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Abstract

Efficient sensory detection requires the capacity to ignore task-irrelevant
information, for example when optic flow patterns created by egomotion
need to be disentangled from object perception. Distinguishing self- from
externally caused changes in visual input is thus an important problem
that the visual system needs to solve. Predictive coding with sensorimotor
mismatch detection is an attractive starting point to investigate this ques-
tion computationally. Although experimental evidence for sensorimotor
mismatch signals in early visual areas exists, it is not understood how
it is functionally integrated into cortical networks that perform input
segmentation and categorization. Our model advanced a novel, biologically
plausible solution to this question, which extends predictive coding models
with the ability to distinguish self-generated from externally caused optic
flow. We first show that a simple three neuron microcircuit produces
experience-dependent sensorimotor mismatch responses, in agreement with
calcium imaging data from mice. This microcircuit is then integrated into
a predictive coding neural network with two generative streams. The first
stream is motor-to-visual and consists of many microcircuits in parallel.
This stream learns to spatially predict optic flow resulting from self-motion
and mirrors connections from motor cortex to V1. The second stream is
visual-to-visual. Bidirectionally connecting Middle Temporal cortex to V1,
it assigns a crucial role to the abundant feedback connections between
these areas: the maintenance of a generative model of externally caused
optic flow. In the model, area MT learns to segment moving objects from
the background, and facilitates object categorization. Our model extends
the framework of Hebbian predictive coding to sensorimotor settings, in
which the agent is not a passive observer of external inputs, but actively
moves - and learns to predict the consequences of its own movements.


https://doi.org/10.1101/2023.11.15.567170
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.15.567170; this version posted November 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Significance statement

This research addresses a fundamental challenge in sensory perception: how the
brain distinguishes between self-generated and externally caused visual motion.
Using a computational model inspired by predictive coding and sensorimotor
mismatch detection, the study proposes a biologically plausible solution. The
model incorporates a neural microcircuit that generates sensorimotor mismatch
responses, aligning with experimental data from mice. This microcircuit is
integrated into a neural network with two streams: one predicting self-motion-
induced optic flow and another maintaining a generative model for externally
caused optic flow. The research advances our understanding of how the brain
segments visual input into object and background, shedding light on the neural
mechanisms underlying perception and categorization.
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1 Introduction

Efficient sensory detection requires the capacity to ignore task-irrelevant infor-
mation. In visual object perception for example, optic flow patterns generated
by external objects are more informative than those resulting from self-motion
(Gibson, [1950)). Consequently, discerning changes in visual input caused by self-
movement versus external factors is a crucial challenge for the visual system (see
Fig. 1). In computer vision, optic flow finds frequent application, particularly
in figure-ground or object segmentation paradigms (see Anthwal and Ganotra,
2019)). Indeed, motion has long been recognized to be a powerful Gestalt cue for
distinguishing visual objects from the background (Wertheimer, |1923).

In the biological context, optic flow has been suggested to be segmented into self-
and externally generated components by sensorimotor mismatch - an error signal
arising from the disparity between expectation and bottom-up sensory input
(Keller & Mrsic-Flogel, 2018)). This conjecture gains support from accumulating
evidence for the presence of sensorimotor mismatch (or error) signals in early
auditory (Audette & Schneider, 2023 and visual areas (Attinger et al., |2017;
Zmarz and Keller, |2016, see Fig. 1A), forming parts of motor correlates found
in sensory cortex (Kaplan & Zimmer, 2020} Lohuis et al., [2022]).

A B

Background pattern

Object plane

Retinal image

Observer plane

Figure 1: Two causes of sensed optic flow: self-induced and externally
generated. (A) Experimental setup for mismatch detection as used in Zmarz
and Keller, 2016. The VR environment allows control over the visual input
of the mouse as it is moving on a spheric treadmill. (B) Configuration of
our simulations, mirroring the image construction process in A. The apparent
movement of the background pattern is anticipated based on the motor state of
the model. Deviations in optic flow arise when an object moves independently
between the background and the observer. Time points ¢; and ¢5 depict distinct
moments in the simulation.
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A recent study on saccadic eye movements by Miura and Scanziani, 2022 demon-
strated that direction-selective V1 neurons differentiate between apparent stimu-
lus movement being self- or externally caused. Computationally, these findings
suggest the presence of a motor-to-sensory forward model conveying corollary
discharges from motor areas to early sensory areas and transforming them into
sensory coordinates (see Frith et al., |2000| for an overview). This endows the
brain with neural circuits for mismatch (or prediction error)-based segmentation.
While models demonstrating sensorimotor mismatch responses exist (Hertag &
Sprekeler, [2020; Mikulasch et al., 2022)), it remains unclear if and how these
can functionally contribute to segmentation operations. Moreover, given that
a significant portion of visual input is generated by external motion, inferring
the causes of optic flow becomes a two-fold problem. This raises the question
how predictions from the motor-to-sensory forward model and predictions about
external objects integrate mechanistically to distinguish between self-caused and
externally generated optic flow and interpret them.

Here, we show that the framework of predictive coding elegantly and parsimo-
niously allows integration of these two generative processes. Predictive coding
describes perception as a hierarchical generative process in which higher cortical
areas improve their top-down prediction of activity in lower areas (Friston, |2005}
Lee & Mumford, 2003; Rao & Ballard, |1999). It forms an important computa-
tional building block for understanding how perception — and in particular a
motion-corrected, stable world representation - is constructed through learning
and inference (R. A. Andersen et al.,|1985; Crapse & Sommer, |2008} Creutzig &
Sprekeler, [2008; Pennartz, [2015; Whishaw & Brooks, [1999). In pure form, both
inference (updating neural activities) and learning of synaptic weights are driven
by prediction errors. In contrast to most predictive coding models derived from
Rao and Ballard, [1999, however, our model does not predict luminosity, but optic
flow. First, a core microcircuit is constructed, with its biological plausibility
strengthened by replication of experimentally observed sensorimotor mismatch
(Attinger et al., [2017)). Second, the model is scaled up and extended by circuits
for the representation of externally generated optic flow, leading to segmentation
of self- vs. externally generated inputs (Fig. 1B). Lastly, we demonstrate that
the higher visual areas of the model, analogous to brain areas MT/MST, become
tuned to optic flow patterns caused by external objects, facilitating classification
of the perceived object. The novel model proposed here thus extends biologically
plausible predictive coding, by functionally integrating motor-to-visual feedback
signals in multi-area generative inference of optic flow.
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2 Methods

