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Abstract: Transcription factors (TFs) bind DNA sequences with a range of affinities, yet the mechanisms 
determining energetic differences between high- and low-affinity sequences (8selectivity9) remain poorly 
understood. Here, we investigated two basic helix-loop-helix TFs, MAX (H. sapiens) and Pho4 (S. cerevisiae), 
that bind the same high-affinity sequence with highly similar nucleotide-contacting residues and bound 
structures but are differentially selective for non-cognate sequences. By measuring >1700 Kds and >500 rate 
constants for Pho4 and MAX mutant libraries binding multiple DNA sequences and comparing these 
measurements with thermodynamic and kinetic models, we identify the biophysical mechanisms by which 
changes to TF sequence alter both bound and unbound conformational ensembles to shape specificity 
landscapes. These results highlight the importance of conformational heterogeneity in determining sequence 
specificity and selectivity and can guide future efforts to engineer nucleic acid-binding proteins with enhanced 
selectivity. 
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Transcription factors (TFs) specifically bind regulatory DNA sequences in the genome to control gene 
expression. Many prior efforts have uncovered the <sequence specificity= (the motif bound with the highest 
affinity)1,2 of thousands of TFs across multiple organisms, with preferences often represented as mononucleotide 
or dinucleotide models338. This information, combined with structural models, has fueled progress in 
designing9,10 and predicting11315 sequence-specific nucleic acid binders. However, while motif representations 
effectively represent <sequence specificity=, they often fail to capture other important features of TF-DNA 
binding, including absolute binding affinities and preferences for sequences that fall outside of the highest 
affinity set16.  

These weaknesses impact our ability to understand natural TF-DNA interactions, where selective pressures on 
protein and DNA sequence dictate and tune absolute interaction affinities17. TF paralogs with identical sequence 
specificity but different absolute affinities for that sequence play non-interchangeable roles in development18. In 
addition, many closely related TFs that bind the same high-affinity motifs bind alternate low-affinity sites with 
different sequences and/or absolute affinities16,19322. Underscoring the importance of these interactions, low-
affinity DNA sites are conserved and important for gene regulation21,23,24; many enhancers are evolved for 
suboptimal affinities such that increasing affinity is pathogenic or disrupts specific and properly timed gene 
expression9314. 

Focusing on highest affinity sequences alone also hinders the ability to engineer new TF-DNA interactions. 
Many bioengineering9 and gene therapy30 objectives require highly specific binding, yet mitigating off-target 
events remains challenging31. While previous attempts to engineer specificity have focused on engineering the 
lowest energy bound state32,33, this structure-driven approach is complicated by the structural plasticity of TFs, 
which are often enriched in intrinsically disordered sequences34, only fold when bound to DNA35337, and adopt 
different conformations to facilitate binding to different DNA sequences38340. Therefore, realizing the goal of 
designing binders with both user-specified <sequence specificity= and high <sequence selectivity= 3 the 
magnitude of the energetic difference between preferred- and non-preferred sequences 3 requires new data that 
can systematically vary both protein and DNA sequence across a range of affinities and map the full DNA 
binding affinity landscape. 

Towards this goal, we systematically investigated how TF sequence shapes DNA binding landscapes by 
profiling binding for two bHLH TFs: H. sapiens Myc-associated factor X (MAX) and S. cerevisiae Pho4. While 
both TFs recognize the same CACGTG E-box motif with nearly identical bound structures and are largely 
unstructured in the absence of DNA35,36, Pho4 is highly selective for this motif while MAX is more 
promiscuous41. Using a recently developed technique for high-throughput microfluidic characterization of TF 
variant binding (STAMMP, for Simultaneous Transcription Factor Affinity Mapping via Microfluidic Protein 
arrays)42 which can systematically characterize DNA binding for hundreds of TF mutants in parallel, we 
interrogated how 240 single amino acid substitutions impact MAX DNA binding affinities (Kds) and kinetics 
(koffs) for 7 motif-variant DNA sequences.  

Comparisons of the 1,700+ novel Kds measured here for MAX mutants with data previously collected for 
Pho442, in concert with thermodynamic and kinetic modeling, revealed that these two TFs differ in <sequence 
selectivity= due to increased conformational heterogeneity in MAX, which can partition between selective and 
promiscuous binding conformations. Within these 1700+ novel Kds, we identified 22 MAX mutations that 
increased binding <selectivity=, none of which make base-specific DNA contacts in previous structures; 
additional measurements of 500+ binding rate constants suggest that these mutations increase <selectivity= 
through perturbations to both bound and unbound states within this heterogeneous conformational ensemble. 
These results establish the utility of systematic and high-throughput thermodynamic and kinetic measurements 
of specificity, selectivity, and affinity in the context of combinatorial protein/ligand mutations to detect 
heterogeneous binding modes, consideration of which will be necessary to engineer highly specific and selective 
binders.   

 

Results 

MAX and Pho4 are ideal model systems for investigating how TF sequences encode DNA specificity 

The DNA-binding domains (DBDs) of MAX and Pho4 are disordered in solution, with their DNA-contacting 
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regions folding only upon recognition of a DNA binding site to assume highly similar structural conformations 
(RMSD = 1.519 Å, Fig. 1A)43,44. Both TFs possess similar domain architectures comprised of a DNA-contacting 
basic region followed by two helices separated by a flexible loop (Figs. 1A,B), make identical base contacts via 
identical nucleotide-contacting residues (Fig. 1C), and preferentially bind the same cognate CACGTG E-box 
site (Fig. 1D) as dimers. Despite these similarities, prior measurements of WT Pho4 and MAX affinities for a 
library of 256 DNA sequences comprised of mutations within an E-box half site revealed differences in their 
binding energy landscapes (Fig. 1E)41. Single-nucleotide mutations to the cognate sequence led to 6-fold higher 
reductions in binding affinity for Pho4 than for MAX (174-fold versus 28-fold), with Pho4 binding CACGTG 
more tightly and mutant motifs more weakly41 (see Methods). This difference in <sequence selectivity= can be 
conceptualized using free energy diagrams in which Pho4 binds its cognate E-box with a deeper energetic well 
(Fig. 1E, F). These differences in binding landscapes despite nearly identical DNA-binding interfaces motivated 
us to probe how variation in non-contacting residues (Fig. S1) can shape binding affinity landscapes. 

