

1 **TITLE:**

2 **Multiplexed live-cell imaging for drug responses in patient-derived organoid**
3 **models of cancer**

4

5 **AUTHORS AND AFFILIATIONS:**

6 Kaitriana E. Colling^{1,2*}, Emily L. Symons^{1*}, Lorenzo Buroni^{3,*}, Hiruni K. Sumanisiri¹, Jessica Andrew-
7 Udo¹, Emily Witt^{1,4}, Haley A. Losh¹, Abigail M. Morrison¹, Kimberly K. Leslie⁵, Christopher J.
8 Dunnill⁶, Johann S. De Bono³ and Kristina W. Thiel^{1,7,**}

9

10 ¹ Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa
11 City, IA, USA (kaitriana-powell-smith@uiowa.edu, emily-symons@uiowa.edu, Hiruni-
12 sumanasiri@uiowa.edu, jessica-andrew-udoh@uiowa.edu, emily-witt-1@uiowa.edu, haley-
13 losh@uiowa.edu, abigail-morrison@uiowa.edu, Kristina-thiel@uiowa.edu)

14 ² Cancer Biology Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA,
15 USA

16 ³ The Institute of Cancer Research, London, UK: the Royal Marsden NHS Foundation Trust,
17 London, UK (Lorenzo.buroni@icr.ac.uk, [Johann.DeBono@icr.ac.uk](mailto>Johann.DeBono@icr.ac.uk))

18 ⁴ Department of Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City,
19 IA, USA

20 ⁵ Division of Molecular Medicine, Departments of Internal Medicine and Obstetrics and
21 Gynecology, University of New Mexico Comprehensive Cancer Center, University of New Mexico
22 Health Sciences Center, Albuquerque, NM, USA (KKLeslie@salud.unm.edu)

23 ⁶ Agilent Technologies, UK (Christopher.dunnill@agilent.com)

24 ⁷ Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA

25

26 * Denotes co-first authors

27 ** Corresponding author: Kristina W. Thiel, Kristina-thiel@uiowa.edu

28

29 **SUMMARY:**

30 Patient-derived tumor organoids are a sophisticated model system for basic and translational
31 research. This methods article details the use of multiplexed fluorescent live-cell imaging for
32 simultaneous kinetic assessment of different organoid phenotypes.

33

34 **ABSTRACT:**

35 Patient-derived organoid (PDO) models of cancer are a multifunctional research system that
36 better recapitulates human disease as compared to cancer cell lines. PDO models can be
37 generated by culturing patient tumor cells in extracellular basement membrane extracts (BME)
38 and plating as three-dimensional domes. However, commercially available reagents that have
39 been optimized for phenotypic assays in monolayer cultures often are not compatible with BME.
40 Herein we describe a method to plate PDO models and assess drug effects using an automated
41 live-cell imaging system. In addition, we apply fluorescent dyes that are compatible with kinetic
42 measurements to simultaneously quantitate cell health and apoptosis. Image capture can be
43 customized to occur at regular time intervals over several days. Users can analyze drug effects in

44 individual Z-plane images or a Z Projection of serial images from multiple focal planes. Using
45 masking, specific parameters of interest are calculated, such as PDO number, area, and
46 fluorescence intensity. We provide proof-of-concept data demonstrating the effect of cytotoxic
47 agents on cell health, apoptosis and viability. This automated kinetic imaging platform can be
48 expanded to other phenotypic readouts to understand diverse therapeutic effects in PDO models
49 of cancer.

50

51 **INTRODUCTION:**

52 Patient-derived tumor organoids (PDOs) are rapidly emerging as a robust model system to study
53 cancer development and therapeutic responses. PDOs are three-dimensional (3D) cell culture
54 systems that recapitulate the complex genomic profile and architecture of the primary tumor^{1,2}.
55 Unlike traditional two-dimensional (2D) culture of immortalized cancer cell lines, PDOs capture
56 and maintain intratumoral heterogeneity^{3,4}, making them a valuable tool for both mechanistic
57 and translational research. Although PDOs are becoming an increasingly popular model system,
58 commercially available reagents and analysis methods for cellular effects that are compatible
59 with PDO cultures are limited.

60

61 The lack of robust methods to analyze subtle changes in treatment response hinders clinical
62 translation. The gold standard cell health reagent in 3D cultures, CellTiter-Glo 3D, utilizes ATP
63 levels as a determinant of cell viability^{5,6}. While this reagent is a useful for endpoint assays, there
64 are several caveats, most notably the inability to use samples for other purposes after completion
65 of the assay.

66

67 Live-cell imaging is a sophisticated form of kinetic microscopy that, when combined with
68 fluorescent reagents, has the capacity to quantify a variety of cell health readouts within PDO
69 models, including apoptosis⁷⁻⁹ and cytotoxicity¹⁰. Indeed, live-cell imaging has been integral to
70 high throughput screening of compounds in 2D platforms^{11,12}. Systems such as the Incucyte have
71 made the technology affordable and thus accessible to research groups in a variety of settings.
72 However, application of these systems to analyze 3D cultures is still in its infancy.

73

74 Herein we describe a method to assess drug response in PDO models of cancer using multiplexed
75 live-cell imaging (**Figure 1**). Through analysis of Bright Field images, changes in organoid size and
76 morphology can be kinetically monitored. Furthermore, cellular processes can be simultaneously
77 quantified over time using fluorescent reagents, such as Annexin V Red Dye for apoptosis and
78 Cytotox Green Dye for cytotoxicity. The methods presented are optimized for the Cytaion 5 live-
79 cell imaging system, but this protocol may be adapted across different live-cell imaging platforms.

80

81

82 **PROTOCOL:**

83 **Ethics Statement:** Studies using human tumor specimens were reviewed and approved by the
84 University of Iowa Institutional Review Board (IRB), protocol #201809807 and performed in
85 accordance with the ethical standards as laid down in the 1964 Helsinki Declaration and its later
86 amendments. Informed consent was obtained from all subjects participating in the study.
87 Inclusion criteria include a diagnosis of cancer and availability of tumor specimen.

88

89 **Plating intact PDOs in a 96-well plate.**

90

91 1. Prepare reagents:

92 1. Preheat 96-well plates at 37 °C overnight and thaw BME overnight at 4 °C.

93 2. Prepare full Organoid Culture Media optimized for culturing the cancer type of interest.
94 Specific culture media used for experiments shown herein are provided in **Supplemental
95 Table S1.**

96 1. *Note: Media components may need to be modified for different tumor types. For
97 example, the Organoid Culture Media is supplemented with 100 nM estradiol for
98 gynecologic tumors¹³.*

99 2. *Note: Prepared media is stable at 4 °C for 1 month. For long term storage, aliquot
100 into 50 mL tubes and store at -20 °C.*

101

102 2. Prepare two separate aliquots of Organoid Culture Media at 4 °C and 37 °C.

103 1. For example, if 60 wells are being plated in a 96-well plate, 6 mL of warm Organoid
104 Culture Media and 150 µL of ice-cold Organoid Culture Media is required.

105

106 3. Prepare Organoid Wash Buffer: 1X PBS supplemented with 10 mM HEPES, 1X Glutamax, 5
107 mM EDTA, and 10 µM Y-27632. Store at 4 °C

108

109 4. Harvest PDOs cultured in a 24-well plate: All steps should be performed on ice or at 4 °C
110 unless otherwise noted.

111 1. Aspirate media from each well using a vacuum line system.

112 2. Add 500 µL ice-cold Organoid Wash Buffer and gently pipette 2-3X using a 1000 µL
113 pipettor.

114 3. Incubate plate on ice for 10 minutes.

115 4. Transfer the contents of each well to a 50 mL conical tube. To ensure that all the PDOs
116 are in suspension, rinse each well with an additional 300 µL of Organoid Wash Buffer
117 and transfer to the 50 mL conical tube.

118 5. Centrifuge for 5 minutes at 350 x g at 4 °C.

119 6. Aspirate supernatant from BME/organoid pellet using a vacuum line system, leaving ~5
120 mL remaining in tube. Add an additional 20 mL of Organoid Wash Buffer and gently
121 resuspend the pellet using a 10 mL serological pipette.

122 7. Incubate on ice for 10 minutes.

123 8. Centrifuge for 5 minutes at 350 x g at 4 °C.

124 9. Aspirate the supernatant with vacuum line system, taking care not to disrupt the PDO
125 pellet.

126

127 5. Plating PDOs in a 96-well plate: All steps should be performed on ice unless otherwise
128 noted.

129 1. Resuspend PDO pellet in appropriate amount of ice-cold Organoid Culture Media to
130 create a PDO suspension.

131 *1. Note: To calculate the amount of Organoid Culture Media, determine the number of
132 wells to be plated in a 96-well plate, taking into consideration that PDOs are plated
133 in a 5 µL dome in a 1:1 ratio of Organoid Culture Media and BME. For example, when
134 plating one 96-well plate and using only the inner 60 wells, the total amount of PDO
135 suspension needed will be 300 µL: 150 µL Organoid Culture Media and 150 µL BME.*

136 *2. Note: For models that exhibit optimal growth at different percentages of BME, the
137 ratio of BME:media may be modified in this step, though it is important to
138 standardize the ratio across all assays for each specific model. To account for
139 pipetting error, add 10% volume to each component.*

140 2. Count the number of PDOs: Transfer 2.5 µL PDO suspension to an ice-cold 1.5 mL
141 Microcentrifuge tube and mix with 2.5 µL BME. Transfer the 5 µL mixture onto a clean
142 glass microscope slide. Do not coverslip the slide. The mixture will solidify into a dome.
143 Visualize using a Bright Field microscope at 4X. Count the number of PDOs in the 5 µL
144 mixture; the goal is to have roughly 25-50 PDOs per 5 µL dome.

145 *1. Note: If the desired density is not achieved in the test mixture, adjust the final
146 volume of the PDO suspension either by adding more Organoid Culture Media or
147 centrifuging the PDO suspension and resuspending the PDO pellet in a lower volume
148 of ice-cold Organoid Culture Media. Regardless of how the PDO suspension is
149 modified in this step, the final ratio of BME:PDO suspension in Step 3 should be 1:1.*

150 3. Using a 200 µL pipettor with wide bore tips, carefully mix PDO suspension with an equal
151 amount of BME to achieve a 1:1 ratio of Organoid Culture Media to BME. Avoid bubbles,
152 which will disrupt the integrity of the domes. Transfer contents of 15 mL conical tube to
153 an ice-cold 1.5 mL microcentrifuge tube for easier handling in subsequent steps.

154 4. Using a 20 µL pipettor, seed 5 µL domes into the center of each well of a prewarmed 96-
155 well plate, seeding only the inner 60 wells. To ensure equal distribution of the PDOs,
156 periodically gently pipet the contents of the 1.5 mL tube with a 200 µL pipettor with
157 wide-bore tips.

158 5. After all wells have been seeded, place the lid on the plate and gently invert. Incubate
159 the inverted plate at 37 °C for 20 minutes in the tissue culture incubator to allow domes
160 to solidify.

161 *1. Note: Inverting the plate ensures that the BME/Organoid Culture Media dome
162 retains the 3D structure to provide adequate room for PDO formation.*

163 6. Flip the plate so that it is sitting with the lid up and incubate for an additional 5 minutes
164 at 37 °C.

165 **Treatments and addition of fluorescent dyes for multiplexing.**

166 1. While BME domes are solidifying in the 96-well plates, prepare dilutions of fluorescent live-
167 cell imaging reagents. Herein we give specific parameters for multiplexing Annexin V Red
168 Dye and Cytotox Green Dye.

169

170 2. Fluorescent reagent preparation (Day -1): Calculate the appropriate volume of Organoid
171 Culture Media based on the number of wells to be treated, assuming each well will be
172 treated with 100 μ L of dye-dosed media. Dilute dye in pre-warmed Organoid Culture Media
173 to the desired concentration.
174 1. *Note: The total amount of media needed will vary depending on the experiment. Add
175 10% to the final volume to account for pipetting error. For example, to treat the inner 60
176 wells of a 96-well plate, prepare 6.6 mL of dye-dosed media (Table 1).*

177

178 3. Treat each well with 100 μ L of 2X dye-dosed Organoid Culture Media.

179

180 4. Add 200 μ L of sterile 1X PBS to the outer empty wells of the plate. Incubate at 37 °C
181 overnight.
182 1. *Note: PBS in the peripheral wells decreases evaporation of media from the inner wells.*

183

184 5. Addition of drugs/treatment agents (Day 0): Prepare drugs in pre-warmed Organoid Culture
185 Media at a 2X concentration in a volume of 100 μ L per well.
186 1. *Note: DMSO can be toxic to cells at high concentrations. A concentration of 0.1% DMSO
187 is not exceeded in our experiments. In addition to drugs, some fluorescent reagents are
188 distributed as a DMSO solution. It is important to account for total DMSO concentration
189 when working with such reagents.*

190

191 6. Add 100 μ L of 2X treatment media to each well, avoid creating bubbles.

192

193 **Setting up imaging parameters.**

194

195 1. Launch Gen5 software to begin imaging the 96-well plate.

196

197 2. Place plate in Cytation 5. **Open** Gen5 software. **Click** New Task > Imager Manual Mode.
198 **Select** Capture Now and input the following settings: Objective (select desired
199 magnification); Filter (select microplate); Microplate format (select number of wells); and
200 Vessel type (select plate type). **Click** “Use Lid” and “Use slower carrier speed.” **Click** OK.
201 1. *Note for Vessel type: Be as specific as possible when selecting information about the
202 plate because the software is calibrated to the specific distance from the objective to the
203 bottom of the plate for each plate type and thickness of the plastic.*
204 2. *Note for Slower Carrier Speed: Select this box to avoid disrupting domes when
205 loading/unloading plates.*

206

207 3. Create a Z-Stack which will image the entire BME dome.

208 1. **Select** a well of interest to view (left panel, below histogram).

209 2. **Select** the Bright Field channel (left panel, top). **Click** Auto-expose and adjust settings as
210 needed.

211 3. Set the bottom and top of the Z-Stack: **Expand** Imaging Mode tab (left panel, middle).
212 **Check** the Z-Stack box. Using the course adjustment arrows (left panel, middle), **click** the
213 down adjustment until all PDOs have come into and then out of focus and are fuzzy. **Set**
214 this as the bottom of the Z-Stack. Repeat in the opposite direction using the course
215 adjustment arrows to set the top of the Z-Stack.

216 4. To ensure that the Z-Stack settings are appropriate for other wells of interest, **select**
217 another well (left panel, below histogram) and visualize the top and bottom of the Z-
218 Stack. To manually enter the focal positions, **click** on the three dots next to the fine
219 adjustment (left panel, top). A window will open; type in the top Z-Stack value (found in
220 the left panel, center, under Imaging Mode). Repeat for the bottom Z-Stack value.
221 Adjust as necessary to capture the desired Z range by repeating step 3. If adjustments
222 were necessary, **select** another well to verify settings.

223

224 4. Set the exposure settings for fluorescent channel(s). Settings are described for two
225 fluorescent channels (GFP & TRITC). The specific number of fluorescent channels will
226 depend on the experiment and which fluorescent cubes are installed in the Cytation 5.

227 1. *Note: If the signal intensity is anticipated to be significantly higher at the end of the
228 experiment, users should consider performing test experiments to determine the optimal
229 exposure settings at the end of the experiment that can then be applied when setting up
230 the initial parameters.*

231 2. **Expand** the Imaging Mode tab (left panel, middle) and open Edit Imaging Step. A pop-up
232 window will appear.

233 3. Under Channels, **click** on the bubble for the desired number of channels. One channel
234 should be designated for Bright Field and additional channels for each fluorescent
235 channel. In this example, Channel 1 = Bright Field; Channel 2 = GFP; Channel 3 = TRITC.
236 Using the drop-down Color menus, **select** the appropriate setting for each channel.
237 Close editing window by **clicking** OK.

238 4. Set up each fluorescent channel.

239 1. Switch the channel to GFP (left panel, top).

240 2. **Click** Auto-expose (left panel, top). **Expand** the Exposure tab (left panel, middle) and
241 adjust the exposure settings to minimize background signal.

242 3. Copy exposure settings to the Image Mode tab.

243 1. **Click** on the “Copy” icon next to the Edit Imaging Step box.

244 2. **Click** Edit Imaging Step, which will open another window.

