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ABSTRACT 27 

Tree mortality and forest dieback episodes are increasing due to drought and heat stress. However, a 28 

comprehensive understanding of the mechanisms enabling trees to cope with droughts remains 29 

lacking. Here, we employed a multi-proxy method utilizing tree-ring width, basal area increment 30 

(BAI) trends, and δ13C-derived intrinsic water-use-efficiency (iWUE) to unravel beech resilience 31 

against drought stress. We selected four sites spanning the latitudinal gradient and beech distribution 32 

in northern (Trentino-TRE), central (Lazio-LAZ), southern (Campania-CAM) and southernmost Italy 33 

(Calabria-CAL) with different climate conditions and soil water availability. 34 

First-order autocorrelation (AR1) analysis was performed to detect early warning signals for potential 35 

tree dieback risks during extreme drought events. Results revealed a negative correlation between 36 

vapour pressure deficit (VPD) and BAI, especially at southern latitudes. GAMM analysis showed a 37 

negative trend in BAI across most sites, stronger at the TRE site following the 2003 drought event. 38 

During this event, δ13C and iWUE increased with rising VPD, indicative of conservative water-use 39 

(lower stomatal conductance) and contributing to the decline in BAI. Conversely, CAM exhibited a 40 

steady increase in BAI and iWUE, likely influenced by rising atmospheric CO2 and water availability. 41 

LAZ site exhibited a decrease in δ13C, attributed to greater soil water holding capacity, enabling it to 42 

sustain higher transpiration rates. Conversely, southern sites presented higher iWUE, likely as high 43 

VPD initially reduces stomatal conductance but not the net assimilation rate, resulting in increased 44 

iWUE. Nevertheless, almost all sites exhibited a co-occurrence of increase in AR1 (except for CAM) 45 

and standard deviation, suggesting a reduction of resilience to future extreme events. 46 

Overall, multi-proxy, retrospective quantifications of BAI, iWUE and resilience provide a robust and 47 

complementary tool for differentiating water-use strategies and predicting tree growth decline and 48 

dieback, as well as identifying those that have the potential to survive in warmer and drier future 49 

conditions. 50 

 51 

 52 
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1 INTRODUCTION 53 

Forest ecosystems are facing significant challenges due to anthropogenic climate change (Allen et 54 

al., 2010; McDowell et al., 2020). The combination of reduced water availability and rising 55 

temperatures directly impacts the process of photosynthetic carbon assimilation, thereby reducing 56 

forest carbon sequestration (Keenan, 2015; Zuidema et al., 2018). This could potentially lead to 57 

negative feedback on carbon balance (Pan et al., 2011). Furthermore, hotter droughts have caused 58 

substantial alterations in forest structure and function, affecting tree growth performance and 59 

triggering episodes of dieback and tree mortality (Allen et al., 2015; Anderegg et al., 2016: Puchi et 60 

al., 2021). In addition, climatic models predict that the frequency, duration, and intensity of extreme 61 

droughts will increase in the future (IPCC 2021), so it is crucial to a better understanding of how 62 

forests are going to cope with these extreme climatic conditions (Brodribb et al., 2020). 63 

Despite the importance of identifying suitable tree species and future management practices in 64 

response to climate change, our understanding of species-specific physiological responses and site- 65 

and species-specific vulnerabilities to drought-induced tree mortality during extreme droughts 66 

remains incomplete (Allen et al., 2015; Trugman et al., 2021; De Marco et al., 2022). This gap is 67 

especially critical for European beech (Fagus sylvatica L.), one of the most distributed, ecologically 68 

and economically significant tree species in Europe (Fang and Lechowicz 2006). This species 69 

comprises 17% of all broadleaf tree stands in Italy (Gasparini et al., 2022) and is one the most affected 70 

by extreme events occurring during the initial vegetative phase across the Italian peninsula (D'Andrea, 71 

et al., 2020; Martinez del Castillo et al., 2022; Tonelli et al., 2023). 72 

Given the anticipated that climate change will exert a significant influence on both regional and local 73 

drought patterns in the Mediterranean region (Adams et al., 2017; Sangüesa-Barreda et al., 2019). In 74 

particular, mountain-Mediterranean beech forests would face increased vulnerability due to their 75 

location in the southernmost distribution of this species' range (Noce et al., 2016, 2017; Leuschner 76 
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2020; D9Andrea et al., 2021). Consequently, predicting resilience and adaptation across its 77 

distribution has become a prioritized goal. 78 

Recent studies have shown that prolonged heat and drought events can have detrimental effects on 79 

both hydraulic function and carbon use in trees (McDowell et al., 2008; Anderegg et al., 2013). 80 

Understanding these physiological mechanisms is crucial for comprehending how trees respond to 81 

drought, as they directly influence water use regulation. For instance, isohydric species adopt a 82 

conservative behaviour by closing stomata to minimize water loss, thereby reducing photosynthetic 83 

activity, and increasing the risk of carbon starvation (Timofeeva et al., 2017). On the other hand, 84 

anisohydric species adopt an opportunistic behaviour, exhibiting higher transpiration rates even when 85 

soil moisture is low, leading to an elevated risk of hydraulic failure (McDowell et al., 2008; Petrucco 86 

et al., 2017). 87 

Currently, there is contrasting information regarding how European beech forests respond to heat and 88 

drought events (Leuschner, 2020; D9Andrea et al., 2021). Most studies on young beech stands have 89 

suggested a conservative response during droughts (Leuschner, 2020; Walthert et al., 2021; Martinez 90 

del Castillo et al., 2022). However, in a few studies, adult trees have conversely displayed 91 

opportunistic behaviour (Leuschner, 2020). Therefore, it is crucial to exploit better the plasticity of 92 

this species in the water use strategies to determine the trajectories of species distribution and its 93 

resilience to a warming and drier climate (Gessler et al., 2020; Walthert et al., 2021).  94 

