

1 Evidence that recent climatic changes have 2 expanded the potential geographic range of 3 the Mediterranean fruit fly

4 **Authors:** Anna M. Szyniszewska*^{1,2}, Hanna Biesczak², Karol Kozyra², Nikos T. Papadopoulos³,
5 Marc De Meyer⁴, Jakub Nowosad⁵, Noboru Ota⁶, Darren J. Kriticos^{7,8}

6

7 **Affiliations:**

8 ¹CABI, Egham, United Kingdom

9 ²Corvus Geostat, Poznań, Poland

10 ³Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos,
11 Greece

12 ⁴Royal Museum for Central Africa, Tervuren, Belgium

13 ⁵Institute of Geoecology and Geoinformation, Adam Mickiewicz University, Poznań, Poland, 0000-
14 0002-1057-3721

15 ⁶CSIRO, Wembley, WA, Australia

16 ⁷Cervantes Agritech Pty Limited, Canberra, Australia

17 ⁸Macquarie University, Sydney, Australia

18 **Corresponding authors:** Anna Szyniszewska, aniasz@gmail.com, +447944698117

19

20 **Abstract**

21 The species distributions migration poleward and into higher altitudes in a warming climate is
22 especially concerning for economically important insect pest species, as their introduction can
23 potentially occur in places previously considered unsuitable for year-round survival. We explore the
24 expansion of the climatically suitable areas for a horticultural pest, the Mediterranean fruit fly
25 (medfly) *Ceratitis capitata* (Diptera, Tephritidae), with an emphasis on Europe and California. We
26 reviewed and refined a published CLIMEX model for *C. capitata*, taking into consideration new
27 records in marginal locations, with a particular focus on Europe. To assess the model fit and to aid in
28 interpreting the meaning of the new European distribution records, we used a time series climate
29 dataset to explore the temporal patterns of climate suitability for *C. capitata* from the 1970 to 2019.
30 At selected bellwether sites in Europe, we found statistically significant trends in increasing climate
31 suitability, as well as a substantial northward expansion in the modelled potential range. In California,
32 we also found a significant trend of northward and altitudinal expansion of areas suitable for *C.*
33 *capitata* establishment. These results provide further evidence of climate change's impact on species
34 distributions and the need for innovative responses to increased invasion threats.

35 **Keywords**

36 CLIMEX, *Ceratitis capitata*, medfly, fruit flies, Diptera: Tephritidae, niche modelling, pest risk
37 analysis, distribution, climate change, invasion

38 **Introduction**

39 Climate is the principal factor defining the potential distribution of poikilotherms ¹. Hence, climatic
40 changes are expected to impact the geographic ranges of a variety of organisms, including pests
41 affecting their ability to overwinter in new areas, exposure to heat or cold stresses, and the number of
42 generations they are able to complete within a season ². As these organisms spread beyond their
43 native ranges, they may endanger natural and agricultural ecosystems, often triggering expensive
44 management responses.

45 Climate change manifests through substantial shifts in seasonal, interannual and inter-decadal weather
46 patterns. Hence, the identification of linkages between climate change and biological trends in this
47 context is difficult. This challenge is further compounded for invasive species because they take time
48 to expand their range to occupy their climatic niche. These changes may be short in duration and
49 further interrupted by the return of less-favourable conditions. In the long term, favourable conditions
50 may prevail, leading to successful range expansion. Bioclimatic niche models can be useful in
51 revealing these trends and attributing them to climate change ³.

52 The Mediterranean fruit fly *Ceratitis capitata* (Wiedemann) (Diptera: Tephritidae) is a notorious
53 invasive species reported to be among the world's most economically important pests ⁴. It is a highly
54 polyphagous insect, feeding on over 300 plant species, including major commodities such as citrus,
55 peach, persimmon, apple and mango ⁵. *Ceratitis capitata* has a wide geographical distribution and is
56 well adapted to a broad range of climates ^{6,7}. It has spread from its native origin in sub-Saharan
57 Africa throughout much of the continent. Over time, it has colonised habitats far from its original
58 range, including areas experiencing a temperate climate ⁸⁻¹⁰. *Ceratitis capitata* is now established in
59 North Africa, Europe, South and Central America, Australia, and Hawaii ¹¹. In the USA it is regularly
60 detected in California, though its invasion status is hotly debated ^{12,13}.

61 Given *C. capitata*'s economic importance, there have been several attempts to map the pest risk it
62 poses¹⁴. To improve these maps, we used CLIMEX to estimate the potential distribution of *C. capitata*
63 based primarily on occurrence data collected in three regions of Argentina believed to be close to the
64 limits of suitability. The model fitting focused on Argentina and Australia, and the resulting

65 parameters were used to estimate its potential global distribution. Subsequently, De Meyer *et al.*¹⁵
66 developed two models using Genetic Algorithm for Rule-set Production (GARP) and Principal
67 Components Analysis (PCA) to estimate the potential geographical range of *C. capitata* based on
68 native and non-native distribution data. Li *et al.*¹⁶ developed a Maxent model for *C. capitata* focusing
69 on China. Gutierrez and Ponti¹² estimated the invasive potential of *C. capitata* in California and Italy
70 with the application of a physiologically based demographic system model (CASAS), examining the
71 effect of observed and incrementally increased temperatures. Szyniszewska and Tatem¹⁷ used Maxent
72 to estimate seasonally varying suitability for *C. capitata* based on a comprehensive set of spatio-
73 temporal occurrence data and bioclimatic variables for 1950-2000. More recently two mechanistic
74 models simulating population dynamics of medflies were published with a focus on Europe^{18,19}. The
75 Gilioli *et al.*¹⁸ model was used to explore the distribution limits of *C. capitata* in Europe under current
76 and future climate scenarios. Comparing these various models is complicated because the projected
77 climate suitability maps do not cover the same area, and the modelled variables vary in subtle but
78 important ways. We confine our comments to Europe as an index of the different model
79 characteristics.

80 The CLIMEX model of Vera *et al.*¹⁴ was framed in two parts, a natural rainfall scenario and an
81 irrigation scenario. Considering the reliable station climate dataset, in Europe, the Vera *et al.*¹⁴ model
82 indicated a maximum poleward establishment limit of Genova (north-western-Italy). This model was
83 based on climate data centred on 1975, trained with distribution data up to 2002. The more liberal
84 GARP and PCA models of De Meyer *et al.*¹⁵, indicated that the potential distribution of *C. capitata* in
85 Europe could extend (unrealistically) throughout most of Europe, into Scandinavia. The MaxEnt
86 model of Li *et al.*¹⁶ was trained on distribution records that included ephemeral populations in
87 northern France. This led to model results suggesting that northern Scotland and parts of Greenland
88 were suitable for *C. capitata* to establish. The model was also trained on location records from xeric
89 locations where irrigation is practised. Consequently, the model misleadingly indicates that large
90 swathes of the Sahara Desert and most of Central Australia are suitable for *C. capitata* to establish.
91 This model also produced some Moiré modelling artefacts in the suitability patterns that are unrelated
92 to topoclimatic variables. While the ultra-fine interpolation of model results from point stations used

93 in Gutierrez and Ponti¹² has the potential to convey a level of precision that might not entirely reflect
94 the inherent uncertainty in the data. Nonetheless, the overall pattern of response in Italy appears
95 plausible and balanced. Given the steepness of the temperature gradient in northern Italy near the Po
96 Valley, it is difficult however to be sure what the effects would be on the modelled potential
97 distribution across the Mediterranean Basin and into western Europe. The model of Gilioli *et al.*¹⁸
98 also appears to do a good job of modelling the northern range limit for establishment of *C. capitata* in
99 Europe. For current climate, it uses a blend of 5 years of modelled historical and five years of
100 modelled forecast data. Under this warm scenario, the model indicates that the records in the Paris
101 basin are marginally suitable. Gilioli *et al.*¹⁸ implicitly assumes that irrigation is always applied if
102 required, precluding its application outside the warm temperate zone, substantially overstating the
103 expected population abundances in southern Mediterranean and tropical areas. The Maxent model of
104 Szyniszewska and Tatem¹⁷ is quite liberal as well. One or two outlying occurrence records at the base
105 of the Italian Alps have probably anchored the response functions, leading to the (unrealistic)
106 projection that north-western Europe as far north as Denmark is suitable for persistence of *C. capitata*.
107 Undoubtedly, some of these training records were from transient populations.
108 To improve our understanding of the climate suitability patterns of *C. capitata* globally, we revised
109 the Vera *et al.*¹⁴ CLIMEX model, refitting parameter values according to the available literature and a
110 broader range of occurrence points and seasonal *C. capitata* trapping data excluding points that could
111 represent transient populations from model fitting. We run composite irrigation simulations including
112 top-up irrigation in irrigated zones, and natural rainfall conditions elsewhere, to illustrate areas
113 suitable for *C. capitata* establishment and ephemeral occupation. We examine the trends in
114 interannual climate suitability index values returned by CLIMEX to identify areas where the trends
115 are statistically significant.