STAMMP enables DNA-binding measurements for hundreds of MAX mutations 

Using our microfluidic platform (STAMMP, Figs. S2-S3), we previously quantified impacts of 210 single 
amino acid substitutions within Pho4 on binding to 9 oligonucleotides (>1,800 Kds in total)42. Here, we apply 
STAMMP to investigate how 240 single amino acid substitutions in and around the MAX DBD (Fig. S4) impact 
DNA binding affinity, specificity, and kinetics. This mutant library included 156 alanine and valine scanning 
mutants to probe protein sequence determinants of specific DNA motif recognition, 10 mutations substituting 
orthologous amino acids present in other bHLHs45  to probe how evolutionary differences alter landscapes, 30 
mutants hypothesized to alter helicity and charge to probe biophysical mechanisms contributing to 
recognition46,47, and 38 mutations from human allelic variants that were catalogued as pathogenic mutations or 
variants of unknown significance (VUS)48,49 (Fig. 1G-H, Table S1).  

Many substitutions throughout the MAX DNA-binding domain statistically significantly alter DNA binding 
To identify MAX residues involved in DNA recognition, we first measured impacts of each mutation on binding 
to the cognate 59-CACGTG-39 motif (Fig. 2). Of 240 mutants, 237 expressed consistently across technical 
replicates (Table S2, Fig. S5). Measured Kds fit from processed data (see Methods, Fig. S6-7, Table S3) were 
highly consistent across experimental replicates (RMSE < 0.3 kcal/mol over a 3.5 kcal/mol dynamic range), 
including for MAX mutants that increased binding affinity (Figs. 2A, S8), and independent of immobilized TF-
eGFP concentrations (as expected for TF concentrations well below measured Kds) (Fig. S9). Subsequent 
analyses aggregated measurements across all replicates (Fig. S10) for each variant to report median Kd or ��G 
value (±SEM).  

Overall, 112 mutants significantly altered the affinity for the consensus motif relative to WT (Bonferroni-
corrected p < 0.05). Many mutations strongly reduced DNA binding, including substitutions at conserved 
nucleotide-contacting residues H28, E32, R35, and R3644 (Figs. 2B). Many significant pathogenic (18/31) and 
some (I71N and R47W) VUS reduced binding as well (Fig S11). Allelic variants imparted some of the largest 
changes in DNA binding affinity in the library, with significant mutations at the dimerization interface either 
decreasing (e.g. L46, A67, and I71) or enhancing binding (e.g. M74L50) (Fig. S11). Similarly, mutations to 
crystal structure-predicted phosphoryl oxygen backbone-contacting residues increased or decreased affinity 
depending on the substituted residue (Fig. 2B). Nevertheless, 12 of the 29 significant mutations that enhanced 
binding occurred at non-contacting, solvent-facing residues in the basic region, confirming that TF regions well 
outside of known interfaces can have substantial impacts on binding42. 

Comparable substitutions in Pho4 decrease binding affinity to a greater degree 
Just as the magnitude of changes in affinity upon DNA mutation was smaller for MAX than for Pho4, 
comparable mutations at corresponding residue positions also had smaller impacts in MAX (Wilcoxon signed-
rank test p=10-9) (Figs. 2C, 1E). In particular, substitutions altering charged contacts with the DNA phosphate 
backbone yielded substantially larger reductions in binding affinity for Pho4 (Pho4 R252Q/MAX R25Q, Pho4 
K292A/MAX R60A) (Figs. 2C, S12). This trend also held for mutations to residues that do not contact bound 
DNA in published structures (Pho4 K251/MAX K24), where some analogous substitutions even increased 
binding affinity for MAX (L31V) while reducing it for Pho4 (A258V) (Figs. 2C, S12). These differences in 
8mutational sensitivity9 support prior observations51 that the strength of otherwise similar molecular contacts is 
contextual and that only certain protein homologs can support 8rheostat9 positions52.  
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MAX and Pho4 differ in folding-and-binding transition, suggesting MAX adopts multiple conformations  

For TFs that are unstructured in the absence of DNA, altering helical propensity53 can commensurately change 
binding affinity by modulating folding entropic penalties32,33,42,54. Thus, if mutations to comparable solvent-
facing residues have different impacts on measured binding affinity for CACGTG in Pho4 and MAX, it could 
indicate differing folding-and-binding transitions.  

To better understand how changes in a coupled folding and binding pathway impact measured Kds, we modeled 
equilibrium bHLH TF/DNA binding as a system in which: (1) unbound TFs can be either unfolded or helical, 
(2) only the helical form can bind DNA, and (3) TF mutations alter the folding equilibrium (Figs. 2D, S13; 

Methods). The observed DNA concentration at which half of the TF population is DNA-bound (Kd,apparent) can 
then be expressed as a function of a Kd for the interaction between folded TF and free DNA, a folding 
equilibrium constant Kfold (describing the partitioning between folded and unfolded conformations of the 
unbound TF), and the total concentration of free DNA and protein. Simulated binding isotherms for many 
mutants that alter folding revealed that the magnitude by which mutations shift Kd,apparent depends on the WT 
value of Kfold (Figs. S13, S14), and provides a thermodynamic model framework to fit Kd, WT and Kfold, WT from 
measured affinities of non-contacting mutations.  