2.1 A microcircuit for sensorimotor mismatch detection

We developed a microcircuit for sensorimotor mismatch calculation that is
shown in Fig. . In inference, optic flow elicits neural activity y,;s € [0,1]
of a direction selective cell in V1 (as originally observed by Hubel and Wiesel,
1959). Simultaneously, the motor area (roughly corresponding to motor cortex
or closely connected areas (Guitchounts et al., |2020; Leinweber et al., [2017]),
here represented by only one unit) codes for the current motor state via neural
activity ymot € [0,1] of a subpopulation. This motor state is transformed to
sensory coordinates via a forward model (Frith et al., [2000).
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Figure 2: Proposed microcircuit for mismatch calculation and weight
evolution during training. (A) Proposed microcircuit with error neurons
depicted as squares and representation neurons as circles. w_ is the weight
of the forward model’s excitatory connection to the negative prediction error
neuron, w4 the weight of the inhibitory connection to the positive prediction
error neuron (see Equation [1 The predicted optic flow is given as the outcome
of the forward model, i.e. the synaptic currents arriving at the error neurons
from the left. (B) Hlustration of coupled and non-coupled training: in both cases,
visual inputs are the same, given by the motor movements in the CT condition.
In NT, however, motor states and visual inputs are completely uncorrelated. (C)
Illustration of robustness to initial conditions proven in section Shown is the
synaptic weight in coupled (CT) and non-coupled (NT) training (see main text)
over training time. (D) Same as (C) for a different weight initialization scheme.
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Inversely connected via excitatory and inhibitory synapses, positive and negative
error neurons then compare the sensory input to the predictions from the forward
model. We chose to model positive and negative error neurons separately, as they
are considered to offer a better fit to experimental data (Keller & Mrsic-Flogel,
2018)). Their firing rate is given as

€+ (t) = Qs(ig(t) ’ (yvis<t) - wi(t - 1) 'ymot(t») (1>

(note the inverse wiring of positive and negative error neurons illustrated in
Figure ), with synaptic weights wy of the forward model (determined by
learning at the previous time step described below or in the initial condition),
gating function g¢(t) that keeps the firing rate at baseline if the model is not
sending a movement signal (y,,+ = 0). This gating is putatively mediated by
signalling from higher-order thalamus or neuromodulation (Keller & Mrsic-Flogel,

2018|):
0 lf Ymot — 0
t) = 2
9(®) {1 otherwise 2)

and activation function

¢(x) = max(0, z + ep) (3)

with baseline firing rate ey = 0.5 and the total synaptic input z. Supportive
evidence for bipartite error computation comes from biologically detailed models
that show how these circuits can develop in cortical tissue (Hertdg & Sprekeler,
2020; Mirasso et al., 2023|). Learning is then mediated by a Hebbian rule with
a switch between long-term potentiation and long-term depression mediated
by NMDA receptor activation of the postsynapse (Liischer & Malenka, 2012}
Malenka, (1994)):

Awy (t) = L€ Ymot(t) - (ex£(t) — eg) (4)

with learning rate ¢, = 0.01. In supplementary section a proof of convergence
of this learning rule is provided.

For comparison with Attinger et al., 2017, where two cohorts of mice were raised
differently, under controlled regimes of sensorimotor experience, we trained two
copies of the microcircuit with input contingencies based on their paradigm.
Importantly, both visual input and motor state are one-dimensional at this
point. In coupled training (CT), the motor state of the animal, sampled from
a Bernoulli distribution, is reflected in the optic flow: yyis = Ymor ~ B(1,0.5).
In the non-coupled training paradigm (NT), motor states are the same as in
the CT condition, but optic flow is independently sampled from an identical
distribution. In both conditions, convergence of the forward model weights was

robust to different weight initialization and depended strongly on the training
paradigm (CT or NT; Fig. -C).
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2.2 Integration with hierarchical predictive coding
2.2.1 Inference in the two-stream architecture

The presence of mismatch computation in primary visual cortex fits well with
theories of generative perception in which the brain interprets visual inputs by
identifying the causes that are most likely to have produced them (Dayan et al.,
1995} Friston, [2005; Gregory, [1980; Lee & Mumford, 2003 Pennartz, 2015; Rao
& Ballard, [1999; von Helmholtz, [1860). We thus integrated the microcircuit
developed above into a well-known framework of modeling generative perception,
hierarchical predictive coding. Due to its modular structure (Fig. ), the
model relates more easily to primates than to rodents, although also mouse
visual cortex is functionally modularized to some degree (Marshel et al., 2011}
Wang et al., |2011)).
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Figure 3: Integration of motor-to-sensory predictions with predictions
from higher visual areas. Left: Error neurons in visual area V1 receive
predictions about optic flow from two streams. After training, the motor-to-
visual stream sends predictions about expected optic flow as a result of egomotion.
The remaining prediction errors in V1 are fed forward to higher visual area
MT. Right: Synaptic wiring of subpopulations with error neurons depicted as
squares and representation neurons as circles. Synaptic connections subject to
the Hebbian learning rule of Equation [4 are shown as dashed lines: V' for the
visual-to-visual stream and W for the motor-to-visual stream. Connections
between MT and V1 are not a priori constrained to be excitatory or inhibitory
and are thus denoted as arrows.

Visual inputs to the model are multidimensional (we used a retinotopic field of
40 x 40 or 80 x 80 units depending on the dataset used), covering the visual field.
As in most predictive coding models, updating of neural activities (inference) and
updating of synaptic strengths (learning) are split into separate phases. During
inference, the model receives grayscale video as input. From this, optic flow is
extracted through the Farneback algorithm (Farnebéck, [2003), mimicking the
functioning of direction selective cells in V1. As a result, four populations of cells
encode orthogonal stimulus movement directions (left/right /up/down) leading to
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a V1 population of 40 x 40 x 4 = 6,400 neurons (for the modified FashionMNIST
dataset) and 80 x 80 x 4 = 25,600 neurons for the Animal dataset respectively).
An equal number of positive and negative error neurons then compares velocity of
sensory, bottom-up optic flow in the respective direction to top-down predictions,
fitting well with reports of retinotopic mismatch calculation (Zmarz & Keller,
2016)). These are mediated via two pathways shown in Fig. [3[that jointly attempt
to explain the sensed optic flow:

1. The motor-to-sensory forward model consisting of many microcircuits, as
developed in section The parallel microcircuits form fully connected
layers of synaptic connections from a small number d,,,, ('dimensionality
of the movement space’) of neurons or subpopulations in the motor area
to the nPEs and pPEs in V1. Each of the motor neurons codes for a
motor-program (moving forward, turning sideways etc.). We begin with a
single motor-program (moving forward) and then later extend to dy,p > 1
(see Fig. . In this pathway, initial weights are drawn from a Gaussian
distribution A (0.6,0.6).

2. The visual-to-visual stream originating from model area MT (middle
temporal) and projecting to lower visual areas here summarized as V1.
The name of this model area was based on the properties shared with
the eponymous cortical area in monkeys: direction-selectivity (differently
weighted inputs from pPE and nPE; (Albright, [1984; Maunsell & Van
Essen, [1983b))), large receptive fields, strong feedback connections to V1
(Clavagnier et al., |2004)), and its functional role in perceiving structure
from motion (R. Andersen et al., |[1996; Born & Bradley, [2005; Buracas &
Albright, [1997; Duncan et al., |2000; Grunewald et al., 2002 Handa et al.,
2008)).