116 **Methods**

117 *Ceratitis capitata* occurrence data

118 *Ceratitis capitata* occurrence data were obtained from the Global Biodiversity Information Facility
119 (GBIF: www.gbif.org), Royal Museum for Central Africa, and published literature (Szyniszewska and

120 Tatem 2014) (Figure 1). Records dated pre-1950 were excluded, assuming that older records may be
121 more prone to digitisation errors, due to potentially less accurate data collection techniques.
122 Moreover, older records might represent occurrences in habitats that changed over time. Thus, we are
123 focusing on more recent data points. Records representing *C. capitata* detections only, and those that
124 fell well outside the known climatic niche and no evidence of *C. capitata* overwintering and
125 establishment were considered outliers and thus excluded from the analysis²¹. Data were reviewed for
126 clear outliers with incorrectly typed coordinates and those that evidently showed country or
127 administrative units' centroids. The identified outliers were removed from the dataset. The GBIF data
128 contained a large number of occurrence points from areas in northern latitudes well outside the known
129 distribution area of *C. capitata*. We removed obvious outliers from countries where *C. capitata* is
130 listed as absent according to EPPO and CABI Pest Distribution Compendia. For the remaining
131 outliers located in northern locations of countries where the distribution is believed to be limited to
132 southern areas, we consulted in-country experts to indicate which records may indicate true
133 overwintering generations and which represent seasonal *C. capitata* trapping with no evidence of
134 overwintering potential. Several bellwether sites remained, notably in Spain, France, Italy, Austria
135 and Romania. The dataset is available in an open repository²².

136 *Climate data*

137 For fitting the CLIMEX model, we used the CRU TS4 data for 1970-2019 with 30' spatial resolution
138²³. The dataset contained monthly values for daily minimum and maximum temperature (°C), relative
139 humidity (RH%) at 9:00 and 15:00, and monthly rainfall totals (mm). For long-term averages, we
140 used 30-years CliMond data centred on 1995 (CM10 World 1995H V2) with daily minimum and
141 maximum temperatures, monthly rainfall totals, vapour pressure (hPa), and monthly rainfall totals at a
142 spatial resolution of 10 arc minutes.

143 *Irrigation*

144 To account for irrigation, we ran the analysis with an irrigation scenario as a rainfall top-up of up to
145 2.5 mm day⁻¹ applied continuously for 12 months. No irrigation was added if rainfall in a specific
146 location was equal to or exceeded 2.5 mm day⁻¹. We used the Global Map of Irrigation Areas

147 (GMIA) version 5.0 to identify areas with a significant area under irrigation²⁴ (Figure S1). In the
148 GMIA dataset the area equipped for irrigation was expressed in hectares per cell. This dataset was
149 resampled to match the spatial resolution of the CRU TS4 dataset. For each 30' cell, if the irrigation
150 area is greater than 10 ha, the irrigation scenario was used for composite maps (Figure S2).

151 *Niche Modelling*

152 The CLIMEX V4.1 modelling package^{25,26} (Hearne Scientific Software, www.hearne.software) was
153 used in this study to fit an ecological niche model of *C. capitata* to the occurrence locations.
154 CLIMEX is a hybrid inductive and deductive model estimating a species response to climate at each
155 location based on the assumption that in the course of a year, populations may experience one or more
156 seasons that are favourable for growth and, conversely, one or more seasons that are stressful, during
157 which the population declines^{25,26}. The model integrates weekly responses of a population to climate
158 and calculates a set of climate suitability indices. The CLIMEX model assumes that population
159 growth (development) occurs between the specified range of temperature values and between
160 specified values of soil moisture parameters (SM0 - lower moisture and SM3 - higher moisture limit,
161 see below). These growth functions are combined in accord with the Sprengel-Liebig Law of the
162 Minimum^{27,28} and Shelford's Law of Toleration^{29,30}. Stresses, leading to negative population growth,
163 are assumed to accumulate outside these development thresholds. For example, Cold Stress (CS) and
164 Dry Stress (DS) can only begin to accumulate once the temperature or soil moisture drops below
165 Limiting low Temperature (DV0) or Limiting Lower Moisture Limit (SM0) respectively (Table 1).
166 Conversely, Heat Stress (HS) or Wet Stress (WS) will accumulate once the temperature or soil
167 moisture exceeds DV3 or SM3 respectively. The individual stress indices are combined
168 multiplicatively, indicating that they can operate independently and concurrently. Growth and Stress
169 indices are calculated on a weekly basis and integrated to annual summary variables. This allows the
170 model to capture important seasonal population responses at a temporal scale that is relevant to the
171 dynamics of insect and plant species. An annual value of 100 for the Annual Stress Index is lethal
172 and precludes a species from persisting in a given location. The Weekly and Annual Growth Index
173 (GI_w and GI_A) represent the potential for population growth and development without considering

174 stresses that may inhibit or completely prohibit population growth. In addition to the temperature and
175 moisture stresses, the potential distribution of *C. capitata* was set to be limited by the minimum length
176 of the growing season measured in degree-days.

177 The *Compare Locations* model was run using 30-year climate averages from CliMond data centred on
178 1995 (CM10 World 1995H V2) to fit model parameters and represent the climate suitability for *C.*
179 *capitata*³¹. Version 4 of CLIMEX introduces a module that explores climate suitability as a spatio-
180 temporal phenomenon, running the *Compare Years/Locations* model on a time-series of daily values
181 for climate variables. We examined the time series of Annual Growth Index (GI_A), stress indices (CS,
182 DS, HS and WS), and the Ecoclimatic Index (EI) values between 1970-2019. The GI_A, Temperature
183 Index and Moisture Index values range from 0-100, while stress indices values range between 0-
184 infinity, with values above 100 deemed lethal. EI values range from 0 to 100 and illustrate the overall
185 climatic favourability for the species at specific locations²⁶. The Compare Locations function in
186 CLIMEX calculates EI based on 30-years average weather data, while the Compare Years/Locations
187 data calculates EI based on weather data for each individual year in chosen time range. We calculated
188 average EI values for 1970-1979 and 2010-2019 based on EI values returned by Compare
189 Locations/Years function in CLIMEX.

190 *Parameter fitting*

191 The set of CLIMEX parameters developed by Vera *et al.*¹⁴ was used as a benchmark for fitting the
192 CLIMEX model. The parameters were carefully revised to ensure they correspond to a plausible
193 biological range of values from experimental work published in the literature. Parameters were fitted
194 by manually, iteratively adjusting the temperature and moisture indices, as well as stress indices, until
195 the locations in marginal *C. capitata* distribution locations corresponded with the geographical
196 distribution simulated by CLIMEX (EI values ≥ 0.1). We parameterised the model based on
197 CliMond 30-years average climate data centred on 1995³¹. The stress parameters were mostly
198 informed by the distribution data, and the growth parameters were mostly informed by
199 ecophysiological studies and some theoretical considerations (see below).

200 *Optimal temperature*

201 A study of reproductive and population parameters of *C. capitata* by ³² determined that the optimal
202 temperature for development was in the range of 24 - 29 °C. The highest net reproduction rates
203 occurred at 24 °C, while the highest population growth rates were found at 29 °C. A study by Rivnay
204 published in 1950³³ found that optimal temperatures for egg hatching rates and pupae survival of *C.*
205 *capitata* was in the range of 25 - 27 °C. These results are consistent with experimental data published
206 by Shoukry and Hafez in 1979³⁴, reporting the optimal development temperature of laboratory
207 colonies of *C. capitata* between 25 - 27 °C, when the highest rates of emerging offspring was
208 observed. This value is very close to the optimal temperature of 25 °C proposed in Duyck and
209 Quilici³⁵, which was found most favourable for *C. capitata* development time and survival.

210 *Maximum temperature*

211 Shoukry and Hafez³⁴ reported 35 °C as the maximum temperature (T_{max}) for *C. capitata* development,
212 similarly to Ricalde *et al.*¹⁰ who reported 35 °C as the maximum temperature (T_{max}) for Brazilian wild
213 populations of *C. capitata*, above which the development of immature stages was inhibited. At 32 °C
214 there was a 68.6% mortality rate for pupae from laboratory colonies³⁶.
215 Duyck and Quilici³⁵ also determined that the maximum temperature for *C. capitata* (population from
216 the island of Reunion) was 35 °C; at this temperature, larval stages can barely survive, experiencing
217 95% mortality.