245 3. Under the GFP channel, **click** the “Clipboard” icon in the Exposure line. This
246 function will add the Illumination, Integration Time and Camera Gain settings to
247 the channel.

248 4. Repeat Steps 1-3 for the TRITC channel.

249 5. **Click OK** to close the window.

250 5. Set up the Image Preprocessing and Z Projection steps, which will automate image
251 preprocessing.

252 1. **Click** on the “Camera” icon (left panel, bottom corner). A new window will open.

253 2. Under ADD PROCESSING STEP (left panel, bottom), **click** on Image Preprocessing. A new
254 window will open.

255 3. On the Bright Field tab, **deselect** “Apply image preprocessing.”

256 4. For each Fluorescent channel tab, make sure “Apply image preprocessing” is selected.
257 **Deselect** “Use same options as channel 1” and **click** OK. The window will close.

258 5. Under ADD PROCESSING STEP, **click** on Z Projection. A new window will open. If desired,
259 the slice range can be adjusted (e.g., to narrow the Z range). Close window by **selecting**
260 OK.

261

262 6. Create Protocol.

263 1. **Click** “Image Set” in the toolbar. In the drop down menu, **click** “Create experiment from
264 this image set.” The imaging window will close and the Procedure window will open.

265 1. *Note: The parameters selected in Imager Manual Mode will automatically be loaded
266 into the new window whereby an experimental protocol can be created.*

267 2. Set the temperature and gradient: **Click** on Set Temperature under the Actions heading
268 (left). A new window will open. **Select** “Incubator On” and manually enter the desired
269 temperature under “Temperature.” Next, under “Gradient,” manually enter “1.” Close
270 window by **selecting** OK.

271 1. *Note: Creating a 1 °C gradient will prevent condensation from forming on the lid of
272 the plate.*

273 3. Designate wells to image.

274 1. Double **click** on the Image step under description.

275 2. **Click** “Full Plate” (right corner, top). This will open the Plate Layout window.

276 3. Highlight wells of interest using the cursor. **Click** OK.

277 4. If desired, **check** “Autofocus binning” and “Capture binning” boxes. **Click** OK to close
278 window.

279 1. *Note: Binning will require exposure adjustment, as described in Step 2.2 above.
280 Please refer to *Data Management* in the Discussion for specific scenarios in
281 which this feature may be used.*

282 4. Set intervals for kinetic imaging.

283 1. **Click** on Options under the Other heading (left).

284 2. **Check** the “Discontinuous Kinetic Procedure” box.

285 3. Under Estimated total time, enter the run time for the experiment (e.g., 5 days).
286 Under Estimated interval, enter the interval at which to image the plate (e.g., every
287 6 hours).
288 4. **Click** “Pause after each run” to allow time for the plate to be transferred to the
289 BioSpa incubator. Close window by **selecting** OK.
290 5. Update Data Reduction steps.
291 1. **Click** OK to close the Procedure window. A tab will open to update data reduction
292 steps. **Select** Yes.
293 2. Double **click** on Image Preprocessing. **Click** through the different channels to verify
294 settings. **Click** OK.
295 3. Double **click** on Z Projection. **Click** through the different channels to verify settings.
296 **Click** OK.
297 4. **Click** OK to close the Data Reduction window.
298 6. Format the Plate Layout.
299 1. Open the Plate Layout Wizard and designate well types.
300 1. **Click** on the Plate Layout icon in the toolbar (left corner, top). This will open
301 the Plate Layout Wizard.
302 2. **Check** the boxes next to the well types used in the experiment. Under Assay
303 Controls, enter the number of different control types using the arrows. **Click**
304 Next. This will open the Assay Control #1 window.
305 2. Set Assay Control well conditions.
306 1. On the Assay Control #1 Window, enter control label in the Plate Layout ID box.
307 If desired, enter the full name in adjacent box. **Select** the number of replicates
308 for the respective control condition using the arrows.
309 2. If using multiple concentrations or a dilution series within the control, **click**
310 “Define dilutions/concentrations” and use the drop-down menu to **select** the
311 Type. Enter values for each concentration/dilution in the table.
312 1. *Note: The auto function can be used if concentrations change by a consistent
313 increment.*
314 3. **Select** the Color tab in toolbar. Choose desired Text color and Background Color
315 for control in drop-down menu. **Click** Next.
316 4. Repeat as necessary with additional controls.
317 3. Set Sample well conditions.
318 1. On the Sample set-up page, enter the sample ID Prefix (e.g., SPL). **Select** number
319 of Replicates using the arrows. If using samples with varying treatment
320 concentrations, **select** Concentrations or Dilutions in the Type drop-down menu.
321 Enter dilutions/concentrations in the table and enter units in the Unit box.
322 2. **Select** Identification Fields in the toolbar. Enter desired Category Name(s) (e.g.,
323 sample ID, drug) in the table.
324 3. **Select** the Color tab in toolbar. **Select** a different color for each treatment
325 group/sample.
326 1. *Note: The numbers on the left side correlate with the different sample
327 numbers.*

328 4. **Click** Finish. This will open the Plate Layout page.

329 4. Assign Sample IDs.

330 1. **Select** SPL1 from the left panel. Use cursor to **select** wells.

331 1. *Note: Autoselect tools can be adjusted in the serial assignment box. Number*
332 *of replicates and orientation of layout can be pre-designated.*

333 2. Repeat with other samples to complete plate layout. Once satisfied, **click** OK.

334 3. In file toolbar, **select** Sample IDs. Fill in Sample ID columns with the appropriate

335 information for each Sample (e.g., drug type). Press OK.

336 7. Save the Protocol.

337 1. In the toolbar, **Click** File > Save Protocol as.

338 2. **Select** location to save file. Enter file name. **Click** Save to close window.

339 3. **Click** File > Exit in the toolbar. A tab will open to save changes to Imager Manual

340 Mode. **Select** No.

341 4. A tab will open to save changes to Experiment 1. **Select** No.

342 5. A tab will open to update the protocol definition. **Select** Update.

343 6. **Close** Gen5 software.

344

345 7. Import the Protocol into BioSpa OnDemand and finish setting up the Experiment.

346 1. **Open** the BioSpa OnDemand software.

347 2. **Select** an available slot in the BioSpa.

348 3. Remove the plate from the Cyvation 5. **Click** Open drawer to access the appropriate slot

349 in the BioSpa and insert plate. **Click** Close drawer.

350 1. *Note: This step can be performed at any point once the Protocol has been created in*
351 *Step 5.7 above. However, the plate must be in the Cyvation 5 to perform a timing run*
352 *in the below Step 6.4.5.*

353 4. Import the Protocol.

354 1. Under the Procedure Info tab, **select** User in the drop-down menu.

355 2. Next to Protocol slot, **click** Select > Add a new entry.

356 3. Next to Protocol slot, **click** Select. This will open a new window to navigate to the

357 desired Protocol in the file architecture.

358 4. **Click** Open to import the Protocol into the BioSpa OnDemand software.

359 5. Enter the amount of time needed to image the plate. **Click** OK to close the Gen5

360 Protocol List window.

361 1. *Note: This step is especially important when running several experiments at a*
362 *time. To determine the time needed to image the, **click** "Perform a timing run*
363 *now." **Click** OK.*

364 5. Set imaging intervals and schedule the experiment.

365 1. Under Interval, enter the imaging interval which was designated previously in *Step*

366 *5.4 of Setting up Imaging Parameters.*

367 2. Under Start Time Options, **select** "When available."

368 1. *Note: A specific start time can be designated instead of running the protocol at*
369 *the next available time.*

370 3. Under Duration, **select** “Fixed” or “Continuous.”

371 1. *Note: Selecting Fixed duration will set a specific endpoint for the experiment and*
372 *requires the user to designate an experimental timeframe. Continuous duration*
373 *will allow the experiment to run with no endpoint and can only be ended by a*
374 *user stopping the experiment.*

375 4. **Click** Schedule plate/vessel. This will open the Plate Validation Sequence.

376 A tab will open with the proposed first read time. **Click** Yes to accept this schedule.

377 **Image analysis in Gen5 software (Figure 2).**

378 1. Open image analysis module.

379 1. **Open** Gen5. In the Task Manager, **select** Experiments > Open. **Select** the experiment to
380 open the file.

381 2. **Click** Plate > View in the toolbar.

382 3. Change Data drop-down menu to Z Projection.

383 4. Double **click** on a well of interest.

384 5. **Select** Analyze > “I want to setup a new Image Analysis data reduction step.” **Click** OK.

385

386 2. Cellular Analysis:

387 1. Primary Mask

388 1. Under ANALYSIS SETTINGS, **select** Type: Cellular Analysis and Detection Channel:
389 ZProj[Tsf[Bright Field]] (left panel, center).

390 2. **Click** Options. This will open the Primary Mask and Count page. In the Threshold box,
391 **check** “Auto” and **click** Apply. **Click** the “Highlight Objects” box (right panel, bottom)
392 to show objects within the designated threshold. Adjust as necessary to include
393 objects of interest.

394 1. *Note: Threshold settings are based on pixel intensity. For example, if the*
395 *threshold is set to 5000, pixels with an intensity greater than 5000 will be*
396 *included in the analysis.*

397 3. Under Object selection, designate the minimum and maximum object size (μm).
398 Adjust as necessary to exclude cellular debris/single cells.

399 1. *Note: PDO size may vary significantly between different models and types. Use*
400 *the measuring tool in the Gen5 software to determine the minimum and*
401 *maximum PDO size thresholds for each model. Users may choose a smaller*
402 *minimum PDO size threshold relative to the value provided by the measuring tool*
403 *in order to prevent exclusion of PDO fragments at later timepoints after drug*
404 *treatment.*

405 4. To limit the analysis to a certain region of the well, **deselect** “Analyze entire image”
406 and **click** “Plug.” In the Image Plug Window, use the drop-down menu to select Plug
407 shape. Adjust the size and position parameters as necessary to fit over the region of
408 interest.

409

410 1. *Note: It is important to maximize the number of PDOs within the plug while also*
411 *excluding PDO-free areas to minimize background. Designate a plug size that will*
412 *consistently capture the majority of the objects of interest across replicates.*
413 *Generating a plug that also excludes the edges of the dome is important as it*
414 *excludes any objects that may appear distorted due to the refraction of light from*
415 *the extreme curvature of the dome around the edges.*

416 2. *Note: "Include primary edge objects" may also be **deselected** to only capture*
417 *entire PDOs within the plug.*

418 2. Subpopulation Analysis. An example of subpopulation designation is provided in **Figure**
419 **3.**

420 1. **Click** on Calculated Metrics in the Cellular Analysis toolbar. **Click** "Select or create

421 object level metrics of interest" (right corner, bottom). Under Available object

422 metrics, **select** metrics of interest (e.g., Circularity) and **click** the Insert button. **Click**

423 OK.

424 1. *Note: Morphology and density of each PDO model will determine the best metrics*
425 *of interest to distinguish the subpopulation.*

426 2. **Click** on Subpopulation Analysis in the Cellular Analysis toolbar. **Click** Add to create a

427 new subpopulation. A pop-up window will open.

428 3. If desired, enter a name for the subpopulation. Under Object metrics, **select** a metric

429 of interest and press Add Condition. In the Edit Condition window, enter parameters

430 for the chosen Object metric. Repeat with additional metrics as necessary.

431 1. *Note: Parameters may be adjusted manually or set using the finder tool. For*
432 *example, to exclude debris, users could add Area as an Object metric and select*
433 *objects smaller than 800. We also routinely use Circularity as an Object metric*
434 *and include any objects with a circularity greater than 0.2-0.5, depending on the*
435 *model.*

436 4. In the table at the bottom of the window, **check** the desired results to display. **Click**

437 OK > Apply.

438 5. To view the objects within the subpopulation, use the Object details drop-down

439 menu (right panel, center) to select the subpopulation. Objects that fall within the

440 parameters will be highlighted in the image.

441 1. *Note: To change the highlight colors of the primary mask and subpopulation,*
442 *click "Settings" (right panel, bottom).*

443 6. To adjust subpopulation parameters, reopen the Subpopulation Analysis window

444 from the Cellular Analysis toolbar. **Select** the subpopulation and **click** Edit.

445 7. **Click** ADD STEP.

446 1. *Note: This will apply the same analysis to all wells within the experiment at all*
447 *time points. In the drop-down menu on the Matrix page, different metrics can be*
448 *selected for individual viewing.*

449 **Exporting data from Gen5 to Excel:**

450

451 1. To customize a data file for export, **select** the Report/Export Builders icon in the toolbar.
452 In the pop-up window, **click** New export to Excel.
453
454 2. On the Properties page of the pop-up window, **select** Scope > Plate and Content > Custom.
455 **Click** on the Content option in the toolbar. **Click** Edit template, which will open the Excel
456 program.
457
458 3. Within the Excel program, **select** Add-ins > Table > Well Data. Hover over the various
459 selections to see options for export. **Select** metric of interest (e.g., Object
460 Mean[ZProj[Tsf[TRITC]]]).
461 1. *Note: Plate layout can be added to the Excel analysis template by selecting Add-ins >*
462 *Protocol Summary > Layout.*
463
464 4. An Edit window will open. In the Wells box, designate the wells for export either by Well-ID
465 or Well #. **Select** OK. A template will be loaded into the Excel file. **Close** Excel program. The
466 template is automatically saved.
467
468 5. **Click** OK on the New export to Excel window and **Close** the Report/Export Builders window.
469
470 6. **Click** the Export icon in the Gen5 toolbar. **Check** the box next to the desired Export file.
471 **Click** OK. Gen5 will automatically populate the Excel template and open the file in Excel.
472

473 **External data analysis:**

474 1. **Open** the Export file (.xlsx) in Excel.
475
476 2. For each well, divide each individual value by the 0:00 time point value for that well. This
477 will set time point 0 equal to 1 and each value beyond that will be relative to the initial
478 reading.
479
480 3. **Open** a new file in the GraphPad Prism software. In this protocol, version 9.5.1 was used.
481 **Select** the XY layout option.
482
483 4. Input labels for each data group. Copy and paste the time points and corresponding
484 normalized values for each treatment group into the Prism table. A graph for the data will
485 be automatically generated and can be found under "Graphs."
486

487 **REPRESENTATIVE RESULTS:**

488 Our objective was to demonstrate the feasibility of using multiplexed live-cell imaging to assess
489 PDO therapeutic response. Proof of concept experiments were performed in two separate PDO
490 models of endometrial cancer: ONC-10817 and ONC-10811 (see **Supplementary Figure S1 & S2**
491 for ONC-10811 data). Apoptosis (annexin V staining) and cytotoxicity (Cytotox Green uptake)
492 were kinetically monitored in response to the apoptosis-inducing agent, staurosporine.
493 Specifically, PDOs were plated in 96-well plates, treated with Annexin V Red and Cytotox Green
494 dyes, and placed in a 37 °C incubator overnight as diagrammed in **Figure 1**. We confirmed in two
495 independent PDO models that treatment with Annexin V and Cytotox Green dyes is not toxic
496 (**Supplemental Figure S2**). The following day, PDOs were treated with increasing concentrations
497 of staurosporine (0.01 nM, 0.1 nM, 1 nM, 10 nM, 100 nM, 500 nM). Subsequently, protocols were
498 established in the Gen5 software and experiments were set to run over a period 5 days, imaging
499 every 6 hours. Data were analyzed using the Cellular Analysis function in the Gen5 software as
500 described in the *Image Analysis in Gen5 software* protocol. The Primary Mask was set using the
501 Auto threshold function with “Split touching objects” unchecked and with size parameters of
502 minimum: 30 µm and maximum: 1000 µm. The PDO subpopulation was defined by circularity >
503 0.25. The Object Mean Intensities in the TRITC (annexin V, apoptosis) and GFP channels (Cytotox
504 Green, cytotoxicity) within the designated PDO subpopulation were exported as an .xlsx file for
505 further analysis. The Object Mean Intensity for each well at each time point in both the GFP and
506 TRITC channels was normalized to time 0. Normalized fluorescence data were then transferred
507 to a Prism file and visualized as a line plot.

