas (Rolls et al., 2020) was used to localize clusters of significant voxels to anatomically defined
brain regions. McNemar’s test or an exact binomial test (for n < 25) was used to assess the
difference in statistical sensitivity between ENL and LIN estimates for every common ICN as well

as across all common comparisons.
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3. Results
3.1. Goodness of Fit

Goodness of fit statistics (R?) for linear regression of LIN-wFC on NL-wFC were mean +
standard deviation = .5337 + .2009; maximum — minimum = .9413 - .0173. This indicates that,
on average, much of the NL-wFC variance is captured by a linear fit. R? is significantly higher for
HC vs. SZ (p < .001, observed difference = .1203, Hedges’s g = 0.6971). The observed

Hedges’s g value indicates the presence of a medium to large effect size.

3.2. Component Estimation Reliability is Greater for ENL-wFC vs. LIN-wFC

Components estimated from ENL-wFC exhibit significantly higher estimation reliability
(ICASSO IQ) compared to components estimated from LIN-wFC (p < .001, observed difference
=.037, Hedges’s g = 0.6441). The observed Hedges'’s g value indicates the presence of a medium
to large effect size. ENL stability indices were mean * standard deviation = .9694 + .0057;
maximum — minimum = .9800 - .9579. LIN stability indices were mean % standard deviation =
.9324 + .0810; maximum — minimum = .9770 — .6186.

3.3. Common and Unique ICNs are Identified from ENL-wFC and LIN-wFC
Within our 20-model-order gr-sICA framework, 13 ENL ICNs and 14 LIN ICNs were identified

(Fig. 2). Among the identified ICNs, 10 exhibited maximum spatial similarity values exceeding
0.80 between their ENL and LIN estimates. These ICNs were classified as common to both ENL-
wFC and LIN-wFC based on the defined criterion (Section 2.4.). Among the remaining ICNs, 2
ENL ICNs and 3 LIN ICNs exhibited maximum spatial similarity values between .40 and .80.
Although several of the aforementioned ICNs attained relatively high maximum spatial similarity,
we noticed distinct intensity differences across their neuroanatomical distributions which
prevented common classification and labeling. Furthermore, our analysis uncovered a LIN ICN
and an ENL ICN exhibiting maximum spatial similarity less than .40. These ICNs were classified

as unique based on our uniqueness criterion (Section 2.4.).
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Fig. 2. Intrinsic connectivity networks (ICNs) obtained from linear whole-brain functional connectivity (LIN-wFC)

and explicitly nonlinear whole-brain functional connectivity (ENL-wFC) group-level spatial independent component
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analysis (gr-sICA) in the connectivity domain. ICNs are displayed thresholded at Z = 1.96 (p = .05) on the ch2bet
template in order of maximum spatial similarity. Common ICNs (maximum similarity > .80) include primary visual (VIS1),
primary sensorimotor (MTR1), secondary sensorimotor (MTR2), secondary visual (VIS2), right frontoparietal (rFP),
cerebellum (CER), subcortical (SUB), posterior default mode (pDM), temporal (TEMP), and dorsal attention (ATN).
ICNs exhibiting maximum similarity between .40 - .80 and unique ICNs (maximum similarity < .40) are also displayed.

3.4. ENL ICN Uniqueness: Validation

Although the spatial distribution of a component extracted from LIN-wFC gr-sICA showed
similarity of .8933 to the ENL ICN that we classified as unique (Fig. 2), the LIN component in
question was not reliably estimated, exhibiting an ICASSO quality index (IQ) value of .6186, which
fell below our ICN estimation reliability threshold (.80) (Iraji et al., 2019b). Previous research
supports the view that this finding strongly suggests the component is inconsistently extracted
from the LIN-wFC data and unfit to be analyzed as a LIN ICN despite the similarity of its spatial
distribution (Himberg et al., 2004; Iraji et al., 2019b). To validate this result, we conducted 100
additional iterations of gr-sICA on the LIN-wFC and ENL-wFC data. For every additional iteration,
a randomized subset of subjects comprising 80% of the total subject pool was selected for
analysis. Gr-sICA parameters were identical to those of the full analysis except for the number of
Infomax runs, which was equal to five. After gr-sICA, the components extracted from each
iteration were matched based on their spatial correlation values with ENL components extracted
from the full analysis. Using a spatial similarity threshold of .80 and the ICN inclusion criteria
specified in Section 2.4., we determined that the ICN of interest was identified in 78/100 of the
additional ENL-wFC analyses (Fig. 3A), while it was identified in only 9/100 of the additional LIN-
wFC analyses (Fig. 3B). This result indicates that the ICN in question cannot be reliably estimated