218 *Minimum temperature*

219 Accurately estimating the minimum temperature for a species to develop is notoriously difficult.
220 Reports of base temperature in the literature vary depending on several factors, including study
221 location and stage of the fruit fly development. Moreover, recent studies on thermal tolerance and
222 critical minimum and maximum thermal limits³⁷⁻³⁹ have shown that there can be high levels of
223 adaptation and thermal acclimation in local medfly populations, affecting the survival of flies in cold
224 conditions. In Israel the threshold for larval development for *C. capitata*, i.e. the temperature at which
225 they cease to grow, was estimated at between 10-11 °C³³ and at 8.1 °C in Brazil¹⁰. We set the
226 minimum temperature for *C. capitata* development (DV0) as 10 °C.

227 **Cold stress (CS)**

228 Cold stress studies in literature examined immature stages of *C. capitata* reared in laboratory on
229 artificial diets. The degree-day cold stress (DTCS) was adopted from a previous study¹⁴ and left at 5
230 °C with the degree-day cold stress accumulation rate (DHCS) of -0.0015 week⁻¹. The cold stress
231 average temperature threshold in our model (TTCSA) is set to 2.5 °C. When temperatures fall below
232 this threshold, stress accumulates at a rate (THSCA) of -0.01 week⁻¹.

233 **Heat stress (HS)**

234 We set the heat stress value at 37 °C. Literature reports a range of values above 37 °C to induce
235 mortality in medflies^{33,40}.

236 **Moisture**

237 We left the lower moisture threshold (SM0) set to 0.1¹⁴ as it reflects the permanent wilting point,
238 typically ca. 10% of soil moisture. The lower and upper optimal moisture parameters (SM1 and SM2)
239 remained 0.3 and 1, respectively (1 indicating 100% soil moisture accumulation), and the limiting
240 high moisture (SM3) parameter was explored to match the distribution of *C. capitata* occurrence
241 location and was set to 1.5, the lower limit for Wet Stress.

242 **Dry stress (DS)**

243 Previous study suggests that long periods of water shortage in soils with low water retention capacity
244 in combination with low temperatures are the likely cause of high pupae mortality⁴¹. Therefore, we set
245 the dry stress threshold moisture level (SMDS) to 0.1 and dry stress accumulation rate (HDS) to -
246 0.0001 week⁻¹.

247 **Wet stress (WS)**

248 Some studies have shown a very adverse effect of excessive soil moisture on the development and
249 survival of *C. capitata*, especially at immature stages of development due to potential fruit
250 decomposition (at larval stage) or the pupae's inability to breathe in highly water-saturated soils.³³
251 reported high mortality rates of the immature *C. capitata* stages associated with excessive soil
252 moisture. More specifically, they found that heavy rainfall, especially when combined with low
253 temperatures, causes high pupae mortality. Flooding of soil caused by heavy rainfall during the rainy
254 season was documented to cause hypoxia in the immature developmental stages of *C. capitata* leading
255 to death⁴¹ and the precipitation significantly reduces the success of adult emergence⁴².

256 The wet stress parameter (SMWS) was set to 2 indicating heavy runoff, 100% above soil holding
257 capacity, and the stress accumulation rate (HWS) was set to 0.01 week⁻¹.

258 **Eco climatic Index (EI) calculation**

259 The Eco climatic Index (EI) depicts the favourability of the climatic conditions in a given location for
260 the species to grow represented by the Annual Growth Index (GI_A) derived from the sum of Weekly
261 Growth Indices (GI_W) and representing potential for species to grow (Equation 1). Detrimental effect
262 on species growth during unfavourable seasons is incorporated and summarised in EI as an Annual
263 Stress Index (SI, Equation 2). The EI, a product of GI_A and SI (Equation 3), is theoretically scaled
264 between 0 and 100, with an EI of 0 indicating that the location is not favourable for the species' long-
265 term survival. Very low values of EI indicate marginal climatic suitability. In practice, EI values of
266 100 are achievable only under stable conditions typically found in equatorial locations.

267
$$GI_A = \sum_{i=1}^{52} \frac{GI_{W_i}}{52}$$

268
$$SI = \left(1 - \frac{CS}{100}\right) \left(1 - \frac{DS}{100}\right) \left(1 - \frac{HS}{100}\right) \left(1 - \frac{WS}{100}\right) EI = GI_A \times SI$$

269 **Degree-days per generation (PDD)**

270 The complete life cycle of *C. capitata* lasts from 20 to 90 days, depending on the prevailing climatic
271 conditions⁴³. We set the value of PDD possibly to match an experimental number of generations
272 recorded in locations where we have data. The thermal constant (K) for the pupa stage *C. capitata*
273 from the populations of Pelotas, Petrolina and Campinas was estimated at 148, 146 and 147 degree
274 days, respectively¹⁰.

275 **Time-series of climate suitability for *C. capitata***

276 The CLIMEX Compare Locations/Years module was run on a monthly time series climate database
277 for 1970–2019 to simulate and visualise the seasonal and inter-annual spatio-temporal patterns of
278 climate suitability for *C. capitata* globally. We fitted a linear model using lm() function in R⁴⁴ at
279 each spatial grid point to the annual CLIMEX index values to estimate the average annual change in
280 EI, GI_A, TI, CS, HS and MI across the 50 years in the time series of model outputs. The rate of
281 change over the 50 year timeseries of the model outputs was defined by the slope parameter in the
282 fitted linear model (*a* parameter) and the statistical significance of the slope parameter (p-values) were

283 returned for each grid location and plotted. We assumed that p values < 0.05 indicate significant
284 results.

285 **Parameter sensitivity and model uncertainty**

286 CLIMEX V4 ²⁶ includes automatic procedures to estimate parametric sensitivity and overall model
287 uncertainty. The aim of this analysis is to draw attention to those parameters whose accurate
288 estimation is important for the model results. These parameters can then be more carefully scrutinised
289 in terms of the reliability with which they have been fitted. Parameters that are sensitive and reliably
290 fitted are of little concern. Conversely, those that are sensitive and uncertainly specified need to be
291 highlighted along with the state variables that are sensitive to these parameters. Some combinations
292 of parameters and state variables are inherently sensitive, and some are inherently insensitive. For
293 example, we expect that the Dry stress variable would be sensitive to the Dry stress threshold (SMDS)
294 and Dry stress accumulation rate (HDS) parameters, but the temperature related variables would be
295 completely insensitive to the dry stress parameters. These expected positive and negative
296 relationships act as a form of validation check to ensure that nothing untoward is occurring in the
297 analysis.

298 The parametric sensitivity analysis adjusts each model parameter upwards or downwards, and
299 calculates the effect on each of the model variables. Because of anisotropy amongst the model
300 driving variables, the perturbations are fixed using values that reflect the scale of each variable. The
301 calculated parameter sensitivity statistics apply to the climate stations included in the specific
302 simulation. In this case, they reflect the global pattern of sensitivity. In addition to the standard state
303 variables, this analysis includes a variable for the number of climate stations (cells) that have a
304 positive EI value. The calculated sensitivity for this Range Change variable is the proportion of cells
305 that change in suitability for establishment between the two parameter scenarios. We ran the
306 sensitivity analysis for the World using CM10 World 1995H V2 with the rainfed scenario. The
307 results are available in Supporting Information (Table S1).

308 Where the sensitivity analysis is focused on the parameters, the uncertainty analysis is focused on the
309 results. The uncertainty analysis uses a latin hypercube method to efficiently sample the parametric
310 uncertainty space. The results are an “agreement map”, detailing the proportion of modelled

311 parameter samples that resulted in each cell being classified as being suitable for establishment. Cells
312 that have a high proportion of models indicating potential for survival may be considered to be more
313 robustly modelled as being suitable. In this paper, we ran the uncertainty analysis for the World using
314 CM10 World 1995H V2 with the rainfed scenario.

315 **Results**

316 **Ecoclimatic suitability**

317 The potential global distribution of *C. capitata* spans tropical, subtropical and warm temperate zones
318 (Figure 1). The main limiting factors in their distributions are the cold stresses observed in higher
319 temperate latitudes and the dry stress in non-irrigated areas of subtropical climates. The potential
320 global distribution when 2.5 mm irrigation is added as a top-up to natural rainfall extends *C. capitata*
321 potential distribution notably in drier climates of North America, North Africa, the Middle East and
322 South Asia. Figure 2 illustrates a composite scenario: model outputs with a top-up irrigation in areas
323 classified as equipped with irrigation and rainfed in areas classified as not equipped with irrigation²⁰.