Long-term changes in intrinsic water use efficiency (iWUE), i.e. the cost of fixing carbon per unit of 95 

water loss (Seibt et al., 2008; Gagen et al., 2022), can be assessed by measuring carbon isotope 96 

composition in tree rings (δ13C). Tree-ring δ13C is equivalent to the ratio between photosynthesis (A) 97 

and stomatal conductance (gs) and this can vary, since both affect the ratio between CO2 partial 98 

pressure in leaf intercellular space and in the atmosphere (Farquhar et al., 1982; Battipaglia and 99 

Cherubini, 2022). Variations in iWUE, within and across tree species, have revealed a continuous 100 

ecophysiological gradient of plant water-use strategies ranging from <profligate/opportunistic= (low 101 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 16, 2023. ; https://doi.org/10.1101/2023.11.15.567154doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.15.567154
http://creativecommons.org/licenses/by-nc-nd/4.0/


iWUE) to those considered <conservative= (high iWUE) (Moreno-Gutiérrez et al., 2012). For 102 

instance, studies in tree rings have shown that the increase of iWUE did not enhance tree growth 103 

(Peñuelas et al., 2011), however, others showed the opposite effect or both (Peñuelas et al., 2008; 104 

Tognetti et al., 2014; Walker et al., 2021). These indicators of hydraulic strategies and carbon 105 

discrimination provide valuable insights into the long-term impacts of climate change on forest health 106 

and the risk of tree mortality (Gessler et al., 2018; Cherubini et al., 2021; Puchi et al., 2021). 107 

On the other hand, recent studies have provided evidence that one of the primary mortality risk 108 

indicators in forests is growth reduction also occurring many decades before visible symptoms of 109 

decline, such as leaf discolouration, increased defoliation, and branch dieback (Camarero et al., 2015; 110 

Cailleret et al., 2016; 2019; DeSoto et al., 2020). Similarly, another proxy indicator of loss of 111 

resilience and thus increasing tree mortality risk is the autocorrelation, better called 8early warning 112 

signal9 (EWS), which has been proposed to detect a critical transition in long-term time series after a 113 

perturbation, causing a critical slowing down of the capacity of recovery (Dakos et al., 2012a; Gessler 114 

et al., 2020; Forzieri et al., 2021). EWS can be highlighted as increasing autocorrelation and variance 115 

in tree growth, indicating loss of resilience and stability (Dakos et al., 2012a; 2012b). These changes 116 

have been observed in conifers; however, angiosperms did not show changes in these indicators, and 117 

this could be due to their capacity to recover after a stress-induced growth decline (Camarero et al., 118 

2015; Cailleret et al., 2019). These findings highlight the importance of early monitoring in 119 

understanding forest resilience and adaptation to climate change. 120 

This study aimed to assess the forest vitality of beech in response to drought stress by examining 121 

historical and recent growth patterns across the Italian peninsula, with a particular emphasis on water 122 

use strategies (conservative vs. opportunistic) at long-time scales. Secondly, we tested early warning 123 

signals of potential tree dieback by analyzing autocorrelation and variability patterns, as indicators of 124 

stand resilience and stability to future extreme events.  125 
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We hypothesized that beech populations in the southernmost distribution exhibit conservative 126 

behaviour as an acclimation strategy. This behaviour is characterized by iWUE being more responsive 127 

to VPD than those in the northern regions, reflecting a reduction in stomatal conductance to maintain 128 

a minimum midday water potential, and also a decline in intercellular CO2 concentration, but a more 129 

slowly decrease in photosynthetic rate. Although a drought-driven decline in photosynthetic rate may 130 

also occur, non-stomatal limitation was expected in populations with more opportunistic behaviour. 131 

Additionally, we expected to find varying degrees of growth reduction as an early warning signal of 132 

tree mortality risk across different sites, with the strongest signals in response to severe drought 133 

events. 134 

 135 

 136 

2 MATERIALS AND METHODS 137 

2.1 Study sites and climate 138 

Analyses were conducted at four sites along a ~900 km latitudinal transect in pure European beech 139 

forests across the Italian Peninsula (Figure 1, Table 1). The sites were Trentino-Alto Adige (hereafter 140 

abbreviated as 8TRE9), Lazio (hereafter abbreviated as 8LAZ9), Campania (hereafter abbreviated as 141 

8CAM9) and Calabria (hereafter abbreviated as 8CAL9). All the stands analyzed had not been managed 142 

since the last 20-30 years. 143 

The selection of the sites allowed the comparison of moisture availability across the Italian Peninsula 144 

(Figure 1), using the Climate Moisture Index (CMI) calculation method explained in section 2.6. 145 

These sites differ along the latitudinal transect regarding both climatic conditions and soil types. From 146 

north to south, the mean annual temperature ranges from 9 to 14.1 °C, with the mean annual 147 

precipitation varying from 1003 to 825 mm, based on the E-OBS dataset (as explained in section 2.4; 148 

Figure S1)  149 
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The soil types from north to south are Andisols, Luvisols, and Inceptisols. Additionally, by examining 150 

soil texture data, we inferred variations in soil water holding capacity (SWHC) among these sites 151 

(Table S1, Hengl and Nauman, 2018). Specifically, we inferred that the SWHC in TRE is relatively 152 

low, whereas LAZ exhibited a high SWHC. CAM also showed a high SWHC, while CAL presented 153 

a moderate SWHC (Kut椃Ālek and Nielsen, 1994). 154 

 155 

Figure 1 a) Map displaying the Climate Moisture Index (CMI = Precipitation / Potential 156 

EvapoTranspiration) across the Italian Peninsula, indicating humid and dry climate zones through 157 

positive (blue) and negative (red) CMI values, respectively. The index was calculated for the 158 

growing season (May-October) from 1965 to 2014. Green dots indicate the location of the four 159 

study sites where dendrochronological samples were extracted.  160 

 161 

Table 1. Geographical and mean annual climate characteristics for the four sites. 162 

Site 
Latitude 

(N) 

Longitude 

(W) 

Elevatio
n 

(m a.s.l.) 