from LIN-wFC data within a 20-model-order gr-sICA framework.
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Fig. 3. Scatterplots of nonlinear whole-brain functional connectivity (ENL-wFC) and linear whole-brain functional

connectivity (LIN-wFC) group-level spatial independent component analysis (gr-sICA) iterations. Each iteration is
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plotted according to a colormap reflecting the bilinear mapping between the spatial correlation of the component
matched with the unique ENL ICN and that component’s ICASSO quality index (IQ) value. The broken lines demarcate
spatial similarity and 1Q thresholds of .80. ENL-wFC gr-sICA iterations (A) cluster within the top right quadrant of the
plot, indicating that matched components extracted from ENL-wFC analyses generally exhibited suprathreshold spatial
similarity and suprathreshold ICASSO IQ values. This pattern is not observed in the LIN-wFC plot (B), which reveals
that most LIN-wFC gr-sICA iterations failed to identify the unique ENL ICN.

3.5. Corresponding ENL and LIN ICNs Exhibit Unique Spatial Patterns

Our results indicate that matched ENL and LIN ICNs exhibit distinctive spatial distributions
(Fig. 4A-J). Gradients are visually observed in ICNs associated with both lower and higher
cognitive functioning, with many spatially central and core ICN regions (defined as regions that
attain higher values across the spatial distribution) exhibiting greater ENL weight. For the
subcortical (SUB) ICN (Fig. 4A), LIN weight is significantly greater within the bilateral caudate
and putamen, while ENL weight is greater within bilateral thalamus. The cerebellum (CER) (Fig.
4B) exhibits higher ENL values within vermis lobules |-V and higher LIN values within vermis
lobules VII-IX and the bilateral cerebellar hemisphere. Among networks associated with visual
(Smith et al., 2009) and auditory and linguistic (Moerel et al., 2014) functioning, we find that ENL
weight is predominantly greater within spatially central regions, while LIN weight is greater within
peripheral areas. For instance, the primary visual (VIS1) ICN (Fig. 4C) exhibits a medial-lateral
ENL-LIN gradient in the bilateral cortex surrounding the calcarine fissure with greater ENL weight
within the cuneus. The secondary visual (VIS2) ICN (Fig. 4D) shows higher ENL weight within
the cuneus and higher LIN weight within the bilateral inferior and middle occipital gyri. Temporal
(TEMP) ICN (Fig. 4E) spatial variation follows a similar center-periphery pattern, with greater ENL
weight in the superior temporal gyri and greater LIN weight within the supramarginal gyri and

bilateral inferior frontal triangularis.

15


https://doi.org/10.1101/2023.11.16.566292
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.16.566292; this version posted November 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

= =4
= =3
=y S
= =
i} i}
= =
o o
c c
o o
- o
= =

(B)

CER
Mean diff. {(ENL - LIN)

VIS1
Mean diff. (ENL - LIN)
Mean diff. (ENL - LIN)

(D)

VIS2

z =
=3 =
A 4
= =
] i}
= =
© ©
c c
o o
@ @
= =

(E)

TEMP
Mean diff. (ENL - LIN)
Mean diff. (ENL- LIN)

16


https://doi.org/10.1101/2023.11.16.566292
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.16.566292; this version posted November 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

e
o

Mean diff. (ENL- LIN)
Mean diff. (ENL- LIN)

Mean diff. (ENL- LIN)
Mean diff. (ENL - LIN)

Mean diff. (ENL- LIN)
Mean diff. (ENL- LIN)

z z
= =3
ki fir
iz =
5 K
b= =
- -
= =
© ©
@ @
= =

Mean diff. (ENL- LIN)
Mean diff. (ENL- LIN)

Fig. 4. Assessment of intrinsic connectivity network (ICN) spatial variation. Warmer hues indicate ENL > LIN, while

cooler hues indicate LIN > ENL. Contours indicate statistical significance (g < .05). Displayed ICNs include subcortical
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(SUB) (A), cerebellum (CER) (B), primary (VIS1) (C) and secondary (VIS2) (D) visual, temporal (TEMP) (E), primary
(MTR1) (F) and secondary (MTR2) (G) sensorimotor, dorsal attention (ATN) (H), posterior default mode (pDM) (1), and
right frontoparietal (rFP) (J). Results are overlaid on the ch2bet template with X, Y, and Z coordinates listed relative to
the origin in Montreal Neurological Institute (MNI) 152 space. Dual code visualization was adapted from sample scripts
provided by Allen et al. (2012).