The updating of neural activity in model area MT is based on the inference
mechanism of Rao and Ballard, [1999: MT representation neurons receive inputs
from V1 error neurons through convolution kernels of size 4 x 4 x 4 (stride 1),
mimicking receptive fields, and inhibit the error neurons in return (Figek et al.,
2023). We used separate sets of weights connecting to pPEs and nPEs, as well
as for the four directions each. Depending on the resolution of the dataset, area
MT thus contains 77 x 77 x 4 = 23,716 or 37 x 37 x 4 = 4,356 neurons. Initial
weights of the visual-to-visual were sampled from U(—v/'k, k) where

1

O x ngo kernel size|i]

()

with Cj, being the number of feature maps in the higher area and the index i
enumerating the two spatial dimensions of the quadratic kernel. The equation
governing updating of an MT neuron’s state variable (akin to the membrane
potential) in area MT is:

xyr(t) =yt — 1) + €np(VI(ep(t —1) —eg) + VI(e_(t —1) —eg)) (6)
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with inference rate €;,y = 0.05, visual weights V4 from MT to V1-EN (cf. Figure
, and firing rate e of positive and negative error neurons in V1. eg = 0.5 again
denotes the baseline firing rate of V1-PE neurons. A ReLU activation function
transfers x y;r into the output firing rate

yur = P(xnr) (7)

Error neurons in turn have output firing rates determined by (cf. Eq.

e+ = O(Yvis = Wilhmor — Veyur) (8)

where y,;s is the magnitude of optic flow in the given direction and W denotes
the weights of the motor-to-sensory forward model with motor state y,,,:. For
the representational readout experiments, we also experimented with the addition
of another area on top of MT that is referred to as a model of the medial superior
temporal area, MST, based on its hierarchical superordination relative to MT
(Born & Bradley, 2005 Felleman & Van Essen, |1991) (for details see section .
After inferring neural activity for multiple time steps (15 proved to be sufficient),
the Hebbian learning rule from Eq. [4] was used to update synaptic weights.

2.2.2 Training the retinotopic model

Training was conducted in the setting of Fig. [IB, which is comparable to the
behavioral paradigm of Attinger et al., 2017, Zmarz and Keller, |2016| (Fig. ),
but with interpretable objects instead of abstract brick patterns. This paradigm
allowed us to study the processing of background and foreground in a controlled
manner. However, it also required video inputs with an independently moving
object and information about the locomotion state of the observer. As we could
not find a dataset of suitable complexity, we constructed three novel datasets in
which movement of the background image is controlled by the model’s motor
state:

a) Ten sequences with different animal images moving in front of a background
with a grass texture of 80 x 80 pixels (for details see section . The
one-dimensional self-movement signal drives movement of the background
patterns across the retina. Sequences consist of blocks with uniform move-
ment speed reflecting locomotion interleaved with blocks of no movement,
with a total sequence length of 50 frames. Concerning object motion, sev-
eral settings are implemented, among others a stable perception paradigm
(such as during parallel movement of object and observer, or during gaze
following (Zuberbiihler, |2008)) and movement of the object image across
the retina, independent of self-motion. The dataset also contains a setting
with pure background under observer movement and no objects present.

b) Sequences of retinocentric FashionMNIST objects in 40 x 40 resolution
with otherwise the same properties as in a), although the FashionMNIST
objects are only used in the stable perception paradigm where objects
remain retinocentric. Since our modification of this datasets contains a

10
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significantly larger number of samples (we use 5000) and is organized in ten
object classes, it is suitable to test how useful the neural representations are
in a given model area for downstream classification. Across the ten object
classes, we use 400 samples for training and 100 different samples per class
for testing. Here, only the stable perception paradigm is implemented
(objects appear static on the retina).

¢) Six different optic flow patterns including non-homogeneous expanding
and contracting flow fields without object present. Each flow pattern is
associated with one of six dimensions of the motor state encoded in one-hot
manner (turning leftwards, moving forward, etc.).

Unless noted differently, the two streams (MT to V1 and motor cortex to V1)
were trained in the following manner: During pretraining, only the motor-to-
visual stream was activated and trained on visual inputs coupled to the model’s
motor state. In this phase, no external objects were presented. Then, in the
training phase, objects were introduced (with the observer moving along them
unless where noted differently) and the visual stream was activated. Training
proceeded until prediction errors were sufficiently low. To separately analyze
learning in the two streams, the weights in the motor-to-visual stream were
frozen during training, but see section for experiments with joint training.

2.3 Segmentation experiments
2.3.1 Obtaining a segmentation mask from the model

Segmentation masks highlighting external objects were obtained from MT—V1-
EN feedback, based on reports of figure-ground segmentation in V1 through
feedback from higher visual areas (Self et al.,|2013)). Excitatory top-down signals
from area MT to V1-EN were obtained by matrix multiplication of the top-down
synaptic weights V. from Equation |§| and MT activity yarr). The summed up
top-down signals were then thresholded at each point in retinotopic space to
yield a segmentation mask: Where signals are larger than

Cthresh = Cthresh - Max (V+y]WT + V—y]WT) (9)

an external object is assumed, with a heuristically chosen scaling constant
Cthresh- Physiologically, this thresholding may be achieved via a neuron with
appropriately set firing threshold via baseline inputs.

2.3.2 Quantifying segmentation accuracy and comparison to baseline

We quantified segmentation accuracy with an Intersection over Union (IoU)
measure. [oU is given as the ratio of overlap between predicted and true object
area relative to the union and thus ranges between zero and one. Measured at
an arbitrarily selected timepoint in the sequence (we chose nine frames into it
unless where noted differently), the only important constraint here was object
movement relative to the background.

11
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As a strong baseline, we computed a binary segmentation mask Spqserine Dy
thresholding optic flow signals y,;s:

Sbaseline = @(:t(yvu - 0)) (10)

with the Heaviside function ©: R — {0, 1} and threshold 8. The optimal baseline
model was then identified by maximizing its IoU score through a grid search of

0.

2.4 Linear readout to analyze representational content

Simulating a class-dependent downstream task such as class-specific approach-or-
flight behavior, we investigated coding of population activity for object category.
Neuronal representations in model areas MT, MST, V1 and retina were inferred
for training (400 stimuli from each of the ten classes) and test images (100 stimuli
per class) from the modified FashionMNIST dataset. Then, a linear classifier
(one per each area) was trained to map the activity patterns to class labels using
a cross-entropy loss.