324 **CLIMEX index values in 1970-1979 and 2010-2019**

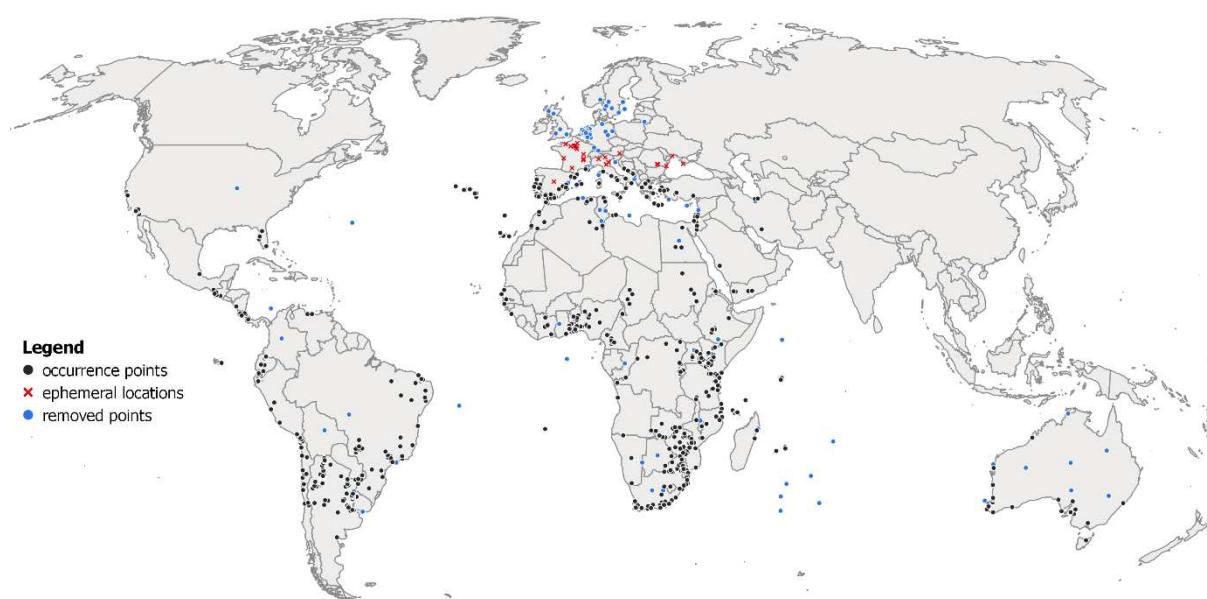
325 Comparison of the average CLIMEX index values in 1970-1979 against 2010-2019 revealed increase
326 in the overall climatic suitability (Ecoclimatic Index – EI) in many areas of the globe including
327 Europe and California (Figures 3, S3, S4). Overall annual Growth Index values (GI) increased
328 significantly in Europe, notably due to increases in Temperature Index (TI). Cold Stress (CS) values
329 below 100 which is a threshold is observed across larger southern areas of Europe in the recent
330 decade. No notable changes are observed for the Moisture Index (MI) and Heat Stress (HS) values.

331 **Rate of change in climatic suitability**

332 The linear trend fitted to every grid cell of the timeseries of the model runs for 1970-2019 presents the
333 annual rate of change in CLIMEX indices values (Figures 3, S5, S6) in areas where the trend is
334 significant ($p < 0.05$; Figures 4, S7, S8, S9). Notably, we observe increasing EI values in vast areas of
335 Mediterranean Europe. This increase appears driven by increasing Growth Index at the rate of up to
336 slightly above 0.5 in many areas of southern and central Europe. TI has a positive rate of change of
337 over 0.1 in all areas of Europe except northern and eastern parts. CS is decreasing at a highest rate in

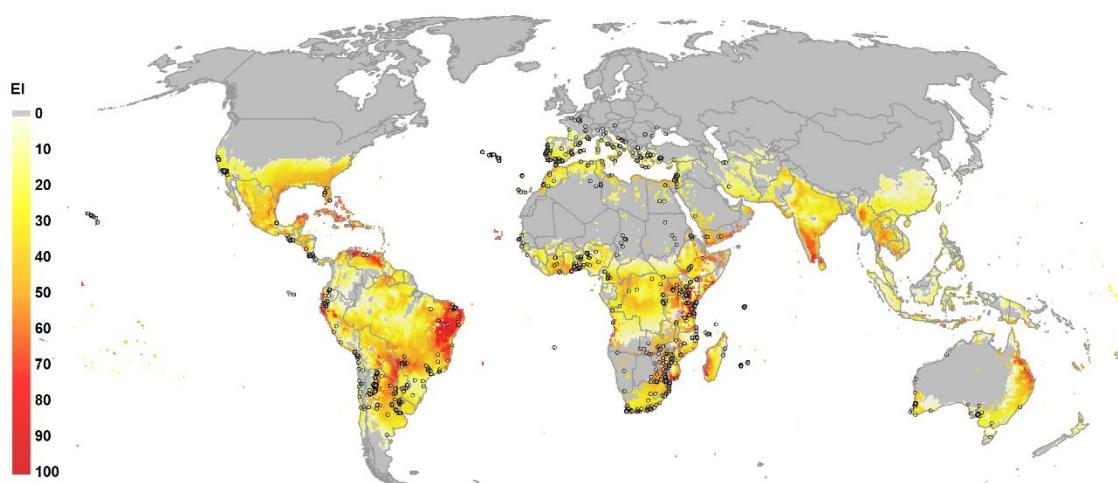
338 central, southern and some parts of northern Europe. The MI changes are positive in most of southern
339 Europe and negative in the north. Heat stress values changes are negligible on the European continent.
340 In large areas of southern Europe, the trend in EI changes increase was significant (Figures 4, S7).
341 Positive TI changes were significant across the majority of Europe. GI changes in the north, as well as
342 small patches of southern Europe, including areas in Spain and Austria, had a significant trend of
343 positive changes. Changes in the MI appear more complex, with more significance in either the south
344 or northern parts of the continent. CS trends in western Europe appear significant, in contrast to
345 eastern Europe, where this trend's p values were well above 0.05.
346 We chose eight bellwether locations in Europe, and three locations in California to investigate the
347 trends in climatic suitability (EI, GI, TI, MI) and stresses limiting species ability to survive (CS and
348 HS) (Figure 5). Chosen locations in Spain experience an increasing significant positive trend in the
349 suitability for *C. capitata* (Valencia = 0.35 and Barcelona = 0.34). In France, Marseille has increased
350 its overall EI from nearly 0 to around 15 in recent years, with the trend of over 0.3 annual increase in
351 EI since 1970s. Chosen location in Constantia have isolated years indicating favourable conditions
352 for *C. capitata* overwintering (EI > 0.5), but this trend in our analysis is not sustained. Locations in
353 Po Valley, Split and Thessaloniki continue to experience increasingly favourable conditions enabling
354 *C. capitata* to overwinter and thrive in these areas. In California, we observed statistically significant
355 changes in EI only in San Diego, Los Angeles and San Francisco (Figure 5). The rate of annual
356 change in EI in these locations is 0.1 in San Diego, and 0.7 in Los Angeles and San Francisco.
357 Globally, we observe poleward expansion in the areas suitable for medfly (EI 0.5 or above) in the
358 temperate latitudes (Figure 6). This trend, illustrating the difference in average irrigation composite
359 10-year EI between 1970-79 and 2010–19, is driven mostly by reduced CS and, consequently, an
360 increasing capacity for the organism to overwinter in these locations. Conversely, in subtropical
361 regions, certain areas that were once suitable for the medfly transitioned to unsuitable conditions. This
362 change can be attributed to the escalation of HS and the prolonged periods of DS in regions not
363 equipped with irrigation. In Europe, in the course of last 50 years, large areas of northern Spain,
364 France, northern Italy, and further north into the Balkans were observed according to the outputs of
365 our model. In California, and more broadly in the USA, the composite small area near Baja

366 California coast appears no longer suitable, whilst the suitability appears improved across nearly the
367 entire northern limit of species climatic niche limits.
368 The examination of the changes in EI values over a 50-year period, where significant trends are
369 observed, provides valuable insights into the impact of these changes based on latitude (Figure 7). By
370 analysing the cumulative changes in EI across different latitudes during that timeframe, a clear pattern
371 emerges, indicating substantial increases in EI, particularly in the temperate regions of the northern
372 hemisphere which possess a larger landmass compared to the southern hemisphere. Although the total
373 positive changes in EI are smaller in the higher latitudes of the southern hemisphere (over 30 degrees
374 South), they still dominate. On the other hand, a higher proportion of negative sum of changes in EI
375 are observed in latitudes between the equator and the tropics of the northern hemisphere, where the
376 Sahel region and arid areas of North America, South Asia and the Middle East contribute to this trend.
377 In the southern hemisphere, the Mato Grosso region in Brazil, as well as areas in Australia, exhibit
378 negative trend.