For Pho4, mutations that alter helical propensity concomitantly shift apparent affinities (Kd,apparent) (r2 = 0.55), 
consistent with a 3-state model in which WT Pho49s basic region is significantly disordered (~81%) in the 
unbound state (Methods, Fig 2E, S15) and in agreement with NMR data35 . By contrast, mutations that alter the 
predicted helicity of the MAX basic region have little impact on Kd,apparent (r2 = 0.20). For this observation to be 
consistent with a 3-state model, MAX would have to be primarily helical in solution (~1% disordered), at odds 
with documented structural disorder in this region36 and the observation that many solvent-facing mutations 
strongly modulate binding affinity (Methods, Fig 2E, S14-15). Instead, these results suggest a more complex 
model in which MAX can adopt multiple conformations with different intrinsic affinities for DNA. In this 
model, rather than altering the propensity to fold into a single conformation, non-contacting mutations impact 
measured affinity by altering partitioning between multiple conformations. This hypothesis is consistent with 
previously identified bound state conformational heterogeneity within the MAX basic region55.  

Mutations that alter dimerization modulate MAX binding affinity independent of DNA sequence 
To understand how MAX mutations alter low affinity binding and sequence selectivity within the MAX <DNA-
binding landscape=, we also measured binding to 5 low-affinity sequences containing mutations within core 
nucleotide positions in the E-box consensus (AACGTG, CGCGTG, CATGTG, CACGCG, and CACGTT) 
(Figs. 3A-B, Table S4). Across all replicates, expression (Figs. S16-20) and Kd measurements remained highly 
reproducible (Figs. S213S25) and affinities were independent of expression (Fig. S26). Over a median of 8-12 
Kd measurements per variant (Fig. S27),  single nucleotide substitutions within the consensus E-box motif 
reduced WT MAX binding by 2 to 5-fold, with the AACGTG mutation being most deleterious (Figs. 3B, S28). 
MAX allelic variants yield diverse biochemical effects on the DNA-binding landscape, summarized in Table 

S5.  

To identify TF mutations that modulate DNA-binding affinity (i.e. alter binding to all DNA sequences equally 
by shifting the binding energy landscape by a consistent free energy difference), we computed the variance 
across all measured ��Gs per mutant and selected mutants in the lowest quartile (Methods). Examination of the 
24 identified <affinity-altering= mutations (Figs 3C, S29) revealed that they were generally located within the 
loop region or dimerization interface (Fig. 3D) and all weakened binding relative to WT MAX.  

At some positions, all tested mutations had similar impacts. Substitutions to P51, a key residue for proper 
positioning of helix 143, uniformly decreased binding affinity by g 0.75 kcal/mol across DNA sequences (Figs. 

3E, 3G). In contrast, mutations at other positions both increased and decreased affinity. MAX M74L, a mutation 
on the interior of the leucine zipper that forms stabilizing homotypic interactions, enhanced binding across all 
DNA sequences (consistent with prior studies of leucine zipper dimerization56), but other substitutions 
uniformly weakened binding (e.g. M74V, M74A). (Figs. 3F, 3G). 

Double-mutant cycles reveal drivers of DNA-binding specificity at the MAX-DNA interface  
To systematically identify specificity-altering substitutions (which differentially affect binding to some DNA 
sequences, warping the binding energy landscape), we performed biochemical double mutant cycles57 
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comparing energetic impacts on binding from TF mutations and mutations to cognate DNA (Figs. 4A, S30-

S33). When visualized as a scatter plot, additive mutations to non-interacting residues and nucleotides lie along 
an additive fit line, while mutations to interacting and/or epistatic residue and nucleotide pairs yield non-additive 
energetic impacts that fall off-diagonal (Fig. 4A). 

While most (150) mutations additively alter binding to a low-affinity motif known to be bound by Myc/MAX 
heterodimers in vivo (CACGCG)58 relative to the cognate, 34 of the 81 non-additive mutants bind the mutated 
DNA with a reduced energetic penalty (Fig. 4A, Table S6). These include mutations to structurally-predicted 
contacts, such as to E32 3 which contacts the outer two nucleotide bases in the palindromic E-box motif 
(CACGTG) 3 and residues that make stabilizing salt bridges with E32 like R3559,60. Some epistatic mutations, 
such as E32A, even alter the intrinsic sequence specificity of MAX to yield significant (p<0.05 via T-test) and 
absolute tighter binding to CACGCG; 10 additional mutations also alter sequence specificity to bind most 
tightly to other non-CACGTG E-box motifs (Fig S34). Other mutations non-additively bound CACGCG 
without an obvious structural rationale, such as solvent-facing D37 or H28 which canonically contact the 59 
guanine44 (Fig. 4A-B), suggesting that dynamic binding modes not apparent from low-energy bound structures 
contribute to sequence-specific binding (as explored further below).   