3 Results

3.1 Reproduction of sensorimotor mismatch effects

Before analyzing how well the complete hierarchical network performs computa-
tionally, we first examined the biological feasibility of the underlying microcircuit
(section . This involved investigating whether and under what conditions
sensorimotor mismatch responses, as discussed in the Introduction, actually
appear. Recall that networks were trained in coupled and non-coupled condi-
tions akin to the mice in Attinger et al.,|2017. After training, we exposed the
networks to the same testing conditions. As in the experimental study, we termed
them mismatch (continuously moving model, sudden halt of optic flow) and
playback halt (passive observation of constant optic flow that is suddenly halted).
Across both conditions, the error neurons in the model reproduced observed
firing rate patterns from mouse V1. As shown in Fig. , a strong increase in
neural activity was observed during mismatch after CT training, but not after
NT training. No increase to playback halt is observed in either condition, in
line with the recordings from Attinger et al. shown for comparison in [B. The
model also reproduced recovery of mismatch responses observed by Attinger
et al: Subsequently training the model originally trained in the NT paradigm
by exposing it to the CT conditions installed an increase in neural activity
under the mismatch condition 4C and ) One source of difference between the
simulations and experimental results is the simple nature of the neuron model.
Since no receptor dynamics are modeled and the experimental data is a low-pass
filtered Ca?*-response, the rise of activity is faster in the model. Without an
explicit model of somatic Ca?*t, the activity decay is instantaneous in the model,
whereas the recordings in Figure @B, D show a slow signal decay characteristic
for calcium imaging.

12
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Figure 4: The proposed microcircuit reproduces experimentally ob-
served mismatch responses. (A) Left: VR setup with optic flow stimuli
(green) independently controllable of motor state (purple). Right: Response of
model V1 error neurons in the model to mismatch and playback halt conditions
defined by sudden halt of optic flow from ¢ = 0s to ¢t = 1s while running (mis-
match) and standing still (playback halt). After experiencing coupled training
(CT), i.e. contingent sensorimotor experience, a mismatch response was observed.
This was not the case after non-coupled training (NT) with visual feedback
uncorrelated to locomotion. Error bands (partially invisible) indicate standard
deviation across five random seeds influencing the sampling of the training
sequences. (B) Calcium imaging responses to the two conditions in mice V1.
Delta F/F (in somatic Ca?T) on the vertical axis is a reflection of neural firing
rate. The orange area indicates duration of visual halt, shading indicates SEM.
(C) Responses of model error neurons after training in CT and NT conditions
(left, "day 17) and after the model has been subsequently trained in the coupled
paradigm (right, "day 5”). Note the appearance of the mismatch response in the
red continuous curve. (D) Observed neural responses in mice initially trained
in the CT and NT conditions, before and after subsequent coupled training.
Panels B and D were reproduced from Attinger et al., published in Cell,
Copyright Elsevier.
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3.2 Area MT contributes to reducing prediction errors

After positive evaluation of the microcircuit, we tested its capacity to reduce
prediction errors when integrated into a hierarchical predictive coding model of
visual processing (see section . In the pretraining phase illustrated in the
left panel of Fig. [FJA, we restricted predictions about optic flow to top-down
feedback from the motor area to V1-EN. As shown in Fig. BB, coupled training
minimized prediction errors in this phase much more efficiently than non-coupled
training. Here, we used the Animal dataset described in section 2:2.2] In the
non-coupled paradigm, mean squared error (MSE) as measured by input to
error neurons amounted to 3.19 £ 0.00 (a.u.) after this phase, compared to 0.74
4 0.00 in the coupled condition. This correlates well with the experimentally
observed necessity of coupled training to truthfully detect sensorimotor mismatch
(cf. Fig. iB). While in the Animal dataset used here the lateral movement of
the background image created homogeneous optic flow patterns, we also tested
learning of multiple non-homogeneous flow patterns. As shown in Suppl. Fig.
the parallel microcircuits from motor neurons to V1-EN (Suppl. Fig.
were able to accurately learn the corresponding forward models.

Pretraining Training A i
=
] 5 o
1)
— — E
o]
e b c
! ! K] Activation of
i | ke] 10° visual stream
' h h :
<
a " T 1 T . :
0 5 10 15 20 25

Training epochs

Figure 5: Learning to predict external and internal causes of optic flow.
(A) Pretraining setup: the model is trained to predict the consequences of its own
movements in an empty environment. Training setup: objects are introduced,
that cast a static image onto the retina due to the observer moving along them,
while the background patterns move across the retina. As in previous figures, the
colored vectors refer to absolute/world-centric movement (purple) and pattern
movement relative to the observer’s retina (green). (B) Pretraining (epoch 1-10)
reduces prediction errors most effectively if conducted in the coupled paradigm
(CT) as opposed to the non-coupled paradigm (NT) both introduced in Fig.
and in the main text. Activation and training of the second visual stream from
MT to V1 after epoch ten further reduces prediction error. Error bands (too
small to be visible in epoch 1-10) indicate one standard deviation computed
across four runs with randomly initialized weights.

14


https://doi.org/10.1101/2023.11.15.567170
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.15.567170; this version posted November 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

After training the motor-to-visual stream, we then tested in the training phase
whether addition of the second visual stream (MT to V1) provided a reduction
in prediction errors quantified by activity in V1 prediction error neurons. To do
so0, the visual-to-visual stream of the model was activated and the weights of the
pretrained motor-to-visual stream were frozen, putatively corresponding to a halt
of critical period plasticity. In Fig. B, this moment is indicated by the vertical
line. Training then proceeded until convergence of the error signal which took
approximately 15 epochs (each epoch consisting of a single iteration through the
ten sequences of the dataset). This further reduced the MSE from 0.74 4 0.00 to
0.24 + 0.01. Qualitatively, the effect of feedback from area MT to V1-EN can be
understood by the following scenario: With the motor-to-visual stream trained
on background-only inputs (i.e. the pretraining paradigm described in ,
and before activation of the second visual stream, an external object moving
independently from the background elicited an increase in nPE activity (Fig.
|§|A, second column). After activating and training the visual stream, predictions
from model area MT successfully minimized prediction errors (Fig. @A, third
column), i.e. optic flow including the moving animal was better predicted. This
can be explained by representation of the object-generated optic flow patterns in
model area MT that is then fed back as top-down prediction to V1 where the full
bottom-up optic flow is represented, cancelling the object-generated prediction
errors there (cf. Eq . While separate training of both streams proved to be
the most effective strategy, we demonstrated that in principle also both streams
can be trained simultaneously (Supplementary Material .

3.3 Visual predictions segment external causes

If, as hypothesized above, model area MT indeed represents external causes
of optic flow that cannot be explained by self-motion, it should be possible to
use its activity to segment moving objects from the background. We obtained
segmentation masks from the model as described in section [2.3] The model
accurately captured the outline of external objects as shown in Fig. [6]B.