508

509 Treatment with staurosporine resulted in a significant, dose-dependent increase in apoptosis and
510 a decrease in cell health over time in comparison to vehicle control, as evidenced by the increase
511 in Object Mean Intensity in both the TRITC (annexin V) and GFP (Cytotox) channels (**Figure 4**,
512 **Figure 5** and **Supplemental Videos SV1-7**). The 500 nM, 100 nM, and 10 nM doses of
513 staurosporine each resulted in a statistically significant increase in both apoptosis and
514 cytotoxicity over time (**Figure 5A-C**) as well as at the end of the experiment (**Figure 5E,F**).
515 Furthermore, staurosporine effectively inhibited PDO growth and formation at these
516 concentrations as demonstrated by an overall decrease in total PDO area, whereas the control
517 wells exhibited an increase in PDO area (**Figures 4 & 5D**).

518

519 Since a major advantage of live-cell imaging is the ability to correct for variability in plating, we
520 performed an experiment whereby cell viability was assessed as an endpoint measure. Proof-of-
521 concept endpoint assay data were collected using a PDO model that was generated from a
522 patient-derived xenograft of prostate cancer. Bright Field images were collected at the beginning
523 of the treatment period (day 0), followed by addition of a dual dye reagent that measures both
524 viability (acridine orange, AO) and cell death (propidium iodide, PI). The AO component emits a
525 green fluorescent signal upon binding to double stranded DNA, an indicator of cell viability. The
526 PI component stains dead nucleated cells and can be used to quantitate cell death in response to
527 treatment. In order to account for variability in PDO plating, we devised a method to determine
528 the number of PDOs per well at time 0 by converting Bright Field images to Digital Phase Contrast
529 images (**Supplemental Figure S3** and **Supplemental Protocols**).

530 Prostate cancer PDOs were treated with daunorubicin, a chemotherapy agent that causes cell
531 death, for 7 days. Upon completion of the experiment, samples were stained with AOPI as
532 described in **Supplemental Protocols**, followed by analysis of fluorescent images in Gen5.
533 **Figure 6A** shows a panel of images from the AOPI endpoint assay on day 7. When comparing
534 vehicle-treated PDOs (row one) to PDOs treated with 10 μ M daunorubicin (row two), there was
535 a clear decrease in green fluorescence (measure of viability, column two) and an increase in red
536 fluorescence (measure of cell death, column three). These results were then quantitated in
537 **Figure 6B**, where we show the array of readouts that can be achieved using the AOPI endpoint
538 staining technique. The upper left plot depicts the viability measurement generated from the
539 AO stain, normalized to the PDO count determined by Digital Phase Contrast image analysis of
540 each well on Day 0. These data correlate with the visual result from **Figure 6A**, whereby as the
541 concentration of daunorubicin increased, the viability drastically decreased. This is further
542 recapitulated in the upper right graph which demonstrates an increase in cell death denoted by
543 an increase in red fluorescence acquired with the PI stain.

544 The PI data were then combined with the viability reading (AO) to calculate a Viable to Dead
545 Ratio (**Figure 6B**, lower left graph). This ratio is a useful approach to determine whether a drug
546 is cytostatic or cytotoxic. Specifically, a cytotoxic drug will reach much closer to 0 than a
547 cytostatic drug, due to the fact a drug that is cytostatic will inhibit growth but may not induce
548 cell death. Lastly, the area of the PDOs can be accurately calculated using the green
549 fluorescence of the AO stain, even when PDOs may be undergoing cell death and blebbing. The
550 lower right graph depicts the average PDO area, which was calculated as the sum of the area
551 denoted in the subpopulation analysis divided by the PDO number. Analysis of area can give
552 further indication as to whether a treatment is simply inhibiting PDO growth or actually causing
553 PDO regression. Note that the analysis of average PDO area was performed using the GFP
554 channel and Cellular Analysis function, in contrast to **Figure 5D** that used the Bright Field
555 images to calculate total PDO area. These data highlight the flexibility of the analysis pipeline
556 depending on data availability and user interest.

557 Finally, we compared the gold standard for viability readings, CellTiter-Glo 3D, to the viability
558 fluorescence reading using AOPI (**Figure 6C**). Note that the data in this panel were not normalized
559 to the time 0 PDO number since this normalization is not typically performed by labs using the
560 CellTiter-Glo 3D kit. We observed the same trend for drug effect in both assays, whereby PDO
561 viability decreased as the daunorubicin concentration increased. The only visual difference
562 between these readouts was that the CellTiter-Glo 3D analysis reached an IC₅₀ before the AOPI
563 analysis and nearly completely reached 0. This result may be explained by the mechanism of
564 action of daunorubicin. Daunorubicin is a topoisomerase-II inhibitor that introduces double
565 stranded DNA breaks, leading to cell cycle arrest and eventually apoptosis¹⁴. During cell cycle
566 arrest, ATP depletion can occur¹⁵. Given that the CellTiter-Glo 3D assay is based on an ATP-
567 luciferase reaction to generate a luminescence signal, we hypothesize that the stronger reduction
568 in cell viability at higher concentrations of daunorubicin was due to ATP depletion rather than
569 complete cell death. Supporting this idea, the images in **Figure 6A** depict a population living PDOs
570 in the culture, as denoted by green fluorescence.
571

572 **FIGURE AND TABLE LEGENDS:**

573 **Figure 1: Overview of plating, imaging and analysis protocol.** PDOs are plated in a 96-well plate
574 and treated with fluorescent dyes and drugs. Imaging parameters for the experiment (e.g.,
575 Exposure, Z-stack) are created in the Gen5 software. Images are acquired by the Cytaion 5 and
576 processed in Gen5, and data are exported for further analysis.

577

578 **Figure 2: Overview of Cellular Analysis feature.** 1: Designate Plug: A plug is designated to include
579 areas of interest. 2: Set Primary Mask: The Primary Mask defines objects of interest based on size
580 and pixel intensity in a channel of choice. In this representative image, objects included in the
581 primary mask are outlined in purple. 3: Define Subpopulation: An additional subpopulation may
582 be defined to further refine the desired population for analysis. The subpopulation in the
583 example image (outlined in yellow) is defined based on circularity (>0.25) and area (>800). Images
584 were acquired with a 4X objective.

585

586 **Figure 3: Examples of subpopulation masking using the Cellular Analysis feature.**
587 Subpopulations are defined in the Bright Field channel. The subpopulation in the example images
588 (outlined in yellow) is defined based on circularity (>0.25) and area (>800). Images were acquired
589 with a 4X objective.

590

591 **Figure 4: Staurosporine treatment results in a dose-dependent increase in apoptosis and**

592 cytotoxicity. Bright Field images (4X objective) with GFP and TRITC fluorescence overlay are
593 shown for **the 500 nM, 10 nM, and 0.1 nM doses of staurosporine at 3 time points:** 0 hr, 54 hr,
594 114 hr. Red fluorescent signal indicates apoptosis (annexin V) and green fluorescent signal
595 indicates cytotoxicity (Cytotox).

596

597 **Figure 5: Multiplexed fluorescent live-cell imaging to assess PDO response.** PDO model ONC-
598 10817 was plated in 96-well plates and incubated with Annexin V Red (1:400) and Cytotox Green
599 (200 nM) dyes overnight at 37 °C. The following day, PDOs were treated with increasing
600 concentrations of staurosporine and were imaged every 6 hours for ~5 days. **(A, B)** Time and
601 dose-dependent increase in cytotoxicity **(A)** or apoptosis **(B)** in response to staurosporine. Data
602 were plotted as the Object Mean Intensity in the GFP or TRITC channel. **(C)** Comparison of time
603 course of apoptosis and cytotoxicity in response to 100 nM or 500 nM staurosporine. Data were
604 plotted as the Object Mean Intensity values in the GFP and TRITC channels. **(D)** Staurosporine
605 inhibits growth of PDOs. Data were plotted as the average total PDO area. Data in A-D were
606 normalized to PDO number at time 0 in each well and plotted as the mean and standard error of
607 the mean (SEM). N=5 technical replicates per treatment. **** p < 0.0001 vs. vehicle control by
608 2-way ANOVA. **(E)** Representative Bright Field, GFP, and TRITC images of 500 nM staurosporine-
609 treated PDOs vs. vehicle at the end of the experiment (114 hr). Images were acquired with a 4X
610 objective. **(F)** Quantification of cytotoxicity, apoptosis, and viability at the 114 hr timepoint. GFP
611 Object Mean Intensity (left) and TRITC Object Mean Intensity (middle) were calculated at the 114
612 hr timepoint using results from panels A-C. Viability (right) was assessed using the CellTiter-Glo
613 3D reagent per the manufacturer's protocol. Raw luminescence (RLU) values were normalized to
614 total PDO area at time 0 and plotted as the fold viability relative to vehicle control, which was set
615 at 1.0. ** p<0.01, ***p<0.001, **** p<0.0001 vs. vehicle control via one-way ANOVA with

616 Dunnett's post-hoc test. N=5 technical replicates per treatment.

617

618 **Figure 6: Use of live-cell imaging to aid in normalization of endpoint assay data.** PDOs were
619 treated with increasing concentrations of the topoisomerase-II inhibitor, daunorubicin, for 7
620 days. PDOs were exposed to AOPI Staining Solution and imaged as described in **Supplemental**
621 **Protocols**. AO= acridine orange, a measure of viability (GFP channel); PI= propidium iodide, a
622 measure of cell death (Texas Red channel). **(A)** Representative images acquired using AOPI
623 staining after 7 days of treatment with 10 μ M daunorubicin or vehicle control (0.1% DMSO). **(B)**
624 Different readouts using AOPI fluorescence as an endpoint viability/cell death method. See
625 **Supplemental Protocols** for a detailed description of the analysis methods. Upper left, analysis
626 of PDO viability after 7 days as determined by AO staining. Upper right, analysis of cell death by
627 PI staining. Data for AO and PI staining were normalized to PDO number at time 0 and then to
628 vehicle control, which was set at 1.0, and plotted as the mean and standard deviation. Lower left,
629 calculation of viable to dead ratio using the average object integrals for the AO and PI stains.
630 Lower right, area of PDOs as determined by AO staining. Cellular Analysis was performed in the
631 GFP channel. **(C)** Comparison of two methods to test PDO viability. After imaging, viability was
632 evaluated using the CellTiter-Glo 3D reagent per the manufacturer's protocol. The fold survival
633 relative to vehicle control was plotted at increasing concentrations of daunorubicin. Data
634 represent the mean and standard deviation for N=6 technical replicates per treatment; data were
635 not normalized to time 0 in panel C.

636

637 **Table 1: Example multiplexing experiment.** Annexin V Red binds exposed phosphatidyl serine on
638 the outer leaflet of apoptotic cell membranes. Cytotox Green integrates into cells with
639 compromised membrane integrity and binds DNA.

640

641 **DISCUSSION:**

642 PDO cultures are becoming an increasingly popular in vitro model system due to their ability to
643 reflect cellular responses and behaviors². Significant advances have been made in PDO
644 generation, culture and expansion techniques, yet methods to analyze therapeutic responses
645 have lagged. Commercially available 3D viability kits are lytic endpoint assays, missing out on
646 potentially valuable kinetic response data and limiting subsequent analyses by other methods⁸.
647 Emerging studies are applying live-cell imaging to assess drug responses in PDO models. Here,
648 we present a method to assess PDO therapeutic responses over time utilizing multiplexed
649 fluorescent live-cell imaging. Multiplexing fluorescent dyes allows for different cellular responses
650 to be quantified simultaneously. In addition to apoptosis and cytotoxicity, we envision that this
651 approach can be expanded in future studies to examine other phenotypic effects in PDOs.

652

653 **Critical steps within the protocol**

654 The protocol presented herein is designed to acquire kinetic bright-field and fluorescent images
655 of PDOs plated as domes in a 96-well plate. Key steps include 1) plating; 2) treating with dye and
656 drug; 3) defining imaging parameters; 4) image preprocessing and analysis at the completion of
657 kinetic image acquisition; and 5) data export for analysis in other statistical software (**Figure 1**).
658 Intact PDOs are plated in a 96-well plate as 5 μ L BME domes composed of a predefined ratio of
659 BME and Organoid Culture Media (typically 1:1). The protocol presented herein uses UltiMatrix

660 as the BME due to minimal batch-to-batch variability and superior optical properties for imaging.
661 Modifications for harvesting PDOs cultured in other BMEs such as Matrigel may be necessary, as
662 well as for models that are clumpy and difficult to dissociate (see examples **Supplemental Figure**
663 **S4**). Next, fluorescent dyes are added to the Organoid Culture Media at the time of plating (Day
664 -1) at a 2X concentration in a 100 μ l volume and incubated overnight to determine baseline cell
665 death. The following day (Day 0), drugs or other treatments are added to Organoid Culture Media
666 at a 2X concentration in a 100 μ l volume, and then added to each well for a final volume of 200
667 μ l. The final volume of 200 μ l reduces the meniscus effect with imaging. Kinetic images are
668 acquired using the Cytaion 5 plate reader partnered with the BioSpa tabletop incubator. The
669 BioSpa incubator allows for incubation of experimental plates at a fixed temperature of 37 °C and
670 5% CO₂ environment. Up to 8 plates can be stored in the BioSpa and thereby 8 experiments can
671 be simultaneously conducted. Imaging parameters for each plate are set up in the Gen5 software
672 using “Imager Manual Mode” and saved as a Protocol. The Protocol is then loaded into the
673 scheduling software (BioSpa OnDemand). The BioSpa OnDemand software automates the
674 workflow for kinetic image acquisition, including physical transfer of the plate from the BioSpa
675 incubator into the Cytaion 5 and dictating which protocol to run in Gen5 for data collection.
676 Images are analyzed using the Cellular Analysis function in the Gen5 software (**Figure 2**). We
677 describe specific methods to analyze Z Projections of fluorescent and Bright Field images. Specific
678 methods to analyze single Z planes and/or only Bright Field images are provided in **Supplemental**
679 **Protocols**. Finally, users can define specific data features, such as PDO area, number, and mean
680 fluorescence intensity, to export as an Excel spreadsheet for subsequent statistical analysis of
681 drug effects.
682

683 **Significance with respect to existing methods**

684 Given that PDO models are a relatively new model system to interrogate drug effects, methods
685 to accommodate the culture conditions, in particular growth in BME, are still emerging¹⁶. The
686 bulk of studies assessing PDO response to drug treatment rely on ATP-based endpoint assays as
687 a surrogate for cell health (CellTiter-Glo 3D). This method requires cell lysis, thus precluding
688 subsequent downstream analyses. Alternative endpoint assays, such as fluorescent staining,
689 single timepoint imaging, and morphologic tracking, have provided other metrics to characterize
690 drug response while allowing for sample use for additional purposes. For example, in-plate
691 endpoint fixation protocols have been applied for high-throughput analysis of drug effects^{17,18}.
692 An advantage of this method is that it circumvents the extensive processing required in typical
693 immunohistochemistry and immunofluorescent imaging¹⁹ and is particularly useful when sample
694 is limited, as is the case for PDO models. It is also amenable to high-resolution imaging with
695 confocal microscopy. Another endpoint assay that does not require cell lysis is live-cell imaging
696 with reagents such as propidium iodide or acridine orange. Our comparative analysis of CellTiter-
697 Glo 3D and AOPI, the latter of which does not require cell lysis, for assessment of cell viability and
698 death (**Figure 6C**) highlights the advantages of using live-cell imaging dyes in PDO models. This
699 method has been applied by several groups, including ours, to assess phenotypic effects at the
700 conclusion of an experiment¹⁸⁻²⁰. However, kinetic data acquisition using either the in-well
701 fixation or endpoint live-cell imaging methods require significant sample. Label-free morphologic
702 assessment of PDOs over time in part overcomes this limitation and can be assessed using a wide
703 range of imaging modalities^{8,10,17,18}, yet changes in morphology may not be representative of the

704 spectrum of potential drug effects such as apoptosis and changes in cell viability. We have
705 observed significant model-to-model variability in morphologic changes in response to drugs. For
706 example, some PDOs will increase in area as they are undergoing apoptosis, whereas other
707 models may shrink. Kinetic morphologic assessments have been multiplexed with either fixed or
708 live-cell fluorescent endpoint assays in a limited number of studies^{18,20}. The methods presented
709 herein are among the first to multiplex different fluorescent dyes to simultaneously assess
710 multiple cellular effects in a high-throughput system.