Mean minimum 
annual 

temperature 
(°C) 

Mean annual 
temperature 

(°C) 

Mean maximum 
annual 

temperature 
(°C) 

Annual  

precipitation 

(mm) 

Reference 

TRE 46°12' 11°16' 1276 3.8 9.0 13.9 929 
TRW data Versace 

et al., 2020 
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LAZ 42°24' 12°12' 1000 8.9 14.3 19.5 829 
Battipaglia et al., 

unpublished 

CAM 41°24' 14°20' 1140 6.3 9.8 13.1 825 
Battipaglia et al., 

unpublished 

CAL 39°19' 16°23' 1601 5.8 11 16 1003 
Battipaglia et al., 

unpublished 

 163 

2.2 Field sampling and processing dendrochronological data 164 

During the period 2014-2018, a total of 174 beech trees were sampled at 1.3 m from the ground using 165 

a 5 mm increment borer (Table S2). In the laboratory, wood cores were air/dried and polished with 166 

sandpaper of successively increasing grains to visualize the ring boundaries. Ring widths were 167 

measured to a precision of 0.01 mm using the TSAP measuring device (Rinntech). Tree-ring (TRW) 168 

series were then visually cross-dated using standard dendrochronological methods (Stokes and 169 

Smiley, 1968) and checked for dating accuracy and measurement errors with the COFECHA program 170 

(Holmes, 1983).  171 

Later, tree growth measurements were converted to basal area increment based (BAI) based on the 172 

distance between the outermost measured ring (pith) and the last ring of the tree (i.e., the ring next to 173 

the bark), using the following formula: 174 

                                                              BAI = π (R2
t - R2

t-1),                                                                                           (1) 175 

where Rt the tree's radius at the end of the annual increment, and Rt-1 is the tree's radius at the 176 

beginning of the annual increment. This method assumes a circular cross-section, and the mean BAI 177 

of defined periods can be compared over time, as it is not affected by biological trends (Biondi and 178 

Qeadan, 2008a; 2008b) and it is more tightly related to stem biomass compared to TRW. We worked 179 

with mean non-standardized BAI values to preserve the long-term cumulative effects of climate on 180 

tree growth (Tognetti et al., 2014). All analyses were restricted to the period covered by the youngest 181 
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trees (at LAZ), i.e. from 1965 until 2014 (Table S2). All computations were performed using the R-182 

package 8dplR9 (Bunn, 2008; Bunn et al., 2021; R Core Team, 2022). 183 

 184 

2.3 Water-use efficiency from carbon isotope discrimination 185 

To compare long-term changes in iWUE among beech trees across the Italian Peninsula, we measured 186 

13C/12C isotope ratios in the TRW. Ten samples per each stand presenting the best cross-dating (GLK 187 

> 0.70) with the corresponding average chronology, were selected for stable isotope analyses 188 

(Battipaglia et al., 2017) and they were annually dissected using a razor blade under a binocular 189 

microscope for the period 1965-2014. 190 

Wood samples were milled to a fine powder (ZM 1000; Retsch), weighed 0.05-0.06 mg of wood for 191 

carbon isotope analyses and encapsulated in tin capsules. 192 

The isotope composition was measured at the IRMS laboratory of the University of Campania <Luigi 193 

Vanvitelli= by using mass spectrometry with continuous flow isotope ratio (Delta V plus Thermo 194 

electron Corporation). The standard deviation for repeated analysis of an internal standard 195 

(commercial cellulose) was better than 0.1‰ for carbon. The δ13C series were corrected for the fossil 196 

fuel combustion effect for anthropogenic changes in the atmospheric δ13C composition (δ13Catm) 197 

(Francey et al., 1999; McCarroll and Loader, 2004 ). 198 

Isotopic discrimination between the carbon of atmospheric CO2 and wood carbon to determine iWUE 199 

can be calculated starting from the δ13C of the plant material (δ13Ctree), which is related to atmospheric 200 

δ13C (δ13Catm) and the ratio ci/ca, according to Farquhar and Richards (1984) and Farquhar et al. 201 

(1982): 202 

δ13Ctree = δ13Catm − a − [(b − a) ci] ∕ca,         (2) 203 
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where a is the fractionation factor due to 13CO2 diffusion through stomata (4.4‰), and b is the 204 

fractionation factor due to Rubisco enzyme during the process of carboxylation (27‰) (McCarroll 205 

and Loader, 2004). Therefore, we can calculate ci by using the formula: 206 

ci = ca(δ13Catm −δ13Ctree − a) ∕ (b − a) .        (3) 207 

Finally, the iWUE can be calculated as follows: 208 

iWUE = (cab −δ13Catm +δ13Ctree) ∕1.6 (b − a).      (4) 209 

However, the iWUE should not be considered equivalent to instantaneous WUE at leaf level, which 210 

is the ratio of assimilation to stomatal conductance and considers the atmospheric water demand 211 

(Pacheco et al., 2020; Seibt et al., 2008). Thus, the equation used is the <simple= form of isotopic 212 

discrimination that does not include effects due to mesophyll conductance and photorespiration, 213 

which were unavailable for the study species. 214 

We used δ13Catm values from Belmecheri and Lavergne (2020). We obtained the atmospheric 215 

concentration of CO2 from the Mauna Loa station data (http://www.esrl.noaa.gov/).  216 

 217 

2.4 E-OBS daily climate data, CMI and SPEI calculation 218 

Daily climate data for precipitation (P), minimum (Tmin), mean (Tmean), and maximum (Tmax) 219 

temperature, as well as relative humidity (RH), were extracted from the E-OBS dataset on a regular 220 

0.1-degree grid (Table 1). The data were obtained as netCDF files from 221 

(http://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php). Using the RH and temperature 222 

data, the vapour pressure deficit (VPD) in hPa was calculated based on the Tetens formula (Tetens 223 