We evaluated segmentation performance of the model on objects moving relative
to both the observer and background. To do so, the Animal dataset was modified:
In addition to background motion correlating with the movement state of the
agent, the external object now moved at an independent speed in the opposite
direction (Fig. Ep) We found that the model was capable of shifting the
segmentation mask across retinal space as indicated by the high IoU scores
(introduced in section in Fig. @D Here we selected appropriate timepoints
for evaluating readout accuracy to ensure that the object was still in the model’s
field of view: For speeds [0, 1, 2, 4] these were [9, 9, 6, 4] frames into the
sequence. Across relative movement speeds, model performance was on par with
the baseline derived by optimal segmentation of the instantaneous optic flow
(described in more detail in section , and both mildly decreased as expected
with faster movement speed.
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Figure 6: Segmentation of external causes through visual feedback (A)
Same setting as in Figure [pl First column: Retinal inputs showing an eagle and
a lamb against a similarly colored background. Second column: A model with
the motor-to-visual stream trained in the coupled paradigm correctly minimizes
prediction errors in the background, but the external object moving slower than
expected elicits activity in nPEs. pPEs are not shown for simplicity but show the
inverse pattern. Third column: after activating and training feedback from MT
to V1, prediction errors are further minimized. (B) Outlining the fully trained
model’s guess about the spatial extent of the external object, the segmentation
mask obtained from top-down signals from model area MT to V1 is shown in
yellow over the ground truth outlined in red. (C) Non-zero relative speed of the
object relative to the observer. In contrast to the stable perception paradigm,
the object image moves across the retina (upper green arrow). (D) Segmentation
performance under varying relative speeds between object and observer during
observer movement. Prior to evaluation, the two-stream model was trained in
the paradigm of C on the Animal dataset. The error bands indicate one standard
deviation, calculated across four randomly initialized runs. The baseline in
purple is the optimum at the time step of evaluation (see section .
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3.4 Higher visual areas encode object identity

For the visual system to guide behavior, it does not suffice to know where an
externally moving object is located (shown by the correct placement of the
segmentation masks); also its identity needs to be inferred. Although classically,
such core object recognition is attributed to inferotemporal cortex in non-human
primates, it would also be expected (to a lesser degree) in area MT based on the
neuronal responses of macaque MT to structure-from-motion displays (R. Ander-
sen et al.,[1996; Grunewald et al.,|2002). Furthermore, evaluating the information
content of model area MT may allow to better understand its computational role.

To read out representational content from the model, we used the modified
FashionMNIST dataset described in section First, both generative streams
were trained according to the procedure described in section [3.2] As before, the
binary locomotion state was coupled to movement of the background pattern
across the retina, while the object’s image remained stable in the center. In this
phase, use of 100 stimuli (10 per class) proved sufficient. Then linear decoding
was used to estimate readout accuracy of object class as described in section
The resulting classification accuracy of 81.6% on unseen (test) images in area
MT and 82.3% in MST shows class-specificity (Tab. [1) and decent generalization
to unseen data. Succeeding rejection of the null hypothesis (‘all populations have
the same readout accuracy’) using a Welch’s ANOVA, we performed a Games-
Howell post-hoc test to determine the significance of the pairwise differences
between the populations (for a detailed description of the statistical methods

see section [7.7).

Area Acc. train  Acc. test
MT 940 £ 0.2 81.6+0.7
MST 93.3 £0.7 823 +£0.5
V1-DS 88.8 £ 0.3 79.6 £04
Full vis. 92.7 £0.2 76.8 £0.1
Chance 10.00 10.00

Table 1: Model area MT allows readout of object class. Percentage of
correctly classified stimuli evaluated on the train/test split of the ten classes of
the modified FashionMNIST dataset as described in the main text. Rows denote
the cell population: MT, MST, V1-Direction Selective (DS) cells, full retinal
input as a baseline, and chance level. The standard deviation is calculated across
four randomly initialized runs.

Showing an increase in decodability compared to lower areas, readout accuracy
on test data was slightly but significantly higher in area MT (81.6%) than in
V1-DS cells (79.6%) with p < 0.03, and also significantly higher than the baseline
obtained from directly reading out the raw retinal activity patterns (76.8%,
p < 2.5e-3). The difference between areas MST and MT was not significant.
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Lastly, in all areas, the drop between readout accuracy on training and test
data suggested overfitting of the readout classifier. We conclude that learning
optic flow patterns drives learning of behaviorally useful and generalized rep-
resentations and emphasize that more class-specific representations are likely
to be acquired via additional learning mechanisms in the ventral stream. Due
to the invariance of optic-flow to changes in luminance, the approach employed
here can be expected to be more robust to changes in lighting condition than
approaches that rely on texture, i.e. patterns in static luminosity.

3.5 Unexpected events elicit elevated neuronal responses

To further examine the general conjecture that model area MT codes for optic
flow caused by externally moving objects, we recorded the neural dynamics of
the network in two conditions. In a shape-from-motion paradigm illustrated in
Fig. [TA, the external object from the Animal dataset began to move in front of
the background, followed by movement of the observer so that the object image
appeared statically on the retina. In the model trained in the coupled-training
paradigm, this movement onset elicited an activity increase in MT neurons with
receptive fields on the object, but not for those with receptive fields on the
background (Fig. , bottom row). Such coding for world-centric movement
was indeed found in area MT (Erickson and Thier, |1991} see also section
of the Discussion). In V1-PE neurons with receptive fields on the object, but
not outside, a strong transient response was observed, reminiscent of increased
activity to unexpected events in oddball paradigm experiments (Squires et al.,
1975). Due to the suppressive effect of area MT on V1-PEs (see 7 the rapid
decay in activity was most likely caused by top-down feedback. We note that the
"stable perception” paradigm in which the observer maintains the object image
statically on the retina was chosen for consistency with the previously described
simulations and was not necessary to elicit the described neural responses (object
movement sufficed).

To confirm that the response in area MT was truly linked to object presence,
we recorded the model’s response to unexpected object disappearance (Fig.
). This setup is reminiscent of temporally unexpected stimuli in the oddball
paradigm (Squires et al., |1975). The network with two streams trained (CT)
on the Animal dataset was first moving to maintain an image from the Animal
dataset statically on the retina. After a fixed amount of time steps, the image
was suddenly removed (illustrated in Fig. [7B). Following object removal, a non-
instantaneous decrease of MT activity was observed for neurons with receptive
fields on the object. Furthermore, we again observed a spike of activity in
V1-PE neurons with receptive fields on the object (Fig. ), fitting well with
the response increase in oddball paradigm experiments.
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Figure 7: Neuronal dynamics during movement onset and object re-
moval. (A) Ilustration of movement onset. Green arrows indicate movement
of patterns across the retina, the purple arrow movement of the observer. Left:
the starting point is static, symbolized by points in green (relative to the retina)
and purple (world-centric). Right: both the object and the observer begin to
move, so that the object appears static on the retina. (B) Object removal: after
the observer moves synchronously with it (left), the object suddenly disappears
(right). (C) Neuronal activity during movement onset as illustrated in A. Re-
sponses were recorded across two sites indicated by red squares. The light blue
band (invisible) indicates one standard deviation calculated across four randomly
initialized runs. (D) Neuronal activity during the object removal outlined in
B. At the end of the area shaded in grey, the cat image was suddenly removed,
where the lightly shaded area indicates a transition time of one frame during
which optic flow estimation is disturbed until a reliable estimate could again
be made. Representations in area MT take a number of time steps to decay
(bottom row). This difference between prediction and presence results in a ’spike’
of error signals in V1 (third row).
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In this setting, responses can thus be explained by model area MT representing
the distortions in optic flow caused by the external object. Sudden removal then
creates a divergence between the still present prediction of optic flow-distortion
by a moving object and the sensed optic flow that is now completely explained by
egomotion. Consequently, MT reduces its activity, reflecting the novel absence
of external optic-flow distortions.