711

712 **Method troubleshooting and modifications**

713 One of the greatest improvements provided by kinetic live-cell imaging is that it overcomes key
714 limitations associated with endpoint assays. For example, plating an equal number of organoids
715 per well is technically difficult because most automated cell counters are gated for objects
716 smaller than 60 μm . Live-cell imaging allows for normalization to PDO number or area at time 0
717 in each well, which can then be used to adjust for variation in plating amongst wells. The gold
718 standard endpoint assay for PDOs is the CellTiter-Glo 3D kit, which measures ATP as a surrogate
719 for cell viability. We have extensively used this assay in our studies of gynecologic and prostate
720 cancer PDOs^{13,21-24}. In addition to requiring cell lysis for ATP measures, drugs and other
721 therapeutic modalities can alter ATP levels, potentially providing an inaccurate assessment of
722 therapeutic response. Utilizing live-cell imaging dyes allows for quantification of a wider scope of
723 specific cellular responses, such as apoptosis and cytotoxicity. Importantly, these reagents do not
724 perturb cell viability or induce DNA damage, as is the case with propidium iodide; this allows for
725 repeated assessment of PDO response over time. While we have not explored the use of acridine
726 orange (AO) for kinetic measures, the mechanism of action for AO should not preclude such
727 application in the future.

728

729 Tumors consist of several distinct cell populations with varying genomic profiles and
730 morphologies. Due to the complex heterogeneity of PDO models, individual organoid responses
731 may vary and tracking these responses is challenging. Our protocol provides a method to assess
732 multiple organoid response metrics on a well-by-well basis. However, certain technical
733 considerations still apply for live-cell imaging. The number of wells of a 24-well plate needed to
734 seed a 96-well plate will depend upon the density and growth rate of each PDO model. Because
735 clumping can confound image analysis (**Supplemental Figure S4**), PDO models may need
736 additional processing steps prior to plating. If necessary, PDOs may be mechanically sheared
737 during processing through vigorous pipetting with a non-wide bore p200 tip. Enzymatic digestion
738 using TrypLE Express may also be employed prior to plating to promote PDO dissociation and
739 decreased clumping. In our experience, we have noted that the length of TrypLE incubation is
740 highly variable depending upon the model. Therefore, TrypLE incubation should be optimized for
741 each model, particularly if researchers wish to obtain single cell suspensions. Recovery time prior
742 to beginning treatment may be necessary for PDO models that are particularly sensitive to
743 enzymatic digestion.

744

745 We present methods for specific live-cell imaging reagents. A limitation in the broad applicability
746 of the methods presented herein is a paucity of reagents that are compatible with BME. For other
747 dyes/reagents that have not yet been optimized for use in PDOs, additional troubleshooting may

748 be necessary to determine the optimal concentration and minimize solvent effects. Depending
749 on the readout of interest (e.g., apoptosis or cytotoxicity), treatment with a compound known to
750 induce cell death, such as staurosporine or daunorubicin¹³ should be used to optimize reagent
751 conditions. An additional consideration is the optimal time for dye integration into the BME
752 dome. In our experiments, we perform an overnight incubation prior to treatment to allow for
753 complete uptake of the dye into the domes as well as determine baseline cell health. Since signal
754 intensity will increase over time, researchers should perform pilot studies with the dyes to
755 determine the ideal exposure time at the end of the experiment to avoid overexposed images.
756 Finally, reagents should not interfere with cellular processes. For example, dyes that intercalate
757 into DNA are not compatible with kinetic imaging. However, live-cell imaging can be used for data
758 normalization in endpoint assays. Indeed, we present a supplementary method to quantify cell
759 viability and the viable:dead cell ratio using AOPI. In this experiment, the fluorescent signal is
760 normalized to PDO number for each well as determine by live-cell imaging on day 0 (day of
761 treatment, **Figure 6**).

762
763 Another limitation in this methods paper is the reliance on manual pipetting for experiments,
764 which can lead to greater variance in technical replicates. Further improvements in data
765 reproducibility can be achieved with addition of automation to other steps of the experimental
766 process, such as use of automated liquid handler for plating and drug dispensing as has been
767 demonstrated by others^{8,10}. However, this addition requires an additional investment in research
768 infrastructure that may not be available to all investigators. Given the heterogeneity in PDO area
769 for each model, normalizing results to the initial PDO number or area at time 0 is still a useful
770 approach with automated seeding.

771
772 **Choosing metrics for analysis**
773 A key advantage of the Cytaion 5 over other live-cell imaging platforms is the ability to customize
774 image and analysis features. However, the Cytaion 5/Gen5 software has a steep learning curve
775 and assumes that users have a foundational knowledge of imaging. One of our goals of this
776 methods paper is to provide step-by-step instructions to decrease the barrier for other
777 researchers to incorporate sophisticated live-cell imaging techniques in their PDO research
778 programs. While the specific analysis steps presented herein are for one system, users can apply
779 the multiplexing principles to other platforms, with the understanding that downstream analysis
780 may necessitate use of third-party software, such as NIH ImageJ.

781
782 Analysis metrics should be chosen based on both experimental goals and plating conditions. For
783 example, if the experiment is conducted using a fluorescent dye to quantify cell death,
784 fluorescence intensity is an effective read-out. The most effective fluorescence metric (Total
785 Fluorescence vs. Object Mean Intensity) will depend on the plating conditions (**Supplemental**
786 **Figure S4**). If PDOs are evenly dispersed and are of a more circular, cohesive morphology,
787 fluorescence can be determined in a defined PDO subpopulation. The specific function in the
788 Gen5 software is Cellular Analysis and the output is Object Mean Intensity. However, if the PDO
789 model is clumpy or has a dis cohesive morphology, we recommend quantifying the fluorescence
790 signal at the image level; this function can be found under Image Statistics and the output is Total
791 Fluorescence Intensity. While this method is useful for observing changes at the individual well

792 level, this metric is not specific for objects of interest and could change erroneously if the PDOs
793 move outside of the designated plug over the duration of the experiment. In scenarios in which
794 there is significant debris or dead single cells, use of the Cellular Analysis is suggested to gate out
795 any fluorescent signal that is not specifically associated with a PDO. An example of differential
796 results using Cellular Analysis vs. Image Statistics is presented in **Supplemental Figure S5**.
797

798 To determine the optimal threshold for the Image Statistics function, the line tool may be utilized
799 to determine the starting point. Using the line tool, users can determine the range of
800 fluorescence intensity within an image. We set the background as the 25% value of the peak
801 intensity within the image and designate this value as the lower threshold. To view the
802 fluorescent areas that are included in the designated threshold, check the “Threshold Outliers”
803 box. Additional fine-tuning of the lower threshold value may be necessary.
804

805 **Data management**

806 A significant challenge in live-cell imaging is storing the massive amount of data generated with
807 each experiment. This is particularly relevant in the case of PDO cultures, where Z-Stacks are used
808 to image across several focal planes and generate a Z Projection. There are multiple methods to
809 overcome this issue. First, ensure adequate storage capacity. We have installed three solid state
810 hard drives with a total of 17 TB. Other options include transferring experimental files to external
811 hard drives or networked storage. It is not recommended to directly write files to cloud based
812 storage. To analyze data that has been stored on an external drive, simply transfer the
813 experiment and the image files to a computer equipped with Gen5 software (NOTE: large files
814 may take extended periods of time to transfer). Before analysis, the images must be re-linked to
815 the experiment. Open the experiment file, click Protocol in the toolbar, select Protocol Options.
816 Click Image Save Options and click Select new image folder. Locate the image file and click Select
817 Folder to relink.
818

819 Depending on the goals of the experiment, it may also be suitable to use the binning feature
820 within Gen5. Binning decreases file size by lowering the number of pixels, which leads to lower
821 image resolution (see Step 5.3.4 in *Setting up imaging parameters* section). Therefore, binning is
822 not recommended if high resolution images are required. When using the binning feature, the
823 exposure settings will need to be adjusted. Once the experimental file has been created, double
824 click on the Image section, and click the microscope icon to reopen Imager Manual Mode. Use
825 the Auto-expose function or manually adjust exposure as needed.
826

827 **Conclusions**

828 In summary, we present methods for assessing apoptosis and cell health of PDOs in response to
829 cytotoxic agents. Future studies are necessary to optimize methods and develop additional
830 analysis strategies for kinetic imaging of PDOs, such as other phenotypes and effects of drugs
831 that are cytostatic rather than cytotoxic. A major roadblock is the commercial availability of dyes
832 and reagents that are compatible with BME. There is still more work necessary to better
833 understand how kinetic live-cell imaging can be fully utilized to extract the most data from these
834 models.
835

836 **ACKNOWLEDGMENTS:**

837 We are grateful to the Tissue Procurement Core and Dr. Kristen Coleman at the University of
838 Iowa for providing patient tumor specimens and to Dr. Sofia Gabrilovich in the Department of
839 Obstetrics and Gynecology for assisting with patient-derived organoid model generation. We also
840 thank Dr. Valerie Salvatico (Agilent, USA) for critical analysis of the manuscript. We acknowledge
841 the following funding sources: NIH/NCI CA263783 and DOD CDMRP CA220729P1 to KWT; Cancer
842 Research UK, Prostate Cancer UK, Prostate Cancer Foundation and Medical Research Council to
843 JSdB. The funders had no role in the design or analysis of experiments or decision to publish.
844

845 **DISCLOSURES:**

846 KWT is a co-owner of Immortagen Inc. CJD is an employee of Agilent. JSdB has served on advisory
847 boards and received fees from Amgen, Astra Zeneca, Astellas, Bayer, Bioxcel Therapeutics,
848 Boehringer Ingelheim, Cellcentric, Daiichi, Eisai, Genentech/Roche, Genmab, GSK, Harpoon,
849 ImCheck Therapeutics, Janssen, Merck Serono, Merck Sharp & Dohme, Menarini/Silicon
850 Biosystems, Orion, Pfizer, Qiagen, Sanofi Aventis, Sierra Oncology, Taiho, Terumo, and Vertex
851 Pharmaceuticals; is an employee of the Institute of Cancer Research (ICR), which have received
852 funding or other support for his research work from AZ, Astellas, Bayer, Cellcentric, Daiichi,
853 Genentech, Genmab, GSK, Janssen, Merck Serono, MSD, Menarini/Silicon Biosystems, Orion,
854 Sanofi Aventis, Sierra Oncology, Taiho, Pfizer, and Vertex, and which has a commercial interest
855 in abiraterone, PARP inhibition in DNA repair defective cancers, and PI3K/AKT pathway inhibitors
856 (no personal income); was named as an inventor, with no financial interest for patent 8 822 438,
857 submitted by Janssen that covers the use of abiraterone acetate with corticosteroids; has been
858 the CI/PI of many industry-sponsored clinical trials; and is a National Institute for Health Research
859 (NIHR) Senior Investigator. No other authors have any potential conflicts of interest to disclose.
860

861 **REFERENCES:**

- 862 1 Drost, J. & Clevers, H. Organoids in cancer research. *Nat Rev Cancer.* **18** (7), 407-418,
863 doi:10.1038/s41568-018-0007-6, (2018).
- 864 2 Lohmussaar, K., Boretto, M. & Clevers, H. Human-Derived Model Systems in
865 Gynecological Cancer Research. *Trends Cancer.* **6** (12), 1031-1043,
866 doi:10.1016/j.trecan.2020.07.007, (2020).
- 867 3 Sachs, N. et al. A Living Biobank of Breast Cancer Organoids Captures Disease
868 Heterogeneity. *Cell.* **172** (1-2), 373-386 e310, doi:10.1016/j.cell.2017.11.010, (2018).
- 869 4 de Witte, C. J. et al. Patient-Derived Ovarian Cancer Organoids Mimic Clinical Response
870 and Exhibit Heterogeneous Inter- and Intrapatient Drug Responses. *Cell Rep.* **31** (11),
871 107762, doi:10.1016/j.celrep.2020.107762, (2020).
- 872 5 Adan, A., Kiraz, Y. & Baran, Y. Cell Proliferation and Cytotoxicity Assays. *Curr Pharm
873 Biotechnol.* **17** (14), 1213-1221, doi:10.2174/1389201017666160808160513, (2016).
- 874 6 Driehuis, E., Kretzschmar, K. & Clevers, H. Establishment of patient-derived cancer
875 organoids for drug-screening applications. *Nat Protoc.* **15** (10), 3380-3409,
876 doi:10.1038/s41596-020-0379-4, (2020).
- 877 7 Alzeeb, G. et al. Gastric cancer cell death analyzed by live cell imaging of spheroids. *Sci
878 Rep.* **12** (1), 1488, doi:10.1038/s41598-022-05426-1, (2022).
- 879 8 Deben, C. et al. OrBITS: label-free and time-lapse monitoring of patient derived organoids

880 for advanced drug screening. *Cell Oncol (Dordr)*. **46** (2), 299-314, doi:10.1007/s13402-
881 022-00750-0, (2023).

882 9 Tamura, H. *et al.* Evaluation of anticancer agents using patient-derived tumor organoids
883 characteristically similar to source tissues. *Oncol Rep.* **40** (2), 635-646,
884 doi:10.3892/or.2018.6501, (2018).

885 10 Le Compte, M. *et al.* Multiparametric Tumor Organoid Drug Screening Using Widefield
886 Live-Cell Imaging for Bulk and Single-Organoid Analysis. *J Vis Exp.* (190),
887 doi:10.3791/64434, (2022).

888 11 Hanson, K. M. & Finkelstein, J. N. An accessible and high-throughput strategy of
889 continuously monitoring apoptosis by fluorescent detection of caspase activation. *Anal
890 Biochem.* **564-565** 96-101, doi:10.1016/j.ab.2018.10.022, (2019).

891 12 Isherwood, B. *et al.* Live cell in vitro and in vivo imaging applications: accelerating drug
892 discovery. *Pharmaceutics.* **3** (2), 141-170, doi:10.3390/pharmaceutics3020141, (2011).

893 13 Bi, J. *et al.* Successful Patient-Derived Organoid Culture of Gynecologic Cancers for
894 Disease Modeling and Drug Sensitivity Testing. *Cancers (Basel)*. **13** (12),
895 doi:10.3390/cancers13122901, (2021).

896 14 Binaschi, M., Zunino, F. & Capranico, G. Mechanism of action of DNA topoisomerase
897 inhibitors. *Stem Cells.* **13** (4), 369-379, doi:10.1002/stem.5530130408, (1995).

898 15 Park, Y. Y., Ahn, J. H., Cho, M. G. & Lee, J. H. ATP depletion during mitotic arrest induces
899 mitotic slippage and APC/C(Cdh1)-dependent cyclin B1 degradation. *Exp Mol Med.* **50** (4),
900 1-14, doi:10.1038/s12276-018-0069-2, (2018).

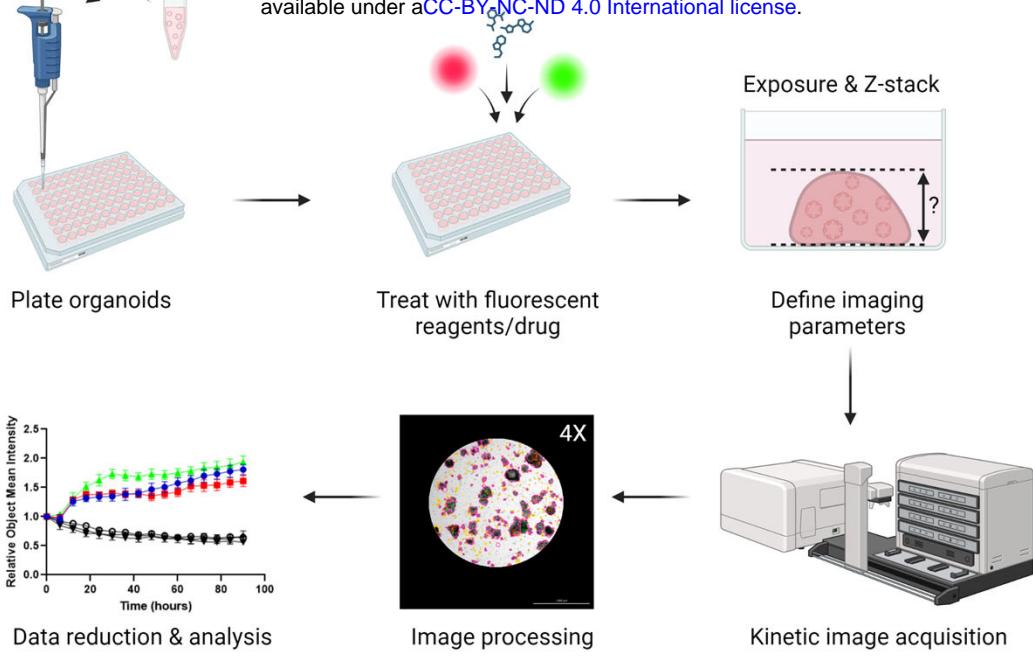
901 16 Lukonin, I., Zinner, M. & Liberali, P. Organoids in image-based phenotypic chemical
902 screens. *Experimental & Molecular Medicine.* **53** (10), 1495-1502, doi:10.1038/s12276-
903 021-00641-8, (2021).