1930). 224 
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The Climate Moisture Index (CMI, Willmott and Feddema, 1992) represents the relationship between 225 

plant water demand and available precipitation. The CMI indicator ranges from 31 to +1, with wet 226 

climates showing positive CMI and dry climates negative CMI. CMI was calculated as follows: 227 

                                                           CMI = P/PET                                              (5) 228 

Where P is the precipitation, and PET is the potential evapotranspiration. Specifically, CMI = (P/PET) 229 

31 when P<PET and CMI = 13(PET/P) when P>PET, to recast the limit to 31<CMI<1. 230 

PET can be calculated through the Hargreaves equation (Hargreaves, 1985), modified by Allen 231 

(1993): 232 

                                              PET = 0.0029 Rsolar_rad (Tmean+20) TR0.4                             (6) 233 

Where Rsolar_rad is the extraterrestrial solar radiation, Tmean in Celsius degree and TR is the temperature 234 

range (Tmax3Tmin). 235 

CMI was calculated for the growing season (May-October) using the E-OBS v. 27.0 236 

(https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles) daily products (Tmin, 237 

Tmax, precipitation, and global solar radiation) at 0.1 deg spatial resolution and averaged over the 238 

period 1965-2014. E-OBS global solar radiation at the surface was converted to extra-terrestrial solar 239 

radiation with the 8envirem9 R-package (Title and Bemmels, 2018). 240 

Additionally, to quantify drought severity, we calculated the Standardized Precipitation-241 

Evapotranspiration Index (SPEI), based on a statistical transformation of the climatic water balance, 242 

i.e. precipitation minus potential evapotranspiration (P-PET) (Vicente-Serrano et al., 2010). The 243 

multiscalar drought index was calculated at different time scales (from 1 to 24 months, Figure S2) for 244 

the period 1965-2014 (constrained to the youngest site LAZ) in R using the 8SPEI9 package (Beguer椃Āa 245 

et al., 2014; Beguería and Vicente-Serrano, 2017). 246 

Later, to assess the relationships between climate and BAI and stable isotope for the period 19653247 

2014, we calculated Pearson9s correlations between monthly P, Tmean, VPD, and SPEI (1-3-6-9-12-248 
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18 and 24 months) series from previous (t-1) and current year (t), using monthly response function in 249 

the 8DendroTools9 R-package (Jevšenak and Levani�, 2018).  250 

 251 

2.5 Growth trends and climate response 252 

We used Generalized Additive Mixed Models (GAMM) to study the long-term annual BAI and their 253 

responses to changing climatic conditions, particularly concerning water balance within the growing 254 

season (May-October) using SPEI indexes at the four study sites. We tested SPEI drought index at 255 

1,3,6,9,12,18, and 24 months as the potential influence of drought on BAI. GAMM is a flexible 256 

semiparametric method that allows the simultaneous modelling of linear and nonlinear relationships 257 

between the response variable as a function of some explanatory variables (Wood, 2006) that allows 258 

the treatment of autocorrelation and repeated measures (Wood, 2006). The variables included in the 259 

model were the following: 260 

BAIi = s[yeari*(Site)]+s(agei)+s(SPEIi)+ZiBi+ɛ                       (5) 261 

Where the BAIi of a treei were modelled as a function of calendar year, individual tree age and SPEI 262 

per site. In addition, given that BAI represents multiple measurements performed in each tree, tree 263 

identity (ZiBi) is regarded as a random effect (Zi and Bi indicate matrix variables and related 264 

coefficients). Thin plate regression splines (s) were used to represent all the smooth terms, with a 265 

degree of smoothing determined by internal cross-validation (Wood, 2006). We ranked all the 266 

potential models that could be generated using different explanatory variables and different levels of 267 

smoothing according to the Akaike Information Criterion (AIC). Finally, we chose the model with 268 

the lowest AIC (Burnham and Anderson, 2002). The time scale that best explained the variability in 269 

BAI was the 18-month SPEI (for the growing season May-October). The GAMMs were performed 270 

and fitted using the function 8gamm9 in the 8mgcv9 R-package (Wood, 2006). 271 

 272 
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2.6 Early warning signals of forest dieback 273 

For assessing stand resilience for each site and each time series of BAI, we computed the 274 

autocorrelation at lag-1 (AC) and the standard deviation (SD) over the period 1965 to 2014 using a 275 

15-year moving window (30% of the entire time series). These metrics are widely recognized 276 

indicators of changes in time series and proximity to critical transitions to new states (Dakos et al., 277 

2012a; Camarero et al., 2015; Forzieri et al., 2022). The trend of AC and SD metrics over the 278 

considered temporal window was computed by means of the non-parametric Mann-Kendall Tau 279 

statistics. For each site, the significance of a positive (or negative) AC and SD trend was tested with 280 

a one-sided t-test. We employed the R-package 8early warnings9 (Dakos et al., 2012b) to compute the 281 

selected metrics. All statistical analyses were conducted using the R-statistical software (R 282 

Development Core Team, 2022) 283 

 284 

 285 

3 RESULTS 286 

Climate trends and drought variability 287 

Annual precipitation (P) has increased significantly at TRE and CAM sites (p < 0.01, Figure S2a), 288 

while LAZ showed a reduction in P trend during the period from 1965 to 2014 (p < 0.05, Figure S2a), 289 

and CAL did not present any trend in P pattern. Notably, Tmin increased significantly in TRE, LAZ, 290 

and CAM (p < 0.001, Figure S2b), whereas in the southern site (CAL), Tmin presented a pronounced 291 

decrease (p < 0.01, Figure S2b). Simultaneously, both Tmean and Tmax exhibited a substantial and 292 

significant increase across all sites (p < 0.01, Figure S2c and S2d). Interestingly, only at the 293 

northernmost site (TRE), VPD increased drastically and significantly during the 2000s (p < 0.001, 294 

Figure S2e), while at the southernmost site (CAL) VPD showed the opposite pattern (Figure S2e, p 295 

< 0.001). 296 
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As for the P trend, the SPEI index showed an increase in water availability in recent years across 297 

sites, although not significant, except for LAZ, which showed a negative trend (p < 0.05, Figure 2, 298 