4 Discussion

4.1 Summary of results

We developed a scalable microcircuit with an analytically tractable learning
rule to learn the visual consequences of egomotion (Fig. [2]). The microcircuit
replicated sensorimotor mismatch signals observed in V1 of mice under various
conditions and in an experience-dependent manner (Fig. . Subsequently, we
integrated the microcircuit into a novel model designed for inferring the causes
of optic flow (Fig. . To our knowledge, this joint generative model is the
first to functionally incorporate motor-to-sensory microcircuits into a biological
model of visual inference, conforming to hierarchical predictive coding. This
extended model successfully learned to predict self-generated optic flow patterns
across the visual field (Fig. [f[B), and was capable of learning multiple non-
homogeneous optic flow patterns (Supplementary Fig. . The benefit of the
added visual-to-visual stream was firstly demonstrated by its capacity to reduce
prediction errors in V1 more effectively than a pure motor-to-visual model when
external objects were introduced (Fig. ) We then showed that this efficiency
in error-minimization was due to top-down signalling of a segmentation mask
by model area MT, highlighting the external object. Lastly, we confirmed that
model area MT not only learned the 2D shape of the object, but that population
activity of MT neurons also contains enough information for accurate readout of
object class.

4.2 Real motion coding in the middle temporal cortex

The functional role assigned to model area MT in terms of segmentation of
object from background aligns well with the interpretation of Born and Bradley,
2005| who after a review of mostly passive recordings arrives at the conclusion
that ”[a]ll together the evidence rather strongly suggests that MT neurons are
critically involved in segmenting an image into separately moving parts”. Our
model postulates that this is achieved through neurons tuned to world-centric
as opposed to retinocentric movement. Such real motion cells were indeed found
in multiple brain areas (Galletti & Fattori, |2003; Nau et al., 2018; Sasaki et
al., [2020)) including MT (Erickson & Thier, [1991)). Coding for real motion in
human MT is supported by more recent experiments by Pitzalis et al., |2020| and,
with independent object and self-motion condition, Sulpizio et al. (manuscript
in preparation), although in both studies subjects do not actively move, but
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infer their movement state from background motion. While the flow-parsing
theory of Warren and Rushton, |2009| explains such real motion coding in MT
with a subtraction operation within MT (bottom-up received optic flow minus
self-generated optic flow), our model allocates only the outcome to MT and
the subtraction operation to error neurons in V1. At least in mice, reports of
sensorimotor mismatch in V1 indeed speak for the latter. In primates, little is
known about sensorimotor mismatch computation. Translating the VR paradigm
of Attinger et al., |2017; Zmarz and Keller, |2016|to primates or constructing a
VR mismatch paradigm for humans in an fMRI scanner akin to (Di Marco et al.,
2021) could help to elucidate where sensorimotor mismatch is computed. Lastly,
our model also provides a novel perspective on the large number of feedback
connections from MT to V1 (Maunsell & Van Essen, 1983al) as part of a larger
generative model employed in the interpretation of sensed optic flow.

4.3 The neural circuitry of predictive coding

While the predictive coding framework offers a compelling account of inference
and learning in perception, its empirical predictions are still under scrutiny
(Green et al.,|2023; Leinweber et al., |[2017; Pennartz et al., 2019} Walsh et al.,
2020). With regard to sensorimotor mismatch, the question is to what extent
neuronal mismatch signals can be explained purely by locomotion-induced gain
as argued by Muzzu and Saleem, [2021], 2023 A recent case in favor of true gener-
ative motor-to-visual feedback was made by Vasilevskaya et al., 2023 Together
with the alignment with experimental results, use of a biologically plausible
learning rule and its strong computational benefits (object representation learn-
ing without external supervision, optic flow-based segmentation), the predictive
coding account appears compelling.

Another point of debate is the necessity of dedicated error neurons. Although
recent evidence suggests prediction error-coding by SST interneurons in the
posterior parietal cortex of mice (Green et al., [2023)), dedicated error neurons
are not required per se for prediction-based inference and learning. Indeed,
Mikulasch et al., 2023 developed a model of hierarchical (unimodal) predictive
coding with error computation in basal dendrites (see also Urbanczik and Senn,
2014)). Due to the algorithmic similarity of how bottom-up sensory inputs are
compared to top-down predictions in their model compared to ours (since both
are derived from Rao and Ballard, [1999), many aspects proposed here, such as
the learning rule, functional modularization and its mapping to brain areas are
translatable to an implementation with dendritic error computation.

It should be mentioned that sensorimotor mismatch is not a purely cortical
phenomenon and has also been observed in the cerebellum (Hull, [2020} see also
Lisberger, [1988). There, however, mismatch responses are mostly linked to
learning of sensorimotor transformations and motor control (Albus, 1971} Hull,
2020; Ito, |1970; Lisberger, [1988; Marr, [1969; Stone & Lisberger, 1986) without
object segmentation, whereas the circuits modeled here underlie a perceptual
function: the parsing of visual inputs in a dynamic world. It thus appears that

21


https://doi.org/10.1101/2023.11.15.567170
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.15.567170; this version posted November 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

the brain developed the same principle of comparing the predicted outcome of
movement to the observed state at least twice for different purposes.

4.4 Related work

Based on psychophysical evidence of object movement perception during self-
motion, Royden and Holloway, 2014 constructed a model to identify the outlines
of moving objects. This was achieved through comparison of bottom-up optic
flow patterns to a memory bank of optic flow templates. In contrast to our
model, however, no neural mechanisms for the learning of the templates, nor for
the wiring of the comparison operation were implemented.

Within the framework of predictive coding, most models typically operate
purely in the visual domain, whether static (Rao & Ballard, |1999), or dynamic
(Brucklacher et al., 2023} Lotter et al.,|[2020)). Extensions of predictive coding
that take into account the multimodality of sensory processing in the brain
were proposed by Keller and Mrsic-Flogel, [2018; Pennartz, [2015], 2022] in theory
and implemented e.g. by Pearson et al., 2021l Another type of multimodal
generative model is learning of motor-to-visual forward models based on corollary
discharges, wherein motor commands are taken to constitute a non-sensory
modality. On a neural level, such models have been proposed by Hertdg and
Sprekeler, 2020; Mikulasch et al.; 2022, in contrast to our model without the
ability to account for externally-caused optic flow. Interestingly, Hertag and
Sprekeler, [2020] demonstrated that signed prediction error responses emerge under
visual feedback contingent with motor state in a biologically detailed model, and
investigate the role of the involved interneurons. The microcircuit developed in
section 2.1 can thus be seen as a useful abstraction over the interneuron-level
circuits developed by Hertég et al., lending it more easily to functionally powerful
computations and the abovementioned integration with a purely visual stream.
In contrast to Mikulasch et al., 2022 and Hertédg and Sprekeler, 2020, the used
datasets go beyond one-dimensional visual inputs and the model is capable of
solving visual tasks such as figure-ground segmentation and, to a limited degree,
classification. To our knowledge, the model put forward here is the first to
integrate motor-to-sensory forward models and sensory-sensory predictive coding
within a functional model of generative visual perception.