904 17 Herpers, B. *et al.* Functional patient-derived organoid screenings identify MCLA-158 as a
905 therapeutic EGFR x LGR5 bispecific antibody with efficacy in epithelial tumors. *Nat Cancer.*
906 **3** (4), 418-436, doi:10.1038/s43018-022-00359-0, (2022).

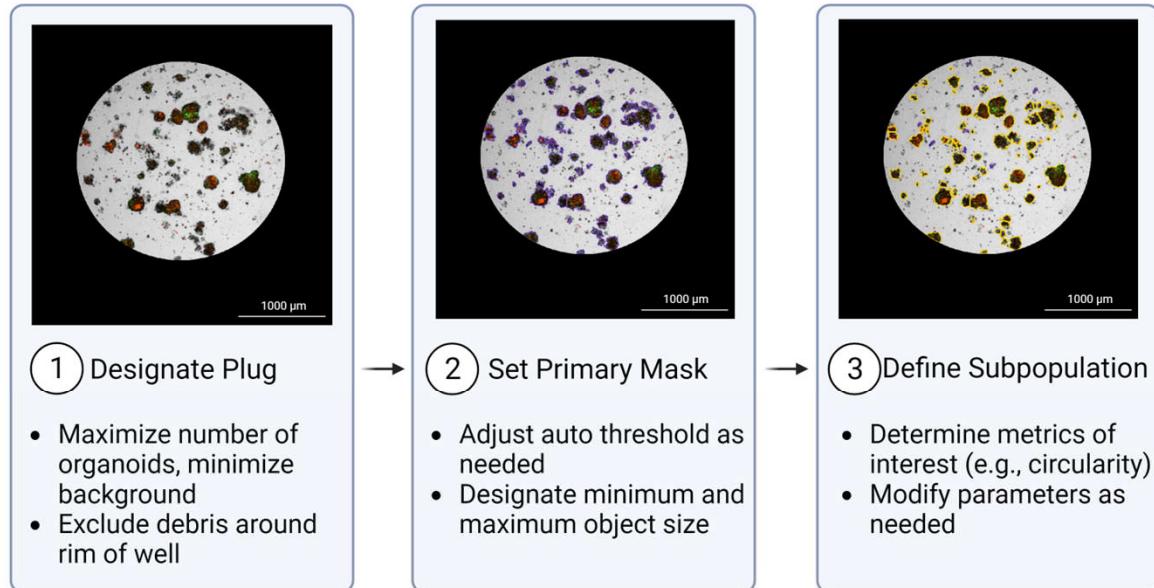
907 18 Ramm, S. *et al.* High-Throughput Live and Fixed Cell Imaging Method to Screen Matrigel-
908 Embedded Organoids. *Organoids.* **2** (1), 1-19 (2023).

909 19 Dekkers, J. F. *et al.* High-resolution 3D imaging of fixed and cleared organoids. *Nat Protoc.*
910 **14** (6), 1756-1771, doi:10.1038/s41596-019-0160-8, (2019).

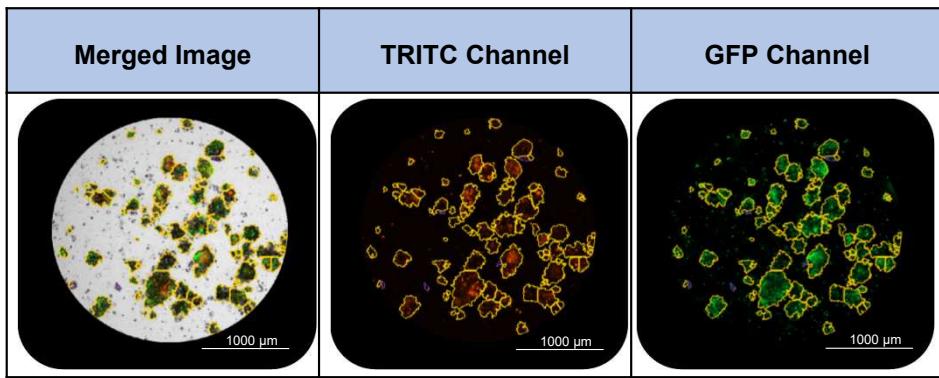
911 20 Van Hemelryk, A. *et al.* Viability Analysis and High-Content Live-Cell Imaging for Drug
912 Testing in Prostate Cancer Xenograft-Derived Organoids. *Cells.* **12** (10),
913 doi:10.3390/cells12101377, (2023).

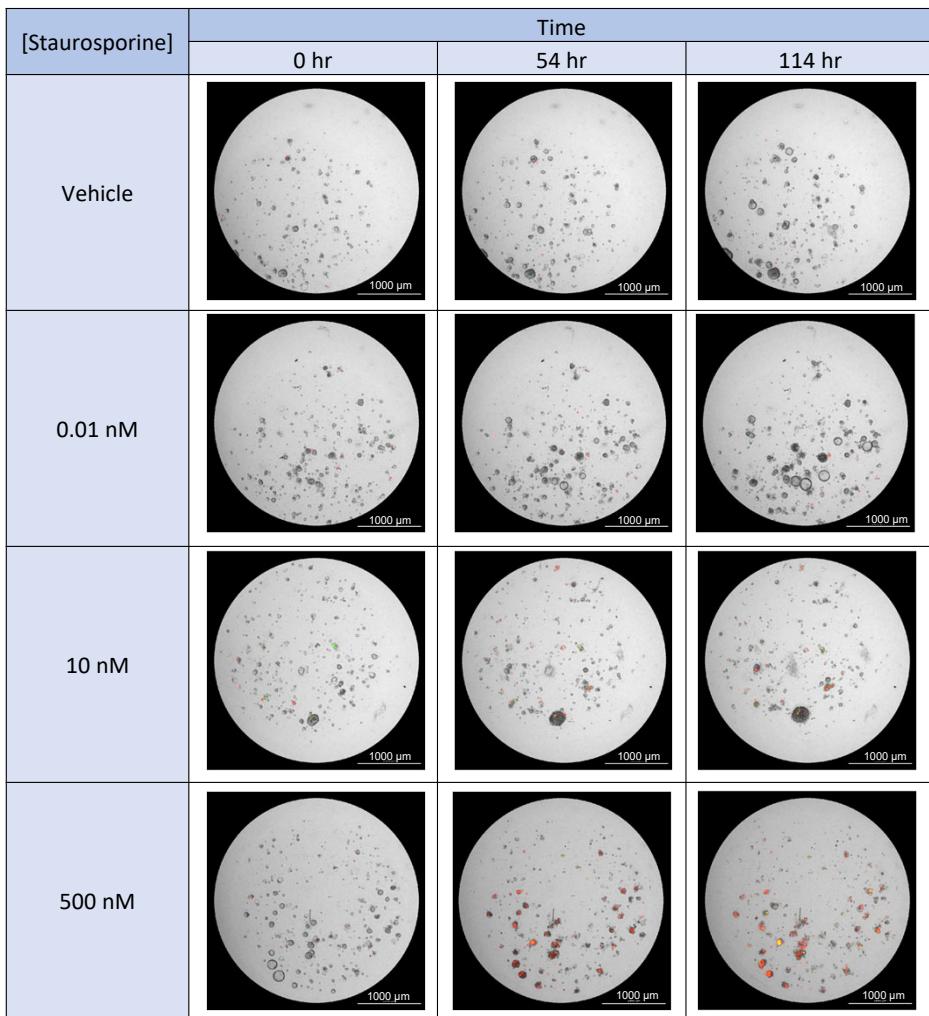

914 21 Bi, J. *et al.* Advantages of Tyrosine Kinase Anti-Angiogenic Cediranib over Bevacizumab:
915 Cell Cycle Abrogation and Synergy with Chemotherapy. *Pharmaceutics (Basel)*. **14** (7),
916 doi:10.3390/ph14070682, (2021).

917 22 Bi, J. *et al.* Blocking autophagy overcomes resistance to dual histone deacetylase and
918 proteasome inhibition in gynecologic cancer. *Cell Death Dis.* **13** (1), 59,
919 doi:10.1038/s41419-022-04508-2, (2022).


920 23 Guo, C. *et al.* B7-H3 as a Therapeutic Target in Advanced Prostate Cancer. *Eur Urol.* **83** (3),
921 224-238, doi:10.1016/j.eururo.2022.09.004, (2023).

922 24 Gil, V. *et al.* HER3 Is an Actionable Target in Advanced Prostate Cancer. *Cancer Res.* **81**
923 (24), 6207-6218, doi:10.1158/0008-5472.CAN-21-3360, (2021).




Figure 1: Overview of plating, imaging and analysis protocol

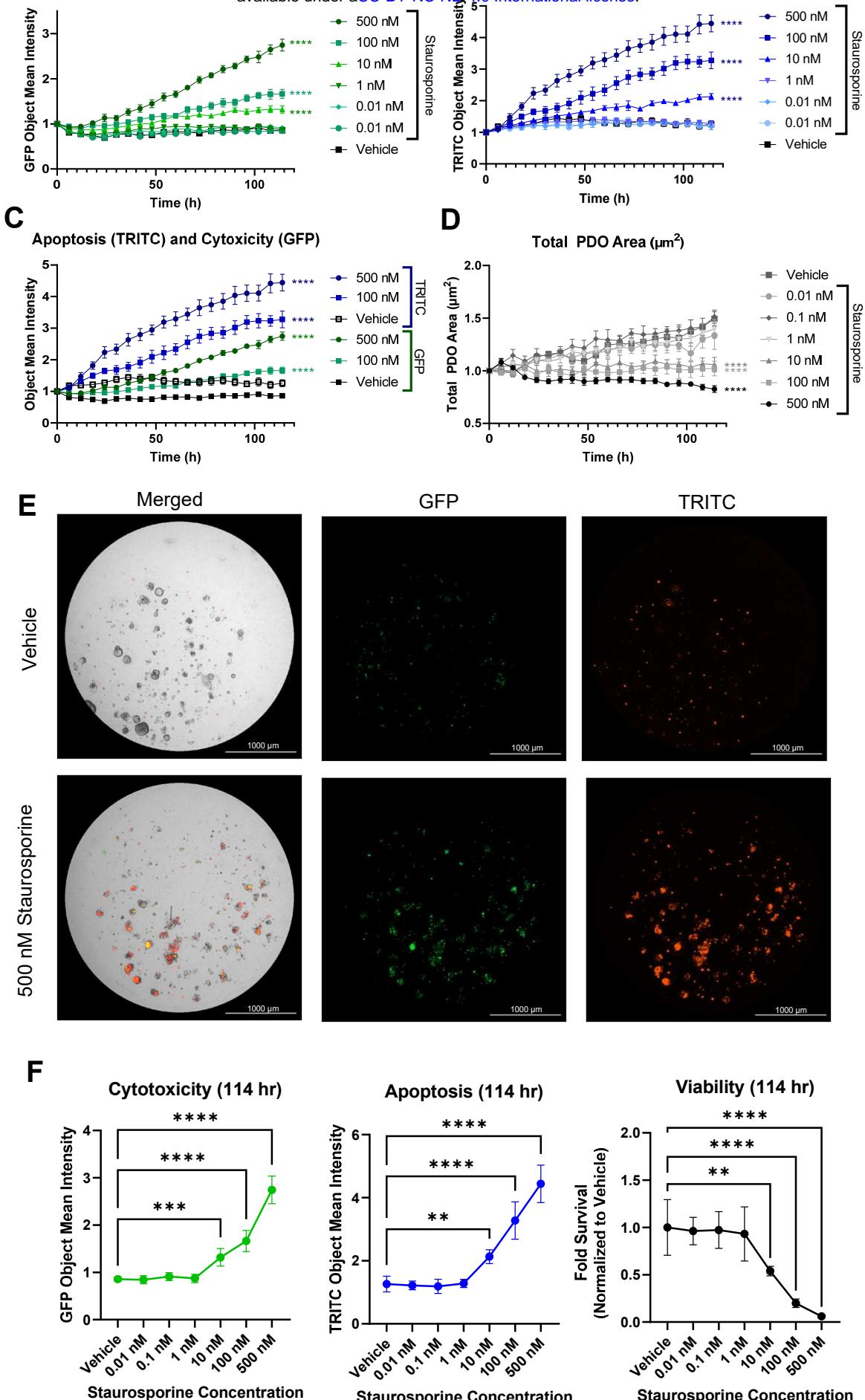

Figure 2: Overview of Cellular Analysis feature.

Figure 3: Examples of subpopulation masking using the Cellular Analysis feature.

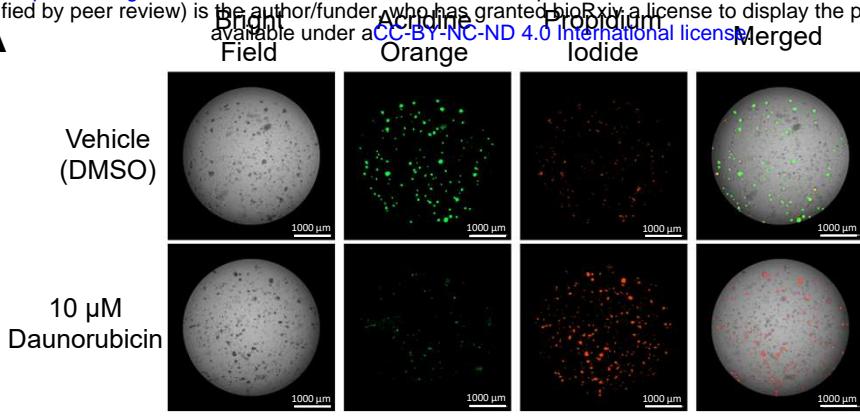


Figure 4: Staurosporine treatment results in a dose-dependent increase in apoptosis and cytotoxicity.

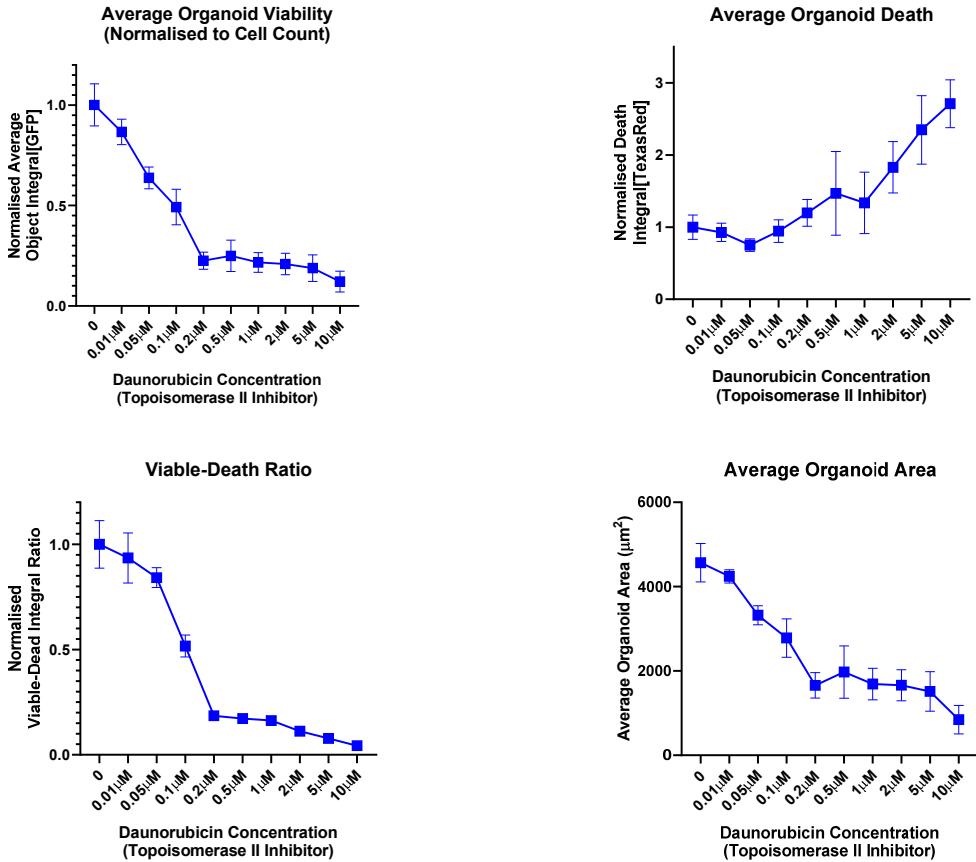
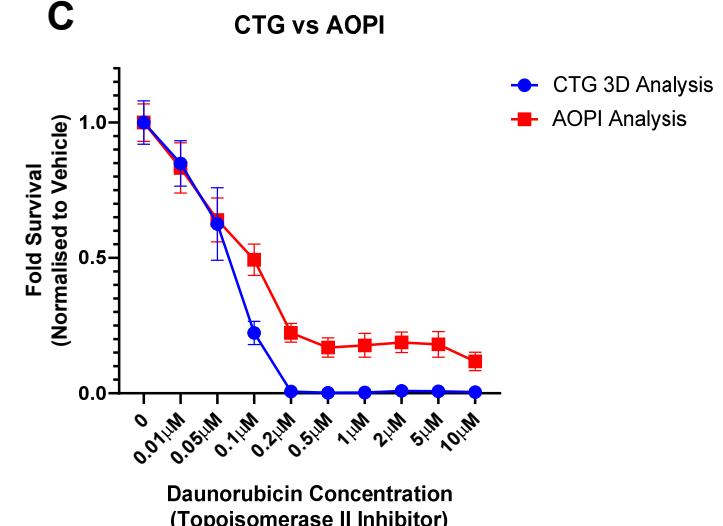


Figure 5: Multiplexed fluorescent live-cell imaging to assess PDO response.