Mutations make MAX more selective by favoring the cognate or disfavoring non-cognate sequences 
To identify mutations that increase selectivity for the cognate sequence relative to many mutated motifs, we 
computed residuals for each pairwise comparison between a mutated E-box and cognate sequence, and defined a 
8specificity score9 as the median of all residual Z-scores across each double mutant cycle comparison (Figs. 4C, 

S35). Mutants with negative specificity scores thus decrease the energetic penalty for binding to mutant motifs 
relative to the cognate (decreasing selectivity); as expected, many mutations to nucleotide base-contacting 
residues are among the most promiscuous mutations (e.g. H28, E32) (Fig. 4D). In contrast, mutants with 
positive specificity scores render MAX more selective. Strikingly, 22 MAX mutations increase selectivity for 
CACGTG (Figs. 4D, S36, Methods). Nearly all selectivity-increasing mutations lie in the DNA-contacting 
basic region or helix 1 (Fig S37) and are enriched for mutations at backbone-contacting residues (p=1*10-3 via 
Chi-squared test) and solvent-facing basic region residues (p=8*10-7 via Chi-squared test).  

To understand how mutations change absolute affinities to increase selectivity, we examined specificity scores 
versus ��GCACGTG (Fig. 4D). Mutations in the upper-left quadrant 3 such as H27V and K40A 3 increase 
selectivity by disproportionately increasing affinity for the cognate sequence (i.e. <deepening the energetic 
well= for cognate binding) without altering affinity for many mutated sequences (Fig. 4E-F). Structural and 
mutational data suggests that these mutations often increase selectivity by stabilizing selective microstates (often 
by altering positioning of residues at the DNA interface). For example, given that all measured mutations at H27 
position increase affinity for the cognate sequence (Fig S38) and to a lesser degree CATGTG (the only mutated 
motif for which H28 mutations are additive) (Fig S36, Table S6), this suggests any substitutions at residue 27 
may better position or reduce competition for protonation of H28 to promote selective E-box recognition. 
Similarly, K40A does not directly contact DNA or DNA-contacting residues, but mutations at this position may 
disrupt a structurally predicted polar contact with D3744. As mutations to D37 reduce the energetic penalty for 
binding DNA sequences with mutations to the outer 2 bases in the E-box, disrupting this interaction may 
epistatically stabilize binding to all DNA sequences without mutations to these bases (Fig 4F, S36). The aligned 
position in Pho4 contains an alanine (Fig. 1B), possibly contributing to Pho49s selectivity via the same 
mechanism. 

We note that no Pho4 mutations simultaneously increase affinity and selectivity for CACGTG (Fig S39). 
Instead, <affinity-altering= Pho4 substitutions simultaneously also increase affinity for mutated E-box sequences 
and are typically found within the basic region (rather than the dimerization region, as for MAX) (Figs S40). 
This Pho4 behavior is again consistent with a simple model of folding-and-binding where the same bound 
conformation recognizes all E-box variants, and mutations therefore proportionally change binding to all 
sequences. 

MAX mutations in the upper middle of Fig. 4D increase selectivity by decreasing binding to non-CACGTG 
sequences (i.e. <raising the energetic wall= for non-cognate binding). For example, N29V (which ablates a 
structurally predicted polar contact with the DNA phosphate backbone61) does not alter affinity for CACGTG 
but decreases affinity for all measured mutated E-box sequences (Fig 4G). Similarly, mutating residue A30 
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(which faces the solvent on DNA-bound structures and is not adjacent to any other nucleotide base-contacting 
residues) to glycine leaves CACGTG binding unaltered but decreases affinities for all mutated E-boxes (Fig 

4H). Mutations that <distinguish= between cognate and mutated motifs without any apparent sequence 
preference among mutated sequences suggest that the two alternative conformations hypothesized for MAX are 
either selective or non-specific, as explored below.  

Non-additivity of pairs of specificity-enhancing MAX mutations suggests existence of multiple binding 

conformations 

To test for conformational partitioning between selective and nonspecific conformations, we examined mutant 
cycles between two protein residue pairs62 binding to many motifs (Fig 4I, S41). To exclude convolved effects 
of nearby mutations, we restricted interpretation to TF mutant pairs >15 Å apart in published structures (Fig 

S42). In this analysis, motif-independent binding additivity implies independent perturbations (such as 
rearrangement of local contacts that impact population of local microstates), while motif-dependent binding 
additivity implies distinct structural conformations such that the impact of a single mutation can be masked by 
altered macrostate occupancies. 

Consistent with these expectations, the MAX H27V/K40A double mutant yielded additive energetic impacts 
relative to the single TF mutants for all measured E-box sequences (Fig 4I), with both mutations likely 
increasing selectivity by rearranging local contacts to independently enhance cognate binding. By contrast, the 
K40A/A30G double mutant yielded additive impacts for all motifs except for CACGTG, where impacts were 
less-than-additive (like A30G alone) (Fig 4I). This non-additivity suggests that some mutations, like A30G, 
enhance motif selectivity by changing partitioning between multiple conformations with distinct sequence 
preferences: one that selectively binds CACGTG and another that promiscuously binds many mutated E-box 
sequences. 

Kinetic measurements provide insights into binding mechanism 
Next, we asked if selective mutations caused changes in the MAX bound conformational ensemble, unbound 
ensemble, or both. As equilibrium binding measurements cannot resolve at which stages of the folding-and-
binding reaction selective mutations alter microscopic transitions63, we developed a kinetic version of these 
microfluidic binding assays (k-STAMMP, derived from k-MITOMI64) (Fig S43). Specifically, we measured 
macroscopic dissociation rates (koff,macroscopic, hereon referred to as koff) (Fig 5A) and inferred apparent on-rates 
(inferred kon,= koff/Kd, calculated assuming a macroscopic 2-state model in which TFs are either bound or not 
bound to DNA)65 for Pho4 and MAX variants interacting with 7 motif-variant DNA sequences65, totaling 610 
total measured rate constants (Fig S44-49). Off-rates were well-fit by a single exponential for both Pho4 and 
MAX (Fig 5A), with measured rates typically varying by ~2-fold between experiments.  