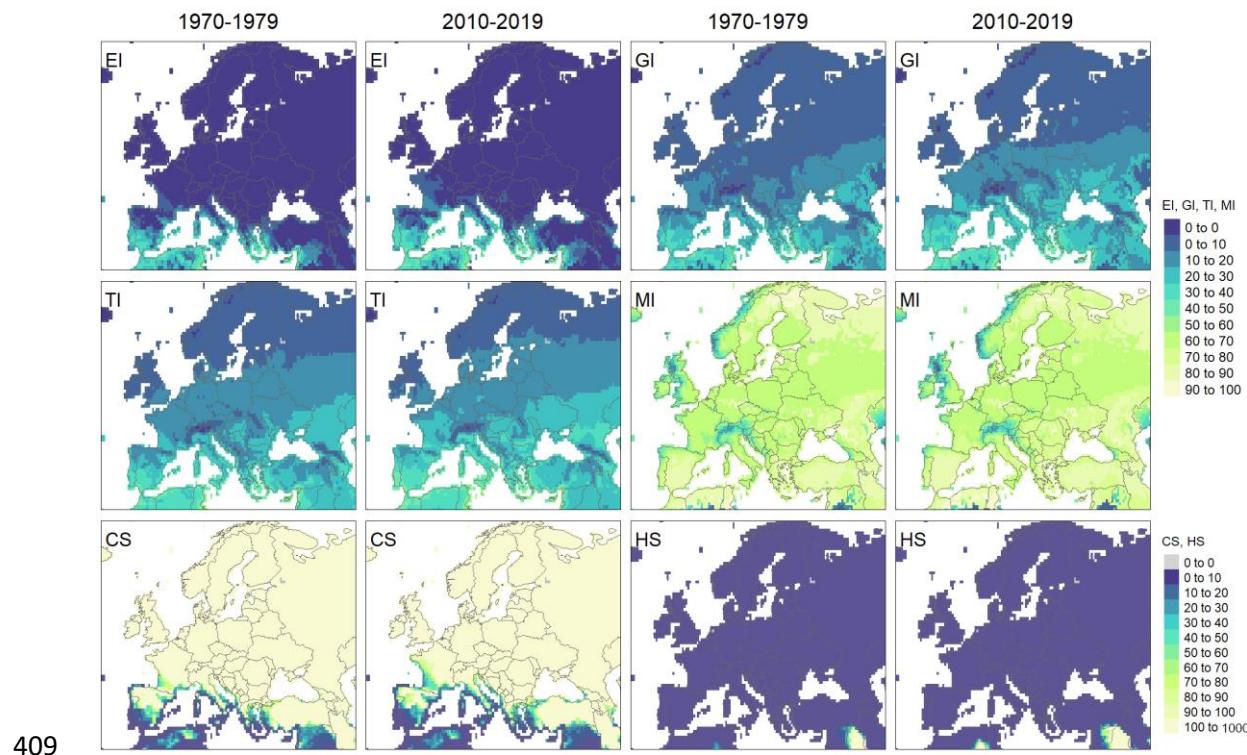

379 **Parameter sensitivity and model uncertainty**

380 The parameter sensitivity analysis revealed little cause for concern (Table S1). There are only four
381 parameters that had a sensitivity of greater than 1% in relation to the Range Change variable. The
382 most sensitive variable was the dry stress threshold (SMDS) at 15.75% and the closely-related
383 limiting low moisture parameter (SM0, 1.27%). These parameters are anchored by the permanent
384 wilting point, which is highly stable across a wide range of host plants, and hence there is little
385 uncertainty in setting them. The dry stress accumulation rate (HDS) is fitted to distribution data and
386 has a sensitivity of only 2.94% and the results accord with the location records from xeric locations
387 that are not irrigated. It is possible that *C. capitata* is persisting in drier locations that have not been
388 documented, but the extent of this is likely very small. The next most sensitive parameter for Range
389 Change is the Cold Stress Degree-day Threshold (DTCS) at 1.05%. This parameter is fitted to
390 distribution data in conjunction with the Cold Stress Degree-day Accumulation Rate (DHCS), which
391 has a sensitivity of 0.75%. The potential cold stress limits are reasonably well known, especially from
392 European data. In Australia and South Africa, despite the latitudinal limits to the landmasses, there
393 are elevational gradients extending into areas that are still too cold for *C. capitata* to persist. Hence,

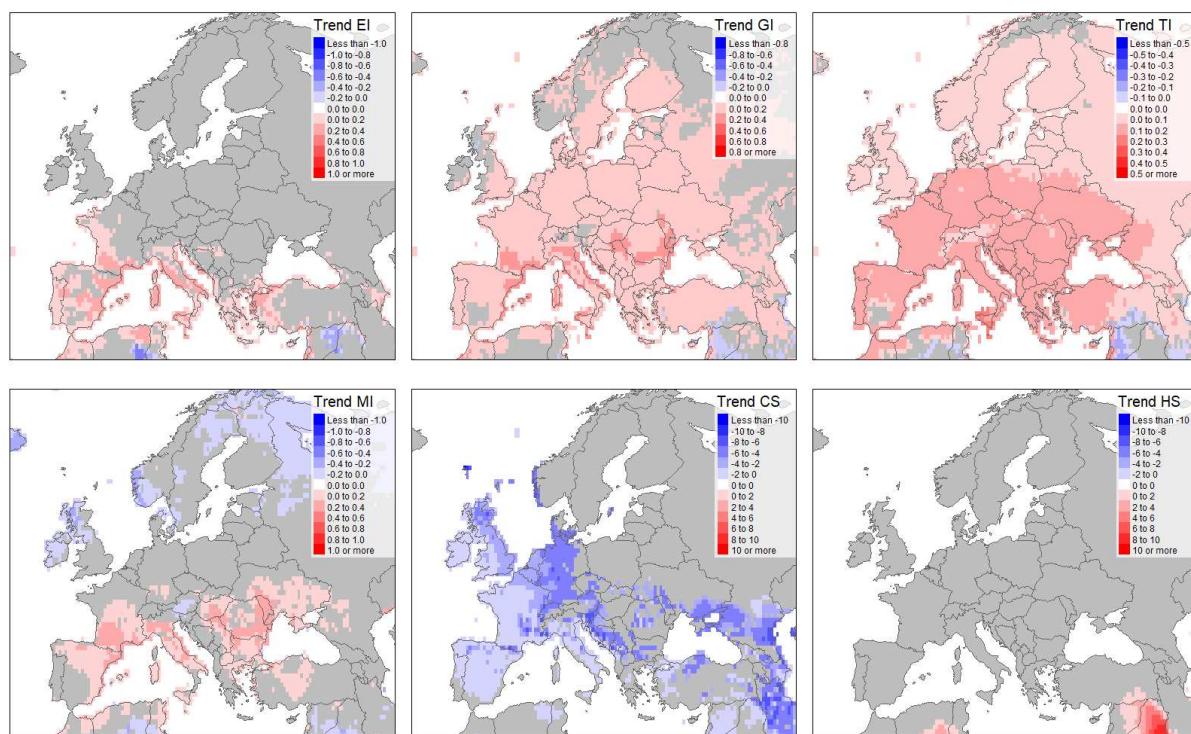
394 we can be satisfied that the model cold stress parameters are of little concern. The model uncertainty
395 results are illustrated in Figure S10.