Figure S3). Notably, the SPEI-derived drought index showed the widespread impact of the 2003 299 

drought across all sites, more evident at CAM (Figure 2, Figure S3). 300 

 301 

Figure 2 Standardized 18-Month SPEI at the four study sites (TRE, LAZ, CAM, and CAL) for the 302 

196532014 period. Negative (red) and positive (blue) values indicate drier and wetter conditions, 303 

respectively.  304 

 305 
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Long-term growth trends of Fagus sylvatica across the Italian Peninsula 306 

Mean TRW, the highest and the lowest growth rates were observed in LAZ and CAM sites, 307 

respectively with statistically significant differences. Conversely, TRE and CAL showed similar 308 

growth rates values (p < 0.05, Table S3). The age distribution of tree populations exhibited notable 309 

differences across the four sites, with LAZ featuring the youngest trees and CAM the oldest trees (p 310 

< 0.05, Table S3). 311 

BAI exhibited a significant decline, particularly pronounced in the relatively northern sites (TRE and 312 

LAZ), following the drought of 2003 (Figure 3b). In contrast, CAM presented a steady increase in 313 

BAI, while in CAL, BAI decreased after 2010 (Figure 3b). 314 

 315 

 316 

Figure 3 Long-term growth of basal area increment (BAI) of the four sites along a latitudinal gradient 317 

(north to south) for the period 196532014. Colour lines for each site indicate the linear model, shaded 318 

areas represent 95 % confidence intervals. 319 
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 320 

Growth response to climate variables 321 

Basal area increment exhibited significant relationships with climatic variables in all study sites 322 

(Figure 4). Overall, BAI was positively correlated with monthly P and Tmean and, notably, strongly 323 

negative correlations with VPD were evident from May to September. This negative VPD correlation 324 

intensified toward the southern sites (Figure 4). 325 

At TRE, BAI was positively correlated with monthly P from May to July, with a stronger effect when 326 

considering P values in the previous year. Additionally, BAI correlated positively with May Tmean of 327 

the current year, instead of showing weak negative correlations with VPD and SPEI (Figure 4).  328 

LAZ showed a strong positive correlation between BAI and Tmean from March to November (previous 329 

and current year). Conversely, strong negative correlations with VPD from May to September and 330 

weak negative correlations with P and SPEI were found in August (Figure 4).  331 

AT CAM, a positive response of BAI to P of July of the previous years, and a strong positive 332 

correlation with Tmean during May to July, were observed, while a strong negative response to VPD 333 

from March to September (more evident in the current year) was found.  334 

At CAL, BAI showed strong positive correlations with October P and with Tmean from March to 335 

August. In contrast, BAI displayed a strong negative correlation with VPD from March to September 336 

(current and previous year). Similarly, negative scattered correlations with SPEI were observed 337 

during summer at the southern sites (CAM and CAL, Figure 4). 338 
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 339 

Figure 4. Pearson9s running correlations between BAI with monthly precipitation, mean temperature, 340 

VPD, and SPEI1 for the current and the previous year (*) over the period 1965-2014 at each site. The 341 

y-axis represents the time window in months. Colours (see the key) represent correlation coefficients 342 

that are significant at the level of r = 0.279 (p < 0.05). 343 

 344 

Growth trends of beech  345 

The GAMMs revealed different BAI trends of beech among the four sites (Figure 5, Table S4). 346 

GAMM showed a monotonic increasing growth trend among the sites; however, they started to 347 

diverge in the mid-1990s. Notably, the northernmost site (TRE) started to decline earlier than the 348 

other sites (Figure 5). Secondly, LAZ exhibited the highest increase, followed by a drastic decline 349 

during the 2000s 3 a similar pattern was also observed in CAL. In contrast, the oldest site CAM trees 350 

demonstrated a steady increase in BAI over the observed period (Figure 5).  351 
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 352 

Figure 5 Growth trends of basal area increment trends of beech for the four sites. Trends were based 353 

on the best-fitted generalized additive mixed models (GAMM) for the period 1965-2014. 354 

 355 

Long-term carbon isotope chronologies and water use strategies 356 

At the southernmost site (CAL), trees presented the highest increase of δ13C values that translate in 357 

an increase of iWUE (Table 3, Figure 6). On the contrary, CAM (oldest site) showed the lowest value 358 

of iWUE (Table 3, Figure 6). LAZ and TRE on average presented similar δ13C and iWUE (Table 3). 359 

 360 

Table 3. Statistics of mean δ13C and iWUE of the tree-ring width series of beech per site for the period 361 

196532014. Data are mean values ± SE.   362 

Site  δ13C (‰) iWUE (μmol mol−1) 

TRE 325.9 ± 1.4 82.4 ± 20.4 

LAZ 325.1 ± 1.1 89.6 ± 8.7 

CAM 326.4 ± 0.9 76.9 ± 14.8 

CAL 324.8 ± 0.9 93.4 ± 13.5 

 363 
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For most sites, δ13C showed a positive and significant trend over time (p < 0.05, Figure 6), except for 364 

LAZ, which showed an opposite pattern during the period 196532014 (p < 0.001, Figure 5). In the 365 

northernmost site (TRE), the δ13C and iWUE, started to increase sharply after the drought of 2003. 366 

Similarly, the southern sites CAM and CAL presented a steady increase in iWUE (p < 0.001, Figure 367 

5). On the contrary, LAZ did not present any significant trend (p = 0.701).  368 

 369 

 370 

Figure 6 Trends of: a) δ13C (‰), and b) iWUE, and fitted linear trends for the period 196532014 in 371 

four stands across a latitudinal gradient in Italy.  372 

 373 

In the southern sites, CAM and CAL, we observed significant positive relationships between iWUE 374 

and BAI (p < 0.001, Figure 7). On the contrary, at the northern site (TRE), we observed the opposite 375 

trend pattern; however, this trend was not significant (p > 0.05). AT LAZ, no relationship was found 376 

between iWUE and BAI (Figure 7). 377 
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 378 