Whereas both the primary and secondary sensorimotor ICNs (MTR1 and MTR2) show ENL-
LIN gradients (Fig. 4F-G), MTR1 comparisons reveal a medial-lateral pattern between the
paracentral lobules and pre- and postcentral gyri, while MTR2 comparisons reveal an inferior-
superior gradient between the superior temporal lobe and pre- and postcentral gyri. ICNs
associated with higher cognitive functions such as attention (Szczepanski et al., 2013), social
cognition and self-referential processing (Wang et al., 2020), and executive control (Niendam et
al., 2012) exhibit core-periphery gradients. The dorsal attention (ATN) (Fig. 4H) ICN shows higher
ENL weight in the superior parietal lobules and higher LIN weight in the postcentral gyri. The
posterior default mode (pDM) ICN (Fig. 4l) exhibits higher ENL values in the precuneus and
bilateral angular gyri with higher LIN values in the middle and posterior cingulate. The right
frontoparietal (rFP) ICN (Fig. 4J) exhibits higher ENL values within the angular gyri (particularly
within the left angular gyrus) and higher LIN values within the right inferior parietal lobule, right

middle frontal gyrus, and right inferior frontal triangularis.

3.6. ENL ICN Estimates Exhibit Enhanced Sensitivity to Differences Between HC and SZ, and
Unique ENL (but Not LIN) ICN Estimates Reflect Group Differences

ENL estimates exhibit an overall greater degree of sensitivity to differences between HC and
SZ compared to LIN estimates (p <.001) in addition to revealing a larger total number of significant
voxels across all comparisons. Moreover, the ENL estimates of ICNs associated with auditory and
linguistic (Bhaya-Grossman & Chang, 2022; Moerel et al., 2014; Rupp et al., 2022), sensorimotor
(Caspers et al.,, 2021), and self-referential (Wang et al., 2020) processes exhibit enhanced
sensitivity to differences between HC and SZ (Fig. 5A-C). For example, while both sets of
comparisons detected differences within TEMP ICN regions comprising the primary auditory and
auditory association cortex, ENL comparisons are more sensitive (p < .001), revealing clusters
that are more numerous with augmented volumes and effect sizes (Fig. 5A). LIN and ENL testing
detected higher HC values within the bilateral superior temporal gyri and temporal poles, bilateral
insula, bilateral Heschl's gyrus, bilateral Rolandic operculum, and right middle temporal gyrus
along with higher SZ values within the right supramarginal gyrus. However, ENL comparisons
revealed larger numbers of significant voxels across these regions. Additionally, ENL comparisons

uncovered higher HC values within the left middle temporal gyrus and higher SZ values within the
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left supramarginal gyrus, both of which were missed for significance by LIN comparisons. We
visually observe that TEMP regions showing higher values for HC exhibit higher ENL values
compared to LIN (as revealed by our assessment of spatial variation; Section 3.5.) with the
exception of the left middle temporal gyrus, while TEMP regions showing higher SZ values exhibit

higher LIN values relative to ENL.
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Fig. 5. Statistical comparisons between subject-level temporal (TEMP) (A), secondary sensorimotor (MTR2) (B),
posterior default mode (pDM) (C), and unique ENL (D) ICN estimates derived from distinct clinical cohorts (HC and
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SZ). In A-C, results from LIN comparisons are located on the left, while results from ENL comparisons are located on
the right. Warmer hues indicate HC > SZ, while cooler hues indicate SZ > HC. Contours indicate statistical significance
(g < .05). Results are overlaid on the ch2bet template with X, Y, and Z coordinates listed relative to the origin in MNI

152 space. Dual code visualization was adapted from sample scripts provided by Allen et al. (2012).