4.5 Limitations in performance

Segmentation performance (Fig. and D) is naturally dependent on the
accuracy of the underlying optic flow-extraction through V1 direction-selective
cells. Here, accuracy can be assumed to correlate positively with the resolution of
the input signal. Based on the relatively low resolution used due to limitations in
computational resources (40 x 40, 80 x 80 pixels per frame), we expect significant
improvements when using input sequences of higher resolution (and thus wider
networks). Another factor that would significantly improve segmentation is
the use of depth information through stereovision or motion parallax. Since
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area MT displays strong tuning to binocular disparity and thus depth (Born &
Bradley, 2005; Cumming & DeAngelis, 2001)), stereoscopic integration would
fit well with the functional neuroanatomy. Thus, an interesting extension of
the current model would be a joint generative model of optic flow and depth
for 3D segmentation and recognition from binocular inputs. Depth is also an
informative cue for segmentation of partially overlapping objects moving at the
same speed - whereas the current model depends on distinct speeds. Lastly,
it should be stressed that self-generated optic flow is by no means irrelevant
(Gibson, [1950)), but provides an important reafference signal to inform motor
execution. Interestingly, as discussed in section [4.3} such closed-loop control also
relies on sensorimotor prediction errors (Albus, [1971)).

4.6 Conclusion

In summary, this study presents a novel computational model that seamlessly
integrates motor-to-sensory microcircuits into a hierarchical predictive coding
framework for visual perception. Notably, the model’s use of generative feedback
for external object segmentation provides a novel angle to the ongoing discourse
regarding the functional importance of top-down connections to early sensory
areas in neural networks.
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6 Data availability

The Python code to reproduce the results of this paper can be found at: |https:
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7 Supplementary material

7.1 Loss function and convergence of learning rule

To derive a principled loss function corresponding to the learning rule of Eq.
[4] we first consider w_ and then use the symmetry of the circuit to generalize
to wy. Plugging the firing rate of the nPE neuron from Eq. [I] into the weight
update yields

Aw_ = €l Ymot * (maX(O, _(yvis —w- - ynwt) + 60) - 60) (11)

Here we assume the model to be moving (g = 1), otherwise no learning would
take place as can be seen from Eq. @] In the coupled training paradigm, it holds
true that )
Jvis _ (12)
Ymot
with @ € R. The resulting weight update is then the rectified linear function
shown in blue in Fig. [§ with zero value derived from Eq. at

* Yvis
wr = =« 13
Ymot ( )

—— weight update
loss
039 —-- optimal weight
----- linear/ quadratic regime

0.2 4

0.1

numeric value

0.0

T T T T T T T T T
-10.0 -75 =50 =25 0.0 25 5.0 7.5 10.0
w-

Figure 8: Loss function underlying the learning rule. As can be seen from
the global minimum of the loss function (Eq. depicted in orange, the weight
updates (blue) are guaranteed to drive the weight towards the optimum value
w?* (dashed vertical line).
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At this value, the net input to the error neuron is zero. Integrating weight
updates yields the (negative) loss function on which learning performs gradient
descent, shown in orange in Fig. [§] Based on the constant and negatively sloped
linear parts of its negative derivative shown in blue, it can be seen that its global
minimum lies at the optimal weight w* (denoted by the dashed line in Fig.
with strictly monotonic increase in both directions. This guarantees convergence
of the learning rule to w* + ¢;. The transition from a linear to a quadratic
regime (dotted line in Fig. [8) occurs at the firing threshold of the error neuron,
where the net input to the neuron becomes zero

wt_hresh — Yvis — €0 (14)
Ymot

Integration of the weight update in each regime and division by the learning
rate then yields the loss

_ . Sw_, ifw_ < thresh
I Ymot * €0 * W ) if w : w"’ (15)
Ymot * (Yuvis - W— — 1/2ymaw? ), otherwise
with integration constants appropriately chosen (integration from w_ = 0).
Analogous derivation for the pPE neurons yields the optimal weight
wi = Pois _ o = w* (16)

Ymot

7.2 Construction of the Animal dataset

To construct the Animal dataset, ten images of animals where obtained from
pixhttps://pixabay.com under the Pixabay content license allowing free use
and modification of the images for commercial and non-commercial use https!
//pixabay.com/service/terms/. As an illustration, one image can be found under
https:/ /pixabay.com/de/photos/pferd-grau-konik-weide-1%C3% A4uft-2388274 /|
and links to all images are listed in data/original /image_credits.txt|/in the GitHub
repository). The animal images were cropped out of their original background,
grayscaled, and resized so that the longer edge was 50 pixels long. Then, the
images were pasted in front of the grass background texture (80 x 80 pixels)
obtained from https://www.patternpictures.com/full-frame-green-grass-texture/
under the Pattern Picture license allowing unrestricted use (https://www|
patternpictures.com/license/|) allowing lateral shifting according to movement of
the observer and the object (as described in section .
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7.3 Hyperparameters of the two-stream model

The used hyperparameters are listed in Tab. [2]

Symbol Parameter Value
Cihresh Segmentation threshold 0.71

€o Baseline activity V1-EN 0.5 a.u.
Einf Inference rate MT & MST 0.05

€ Learning rate pretraining 200

€ Learning rate training 0.02

- MT feature maps 4

- MST feature maps 4
kernel size Kernel size MT-V1 [4, 4]
- Kernel size MST-MT [4, 4]
- Convolutional stride MT-V1 1
- Convolutional stride MST-MT 1

Table 2: Hyperparameters of the two-stream model.

7.4 Simultaneous learning of visual and visuomotor stream

In the main results, motor-to-visual and visual-to-visual streams were trained in-
dependently. Upon activation and training of the visual stream, the connections
in the motor-to-visual stream were frozen. In the development of cortico-cortical
brain connectivity (Price et al., |2006)), not much is known about the develop-
mental order of feedback connections from MT to V1 relative to connections
from motor areas to V1. Hints come from the work of Baldwin et al., 2012
that suggests the presence of feedback connections from macaque MT to V1
about two weeks after birth. To investigate sensitivity of the model to separate
training phases, we studied simultaneous training of all plastic connections. To
investigate this, we combined both pretraining (background only) and training
(Animals) data into an interleaved dataset. Here, one in ten sequences contained
an animal, the other nine were empty. Inference was conducted as described in
section and plasticity was enabled in both streams. In general we found this
training paradigm to be quite unstable compared to the separate training phases.
To achieve segmentation performance, several modifications proved helpful:

1. A high learning rate in the motor-to-visual stream compared to the visual-
to-visual stream. This enforced learning of a correct motor-to-visual stream
on a fast timescale and thus partially decoupled the two learning problems.