Figure 7 Relationship between annual BAI and iWUE in beech across the Italian Peninsula for the 379 

period 1965-2014. Linear regressions and the equations are indicated for each site. Significance 380 

values are encoded by ***p < 0.001. 381 

 382 

δ13C, iWUE, and climate relationship 383 

Carbon isotope composition (δ13C) and iWUE showed a similar relationship with climate variables. 384 

However, iWUE presented stronger correlation with climate than δ13C (Figure 8, Figure S4). An 385 

exception was observed at LAZ, where δ13C showed a negative and significant correlation with Tmean 386 

compared to iWUE (Figure 8, Figure S4). 387 

At the northernmost site, iWUE showed significant and positive correlations with Tmean and VPD of 388 

the previous and current year, while negative and scattered correlations with P and SPEI of April and 389 

May were observed (Figure 8).  390 
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At LAZ, iWUE was negatively and significantly correlated with VPD from March to November of 391 

the current and previous year.  392 

At CAM, iWUE exhibited a positive and significant correlation with P from March to May (previous 393 

and current year), while Tmean of the current and previous year was positively and significantly 394 

correlated with iWUE. On the contrary, iWUE correlated strongly and negatively with VPD from 395 

May to August (current and previous year) and with SPEI in August (Figure 8). 396 

At the southernmost site, iWUE correlated positively with P from March to September (current year), 397 

and strongly and positively with Tmean from March to August of the previous year. At CAL, VPD and 398 

SPEI exhibited strong and negative correlations with iWUE from May to June (current and previous 399 

year, Figure 8). 400 

 401 

Figure 8 Pearson9s running correlations between iWUE with monthly precipitation, mean 402 

temperature, VPD, and SPEI1 for the current and the previous year (*), over the period 1965-2014 at 403 
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each site. The y-axis represents the time window in months. Colours (see the key) represent 404 

correlation coefficients that are significant at the level of r = 0.279 (p < 0.05) 405 

 406 

Early warning signals of declining forest resilience 407 

The statistical analysis of the BAI time series performed to detect EWS on beech forests revealed 408 

contrasting results among the sites (Figure 9a and 9b). In TRE and LAZ, BAI showed a rise in AR(1) 409 

among trees, which started to increase after the 2003 drought in TRE, while in LAZ already during 410 

the 1990s (Figure 9a). In contrast, CAM showed a significant steady decrease in AR(1). No 411 

significant autocorrelation trend was found at CAL, Nevertheless, the standard deviation (SD) started 412 

to rise by the end of the 1980s (Figure 9b). A significant increase in SD of the BAI signal was 413 

observed across all the sites. 414 

 415 

Figure 9 Early warning signals: a) AR(1), first-order autocorrelation, b) SD, obtained using a 15-416 

year moving window for basal area increment (BAI) of Fagus sylvatica for four study sites for the 417 

period 1965-2014. The statistics of BAI were calculated using the residuals of the time series after 418 
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removing the low-frequency signal (Gaussian filter) using 15-year-long windows (e.g. 1979 419 

corresponds to the interval 1965-2014). The Kendall � statistics indicate the strength of trends along 420 

the time series for each variable and site. For each site, the bold line represents the mean of the 421 

statistics among trees, and the shaded area is the standard error.  (* p < 0.05, ** p < 0.001, *** p < 422 

0.001). 423 

 424 

 425 

4 DISCUSSION 426 

 Long-term growth patterns and climate variability impact on beech across Italy 427 

Our analysis revealed diverse long-term growth responses of European beech across the Italian 428 

Peninsula, closely associated with local climate and site conditions. The northern sites (TRE and 429 

LAZ) showed a decrease in BAI trends after the severe drought event in 2003, while the southernmost 430 

site (CAL) exhibited a growth decline after 2010. In contrast, CAM displayed a steady increase in 431 

growth over the 50 years analysed, likely due to increased precipitation in the last decades.  432 

Our findings confirmed that European beech in the northern sites might be more susceptible to die-433 

off, even without visible decline symptoms (such as branch dieback or decolouration of leaves). Trees 434 

exhibited greater growth sensitivity to VPD during summer, and this effect became more pronounced 435 

at the southernmost site. VPD can be used to estimate atmospheric water status and is one of the most 436 

important environmental factors influencing plant growth (Zabri and Burrage, 1997). Elevated VPD, 437 

associated with dry conditions, impacts stomatal conductance and the balance between carbon 438 

assimilation and water loss (McDowell et al., 2008; Zhang et al., 2015). This indicates that drought, 439 

driven by enhanced evapotranspiration, will play a critical role throughout the beech forest's 440 

latitudinal range in Italy. 441 
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Recent global-scale research by Yuan et al. (2019) highlighted the increase of VPD as a major 442 

atmospheric driver affecting forest productivity by imposing water stress on photosynthesis. Water-443 

use strategies, particularly conservative/opportunistic responses within and across species, have been 444 

closely linked to soil moisture availability (Moreno-Gutiérrez et al., 2012; Martínez-Vilalta et al., 445 

2014). Higher VPD and temperature accelerate soil moisture depletion causing a significant reduction 446 

in carbon uptake (Sulman et al., 2016), elevating the risk of drought-induced dieback through 447 

hydraulic failure and/or carbon starvation (Anderegg et al., 2016; Adams et al., 2017; Grossiord et 448 

al., 2020). 449 

Our results demonstrate a significant increase in VPD after the 2003 drought event in TRE, however 450 

we found a weak negative correlation between VPD and BAI. We can hypothesise this might be 451 

attributed to a lower soil water holding capacity (SWHC) at this site, potentially increasing 452 

vulnerability to growth decline, as observed in our GAMM model. Conversely, LAZ exhibited higher 453 

SWHC, likely contributing to higher transpiration rates and growth compared to other sites. CAM 454 

and CAL sites presented moderate SWHC and a declining VPD trend, indicating less stress than the 455 