396 **Tables**

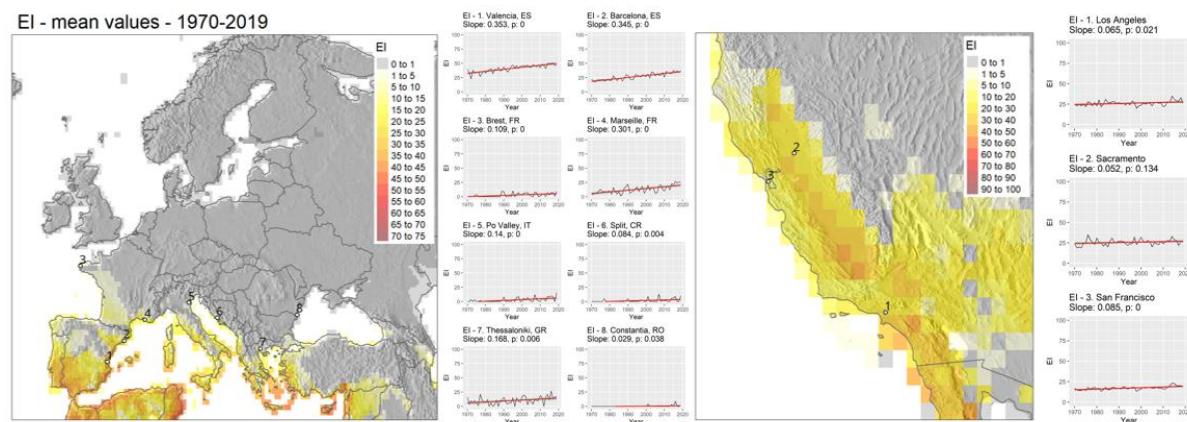
397 **Figures and figure legends**



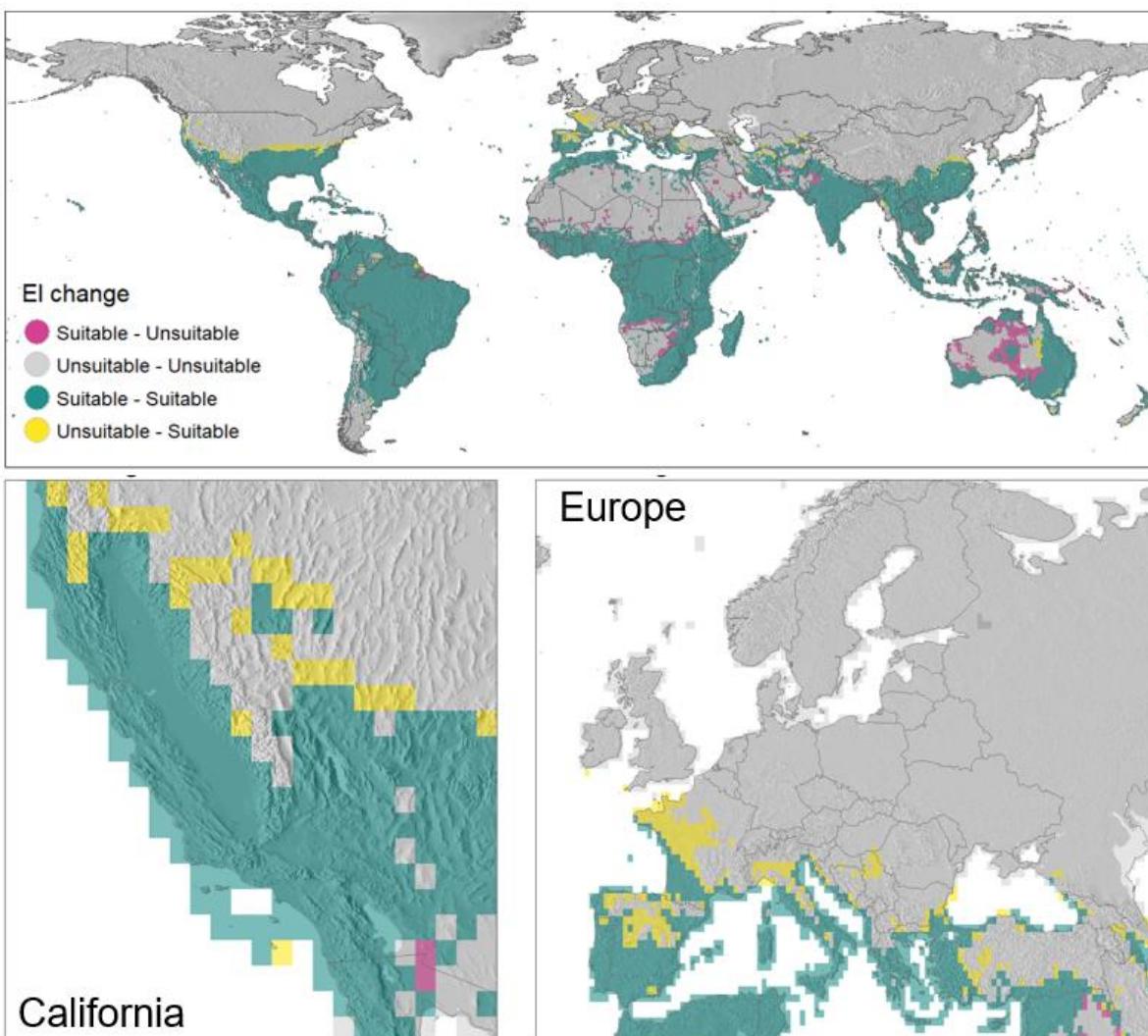
398


399 Figure 1. *Ceratitis capitata* historic occurrence data that was used for fitting the CLIMEX model. While most records
400 represent locations where *C. capitata* is established, some represent historical records where the ability of fly populations to
401 overwinter was equivocal (red crosses and blue dots). Points that did not pass inclusion criteria in our cleaning stage or were
402 located in areas where there is no evidence of medfly ability to establish were removed from the analysis (blue dots).. The
403 map lines do not necessarily depict accepted national boundaries.

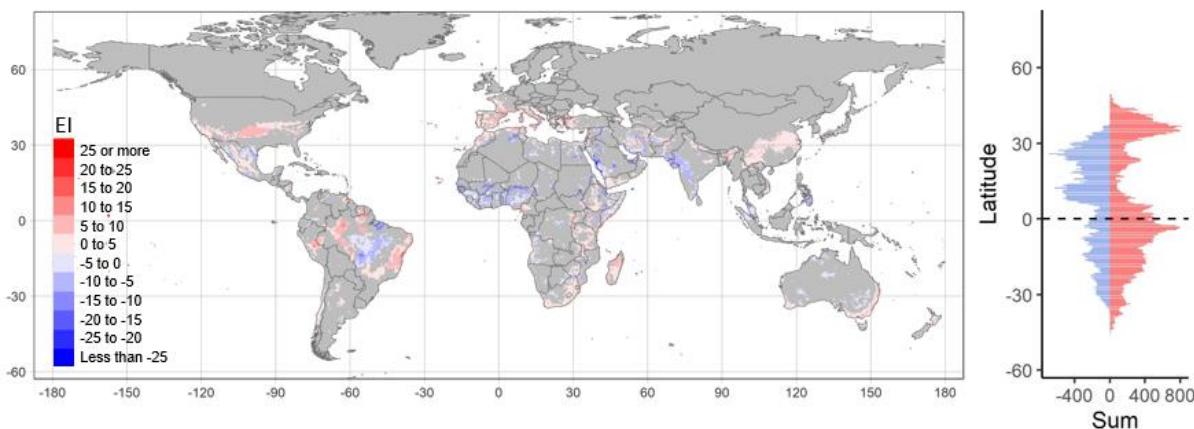
405 Figure 2. The Compare Locations model in CLIMEX 4.1 run with 30-year average climate data centred on 1995 (CM30
406 1995H) to produce global Ecoclimatic Index (EI) map for a composite rainfed and irrigated scenario based on a set of
407 parameters presented in Table 1. Circles indicate the collated occurrence records of medfly globally. The map lines do not
408 necessarily depict accepted national boundaries.



409
410 Figure 3. CLIMEX model results representing 10-year average values of Ecoclimatic index (EI), Growth Index (GI),
411 Temperature Index (TI), Moisture Index (MI), Cold Stress (CS) and Heat Stress (HS) in Europe for 1970-1979 (1st and 3rd
412 column) and 2010-2019 (2nd and 4th column). The Compare Locations/Years function was run utilising CRU climate data
413 returning annual index and stress values.


414

415 Figure 4. Annual rate of change (trend) values returned by lm() function in R statistical programming software run on
416 annual values returned by Compare Locations/Years function for 1970-2019 for six CLIMEX indices: Ecoclimatic index
417 (EI), Growth Index (GI), Temperature Index (TI), Moisture Index (MI), Cold Stress (CS) and Heat Stress (HS).
418



419
420 Figure 5. Representation of 50 years (1970-2019) average EI values in Europe and California calculated using annual
421 timeseries of Ecoclimatic Index (EI) values returned by Compare Locations/Years function in CLIMEX using CRU climate
422 data 50-years time-series. Annual EI values for selected locations in Europe and California have a linear trend fitted. Slope

423 values represent the annual trend of change in index values over model outputs timeseries represented by a fitted linear
424 model, and *p value* represents associated significance value of the slope parameter.

426 Figure 6. Cross-comparison of average climatic suitability values for *Ceratitis capitata* for 1970-1979 and 2010-2019. 10-
427 year average EI values for each decade were calculated. Where 10-year average EI was below 0.5, the area was classified as
428 unsuitable. Areas with EI above 0.5 were classified as suitable. Yellow highlights areas unsuitable for *C. capitata* in the
429 1970's but most recently becoming suitable. Pink areas were previously suitable but are become unsuitable in recent years.
430 Green highlights areas previously and most recently classified as suitable.

431

432 Figure 7. Global 50-year significant changes in Ecoclimatic Index values for *Ceratitis capitata* increase (red) or decrease
433 (blue) between 1970 and 2019. The significant values ($p < 0.5$) are summarised across the latitudes on the right-hand panel.

434 Discussion

435 Our analysis highlights the ongoing effects of climate change which is steadily shifting the potential
436 geographic distribution of *C. capitata* towards regions considered previously suitable for ephemeral
437 populations only. The statistically significant increasing climate suitability for *C. capitata* in Europe
438 and North America from the 1970's to the 2010's is marked (Fig 7). This polewards expansion
439 parallels a substantial increase in altitudinal range in tropical Africa and South America (Figs 7 and
440 8). These changes are mostly driven by increasing temperatures, elevating the Temperature Index
441 (TI) and decreasing Cold Stress (CS). The modelled range decreases follow decreasing soil moisture
442 suitability due to decreased rainfall or rising evapotranspiration rates in semi-arid regions, for
443 example in southern Africa and central Australia (Fig 7).