A

B

C

Figure 6: Use of live-cell imaging to aid in normalization of endpoint assay data

Table 1: Example Multiplexing Experiment. Annexin V binds exposed phosphatidyl serine on the outer leaflet of apoptotic cell membranes. Cytotox integrates into cells with compromised membrane integrity and binds DNA.

Treatment	# of wells	Media Volume	Annexin		100 μ M Cytotox	
			Dilution	Volume	Dilution	Volume
Multiplex	60	6.6 mL	1:400	16.5 μ L	200 nM	13.2 μ L

Multiplexed live-cell imaging for drug responses in patient-derived organoid models of cancer

Kaitriana E. Colling, Emily L. Symons, Lorenzo Buroni, Hiruni K. Sumanisiri, Jessica Andrew-Udoh, Emily Witt, Haley A. Losh, Abigail M. Morrison, Kimberly K. Leslie, Christopher Dunnill, Johann S. De Bono and Kristina W. Thiel

CONTENTS

Supplemental Protocols

- 1) End of treatment cell viability and cell death fluorescence imaging using AOPI Staining Solution
- 2) End of treatment cell viability and cell death fluorescence image analysis in Gen5 software
- 3) Setting up imaging parameters for a single focal plane of view analysis (Bright Field/Digital Phase Contrast Images)
- 4) Digital Phase Contrast Image analysis in Gen5 software

Supplemental Table

- 1) Table S1: Organoid Culture Media Components

Supplemental Figures

- 1) Figure S1: Multiplexed live-cell imaging of ONC-10811.
- 2) Figure S2: Treatment with Annexin V and Cytotox does not perturb PDO viability.
- 3) Figure S3: Label-free analysis of PDOs using digital phase contrast.
- 4) Figure S4: PDO models may vary in their morphology and plating consistency.
- 5) Figure S4: Example images using Cellular Analysis vs. Image Statistics for quantifying fluorescence.

Supplemental Videos

- 1) Supplemental Video S1: Time-lapse video of 500 nM staurosporine treatment with images acquired every 6 hrs.
- 2) Supplemental Video S2: Time-lapse video of 100 nM staurosporine treatment with images acquired every 6 hrs.
- 3) Supplemental Video S3: Time-lapse video of 10 nM staurosporine treatment with images acquired every 6 hrs.
- 4) Supplemental Video S4: Time-lapse video of 1 nM staurosporine treatment with images acquired every 6 hrs.
- 5) Supplemental Video S5: Time-lapse video of 0.1 nM staurosporine treatment with images acquired every 6 hrs.
- 6) Supplemental Video S6: Time-lapse video of 0.01 nM staurosporine treatment with images acquired every 6 hrs.
- 7) Supplemental Video S7: Time-lapse video of vehicle (0.06% DMSO) with images acquired every 6 hrs.

SUPPLEMENTAL PROTOCOLS

Setting up imaging parameters for a single focal plane of view analysis (Bright Field/Digital Phase Contrast Images): This section details how to generate a protocol that will allow for bright field kinetic imaging (converted to Digital Phase Contrast) in a single focal plane of view to determine PDO growth over time. The reason why users may choose to image in a single focal plane rather than generating a Z-Stack projection is because if the seeding density is too high, the PDOs overlap in different focal planes. This will then make it difficult for the analysis software to differentiate individual PDOs from each other.

1. Launch Gen5 software to begin imaging the 96-well plate.
2. **Click** New Task > Instrument Control > Incubate.
 1. Set the Requested temperature to 37 °C and **check** ON.
 1. *Note: Cytation will take a couple of minutes to reach temperature. Prior to placing the plate in the Cytation 5, make sure the reader is at 37 °C. This is necessary to maintain the sample at the appropriate temperature as well as decrease condensation on the lid, which will obstruct imaging.*
 2. **Close** the Instrument Control Panel.
3. Place plate in Cytation 5. **Click** New Task > Imager Manual Mode > Capture Now and input the following settings: Objective (select desired magnification); Filter (select microplate); Microplate format (select number of wells); and Vessel Type (select plate type). **Click** “Use Lid” and “Use slower carrier speed.” **Click** OK.
 1. *Note for Vessel Type: Be as specific as possible when selecting information about the plate because the software is calibrated to the specific distance from the objective to the bottom of the plate for each plate type as well as the thickness of the plastic.*
 2. *Note for Slower Carrier Speed: Select this box to avoid disrupting organoid domes when loading/unloading plates.*
4. Identify the focal plane.
 1. **Select** a well of interest to view (left panel, below histogram).
 2. **Select** the Bright Field channel (left panel, top).
 3. Use the coarse and fine adjustment arrows (left panel, middle) to change the focal plane in view.
 1. *Note: The distance at which each tick changes the focal height, for both coarse and fine adjustment, can be lowered or increased using the sliders under the Focus drop down menu.*
 4. Identify the bottom and top focal heights of the domes and choose the focal height that falls in the middle of these two values.
 1. *Note: For users using Agilent 96-Well Plates and seeding 5 µL domes, this focal height will be approximately 3700 µm.*
 5. To ensure that the focal height settings are appropriate for other wells of interest, **select** another well (left panel, below histogram) and visualize this focal height to

bioRxiv preprint doi: <https://doi.org/10.1101/2023.11.15.567243>; this version posted November 17, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [CC-BY-NC-ND 4.0 International license](#).

make sure the image is still in focus. This is done by manually entering the focal positions. **Click** on the three dots next to the fine adjustment (left panel, top). A window will open. Type in the desired focal height.

5. Set the exposure settings for the Bright Field channel.
 1. First **Click** Auto Expose (left panel, top, under coarse and fine adjustment) to automatically determine an exposure that the Cytation 5 deems appropriate.
 1. If this exposure appears too dim or too bright, this can be adjusted manually using the plus and minus buttons on either side of the Auto Expose button.
6. Generate a template image from which the protocol/experiment will be based.
 1. **Click** on the “Camera” icon (left panel, bottom corner) to take a template image. This is what the images will look like when carrying out actual experiments.
 2. **Click** the “Process/Analyze” button to the right of the “Camera” icon.
 3. **Click** “Image Set” drop down menu (top left of the screen) and **click** on “Create experiment from this image set”. A new Procedure window will open.
 1. *Note: The parameters selected for the image will automatically be taken into the new window whereby an experimental protocol can be created.*
7. Create Protocol.
 1. Set the temperature and gradient: **Click** on Set Temperature under the Actions heading (left). A new window will open. **Select** “Incubator On” and manually enter the desired temperature under “Temperature.” Next, under “Gradient”, manually enter “1.” Close window by **selecting** OK.
 1. *Note: creating a 1 °C gradient will prevent condensation from forming on the lid of the plate.*
 2. Designating wells to image
 1. **Double click** on the Image tab under description.
 2. **Click** “Full Plate” (right corner, top). This will open the Plate Layout window.
 3. Highlight wells of interest using the cursor. **Click** OK.
 4. If desired, **check** “Autofocus binning” and “Capture binning” boxes. **Click** OK to close window.
 1. *Note: Please refer to Data Management in the Discussion for specific scenarios in which this feature may be used.*
 3. Set intervals for kinetic imaging.
 1. **Click** on Options under the Other heading (left).
 2. **Check** the “Discontinuous Kinetic Procedure” box.
 3. Under Estimated total time, enter the run time for the experiment (e.g., 5 days). Under Estimated interval, enter the interval at which to image the plate (e.g., every 6 hours).
 4. **Click** “Pause after each run” to allow time for the plate to be transferred to the BioSpa incubator. Close window by **selecting** OK.
 4. Set up Data Reduction to generate Digital Phase Contrast Images. Converting Bright field images into Digital Phase Contrast images allows users to more accurately

create masks around objects of interest even when PDOs are undergoing cell death

and blebbing, which can interfere with generation of masks around live/viable PDOs.

1. In the toolbar, **click** Protocol > Data Reduction > Digital Phase Contrast, which will open a new tab.
2. Make sure the “Channel” is set to Bright Field and set the “Structuring Element Size” to the average size at which PDOs are expected to grow. **Click** “OK” to close the window, and then **click** “OK” again to close the Data Reduction window.
5. Save the Protocol.
 1. In the toolbar, **Click** File tab > Save Protocol as.
 2. **Select** location to save file. Enter file name. **Click** Save to close window.
 3. **Click** on the File > Exit in the toolbar. A tab will open to save changes to Imager Manual Mode. **Select** No.
 4. A tab will open to save changes to Experiment 1. **Select** No.
 5. A tab will open to update the protocol definition. **Select** Update.
 6. **Close** Gen5 software.
8. Import the Protocol into BioSpa OnDemand and finish setting up the Experiment.
 1. **Open** the BioSpa OnDemand software.
 2. **Select** an available slot in the BioSpa.
 3. Import the Protocol.
 1. Under the Procedure Info tab, **select** User in the drop-down menu.
 2. Next to Protocol slot, **click** Select > Add a new entry.
 3. Next to Protocol slot, **click** Select. This will open a new window to navigate to the desired Protocol in the file architecture.
 4. **Click** Open to import the Protocol into the BioSpa OnDemand software.
 5. Enter the amount of time needed to image the plate. **Click** OK to close the Gen5 Protocol List window.
 1. *Note: This step is especially important when running several experiments at a time. To determine the time needed to image the, click “Perform a timing run now.” Click OK.*
 4. Set imaging intervals and schedule the experiment.
 1. Under Interval, enter the imaging interval which was designated previously in *Step 5.4 of Setting up Imaging Parameters*.
 2. Under Start Time Options, **select** “When available.”
 1. *Note: A specific start time can be designated instead of running the protocol at the next available time.*
 3. Under Duration, **select** “Fixed” or “Continuous.”
 1. *Note: Selecting Fixed duration will set a specific endpoint for the experiment and requires the user to designate an experimental timeframe. Continuous duration will allow the experiment to run with no endpoint and can only be ended by a user stopping the experiment.*
 4. **Click** Schedule plate/vessel. This will open the Plate Validation Sequence.
 5. A tab will open with the proposed first read time. **Click** Yes to accept this schedule.

5. Remove the plate from the Cytation 5. **Click** Open drawer to access the appropriate

slot. Place plate in BioSpa. **Click** Close drawer.

1. *Note: This step can be performed at any point once the Protocol has been created. However, the plate must be in the Cytation 5 if one wishes to perform a timing run.*

Digital Phase Contrast Image analysis in Gen5 software: Below we describe methods to analyze data from the Digital Phase Contrast images generated from the Bright Field images. Representative images are provided in **Supplemental Figure S4**.

1. Opening image analysis module.

1. **Open** experimental file in Gen5 software. **Select** Plate > View from the toolbar.
2. **Change** Data drop-down menu to Dig.Ph.Con.
3. **Double click** on a well of interest.
4. **Select** Analyze > “I want to setup a new Image Analysis data reduction step” > OK.

2. Cellular Analysis.

1. Primary Mask

1. Under ANALYSIS SETTINGS, **select** Type: Cellular Analysis and Detection Channel: Dig.Ph.Con. (left panel, center).
2. **Click** Options. The Primary Mask and Count page will open. In the Threshold box, **uncheck** “Auto” and adjust the slider as necessary to include or exclude objects of interest.

1. *Note: When analyzing images in the Bright Field channel, ensure that Background is set to Light and for Digital Phase Contrast channel use Dark.*

2. **Check** both boxes “Split touching objects” and “Fill holes in masks.”

3. **Open** “Advanced Detection Options.”

4. **Select** “Background Flattening” and “Auto.”

1. *Note: The Rolling Ball Diameter is a pre-processing technique where the image is sampled to distinguish background noise from actual signal. The diameter is how much of the image is sampled.*

5. **Set** “Image Smoothing Strength” to between 1 and 10 cycles of 3x3 average filter depending on how much background material there is.

1. *Note: Image smoothing is used to further decrease the impact of background noise on the generation of the mask, it reduces the variability of background signal to allow for more accurate border identification and better special measurements.*

6. **Set** the “Primary Mask” to “Use Threshold Mask” from the drop-down menu, then **select** “OK”.

7. Under Object selection, designate a minimum and a maximum object size (μm). Adjust as necessary to exclude cellular debris/single cells.

1. *Note: PDO size may vary significantly between different models and types. Use the measuring tool in the Gen5 software to determine the minimum and maximum PDO size thresholds for each model.*

2. **Deselect** “Include primary edge objects” and “Analyze entire image.” To limit the analysis to a certain region of the well, **click** “Plug.” This will open the Image Plug Window. Using the drop-down menu, **select** Plug

1. *Note: It is important to maximize the number of PDOs within the plug while also excluding PDO-free areas to minimize background. Designate a plug size that will consistently capture the majority of the objects of interest across replicates. Generating a plug that also excludes the edges of the dome is important as it excludes any objects that may appear distorted due to the refraction of light from the extreme curvature of the dome around the edges.*
2. Subpopulation Analysis.
 1. **Click** on Calculated Metrics in the Cellular Analysis toolbar. **Click** “Select or create object level metrics of interest” (right corner, bottom). Under Available object metrics, **select** metrics of interest (e.g., Circularity, StdDev) and **click** the Insert button. **Click** OK.
 1. *Note: Morphology and density of each PDO model will determine the best metrics of interest to distinguish the subpopulation; for analysis of Digital Phase Contrast images, circularity and StdDev are the typical metrics of use. Circularity allows for exclusion of cellular debris that do not have a more typical uniform circular structure. StdDev is distinguishes between cellular debris and PDOs. Specifically, debris will appear uniformly bright whereas PDOs will have brighter edges and darker cores and therefore a high StdDev of light.*
 2. **Open** the Subpopulation Analysis page from the Cellular Analysis toolbar. **Click** Add to create a new subpopulation. A pop-up window will open.
 3. If desired, enter a name for the subpopulation. Under Object metrics, **click** on metric of interest and **press** Add Condition. In the Edit Condition window, enter parameters for the chosen Object metric. Repeat with additional metrics as necessary.
 1. *Note: Parameters may be adjusted manually (i.e., include all objects with a circularity greater than 0.3).*
 4. In the table at the bottom of the window, **check** the desired results to display. **Click** OK > Apply.
 5. To view the objects within the subpopulation, use the Object details drop-down menu to **select** the subpopulation. Objects that fall within the parameters will be highlighted in the image.
 6. To adjust subpopulation parameters, **reopen** the Subpopulation Analysis window from the Cellular Analysis toolbar. **Select** the subpopulation and **click** Edit.
 7. **Click** ADD STEP.
 1. *Note: This will apply the same analysis to all wells within the experiment at all time points. In the drop-down menu on the Matrix page, different metrics can be selected for individual viewing.*

End of treatment cell viability and cell death fluorescence imaging using Nexcelom Bioscience ViaStain™ AOPI Staining Solution: This section details the experimental procedure and parameters used to analyze cell viability and cell death within the organoid cultures using

fluorescence. AOPI is a combination of two reagents, acridine orange (AO) and propidium iodide (PI). AO can enter both live and dead cells, resulting in the staining of all nucleated cells; AO generates a green fluorescent signal. PI can only enter cells with compromised membranes, resulting in staining all dead nucleated cells; PI generates a red fluorescence signal. Due to Förster resonance energy transfer (FRET), the PI signal quenches the AO signal in cells stained with both dyes, resulting in no spill-over and no double positive results.