TRE site. The GAMM model integrated responses to the SPEI index and individual age of each tree, 456 

thus, we speculate that hydraulic strategies under drought significantly impact long-term growth rates, 457 

reflecting site-specific and ontogenic plasticity responses of the species. These findings may suggest 458 

that young beech trees initially benefit from favourable climate conditions and higher transpiration 459 

rates; however, this advantage depends on soil water availability and makes them susceptible to rapid 460 

declines in growth during extreme drought events, as already observed in Switzerland (Vanoni et al., 461 

2016). 462 

Our study, to our knowledge, is the first to show evidence of the negative impact of VPD on basal 463 

area increment in beech forests across the Italian peninsula. This correlation was evident in all sites 464 

but was even stronger at southern latitudes. In contrast, previous studies in mature beech stands did 465 

not find a significant climate correlation, attributed to the species' mast-seeding behaviour and 466 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 16, 2023. ; https://doi.org/10.1101/2023.11.15.567154doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.15.567154
http://creativecommons.org/licenses/by-nc-nd/4.0/


sensitivity to late frosts at the beginning of the growing season (Piovesan and Adams, 2001; 467 

Castagneri et al., 2014; D9Andrea et al., 2021; Tonelli et al., 2023). Other studies have identified 468 

lagged climate correlation with masting (Vacchiano et al., 2017). Additionally, Zimmermann et al. 469 

(2015), in central Germany, found that beech growth was highly sensitive to summer temperatures 470 

and extreme drought events after the 1980s. 471 

 472 

Drought sensitivity and water-use strategies effect on growth 473 

European beech has commonly been classified as an opportunistic species, capable of maintaining 474 

higher transpiration rates even in relatively dry soil conditions (Leuschner, 2020; and references 475 

therein); however, this strategy increases the risk of cavitation (McDowell et al., 2008; Martinez-476 

Vilalta et al., 2014). 477 

Our findings indicated that temperature and VPD emerged as primary drivers of iWUE in TRE, while 478 

VPD played a dominant role in the southern sites. However, in LAZ, iWUE did not exhibit a clear 479 

correlation with climate variables. This complex relationship highlights the interaction between VPD, 480 

stomatal conductance, and photosynthesis, as high VPD initially reduces stomatal conductance but 481 

not net CO2 assimilation rate, resulting in increased iWUE. Nevertheless, severe VPD-induced 482 

stomatal conductance restrictions, combined with declining soil moisture and other non-stomatal 483 

limitations, ultimately reduce photosynthetic rate and may lead to declining iWUE as VPD continues 484 

to rise (Flexas et al., 2012). Thus, the overall relationship between iWUE and VPD is likely hyperbolic 485 

(Zhang et al., 2019), and the sensitivity of photosynthesis to VPD will likely be weaker than the 486 

sensitivity of conductance to VPD. 487 

Our study highlights contrasting water use strategies of beech across the Italian peninsula. We 488 

observed an increase of δ13C and iWUE values in TRE, CAM, and CAL, indicating a conservative 489 

water use strategy when water availability is low. In contrast, LAZ exhibited a decrease of δ13C, 490 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 16, 2023. ; https://doi.org/10.1101/2023.11.15.567154doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.15.567154
http://creativecommons.org/licenses/by-nc-nd/4.0/


suggesting an opportunistic response with stable iWUE regardless of the moisture condition. While 491 

at LAZ, changes in photosynthetic rate and stomatal conductance appeared to occur in the same 492 

direction with similar magnitude, at TRE, CAM, and CAL, stomatal conductance appeared to 493 

decrease proportionally more than photosynthetic rate, or the latter remaining stable or increasing 494 

with declining stomatal conductance. Thus, our findings confirm that water use strategies employed 495 

by beech are mostly site-specific and influenced by microclimatic conditions and soil water 496 

availability (McCarroll and Loader, 2004), consistent with our hypothesis and consistent with prior 497 

research (Peñuelas et al., 2008). 498 

Interestingly, our results indicate that higher mean iWUE did not result in an increase in the basal 499 

area increment on beech (Nock et al., 2011; Peñuelas et al., 2011; Mazza et al., 2024); instead, we 500 

observed contrasting responses consistent with previous studies (Peñuelas et al., 2008; Tognetti et al., 501 

2014). Notably, the northern site displayed a drastic increase in iWUE after the 2003 drought event, 502 

coinciding with elevated VPD and temperature that may have led to stomatal closure (gs) and reduced 503 

photosynthesis (A), suggesting that the growth decline in this site was might triggered by intensified 504 

evapotranspiration and the lower SWHC as observed in other sites by others (e.g. Peñuelas et al., 505 

2011; Li et al., 2023). At LAZ, there was no relationship between iWUE and growth, which can be 506 

explained by higher SWHC allowing higher transpiration rates and metabolic respiration, resulting in 507 

greater losses of photosynthetic assimilates, especially at higher temperatures (Nock et al., 2011; 508 

Mazza et al., 2024). Interestingly, in the southern sites, the increase of iWUE enhanced growth. This 509 

discrepancy may be attributed to the adaptation of beech trees in the southernmost distribution to 510 

water stress and high VPD (Anderegg et al., 2019; Battipaglia and Cherubini, 2022), suggesting that 511 

high iWUE is an adaptative trait (Medrano et al., 2009). Consequently, we can infer that the observed 512 

<conservative strategy= - characterized by low stomatal conductance and constant CO2 assimilation 513 

rate that enhanced growth 3 at CAM might be explained by a positive CO2 fertilization effect or long-514 

term acclimation to elevated CO2 (Walker et al., 2021). Similar findings were reported in mature 515 

European beech stands in Spain, where an increased sensitivity to drought was observed across the 516 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 16, 2023. ; https://doi.org/10.1101/2023.11.15.567154doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.15.567154
http://creativecommons.org/licenses/by-nc-nd/4.0/


southern range-edge distribution (Peñuelas et al., 2008). Recently, Qi et al. (2023) in China revealed 517 

varying water use strategies among larch trees. Mature trees presented a more 8conservative strategy9 518 