Mutations to both Pho4 and MAX yielded larger changes to inferred on-rates than measured off-rates (7.8 and 
5.6-fold change difference between fastest and slowest off-rates and 56.6 and 36.7-fold for on-rates for Pho4 
and MAX, respectively) (Fig. 5B), consistent with recent work suggesting TF affinity and specificity is 
primarily governed by variation in association rates20,66. The subset of mutations that significantly changed 
dissociation rates tended to ablate or disrupt nucleotide (such as E32N), backbone, or dimer contacts (Fig 5C), 
likely due to destabilization of the bound state(s).  

MAX and Pho4 differ in folding-and-binding transition, suggesting a conformation with reduced affinity for 

the cognate is more stable in MAX 
For a folding-and-binding reaction with a single binding conformation, preformation of structure should increase 
kon and decrease koff

67. Consistent with this model, increasing helical propensity in Pho4 increased 
kon,apparent,CACGTG and decreased koff,CACGTG (Fig. 5D). In contrast, increasing helical propensity in MAX slightly 
decreased kon, apparent and had little impact on koff (Fig. 5D). This observation is again consistent with the existence 
of multiple unbound binding-competent states in MAX such that the energetic impact of a mutation on cognate 
binding becomes uncoupled with intrinsic changes to helicity and instead alters conformational partitioning. 
Moreover, the observation that putatively helix-breaking mutations such as A30G speed up on-rate suggests that 
a weaker-binding conformation for CACGTG may be more stable. This is also consistent with stopped-flow 
kinetics data that suggest a conformational-change is the rate-limiting step for binding in MAX68.  
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Selective mutations change binding landscape through different microscopic mechanisms 

By the Hammond postulate, on-rates are more impacted by changes in the unbound state and off-rates by 
changes in the bound state. Investigating the inverse relationship between kon and koff across multiple DNA 
sequences (relative to WT) can therefore provide insight into which microscopic transition(s) are impacted66. 
MAX mutations to phosphate backbone-contacting residues that enhanced selectivity by weakening binding to 
non-cognate motifs (e.g. N29V, R60V; Fig. 4G) primarily altered koff,apparent with little-to-no changes in inferred 
kon,apparent (Fig. 6A, S50). Other mutations to non-DNA-contacting, solvent-facing residues that enhanced 
selectivity by selectively increasing affinity for the consensus motif (e.g. H27V, K40A) (Fig. 4E-F) primarily 
increased kon,apparent for the cognate motif (Fig. 6B, S50) with little changes to off-rate across many measured 
motifs (Fig. 6B). This again implies that these mutations may change the unbound ensemble, increasing the rate 
of initial MAX DNA association in a DNA sequence-independent fashion. Finally, some selective mutations to 
solvent-facing residues (e.g. A30G) (Fig. 4H) altered both koff,apparent and kon,apparent (Fig. 6C, S50), suggesting 
changes to both bound and unbound states or to the transition state itself.  

Kinetic model with selective and promiscuous states reconstitutes measured changes 
To test our proposed multi-state model of MAX binding and the microscopic origins of selective binding , we 
employed Gillespie simulations to model binding for a single TF and DNA molecule via multiple reaction 
schemes (Fig. 6D-G). For each reaction scheme, we sought to identify which, if any, changes in microscopic 
rate constants altered binding selectivity through similar kinetic and affinity pathways to those measured in 
selective MAX mutations.  

First, we examined a 3-state model in which TFs are either unbound to DNA (8free9), nonspecifically bound and 
8testing9 to see if a site underfoot represents the target site, or specifically bound (Fig 6D), identical to a scheme 
previously used to model E. coli LacI binding to various operator sequences66. Similar to observations for Pho4, 
systematically varying or co-varying rate constants globally shifted the binding landscape without changing 
selectivity (Fig 6E, S51); explicitly modeling folding-and-binding transitions also did not change selectivity 
(��Gf_motif=0.99 3 fmotif=0.01) (Fig S52-53). These results are consistent with our experimental observations that Pho4 
model mutations that alter helical propensity globally tune affinity (Fig S39-40) and hypothesis that explaining 
the mechanisms by which solvent-facing MAX mutations alter selectivity requires the existence of an additional 
state. 

Consistent with MAX observations, changes to microscopic rate constants within a 5-state model in which 
proteins transition to 2 different helical35 8testing9 states that bind with different intrinsic selectivities (Fig 6F) 
yielded a variety of distinct affinity and selectivity effects (Figs. 6G, S54-58). Increasing the microscopic off-
rate from the promiscuous state simultaneously increases macroscopic koff,apparent and decreases macroscopic 
kon,apparent, mimicking the changes to binding kinetics observed for mutations that disrupt phosphate backbone 
contacts yet increase selectivity by reducing affinities for mutated E-box motifs (e.g. N29V and R60V, Figs. 4E, 

6G). Similarly, increasing the microscopic on-rate to the specific state mimics effects seen for the solvent-facing 
H27V and K40A mutations that enhance selectivity by increasing cognate binding, increasing kon,apparent while 
leaving koff,apparent relatively unchanged (Figs. 4F, 6H). Thus, these mutations may increase energetic specificity 
by changing the unbound ensemble to <preconfigure= certain conformations with side-chains positioned for 
specific recognition. Combinations of changes to microscopic rate constants can even recapitulate more complex 
behaviors, such as those observed for A30G (Fig S59). While we find that models with two differentially 
selective states (not models with a single binding conformation) are consistent with selective MAX mutant data, 
this toy model likely approximates two <macrostates= are each the sum of some large number of microstates in 
which residues at the DNA interface are differentially positioned within the folding landscape (Fig 6I). We 
conclude that consideration of multiple states with different intrinsic selectivity for the same set of sequences is 
necessary to explain kinetic and thermodynamic data for MAX.  