A similar pattern of higher ENL sensitivity was obtained for secondary sensorimotor (MTR2)
(Fig. 5B) (p < .001) and posterior default mode (pDM) (Fig. 5C) (p < .001) comparisons. For
MTRZ2, both sets of comparisons revealed greater MTR2 weights for HC in the bilateral postcentral
gyri. However, ENL comparisons detected more extensive clusters along with the additional
finding that HC exhibit greater MTR2 values within the bilateral posterior insula. For pDM
estimates, ENL comparisons revealed clusters of significantly higher values for SZ within the
precuneus and left angular gyrus, while LIN comparisons identified only two significant voxels.
Visual inspection reveals that ENL pDM regions showing higher SZ values also exhibit higher
ENL values within the pDM ENL-LIN spatial gradient (Section 3.5.). We note that LIN estimates
exhibit a greater degree of statistical sensitivity for cerebellum (CER) (p < .001), primary visual
(VIS1) (p <.001), secondary visual (VIS2) (p < .001), primary sensorimotor (MTR1) (p < .05), and
right frontoparietal (rFP) (p < .001) ICNs. While unique LIN ICN comparisons failed to detect any
significant group differences, we found that unique ENL ICN comparisons revealed a cluster of
voxels within the left anterior insula that distinguish clinical cohorts, with HC exhibiting significantly
greater values than SZ (Fig. 5D). Results from all clinical cohort voxel-wise statistical

comparisons and sensitivity tests can be found in Supplemental Material Table $1 and Table S2.

4. Discussion

Linear FC analysis remains a fruitful method for extracting valuable information from fMRI
data. However, despite its usefulness and ease of interpretation, various brain processes also
exhibit nonlinear aspects (Friston, 2001; Singer, 2013), suggesting that linear FC provides us with
a limited view of the data and neurocognitive hypothesis space. While previous rsfMRI studies
have identified evidence of nonlinearity and its prospective role in differentiating clinical cohorts
(Morioka et al., 2020; Motlaghian et al., 2022; Motlaghian et al., 2023), here we advance a novel
approach to estimate ICNs from explicitly nonlinear whole-brain FC (ENL-wFC) constructed from
residual distance correlation information, demonstrating the potential of connectivity domain ICA
(Iraji et al., 2016) and nonlinear information to shape the predictive clinical landscape and inform

systems neuroscience theorizing.

We find that ICN estimates extracted from ENL-wFC exhibit higher reliability than those

extracted from LIN-wFC (Section 3.2.), and that unique ICNs are identified from each FC
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estimator (Section 3.3.). Our validation analysis (Section 3.4.) supports these findings. That our
approach can recover ICNs that would be missed by conventional linear FC analysis underscores
the importance of bringing nonlinearity within the scope of fMRI FC research, as ICNs estimated
from connectivity patterns that are not presentin LIN-wFC may be altered in psychiatric conditions

such as SZ.

We also find that corresponding (spatially matched) ICNs exhibit striking ENL-LIN spatial
gradients (Section 3.5.). Among potential explanations for our findings, the presence of greater
ENL weight within core ICN regions could be reflective of stronger signal within core areas.
However, we note that this explanation does not align with the detection of differences between
HC and SZ cohorts (Section 3.6.). Conceptually, the ICNs extracted from ENL-wFC represent
independent data sources comprised of elements whose distance correlation values deviate from
a linear relationship with Pearson correlation. Therefore, the identified gradients may reflect actual
differences in the complexity of the underlying FC relationships, which would merit further
investigation of their potential cognitive and clinical significance. Future work will investigate

potential explanations of the observed gradients.