(low gs, constant assimilation rate (A)), whereas young trees maintained constant gs and high A, 519 

indicating an opportunistic behaviour. Notably mature trees displayed a greater sensitivity to 520 

atmospheric CO2 concentrations than their young counterparts. 521 

It should be pointed out that a major influence of photosynthetic rate on intercellular CO2 522 

concentration and δ13C, and the minor contribution of the regulation of stomatal conductance to 523 

iWUE, were observed in other studies on the same species (Tognetti et al., 2014). These findings 524 

suggest unclear patterns of potential increased drought-related tree decline signs in mountain beech 525 

forests along the Italian latitudinal transect. Differences between leaf-level physiology and tree-ring 526 

level processes may arise, reflecting potential variations in the (re)translocation patterns of non-527 

structural carbohydrates to organs (Mart椃Ānez‐Vilalta et al., 2016; Mergani�ová et al., 2019). Such 528 

complexities make tree-ring analysis a challenging tool for decipher tree responses to fluctuating 529 

seasonal conditions in the short term. 530 

 531 

Early Warning Signals of mortality 532 

Our second hypothesis, linking the degree of growth reduction and tree growth instability to drought 533 

severity,  was only partially confirmed by our findings. We observed an increase in the autocorrelation 534 

of the BAI signal across almost all sites, indicating heightened intrinsic biological memory of the 535 

trees and signaling a loss of ecological system resilience (Lloret et al., 2011; Seidel et al., 2022; Smith 536 

et al., 2022). Such increases have been linked to instabilities preceding external disturbances in 537 

various biological systems (e.g., Dakos et al., 2012a; Boulton et al., 2022; Forzieri et al., 2022), 538 

potentially leading to a transition to a new system state (Majumder et al., 2019; Buxton et al., 2021). 539 

Recent studies investigating ecosystem productivity9s autocorrelation have identified reduced 540 

resilience in diverse forest types due to increased water limitations and climate variability (Forzieri 541 
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et al., 2022; Fernandez-Martinez et al., 2023). Notably, after a severe drought, declining trees 542 

exhibited increases in BAI autocorrelation and variability before mortality (Camarero et al., 2015). 543 

In line with our expectations, the northern site showed a significant increase in AR and a decline in 544 

BAI after the 2003 drought event. Conversely, CAM showed a decrease in AR, suggesting a greater 545 

resilience to changing climate conditions, despite experiencing the severe drought period of 2003. 546 

This higher resilience at CAM might be linked to the legacy of past conditions with less water 547 

availability variability compared to the TRE site, as supported by the SPEI multiscalar index. TRE 548 

experienced several prolonged dry periods (i.e. SPEI<-1.5), before the 2000s. Additionally, the 549 

presence of relatively mature trees at CAM site might contribute to the population's apparent stability 550 

(see Colangelo et al., 2021). Our data also revealed increase BAI series SD across all stands. While 551 

this variability encompasses both tree physiological signals and climate-driven vegetation dynamics 552 

(Bochow and Boers, 2023), the co-occurrence rise in AR, decline in BAI, and increse in SD in TRE, 553 

LAZ and CAL sites, may indicate a loss of system stability (Dakos et al., 2012a). This indicates 554 

potential challenges for trees to mitigate the impact of extreme events in the future.  555 

Several studies have demonstrated that long-term rises in instability and reduced growth predispose 556 

European beech to elevated mortality risks under future climate-induced stress conditions (Gillner et 557 

al., 2013; DeSoto et al., 2020; Cabon et al., 2023). This emphasizes the need for continuous 558 

monitoring and proactive management of beech forests, particularly in regions where climate change 559 

is projected to increase the frequency and severity of droughts. Ongoing monitoring enables early 560 

detection of tree mortality risks, facilitating timely interventions to protect and sustain these vital 561 

ecosystems with wide ecological amplitude. 562 

 563 

 564 

 565 
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5 CONCLUSIONS 566 

In conclusion, in this study our goal was to advance the early prediction of mortality risk in healthy 567 

beech stands without, apparently, visible declining symptoms across the Italian Peninsula. This is 568 

especially pertinent considering the recent growth decline observed in this species (Piovesan et al., 569 

2008; Martinez del Castillo et al., 2022; Dorado-Liñan et al., 2022), although the available evidence 570 

is not yet conclusive (Tognetti et al., 2014). 571 

These findings highlight the importance of considering the plasticity and site-specific iWUE 572 

responses to varying environmental conditions and the impact of VPD on stomatal conductance when 573 

predicting the future of beech forests in the context of climate change. It is important to note that not 574 

all beech populations considered in this study exhibited an increase in iWUE in response to rising 575 

VPD. This variability reflects differing sensitivities to changes in environmental drivers and the 576 

plasticity of conservative to opportunistic water-use strategies.  577 

Furthermore, our analysis of EWS reveals the loss of resilience after an extreme event, as notably 578 

observed at the TRE site. In the context of climate change projection, the increase in the frequency 579 

and severity of droughts, the ability to detect earlier tipping points of  critical slow down in declining 580 

systems and the potential for recovery to the current state or an alternative state remains uncertain 581 

(Cabon et al., 2023). 582 

Nonetheless, this research raises further questions, such as how to generalize the relationships 583 

between increased iWUE and conservative behaviour, thus explaining contradictory results obtained 584 

in tree ring studies on beech populations and assess temporal changes in this functional trait. Further 585 

research considering young and old trees and their physiological mechanisms (Leuschner, 2020; Qi 586 

et al., 2023), micro-site conditions (Puchi et al., 2021), and genetics will also elucidate intraspecific 587 

variations in drought response (Alderotti et al., 2023). This knowledge is essential for developing 588 

effective conservation and also future forest management strategies to ensure the long-term health, 589 

vitality, and resilience of these crucial ecological and socio-economical ecosystems. 590 
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