1. Addition of “Viastain™ AOPI Staining Solution” to PDO culture.
 1. Add AOPI staining solution at a 1:50 v/v ratio (e.g., 2 μ L of staining solution to 100 μ L culture medium) to each well being careful not to introduce any air bubbles.
 2. Gently shake the plate to mix the AOPI solution with the culture medium and incubate in a dark place for 25 minutes before continuing.
 1. *Note: Future experiments should be incubated with the AOPI solution for 30 minutes before reading.*
2. To set up a new protocol for the AOPI analysis, repeat steps 1-6 from “Setting up imaging parameters for a single focal plane of view analysis (Bright Field/Digital Phase Contrast Images).”
3. Create Protocol.
 1. Set the temperature and gradient: **Click** on Set Temperature under the Actions heading (left). A new window will open. **Select** “Incubator On” and manually enter the desired temperature under “Temperature.” Next, under “Gradient”, manually enter “1.” Close window by **selecting** OK.
 1. *Note: creating a 1 °C gradient will prevent condensation from forming on the lid of the plate.*
 2. Formatting the plate layout and read description.
 1. **Double click** on the Image tab under Description.
 2. **Click** “Full Plate” (right corner, top). This will open the Plate Layout window.
 3. Highlight wells of interest that you wish to image using the cursor. **Click** OK.
 4. Under the image drop down menu (top, middle) **select** “Crop 75%.”
 1. *Note: Selecting the “crop 75%” option reduces the amount of background fluorescence that will naturally occur around the edges of the wells as the field of view being imaged is slightly decreased.*
 5. **Select** both “Autofocus binning” and “Capture binning.”
 6. Under “Channels” there should be one current channel selected “Bright Field;” **select** the number “2” to add a second channel.
 1. Under the Color drop down menu **select** “GFP 469,525.”
 2. **De-select** “Auto” and then **click** on the microscope icon next to “Auto.”
 1. *Note: This step will allow for manual setting of the exposure settings.*
 3. Adjust the “Illumination intensity,” “Integration time” and “Camera gain” to appropriate values so that exposure levels are correct.

7. Repeat the previous step (3.2.6) but instead **select** the number “3” to add a third channel, and under the color drop down menu **select** “Texas Red 586,647.”
8. Once the three channels are set up, **click** “OK” to close the “Imaging Step-Inverted Imager” tab.
3. **Click** “Validate” at the bottom of the “Procedure” window to confirm the procedure step sequence is valid and then **click** “OK” and then “OK” again.
 1. *Note: Raw images that are generated through this protocol will naturally have a lot of background fluorescence and therefore a Data Reduction>Image Preprocessing step needs to be implemented to normalize for background fluorescence.*
4. **Click** on the “Protocol” tab (top left) and **select** “Data Reduction.”
 1. Under “Image processing” **select** “Image Preprocessing.” A new window will open.
 1. *Note: The bright field image will not need any image preprocessing steps applied.*
 2. **De-select** “Apply image preprocessing” for the Bright Field channel.
 3. **Click** on the “GFP 469,525” tab.
 1. Make sure “Apply image preprocessing” is selected.
 2. **Select** “Dark” from the Background drop down menu.
 3. **De-select** “Use same options as channel 1.”
 4. Make sure “Background Flattening” and “Auto” is selected.
 5. Change the “Image smoothing strength” to 1 Cycle of 3x3 average filter.
 4. **Click** on the “Texas Red 586,647” tab and repeat steps 4.3.1-5.
 5. **Click** “OK” and then **click** “OK” again.
5. Save the protocol for future use by **clicking** on the “File” tab, top left of the screen, and then “Save Protocol As...”
 1. Name the protocol appropriately and **click** “Save.”

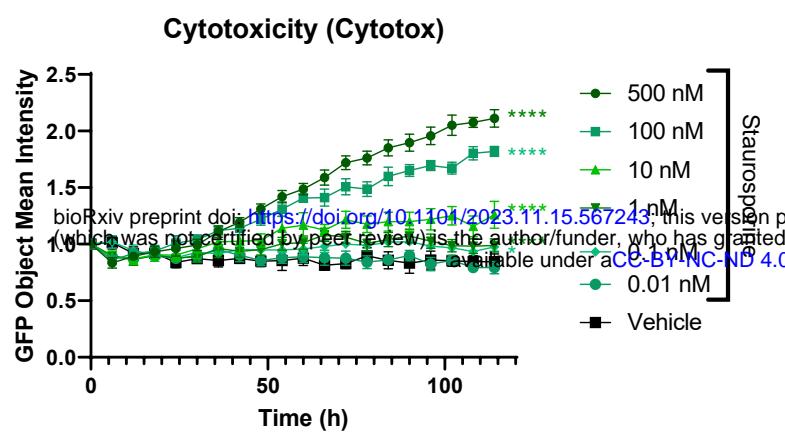
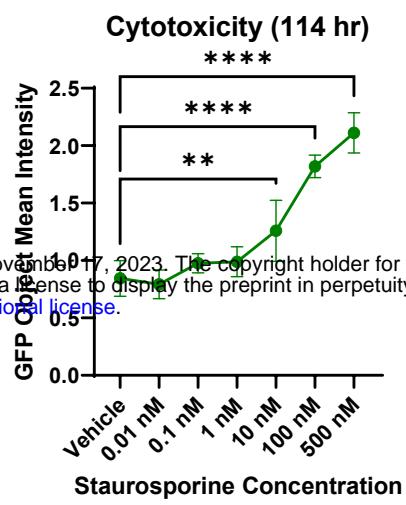
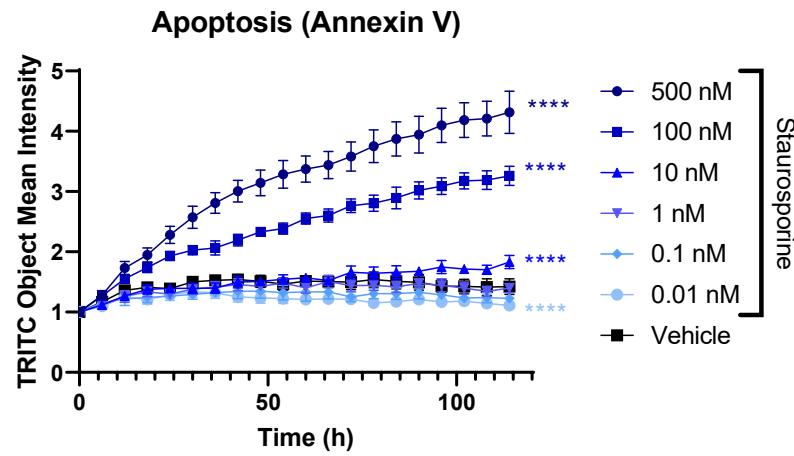
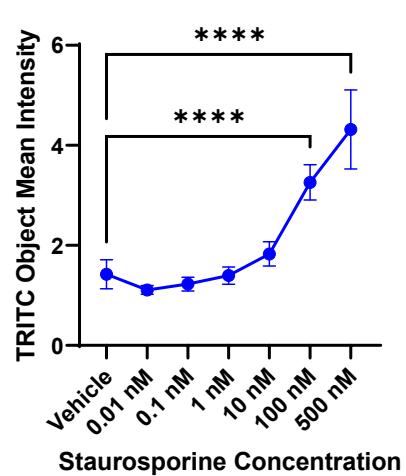
End of treatment cell viability and cell death fluorescence image analysis in Gen5 software: Below we describe methods to analyze data from the End of Treatment AOPI Fluorescence Protocol. Two separate image analysis steps need to be set up: 1) GFP channel, which is a measure of viability (AO); 2) Texas Red channel, which is the measure of cell death (PI).

1. Opening image analysis module.
 1. **Open** experimental file in Gen5 software. **Select** Plate > View from the toolbar.
 2. **Change** Data drop-down menu to Picture [Tsf[Bright Field+GFP 469,525+Texas Red 586,647]].
 3. **Double click** on a well of interest.
 4. **Select** Analyze > “I want to setup a new Image Analysis data reduction step” > OK.
2. Cellular Analysis for Cell Viability (Acridine Orange and GFP fluorescent channel).
 1. **GFP Primary Mask**
 1. Under ANALYSIS SETTINGS, **select** Type: Cellular Analysis and Detection Channel: Tsf[GFP 469,525] (left panel, center).

2. **Click Options.** The Primary Mask and Count page will open. In the Threshold box, **check** “Auto” and adjust the slider as necessary to include or exclude objects of interest.
 1. *Note: When analyzing images using the GFP or Texas Red channels, set the background to dark.*
2. **Select** “Split touching objects” and “Fill holes in masks.”
3. **Open** “Advanced Detection Options.”
 1. **Select** “Background Flattening” and **de-select** “Auto.”
 1. *Note: The Rolling Ball Diameter is a pre-processing technique where the image is sampled to distinguish background noise from actual signal. The diameter should be set to roughly the size of the largest object being analyzed.*
 2. **Set** “Image Smoothing Strength” to 1 cycle of 3x3 average filter.
 3. **Set** the “Primary Mask” to “Use Threshold Mask” from the drop-down menu, and then **select** “OK.”
 4. Under Object selection, designate a minimum and maximum object size (μm). Adjust as necessary to exclude cellular debris/single cells.
 1. *Note: PDO size may vary significantly between different models and types. Use the measuring tool to determine the minimum and maximum PDO size thresholds for each model.*
 2. **Deselect** “Include primary edge objects” and “Analyze entire image.” To limit the analysis to a certain region of the well, **click** “Plug.” This will open the Image Plug Window. Using the drop-down menu, **select** Plug shape and adjust size and position parameters to fit over the region of interest.
 3. *Note: It is important to maximize the number of PDOs within the plug while also excluding PDO-free areas to minimize background. Designate a plug size that will consistently capture the majority of the objects of interest across replicates. Generating a plug that also excludes the edges of the dome is important as it excludes any objects that may appear distorted due to the refraction of light from the extreme curvature of the dome around the edges.*
4. Subpopulation Analysis.
 1. **Click** on Calculated Metrics in the Cellular Analysis toolbar. **Click** “Select or create object level metrics of interest” (right corner, bottom). Under Available object metrics, **select** metrics of interest (e.g., Circularity, Integral[Tsf[GFP 469,525]]) and **click** the Insert button. **Click** OK.
 1. *Note: Morphology and density of each PDO model will determine the best metrics of interest to distinguish the subpopulation. For analysis of the GFP channel, circularity is the only metric required as only viable material will fluoresce green and therefore there is no need for exclusion of debris.*
 2. **Open** the Subpopulation Analysis page from the Cellular Analysis toolbar. **Click** Add to create a new subpopulation. A pop-up window will open.
 3. If desired, enter a name for the subpopulation. Under Object metrics, **click** on metric of interest and **select** Add Condition. In the Edit Condition window, enter parameters for the chosen Object metric. Repeat with additional metrics as necessary.
 1. *Note: Parameters may be adjusted manually (i.e., include all objects with a circularity greater than 0.3).*

4. In the table at the bottom of the window, **select** the desired results to display.
Click OK > Apply.
5. To view the objects within the subpopulation, use the Object details drop-down menu to **select** the subpopulation. Objects that fall within the parameters will be highlighted in the image.
6. To adjust subpopulation parameters, **reopen** the Subpopulation Analysis window from the Cellular Analysis toolbar. **Select** the subpopulation and **click** Edit.
7. **Click ADD STEP.**
 1. *Note: This will apply the same analysis to all wells within the experiment at all time points. In the drop-down menu on the Matrix page, different metrics can be selected for individual viewing.*

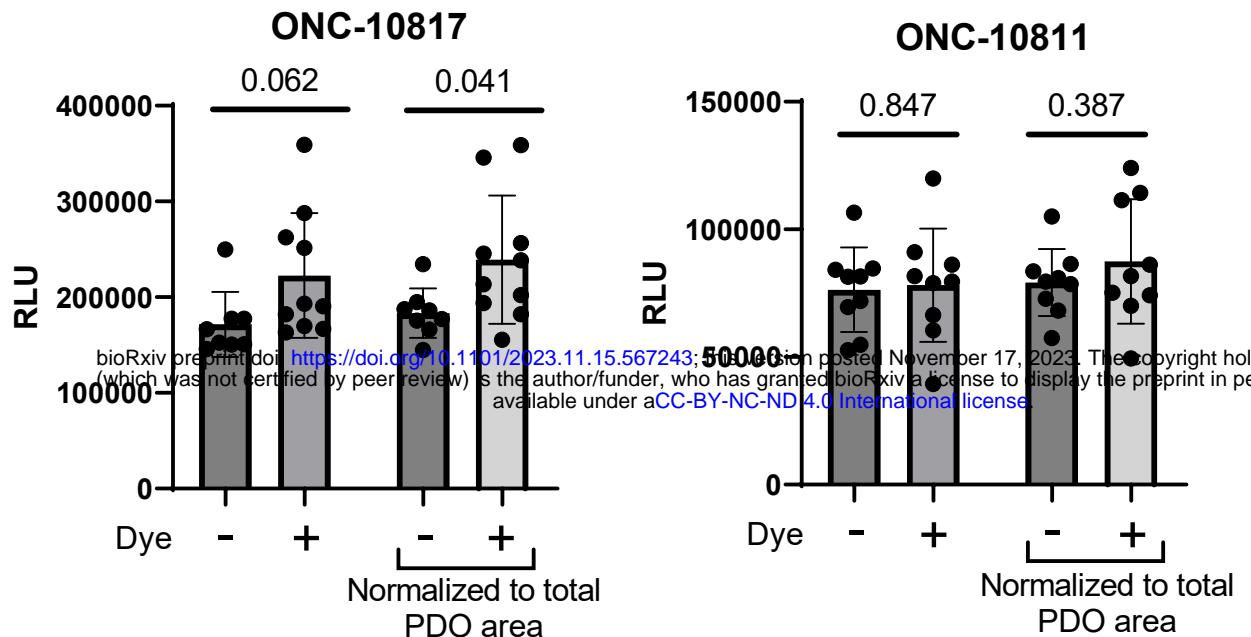
3. Cellular Analysis for Cell Death (Propidium Iodide and Texas Red fluorescent channel).