 

Discussion 

Understanding selectivity 3 the quantitative difference in binding energy between preferred and non-preferred 
ligands 3 remains an unsolved biophysical question and unrealized engineering goal, with applications to 
binding generally beyond TF-nucleic acid interactions. Here, we investigated how mutations to MAX and Pho4, 
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two structurally similar bHLH TFs with conserved DNA contacts yet different selectivity, alter binding to motif-
variant DNA sequences. These measurements, in concert with kinetic and thermodynamic modeling, revealed 
putative non-contacting mutations in MAX that increased selectivity for the cognate motif via diverse molecular 
mechanisms: while some mutations likely stabilize selective microstates prior to binding (similar to mechanisms 
thought to drive antibody affinity maturation69), others change partitioning between different differentially 
selective macroscopic conformations (Fig. 6I). Pho4, in contrast, lacks evidence of appreciable alternate binding 
states, suggesting highly selective binding may be achieved with narrow folding funnels (lacking ability to 
access alternate conformations or rearrangements) (Fig. 6I). Overall, our results demonstrate that high-
throughput measurements of mutational impacts on binding affinities and kinetics can reveal important 
properties about conformational ensembles difficult to resolve via other methods, and that these properties can 
dramatically impact the selectivity of otherwise highly similar proteins. 
 
The observed selectivity differences between Pho4 and MAX may represent distinct evolutionary pressures 
stemming from their different biological roles and speed/specificity tradeoffs within different genome sizes70. 
Pho4 initiates transcription in response to phosphate stress71, while MAX acts as a heterodimerization node to 
control cell proliferation in concert with other TFs72. The observed decreased <mutational sensitivity= of MAX 
compared to Pho4 (Fig. 2C) may result from a need to preserve a wide variety of existing functions and reflect 
the fact that mutations in promiscuous binders may be more likely to yield functional binding proteins73376. 
Finally, our observed non-additivity of selective mutations (Fig 4I & S41) suggest a rugged mutational 
landscape that complicates protein engineering efforts to combine favorable mutations to enhance 
selectivity77,78.  
 
This work is aligned with many other investigations linking conformational ensembles to TF specificity, from 
bispecific binding to divergent motifs5,38,39,79,80 to structural characterization of selective and promiscuous 
complexes81384. These selective and promiscuous conformations are not just static bound states; TFs undergo 
conformational rearrangements between these complexes with varying degrees of selectivity as part of the 
binding pathway40,85,86. Moreover, the ability to access different conformations 3 and therefore bind increasingly 
diverse sites 3 can originate from decreased global fold stability76. 
 
This work highlights the need for new data detailing how selective mutations discriminate between not just a 
handful of motif-like sequences, but rather large landscapes of diverse sites. Obtaining these measurements will 
be essential for improved design of selective binders. While algorithms to design synthetic TF-like binders with 
user-specified sequence specificity9,10 are increasingly successful, attempts to improve selectivity 3 such as by 
mutating contacts involved in <non-specific= contacts like charged interactions with the phosphate backbone 3 
yield scaffold-dependent success9 (Fig 4G, 6A). Our work suggests that prediction and design of selective 
binders (beyond TF-DNA interactions) will necessitate consideration of energy landscapes that govern both 
folding and specific recognition. Currently, many structure-based binding algorithms cannot capture this 
information; we predict that incorporating conformational dynamics will be essential for properly predicting and 
engineering molecular specificity. 
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Figure 1: Amino acid sequence, structure, and DNA specificity of MAX and Pho4.  
(A) Schematic of folding-and-binding pathway and structural alignment for Pho4 (orange, PDB: 1A0A) and MAX (teal, PDB: 1HLO).  

(B) Domain architectures and sequence alignment for MAX and Pho4 DNA binding domains alongside conservation across bHLH TFs.  
(C) Crystallographic contacts between the CACGTG cognate E-box and TFs MAX (teal) and Pho4 (orange).  
(D) PWMs for MAX (JASPAR MA0058.3) and Pho4 (JASPAR MA0357.1).  
(E) Distribution of binding affinities for all degenerate E-box motif variants41 with most tightly bound sequences annotated (left); median 
affinity as a function of Hamming distance away from the CACGTG cognate motif (right).  
(F) Cartoon illustrating differential selectivity.  
(G) Classification of MAX mutations in this study.  
(H) Microfluidic device and zoomed-in view of surface-immobilized TFs (left) along with location and identity of MAX mutations 

studied here (right). 
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Figure 2: MAX and Pho4 differ in folding-and-binding to CACGTG.  

(A) Sample binding isotherms for WT (teal) and R36A (red) MAX variants binding to cognate DNA (left) and reproducibility of ��G 
measurements across two technical replicates (right). Light grey markers indicate mutants un-resolvable from background binding for 

which reported Kds represent a lower limit.  
(B) Affinities for MAX mutants binding CACGTG (median ± SEM). Red markers denote mutations to DNA-contacting residues, grey 
markers with red outlines denote mutations to phosphate backbone-contacting residues, and arrows denote Kd limits.  
(C) Binding isotherms for WT MAX, MAX L31V, WT Pho4, and Pho4 A258V (left) and comparison of ��G measurements for aligned 
substitutions to MAX and Pho4 (right); marker size indicates residue conservation across the bHLH family.  
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(D) Thermodynamic model for a three-state system such that observable Kd depends on the folding equilibrium (Kfold) and true binding 
affinity (Kd).   
(E) Measured change in cognate affinity (��G, median ± SEM) versus changes in helical propensity53 for mutations to non-DNA 
contacting basic region residues in MAX (teal) and Pho4 (orange); dashed line indicates fitted thermodynamic model with indicated 
fitted values of Kfold and Kd. 
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Figure 3: Dimer and loop mutations modulate MAX binding affinity. 