444 Our analysis reveals that persistence of *C. capitata* in some central and northern parts of Europe
445 derived from the GBIF database, for example in Romania and around Lyon valley, would require
446 biologically radical adaptation to the cold stresses currently limiting *C. capitata* persistence in this
447 area. *C. capitata* may be able to overwinter in sheds, and protected anthropogenic places not exposed
448 to lethal winter temperatures²¹. Indeed, recent studies conducted in the area of Vienna in Austria
449 revealed that *C. capitata* can overwinter in human made shelters but not in open field conditions.
450 Conversely, our results reveal that the persistence of *C. capitata* in northern Italy and the Paris Basin
451 is increasingly likely, which is consistent with the simulations of Gilioli *et al.*¹⁸. Locations with

452 documented multi-season populations in Germany and Austria also observe a positive trend in TI,
453 indicating the conditions are becoming increasingly favourable. With the ongoing positive trend in
454 climatic suitability changes in this area, *C. capitata* may yet be able to overwinter in these locations
455 under field conditions⁴⁵.

456 In California the main limitation to *C. capitata* development is a lack of sufficient rainfall and
457 consequently, soil moisture conditions. Our results represent a composite scenario, where the
458 majority of the state appears to be equipped for irrigation²⁴ and a sufficient top-up irrigation is
459 available throughout the season, removing the dry stress that would otherwise limit *C. capitata*
460 survival. Our analysis shows that most of California has witnessed a consistent improvement in
461 conditions suitable for *C. capitata*. Additionally, over the past fifty years, the entire northern limit of
462 the species' suitability expanded poleward, while some areas in the south became unsuitable due to
463 heat stress (HS).

464 This expansion of the climatic niche into higher latitudes and altitudes could have significant
465 implications for the horticultural industries. Firstly, the previously unaffected regions may now
466 become vulnerable to pest infestations. Secondly, the length of the suitable conditions within a season
467 may increase, which could result in more generations being completed in one season. Increased
468 population densities later in the season may lead to significant infestation rates on later ripening hosts.
469 Thirdly, where the climate suitability changes from ephemeral (relying on source-sink metapopulation
470 dynamics to re-invade) to suitable for year-round persistence, the starting population of flies could
471 change dramatically.

472 Our comparisons between the 1970s and the 2010's highlights that climate is changing at a rate that is
473 statistically significant in terms of geographical pest risks. The historically popular climate datasets
474 centred on the 1970's are now outdated. Hence, there is a pressing need to use recent climatologies in
475 species niche modelling in order to correctly reflect the species climatic range. Climatologies
476 typically span 30 years, so that inter-decadal variation is ameliorated. Given the observed rate of
477 change in climate and associated pests risks, perhaps a 20-year climatology may be a better suited
478 standard to use to model contemporary risks. Pest risk analysts and managers would also be well
479 advised to consider future climate scenarios to inform their emerging risks.

480 Our results demonstrating statistically significant trends in climate suitability for *C. capitata* in
481 Europe and California echo those for *Bemisia tabaci* in Eastern Africa³, adding to the body of
482 evidence linking observed climate changes to changes in pest dynamics. These findings underscore
483 the urgency of addressing this factor in preparedness for potential future pest invasions. Our research
484 emphasizes the importance of basing biosecurity decisions on modelling that uses up-to-date climatic
485 information and takes into account that pest risk areas are shifting. With ongoing shifts in climate
486 suitability, it becomes crucial to understand the rate at which pest suitability is changing and the
487 timeframe in which previously inhospitable areas may become prone to successful pest establishment.
488 This knowledge is essential for effective pest management strategies as we navigate the evolving
489 challenges of a changing climate.

490 **Acknowledgements**

491 The authors gratefully acknowledge funding from the European Union's Horizon 2020 research and
492 innovation programme under grant agreement No 818184. We extend our sincere thanks to Adam and
493 Josep Jaques Miret and Andrea Sciarretta for their expert insight into the assessment of distribution
494 data in Spain and Italy.

495 **Competing interest statement**

496 The authors declare no competing interests.

497 **Data availability statement**

498 The occurrence data used in this study are openly available on Figshare at
499 doi:10.6084/m9.figshare.23721477.

500 **References**

- 501 1. Andrewartha, H. G. & Birch, L. C. *The Ecological Web: More on the Distribution and Abundance of*
502 *Animals*. (University of Chicago Press, 1986).
- 503 2. Wagner, T. *et al.* Predicting climate change impacts on poikilotherms using physiologically guided species
504 abundance models. *Proc. Natl. Acad. Sci.* **120**, e2214199120 (2023).
- 505 3. Kriticos, D. J. *et al.* Improving climate suitability for *Bemisia tabaci* in East Africa is correlated with
506 increased prevalence of whiteflies and cassava diseases. *Sci. Rep.* **10**, 22049 (2020).

507 4. Malavasi, A. Introductory Remarks. in *Trapping and the Detection, Control, and Regulation of Tephritis*
508 *Fruit Flies* ix–x (Springer, 2014).

509 5. Liquido, N. J. *et al.* Compendium of Fruit Fly Host Plant Information: The USDA Primary Reference in
510 Establishing Fruit Fly Regulated Host Plants. in *Area-Wide Management of Fruit Fly Pests* (CRC Press,
511 2019).

512 6. Bravo, I. S. J. & Zucoloto, F. S. Performance and feeding behavior of *Ceratitis capitata*: comparison of a
513 wild population and a laboratory population. *Entomol. Exp. Appl.* **87**, 67–72 (1998).

514 7. Keroumi, A. E. *et al.* Effect of ant predation and abiotic factors on the mortality of medfly larvae, *Ceratitis*
515 *capitata*, in the Argan forest of Western Morocco. *Biocontrol Sci. Technol.* **20**, 751–762 (2010).

516 8. Dionysopoulou, N. K., Papanastasiou, S. A., Kyritsis, G. A. & Papadopoulos, N. T. Effect of host fruit,
517 temperature and Wolbachia infection on survival and development of *Ceratitis capitata* immature stages.
518 *PLOS ONE* **15**, e0229727 (2020).

519 9. Papadopoulos, N. T., Carey, J. R., Katsoyannos, B. I. & Kouloussis, N. A. Overwintering of the
520 Mediterranean Fruit Fly (Diptera: Tephritidae) in Northern Greece. *Ann. Entomol. Soc. Am.* **89**, 526–534
521 (1996).

522 10. Ricalde, M. P., Nava, D. E., Loeck, A. E. & Donatti, M. G. Temperature-dependent development and
523 survival of Brazilian populations of the Mediterranean fruit fly, *Ceratitis capitata*, from tropical, subtropical
524 and temperate regions. *J. Insect Sci.* **12**, (2012).

525 11. Deschépfer, P. *et al.* Looking at the big picture: worldwide population structure and range expansion of the
526 cosmopolitan pest *Ceratitis capitata* (Diptera, Tephritidae). *Biol. Invasions* **23**, 3529–3543 (2021).

527 12. Gutierrez, A. P. & Ponti, L. Assessing the invasive potential of the Mediterranean fruit fly in California and
528 Italy. *Biol. Invasions* **13**, 2661–2676 (2011).

529 13. Papadopoulos, N. T., Plant, R. E. & Carey, J. R. From trickle to flood: the large-scale, cryptic invasion of
530 California by tropical fruit flies. *Proc. R. Soc. B Biol. Sci.* **280**, 20131466 (2013).

531 14. Vera, M. T., Rodriguez, R., Segura, D. F., Cladera, J. L. & Sutherst, R. W. Potential Geographical
532 Distribution of the Mediterranean Fruit Fly, *Ceratitis capitata* (Diptera: Tephritidae), with Emphasis on
533 Argentina and Australia. *Environ. Entomol.* **31**, 1009–1022 (2002).

534 15. De Meyer, M., Robertson, M. P., Peterson, A. T. & Mansell, M. W. Ecological niches and potential
535 geographical distributions of Mediterranean fruit fly (*Ceratitis capitata*) and Natal fruit fly (*Ceratitis rosa*).
536 *J. Biogeogr.* **35**, 270–281 (2008).

537 16. Li, B. *et al.* Risk of Introducing Exotic Fruit Flies, *Ceratitis capitata*, *Ceratitis cosyra*, and *Ceratitis rosa*
538 (Diptera: Tephritidae), Into Southern China. *J. Econ. Entomol.* **103**, 1100–1111 (2010).