Furthermore, the finding that ENL estimates exhibit an overall greater degree of sensitivity to
differences between HC and SZ compared to LIN demonstrates the potential of nonlinear
information to play a role within predictive models of diagnosis. The ENL counterparts of specific
ICNs that have been reported as disrupted in SZ including temporal (TEMP), secondary
sensorimotor (MTR2), and posterior default mode (pDM) exhibit heightened sensitivity to
differences between HC and SZ vs. LIN (Section 3.6.). ENL TEMP comparisons revealed larger
clusters of voxels within auditory and language-related regions that have been previously
associated with SZ and positive symptoms such as auditory verbal hallucinations in both tfMRI
(Calhoun et al., 2012; Kim et al., 2009) and rsfMRI (Alderson-Day et al., 2015; Iraji et al., 2019b).
For example, ENL testing revealed expansive clusters within the superior temporal gyri, which are
known to implement acoustic-phonetic computations (Bhaya-Grossman & Chang, 2022). Notably,
ENL TEMP comparisons also identified a sizable volume attaining significantly higher SZ values
within the right supramarginal gyrus, which has been shown to play a role in phonological
decision-making (Hartwigsen et al., 2010). By contrast, the right supramarginal gyrus was almost
entirely missed for significance by LIN TEMP comparisons. We find that ENL MTR2 comparisons
revealed greater numbers of significant voxels compared to LIN within sensorimotor regions
previously implicated in SZ (Kaufmann et al., 2015; Iraji et al., 2019b) as well as clusters within

the bilateral posterior insula hidden from LIN MTR2 comparisons. Moreover, ENL pDM testing
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revealed SZ hyperconnectivity within the precuneus and left angular gyrus that were missed by
LIN analysis, which are core regions of the pDM that have been associated with reflective,
internally focused cognitive processes thought to be relevant to SZ diagnosis and symptoms
(Garrity et al., 2007). Additionally, unique LIN ICN comparisons failed to distinguish clinical cohorts
while unique ENL ICN comparisons identified higher values for HC within the left anterior insula,
which is characteristically associated with an ICN involved in event and stimulus salience
processing known to be compromised in SZ (Palaniyappan & Liddle, 2012). Overall, our results
demonstrate that nonlinear statistical dependencies in fMRI data can be leveraged to distinguish
clinical cohorts and warrant further investigation of the relationship between features extracted

from measures that are sensitive to nonlinearity and the presentation of psychosis.

While our previous work proposed this conceptual framework (Iraji et al., 2023b), here we
advance and rigorously investigate the framework by providing an in-depth quantitative analysis
of ENL and LIN ICNs, their spatial variation, and their sensitivity to differences between HC and
SZ cohorts. However, the current analysis has methodological and interpretive limitations that are
important to recognize. First, we note that alternative models of the relationship between NL-wFC
and LIN-wFC can be leveraged when estimating ENL-wFC. Therefore, we do not claim that the
current method of estimation is decisive or definitive to the potential exclusion of methods
designed to estimate ENL-wFC using alternative models. Future work will investigate the use of
alternative models with the aim of providing increasingly robust and precise characterizations of
whole-brain connectivity features not present within linear connectivity patterns. Second, we note
that while our approach may share certain conceptual similarities with methods that construct
nonlinear fMRI connectivity using features derived from time series (pairwise) relationships
(Motlaghian et al., 2022; Motlaghian et al., 2023), we do not necessarily expect the findings of
these distinct approaches to converge due to substantial differences in methodology (Section 1.).
Thus, we leave any speculation about the relationship between features extracted from these
methods as an open empirical question for future investigation. Finally, while our results warrant
further investigation into the potential neurocognitive and psychiatric roles of ENL ICNs, we
maintain that going beyond association will likely require developing interventions that can
effectively tie the extracted features to the causal outcomes of cognitive operations, psychiatric

diagnosis, and symptoms.

Ongoing and future work will also focus on replicating our results in large-scale B-SNIP
transdiagnostic rsfMRI data sets (Meda et al., 2012; Meda et al., 2015), on utilizing ENL ICNs to

distinguish a broader array of clinical cohorts, on analyzing associations with cognitive and
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symptom scores, and on analyzing the temporal (Iraji et al., 2021) and spatial (Bhinge et al., 2019;
Iraji et al., 2020; Long et al., 2021) dynamics exhibited by ENL ICNs during task performance and

at rest.

5. Conclusion

Here, we advance a novel approach to estimate ICNs from explicitly nonlinear whole-brain FC
(ENL-wFC). We demonstrate that our approach reveals unique spatial variation within the ENL
estimates of ICNs identified within the existing literature and that spatially common as well as
unique ENL ICNs thought to be relevant to SZ and its symptoms exhibit heightened sensitivity to
differences between HC and SZ cohorts. In summary, our research emphasizes the importance
of bringing nonlinearity within the aperture of fMRI FC analysis and the power of connectivity

domain ICA to transform predictive clinical and systems neuroscience research.
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