(A) Cartoon illustrating double mutant cycles across the TF/DNA interface.  
(B) Histograms of Kds for all MAX mutants against each measured E-box; vertical lines denote WT.  
(C) Measured ��Gper oligo relative to WT across all E-boxes (median ± SEM) (top) and variance in ��Gper oligo (bottom) for each 
mutation. Light grey markers indicate mutations where at least one motif was unresolvable from background; red markers indicate 
<affinity-altering= mutations.  
(D) <Affinity-altering= mutations projected on MAX structure (1HLO).  
(E-F) Kds (median ± SEM) for all E-box sequences (left), location of residue of interest (red) within MAX structure (1HLO, top right), 
and cartoon illustrating impact of mutations on DNA-binding landscape (bottom right) for substitutions to P51 (E) and M74 (F).   

(G) ��Gper oligo for MAX P51 (top) and M74 (bottom) mutations for all E-box sequences.   
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Figure 4: Mutations increase selectivity of MAX by enhancing cognate or weakening mutant DNA binding.  

(A) Cartoon depicting additive and epistatic energetic impacts for double mutants (top); pairwise comparisons between measured ��G 
relative to WT for all MAX mutants interacting with low-affinity CACGCG versus cognate CACGTG.  Light grey markers indicate 
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mutations unresolvable from background for ³1 DNA sequence; red markers indicate known crystallographic contacts to mutated 
nucleotide bases. Red marker edges indicate non-additive binding; dashed black line indicates linear regression.  
(B) Residues with epistatic energetic impacts shown on the MAX structure (1HLO).  
(C) Schematic illustrating calculation of <specificity scores= from double mutant cycles.  
(D) <Specificity scores= vs. ��GCACGTG for all MAX mutations. Light grey markers indicate mutations unresolvable from background for 

³1 DNA sequence; dashed grey line indicates thresholds for <specificity-altering= mutations.  
(E-H) Relative affinities (left) and median Kd ± SEM (right) across all E-box variants for WT and selected MAX mutants.  
(I) Cartoon depicting double mutant cycle analysis to probe for energetic coupling between selective TF mutations (left); results for 2 

combinations of selective mutations (right).  
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Figure 5: Binding kinetics suggest MAX and Pho4 differ in folding-and-binding transition 

(A) Example dissociation traces for WT (grey) and E32N (red) variants of MAX (top); comparison of koff, macroscopic measurements 

(median ± SEM) across two replicates of MAX and Pho4 variants dissociating from two sequences (bottom). Dashed black line indicates 
1:1 relationship.  
(B) Inferred kon versus measured koff, macroscopic for all Pho4 (orange) and MAX (teal) mutants interacting with the cognate E-box (median 
± SEM); dashed lines denote WT values.   
(C) Kd versus measured koff, macroscopic for all Pho4 (top) and MAX (bottom) mutants interacting with the cognate E-box (median ± SEM); 
dashed lines denote WT values. Marker color indicates WT-like koff values (p > 0.05, light grey) or mutations to known crystallographic 
DNA base contacts (red)/dimerization interface contacts (blue), imposed on Pho4 (1A0A) and MAX (1HLO) crystal structures.  
(D) Inferred kon and measured koff, macroscopic versus changes in helical propensity53 for non-DNA contacting basic region substitutions in 

MAX (teal) and Pho4 (orange); dashed line indicates linear fit.  

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 16, 2023. ; https://doi.org/10.1101/2023.11.13.566946doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.13.566946
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Figure 6: Selective mutations change the DNA binding landscape through different microscopic mechanisms 
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(A-C) Inferred kon versus measured koff, macroscopic for WT MAX and selective mutations across many E-box variants; dashed line indicates 
linear fit minimizing error in both x- and y-dimensions 

(D) Three-state model and associated microscopic rate constants for TF binding with a single bound conformation.  
(E) Simulated rate constants (left), affinities (middle), and differences in free energy of binding (relative to the most preferred sequence, 
right) as a function of microscopic on-rate and fmotif value with binding model illustrated in (D). kon,max is the rate constant for 

transitioning between the free and testing states (representing a theoretical upper bound for the on-rate when all non-specific TF-DNA 
interactions result in specific binding), koff,¿ is the rate constant for transitioning from the bound state to the testing state, and the 

probability of transitioning to the bound state depends on the likelihood of binding a given sequence (fmotif) and the rate at which TFs 
transition from testing back to the free state (fmotif x koff,M).  

(F) Five-state model and associated microscopic rate constants for TF binding with multiple unbound and bound conformations with 
different intrinsic selectivities. Transitions to and from the selective and promiscuous 8testing9 states are described by kon,max,s, koff,M,s, 
kon,max,p and koff,M,p; transitions to and from the selective and promiscuous 8bound9 states are described by the microscopic rate constants 
fmotif x koff,M,s, koff,µ,s, kon,p, and koff,µ,s.  
(G-H) Simulated rate constants (left) and affinities (right) as a function of microscopic on-rate and fmotif value with binding model 
illustrated in (F).  
(I) Cartoon model illustrating idealized energetic landscapes for Pho4 (orange), MAX (teal), and three specificity-altering MAX 
mutations.  
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Materials and Methods 
 

Data acquisition and curve fitting 
Fabrication of microfluidic molds and devices: Flow and control molds were fabricated as described 
previously1,2 and all design files are available on the Fordyce Lab website 
(http://www.fordycelab.com/microfluidic-design-files).  