539 17. Szyniszewska, A. M. & Tatem, A. J. Global Assessment of Seasonal Potential Distribution of
540 Mediterranean Fruit Fly, *Ceratitis capitata* (Diptera: Tephritidae). *PLoS ONE* **9**, e111582 (2014).

541 18. Gilioli, G. *et al.* Non-linear physiological responses to climate change: the case of *Ceratitis capitata*
542 distribution and abundance in Europe. *Biol. Invasions* **24**, 261–279 (2022).

543 19. Gutierrez, A. P., Ponti, L., Neteler, M., Suckling, D. M. & Cure, J. R. Invasive potential of tropical fruit
544 flies in temperate regions under climate change. *Commun. Biol.* **4**, 1–14 (2021).

545 20. Siebert, S. *et al.* A global data set of the extent of irrigated land from 1900 to 2005. *Hydrol. Earth Syst. Sci.*
546 **19**, 1521–1545 (2015).

547 21. König, S., Steinmöller, S. & Baufeld, P. Origin and potential for overwintering of *Ceratitis capitata*
548 (Wiedemann) captured in an official survey in Germany. *J. Plant Dis. Prot.* **129**, 1201–1215 (2022).

549 22. Szyniszewska, A. M., Kozyra, K., Biesczak, H. & De Meyer, M. Mediterranean fruit fly (medfly) *Ceratitis*
550 *capitata* (Diptera, Tephritidae) occurrence data. (2023) doi:10.6084/m9.figshare.23721477.

551 23. Mitchell, T. D. & Jones, P. D. An improved method of constructing a database of monthly climate
552 observations and associated high-resolution grids. *Int. J. Climatol.* **25**, 693–712 (2005).

553 24. Siebert, S., Henrich, V., Frenken, K. & Burke, J. Update of the Digital Global Map of Irrigation Areas to
554 Version 5. Project report. Rheinische Friedrich-Wilhelms-University. Rome, Food and Agricultural
555 Organization of the United Nations, Bonn. doi **10**, 2660–6728 (2013).

556 25. Sutherst, R. W. & Maywald, G. E. A computerized system for matching climates in ecology. *Agric.*
557 *Ecosyst. Environ.* **13**, 281–299 (1985).

558 26. Kriticos, D. J. *et al.* *Climex version 4: Exploring the effects of climate on plants, animals and diseases*.
559 (CSIRO, 2015).

560 27. Sutherst, R. W. Pest species distribution modelling: origins and lessons from history. *Biol. Invasions* **16**,
561 239–256 (2014).

562 28. van der Ploeg, R. r., Böhm, W. & Kirkham, M. b. On the Origin of the Theory of Mineral Nutrition of
563 Plants and the Law of the Minimum. *Soil Sci. Soc. Am. J.* **63**, 1055–1062 (1999).

564 29. Shelford, V. E. *The ecology of North America. Urbana, IL.* (University of Illinois Press, 1963).

565 30. Shelford, V. E. & Deere, E. O. The Reactions of Certain Animals to Gradients of Evaporating Power of
566 Air. A Study in Experimental Ecology. *Biol. Bull.* **25**, 79–120 (1913).

567 31. Kriticos, D. J. *et al.* CliMond: global high resolution historical and future scenario climate surfaces for
568 bioclimatic modelling. *Methods Ecol. Evol.* **3**, 53–64 (2012).

569 32. Vargas, R. I., Walsh, W. A., Kanehisa, D., Jang, E. B. & Armstrong, J. W. Demography of Four Hawaiian
570 Fruit Flies (Diptera: Tephritidae) Reared at Five Constant Temperatures. *Ann. Entomol. Soc. Am.* **90**, 162–
571 168 (1997).

572 33. Rivnay, E. The Mediterranean Fruit Fly in Israel. *Bull. Entomol. Res.* **41**, 321–341 (1950).

573 34. Shoukry, A. & Hafez, M. Studies on the Biology of the Mediterranean Fruit Fly Ceratitis Capitata.
574 *Entomol. Exp. Appl.* **26**, 33–39 (1979).

575 35. Duyck, P. F. & Quilici, S. Survival and development of different life stages of three Ceratitis spp. (Diptera:
576 Tephritidae) reared at five constant temperatures. *Bull. Entomol. Res.* **92**, 461–469 (2002).

577 36. Vargas, R. I., Walsh, W. A., Jang, E. B., Armstrong, J. W. & Kanehisa, D. T. Survival and Development of
578 Immature Stages of Four Hawaiian Fruit Flies (Diptera: Tephritidae) Reared at Five Constant
579 Temperatures. *Ann. Entomol. Soc. Am.* **89**, 64–69 (1996).

580 37. Moraiti, C. A., Verykouki, E. & Papadopoulos, N. T. Chill coma recovery of Ceratitis capitata adults across
581 the Northern Hemisphere. *Sci. Rep.* **12**, 17555 (2022).

582 38. Papadogiorgou, G. D. *et al.* Acute cold stress and supercooling capacity of Mediterranean fruit fly
583 populations across the Northern Hemisphere (Middle East and Europe). *J. Insect Physiol.* **147**, 104519
584 (2023).

585 39. Weldon, C. W., Nyamukondiwa, C., Karsten, M., Chown, S. L. & Terblanche, J. S. Geographic variation
586 and plasticity in climate stress resistance among southern African populations of Ceratitis capitata
587 (Wiedemann) (Diptera: Tephritidae). *Sci. Rep.* **8**, 9849 (2018).

588 40. Stephanou, G., Alahiotis, S. N., Marmaras, V. J. & Christodoulou, C. Heat shock response in Ceratitis
589 capitata. *Comp. Biochem. Physiol. Part B Comp. Biochem.* **74**, 425–432 (1983).

590 41. Eskafi, F. M. & Fernandez, A. Larval–Pupal Mortality of Mediterranean Fruit Fly (Diptera: Tephritidae)
591 from Interaction of Soil, Moisture, and Temperature. *Environ. Entomol.* **19**, 1666–1670 (1990).

592 42. Israely, N., Ritte, U. & Oman, S. D. Inability of Ceratitis capitata (Diptera: Tephritidae) to Overwinter in
593 the Judean Hills. *J. Econ. Entomol.* **97**, 33–42 (2004).

594 43. Di Ilio, V., Cristofaro, M., Marchini, D., Nobili, P. & Dallai, R. Effects of a Neem Compound on the
595 Fecundity and Longevity of Ceratitis capitata (Diptera: Tephritidae). *J. Econ. Entomol.* **92**, 76–82 (1999).

596 44. R Core Team. R: A Language and Environment for Statistical Computing. *R Foundation for Statistical*
597 *Computing* <https://www.r-project.org/> (2018).

598 45. Wernicke, M., Egartner, A., Blumel, S., Moraiti, C. A. & Papadoupolus, N. T. Overwintering potential of
599 the Mediterranean fruit fly (Diptera: Tephritidae) in Austria. (unpublished).

600

601

602 **Tables**

603 Table 1. CLIMEX parameters used to model the distribution of *Ceratitis capitata* and *Bactrocera tryoni*. Parameters for a
 604 previously published CLIMEX model¹⁴ are presented for comparison.

Vera <i>et al.</i> 2002				
Index	Parameters	Description	value	Updated model
Temperature	DV0	Limiting low temperature	12 °C	10 °C
	DV1	Lower optimal temperature	22 °C	28 °C
	DV2	Upper optimal temperature	30 °C	33 °C
	DV3	Limiting high temperature	35 °C	37 °C
Moisture	SM0	Limiting low moisture	0.1	0.1
	SM1	Lower optimal moisture	0.3	0.3
	SM2	Upper optimal moisture	1	1
	SM3	Limiting high moisture	1.5	1.5
Cold stress	TTCS	Cold stress temperature threshold	10 °C	-
	THCS	Stress accumulation rate	0	0 week ⁻¹
	DTCS	Cold stress degree-day threshold	5 °C days	5 °C days
	DHCS	Cold stress degree-day rate	-0.0015 week ⁻¹	-0.0015 week ⁻¹
	Cold stress temperature threshold			
	TTCSA	(average)	-	2.5
	THCSA	Cold stress temperature rate (average)	-	-0.01 week ⁻¹
Heat stress	TTHS	Heat stress temperature threshold	39 °C	39 °C
	THHS	Heat stress temperature rate	0.01 week ⁻¹	0.01 week ⁻¹
Dry stress	SMDS	Dry stress threshold	0.02	0.1
	HDS	Dry stress rate	-0.05 week ⁻¹	-0.05 week ⁻¹
Wet stress	SMWS	Wet stress threshold	1.6	1.6
	HWS	Wet stress rate	0.0015 week ⁻¹	0.015 week ⁻¹
Degree-days	PDD	Degree-days per generation	622 °C days	350 °C days
Irrigation scenario		Top-up throughout the year	25 mm week ⁻¹	2.5 mm day ⁻¹

605

606