1. Texas Red Primary Mask.
 1. Under ANALYSIS SETTINGS, **select** Type: Cellular Analysis and Detection Channel: Tsf[Texas Red 586,647] (left panel, center).
 2. **Click Options.** The Primary Mask and Count page will open. In the Threshold box, **uncheck** “Auto” and set the value to 5000.
 1. *Note: When analyzing images using the GFP or Texas Red channels, set the background to dark.*
 2. **Check** both boxes “Split touching objects” and “Fill holes in masks.”
 3. **Open** “Advanced Detection Options.”
 1. **Select** “Background Flattening” and **select** “Auto.”
 2. **Set** “Image Smoothing Strength” to 0 cycles of 3x3 average filter.
 3. **Set** the “Evaluate background on” to 85% of lowest pixels.
 1. *Note: This step is needed to ensure that no background specks of fluorescence are include in the mask for analysis.*
 4. **Set** the “Primary Mask” to “Use Threshold Mask” from the drop-down menu, then **select** “OK.”
 1. *Note: For the Texas Red channel, minimal image preprocessing techniques are needed for the analysis since the fluorescence is more focal.*
4. Under Object selection, designate a minimum and a maximum object size (μm).
 1. *Note: For the Texas Red channel analysis, the minimal object size should be approximately the size of one cell (e.g., 10 μm), but the maximum should still be that of the largest object expected for the given model.*
5. **Deselect** “Include primary edge objects” and “Analyze entire image.” To limit the analysis to a certain region of the well, **click** “Plug.” This will open the Image Plug Window. Using the drop-down menu, **select** Plug shape and adjust size and position parameters to fit over the region of interest. This should be the same size and position as the plug used for the GFP channel.
 1. *Note: It is important to maximize the number of PDOs within the plug while also excluding PDO-free areas to minimize background. Designate a plug size that will consistently capture the majority of the objects of interest across replicates. Generating a plug that also excludes the edges of the dome is important as it*

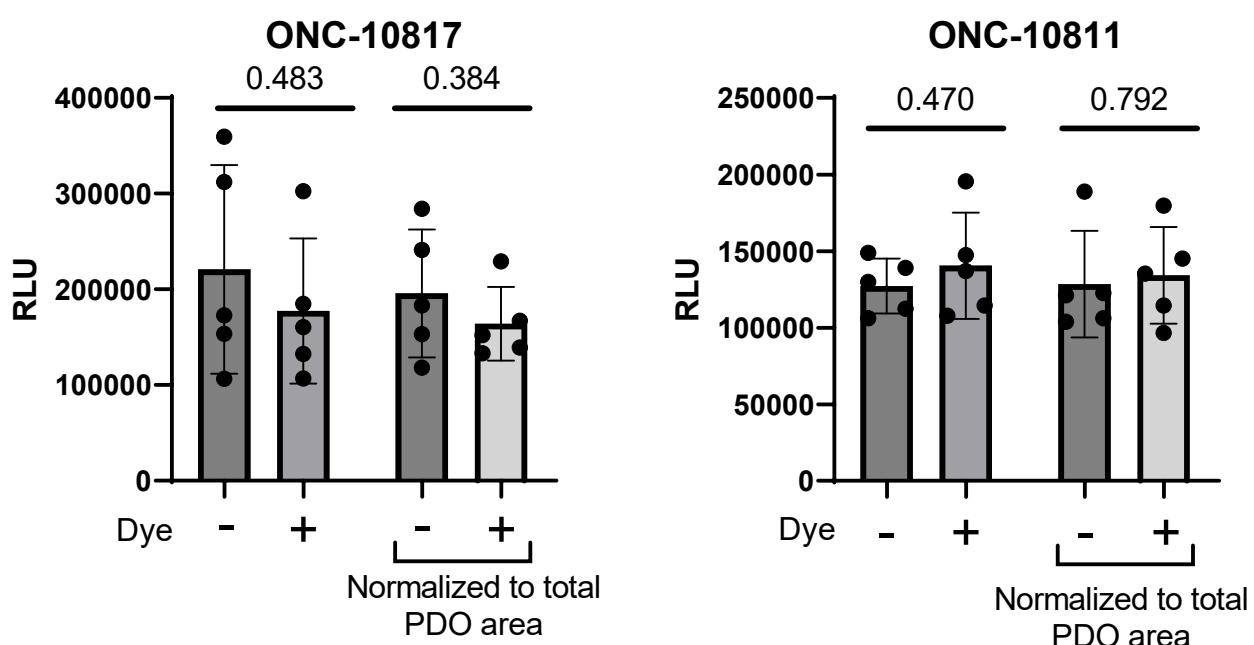
6. **Click ADD STEP.**

1. *Note: This will apply the same analysis to all wells within the experiment at all time points. In the drop-down menu on the Matrix page, different metrics can be selected for individual viewing.*
2. *Note: There is no need for a subpopulation analysis for the Texas Red channel as the majority of the signal will be focal and will stem from dead material. Therefore, this signal should not be excluded from analysis.*

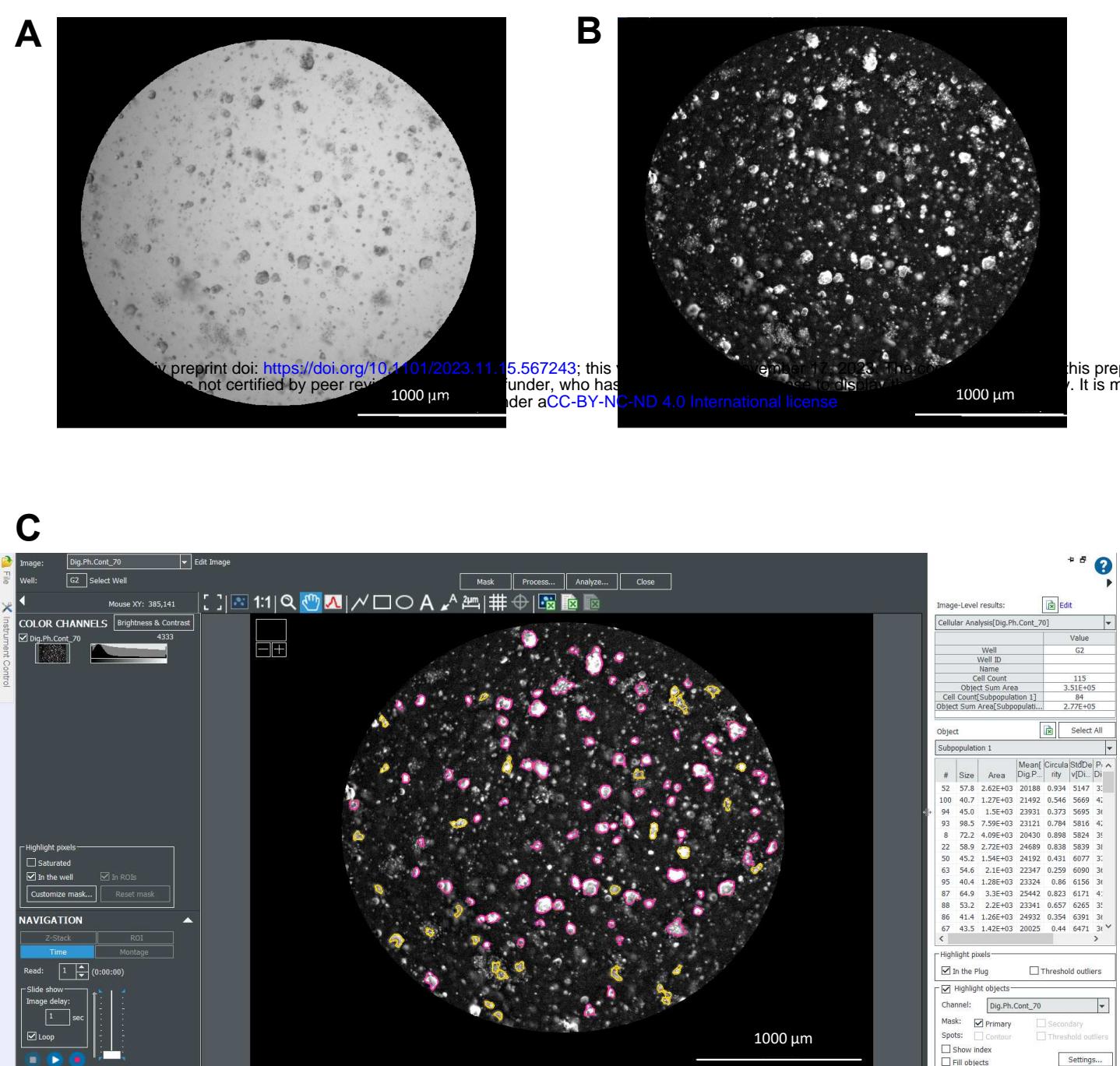
Supplemental Table S1: Organoid Culture Media Components. Note that reagents have been optimized for culturing gynecologic cancer PDOs.

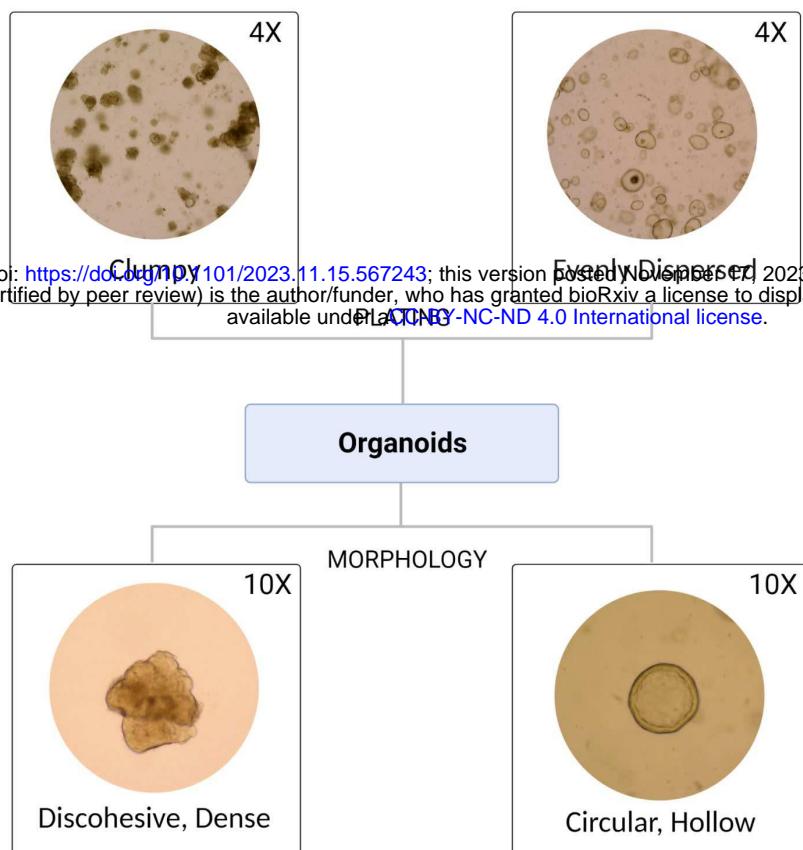

Organoid Culture Media Component	Final Concentration
AdDF+++ (Advanced DMEM/F12, Glutamax, HEPES, penicillin/streptomycin)	1X Glutamax, 10 mM HEPES, 10 units/mL penicillin/streptomycin
Noggin	100 ng/mL
Respondin-1	250 ng/mL
A83-01	500 nM
FGF-10	10 ng/mL
Heregulin β -1	37.5 ng/mL
EGF	0.5 ng/mL
Estradiol	100 nM
Y-27632	5 μ M
Forskolin	10 μ M
Hydrocortisone	500 ng/mL
B27 supplement	1X
Nicotinamide	10 mM
N-acetylcysteine	1.25 mM
Primocin	100 μ g/mL

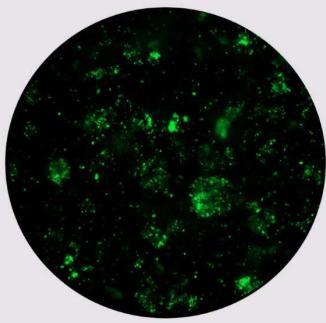
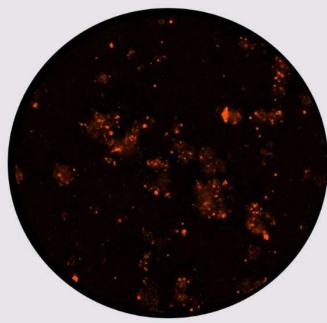
A**B****C****D**


Supplemental Figure S1: Multiplexed live-cell imaging of ONC-10811.

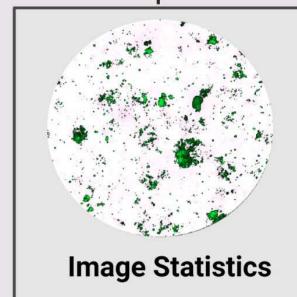
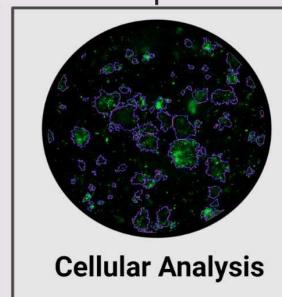
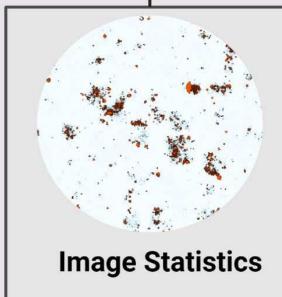
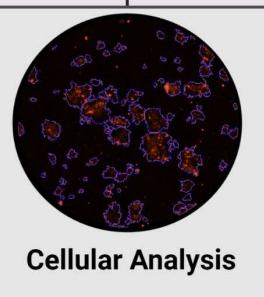
PDOs were plated in 96-well plates and incubated in Annexin V Red (1:400) and Cytotox Green (200 nM) dyes overnight at 37 °C. The following day, PDOs were treated with increasing concentrations of staurosporine and were imaged every 6 hours for 5 days. **(A)** Time and dose-dependent increase in cytotoxicity in response to staurosporine. Data were plotted as the Object Mean Intensity in the GFP channel. **(B)** Dose-response of staurosporine at 114 hrs. Data were plotted as the Object Mean Intensity values in the GFP channel at the 114 hr timepoint. **(C)** Time and dose-dependent increase in apoptosis in response to staurosporine. Data were plotted as the Object Mean Intensity in the TRITC channel. **(D)** Dose-response of staurosporine at 114 hrs. Data were plotted as the Object Mean Intensity values in the TRITC channel at the 114 hr timepoint. Data in A and C were normalized to PDO number at time 0 at the well level. N=5 technical replicates per treatment in each model. **** p < 0.0001 vs. vehicle control by 2-way ANOVA.


A. 24 h dye incubation viability assessment


B. 5 day dye incubation viability assessment



Supplemental Figure S2: Treatment with Annexin V and Cytotox does not perturb PDO viability. PDOs were plated in 96-well plates and incubated with Annexin V Red (1:400) and Cytotox Green (200 nM) dyes overnight at 37 °C. Following the 24 hour incubation, viability was assessed using the CellTiter-Glo 3D assay per the manufacturer's protocol. (A) Viability in dye-treated and untreated PDOs at the 24 hr timepoint. Both relative light unit (RLU) values and values normalized to organoid sum area are presented. Specifically, the CellTiter-Glo3D RLU for each well was normalized to the summation of organoid area for that well at the time of plating (i.e., immediately after dye addition). Total PDO area was determined using the "Sum Area" calculation in Cellular Analysis. N=10. (B) Viability in dye-treated and untreated PDOs at the 114 hr timepoint. Both raw luminescence values and values normalized to total PDO area are presented. The CellTiter-Glo3D RLU for each well was normalized to the summation of organoid area at 24 hours post-plating, which corresponds to time 0 in the kinetic imaging experiments. N=5. Significance in A and B was assessed using an unpaired t-test; p values are listed on the graphs.

Supplemental Figure S3: Label-free analysis of PDOs using digital phase contrast. This figure contains representative images (2.5X objective) depicting label-free analysis as described in the **Supplemental Protocols: Setting up imaging parameters for a single focal plane of view analysis (Bright Field/Digital Phase Contrast Images) and Digital Phase Contrast Image analysis in Gen5 software.** (A) Example Bright Field image of a prostate cancer PDXO model at a single focal plane. (B) The Bright Field image in A was converted to a Digital Phase Contrast image. Dark objects in the Bright Field image appear bright in the Digital Phase Contrast image and vice versa. (C) Example of PDO masking using the Digital Phase contrast image. Note that the edges of objects of interest become much more defined as compared to the Bright Field images. In this representative image, objects in the primary mask are outlined in yellow. The subpopulation in (C) (outlined in pink) is defined based on circularity (>0.3), area (>1000), Mean[Dig.Ph.Con] > 2000 , StdDev[Dig.Ph.con] $> 5000 + < 13500$, and Peak[Dig.Ph.Con] > 12500 . The parameters used in this representative figure were applied to data in Figure 8 to normalize to cell count on day 0.





Supplemental Figure S4: PDO models may vary in their morphology and plating consistency. *Upper Panel:* Examples of differential dispersion of PDOs in the BME domes. *Lower Panel:* Representative images of discohesive vs. circular PDOs. All images were acquired with an EVOS microscope. Magnifications are noted.

bioRxiv preprint doi: <https://doi.org/10.1101/2023.11.15.567243>; this version posted November 17, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

TRITC

GFP

Supplemental Figure S5: Example images using Cellular Analysis vs. Image Statistics for quantifying fluorescence. Using Cellular Analysis, users can define specific populations within an image and measure fluorescence in those regions. Image Statistics may also be used to measure fluorescence in an image by defining a threshold to exclude background signal. *See Discussion for the limitations of using Image Statistics.* Images are at 4X magnification.