2. A large ratio (>10:1) of empty sequences over sequences with objects in
the training data to ground the motor-to-visual stream.

3. Adapting the segmentation threshold. We found predictions of the visual
stream to be about 30% weaker in this joint training paradigm compared

31


https://doi.org/10.1101/2023.11.15.567170
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.15.567170; this version posted November 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

to the separate training paradigm. Lowering the threshold (of summed up
predictions) for assigning a point in space to an external object prevented
the segmented areas from becoming too small.

With these tweaks, the jointly trained model reached an IoU of 0.56 compared
to 0.68 of the separately trained model. The worse performance illustrated in
Fig. [0 was likely due to noisier predictions resulting from interactions between
the two streams via V1 error neurons.

Joint
training

training

Separate

Figure 9: Joint training leads to noisier segmentation performance
compared to separate training of both streams. Segmentation mask from
MT—Vl1-feedback (yellow) over the ground truth of the object outline (red)
on the Animal dataset (cf. Fig. @ Top row: model trained with plasticity

enabled in both streams, bottom row: separate pretraining and training phases
as described in section 2.2.2]
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7.5 Learning distinct forward models from multiple actions

Distinct movements create differing optic flow patterns, such as when walking
forward as opposed to turning around. The model’s capacity to learn such
mappings was demonstrated by training it on the multidimensional dataset of
artificially generated optic flows described in section Figure |10] illustrates
the wiring of the model. After training the motor-to-visual stream for five epochs,
the model’s prediction from the motor stream closely matched the original optic
flow patterns, as shown in Fig. [T1]

V1-nPE

A Exc. synapse
V1-DS @ Inh. synapse

------ Learned parameter|
— Fixed parameter

Figure 10: Forward models from multidimensional action states. In an
extension of the model shown in Figure |3] multiple motor neurons encode a
dmov-dimensional action space. For abbreviations see Fig.
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Figure 11: Learning outcomes of multiple movements in one model.
Optic flow input patterns of the six movement dimensions are shown above
predictions from motor stream to V1 after training. “Original” optic flow is
obtained from V1-DS neurons and predicted optic flow from mtr-V1 signals
(averaged across V1-nPE and V1-pPE at each point in retinotopic space). The
vectors (plotted at every fourth pixel column/row) are computed by subtracting
opposing signal components: the x-component of the vector is given by rightward
minus leftward (predicted) optic flow, the y-component by upwards minus
downwards (predicted) optic flow. The actions corresponding to the chosen optic
flow patterns are (A) turning leftwards, (B) looking downwards, (C) looking
up and to the right, (D) following a leftward curve while walking, (E) moving
forward and (D) moving backwards.
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7.6 Addition of a second purely visual area

Vision is generally understood as a hierarchical cortical process (Lee & Mumford,
2003)), although see Suzuki et al., 2023 and St-Yves et al., 2023] Also most
neural networks models of generative perception are strictly hierarchically orga-
nized (Dayan et al.,|1995; Dora et al.,|2021; Rao & Ballard, [1999), although see
Salvatori et al., 2022l To extend our model in depth, we added an area on top
of MT (Fig. . Neuroanatomically, this area roughly maps onto the medial
superior temporal cortex (MST) because it is further removed from thalamic
sensory input in the visual hierarchy than MT (Born & Bradley, 2005} Felleman
& Van Essen, [1991)). Interconnected with MT neurons via linear error neurons
(MT-EN, for simplicity not split into positive and negative counterparts), area
MST learns a generative model of activity patterns in area MT. Connections are
convolutional with stride 1, kernel size 4 and mapping to four feature maps in
area MST. With the input resolution of the modified FashionMNIST dataset de-
scribed in section[2.2.2] the number of neurons in MST is thus 34 x 34 x 4 = 4,624.

As in area MT (see section, inference and learning in area MST are driven by
error signals from the area below. Since we were interested in the representations
formed in MST, we did not implement an influence of MT-EN on area MT-RN
as common in other predictive coding implementations and Eq. [6] remains
unchanged. Thus, the remaining network function is not affected by the addition
of area MST. Training and readout evaluation then progressed as described in

sections [2.2.2] (training) and

Visual
MST-RN /7
! Motor
MT-EN ' Forward
Backward
MT' R N DRy Turn right
\\\\ /' Turn left
V1-EN S

RGC t é %
t — At

Figure 12: Extension of the visual-to-visual stream. Shown in purple
is the added model area MST and its connection to area MT via an added
population of error neurons (MT-EN). Connections subject to synaptic plasticity
are depicted as dashed lines. Compare to Fig.
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7.7 Statistical methods

To analyze whether significant differences between readout accuracy (on the
test dataset) across network areas were present, we first conducted a Welch
ANOVA using the pingouin package in Python (https://pingouinstats.org/build/
html/index.html). The null hypothesis (i.e., no significant difference in readout
accuracy across representation neurons in the three network areas) was rejected

with p < le-5 (Tab. [7.7).

Source ddofl ddof2 F p-ung np2
@ Population 3 5.598583 142.0186062 0.00008% 8.0953405

Table 3: Full report on the outcome of the Welch’s ANOVA for the
readout of object class. ddofl: degrees of freedom (numerator), ddof2:
degrees of freedom (denominator), p-unc: uncorrected p-values, np2: Partial
eta-square effect sizes. This figure supports main text section 3.4

Subsequently, multiple pairwise comparisons were conducted using the pingouin
implementation of the Games-Howell post-hoc test, which led to the corrected
p-values reported in section [3.4] of the main text. All comparisons are shown in

Tab. [T

Games-Howell post-hoc

A B mean{A) mean(B) diff se T df pval hedges
8 Full vis. M5T @8.76775 ©.82275 -0.855808 ©.003675 -17.883614 3.497725 ©.008481 -18.995195
1 Full vis. MT @.76775 8.81558 -0.84775 8.083955 -12.871843 3.2925099 0.082457 -7.422680
2 Full vis. V1-DS @.76775 ©.79625 -8.82850 ©.882407 -11.842487 3.846641 0.881247 -7.281654
3 MST MT ©.82275 8.81558 ©.80725 0.084863 1.490948 5.615486 0.499418 B.916743
4 M5T W1-D5 @.82275 ©.79625 ©.82658 ©.083714 7.135718 5.603984 ©.082063 4.387578
5 MT V1-DS @.81558 @.70625 ©.01025 B.864478 4.306674 4.825087 0.020782  2.543068

Table 4: Full report of the post-hoc pairwise test (Games-Howell).
Columns A and B refer to the neuronal populations tested in a pairwise manner.
Columns: mean: average readout accuracy on the test data across the randomly
initialized runs, diff: difference between mean values, se: standard error, df:
adjusted degrees of freedom, pval: Games-Howell corrected p-values, hedges:
Hedges effect size.
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