We fabricated two-layer MITOMI devices from these molds using polydimethylsiloxane (PDMS) 
polymer (RS Hughes, RTV615) in the Stanford Microfluidics Foundry. To fabricate the control layer, we 
combined 55 g of PDMS (1:5 ratio of cross-linker to base), mixed and degassed the components within a 
centrifugal mixer at 2000 and 2200 rpm, respectively, for 3 minutes each (THINKY). We then poured the 
mixture onto the molds, degassed them in a vacuum chamber for 45 minutes under house vacuum, and baked 
them in an 80°C convection oven for 40 minutes. We then cut control layers for individual devices from the cast 
PDMS and punched fluid inlet lines using a drill press (Technical Innovations) with a mounted catheter hole 
punch (SYNEO, CR0350255N20R4).  

To fabricate the flow layer, we combined PDMS at a 1:20 ratio (cross-linker to base) and mixed and 
degassed the components within a centrifugal mixer at 2000 and 2200 rpm, respectively, for 3 minutes each. We 
then spin-cast the PDMS onto molds for 10 s at 500 rpm followed by 1850 rpm for 75 s. Spin-cast layers were 
allowed to relax on a flat surface at room temperature for 5 minutes before baking at 80°C for 40 minutes. We 
then manually aligned individual control layers to the partially cured flow layer and baked the aligned devices 
for an additional 40 minutes at 80°C. Bonded two-layer devices were cut from the flow mold with a scalpel and 
the flow-layer fluid inlet lines were punched as described above. 
 
QuikChange Mutagenesis for MAX mutant library: 
MAX Plasmid: We generated a MAX plasmid carrying the full sequence of the MAX transcription factor with a 
c-terminal monomeric eGFP tag3 separated from the MAX coding sequence via a gly-ser linker (GGSGGGGS). 
We used Gibson assembly to clone the MAX-eGFP fusion into a purified, linearized PURExpress vector with 
ampicillin resistance. The construct was sequenced validated using Sanger sequencing prior to generating 
mutants.  
 
Mutagenesis primer design: Primers encoding mutants were generated as described previously4,5 using a 
custom-made program, available at (https://github.com/FordyceLab/designQuikChangePrimers). Briefly, the 
program takes as input the DNA sequence encoding the MAX ORF sequence and a list of desired mutants (e.g. 
<A67D= for Ala 67 to Asp mutation), generates a set of candidate primers for each mutant, and returns 
suggested mutagenic primer pairs scored according to criteria previously published in the QuikChange manual. 
Primers were ordered in a 96-well plate format from IDT (Integrated DNA Technologies) at the 10nmol 
synthesis scale with standard desalting purification; the forward and reverse primers for each mutant were 
premixed in each well. For library design, pathogenic mutations and VUS were curated from clinical sequencing 
databases as of March 2021.  
 

Plate-based QuikChange mutagenesis: Mutagenesis reactions were performed as previously reported4 in a 96-
well plate format. Each well contained its own mutagenesis reaction. Reactions were performed using the 
QuikChange protocol as directed by the manufacturer (Agilent Technologies, New England Biolabs). Upon 
completion of mutagenesis, we digested any remaining methylated wildtype plasmid using Dpn1 (New England 
Biolabs, R0176L) for 1 hour at 37°C. We then transformed 1µL of each reaction into 5µL of competent E. coli 

DH5alpha cells (New England Biolabs, C2987I). Transformants were grown to saturation in 5-8mL of LB 
media supplemented with ampicillin (100µg/mL) and miniprepped (Qiagen) for Sanger sequencing. To validate 
successful mutagenesis, we aligned each sequence to the template ORF and ensured that only the intended 
mutation was present in the plasmid. We re-picked colonies in the event of errant mutations elsewhere in 
construct (eg. indels, additional mutations in plasmid), or poor sequencing quality. 
 
Plasmid Array Printing: 
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Plate preparation: Prior to printing plasmids, we transferred mini-prepped plasmid into 96-well plates. To 
standardize volumes of plasmids, the wells were evaporated to dryness. We resuspended each plasmid with 
50uL of Milli-Q water. Plasmids were transferred from 96-well plates into 384-well plates using a Biomek FX 
Automated Workstation (Beckman Coulter, model A31843). Each plasmid was pipetted into 4 consecutive wells 
within the 384-well plate, and each well of the 384-well plate contained 10µL of plasmid. We recorded positions 
to keep track of empty wells for adding subsequent mutants manually. 

We evaporated 384-well plates to dryness at room temperature and resuspended dried wells in print 
buffer formulated as below: 

• 1% (10mg/mL) Bovine Serum Albumin (Sigma Life Science, B4287-25G) 
• 200mM (11.65 mg/mL) NaCl (Sigma Life Science, 71376-1KG) 
• 12mg/mL trehalose dihydrate (Sigma Life Science, T9531-25G) 

 All reagents were combined in Milli-Q water and mixed to dissolution at room temperature and sterile 
filtered to remove aggregates. To each well in the 384-well plate, we added 12-15µL of print buffer for arrayer 
printing. When not in use, we sealed plasmid plates with foil covers and stored them at -20ºC. Prior to printing, 
plates were defrosted overnight at 4ºC and centrifuged at 2000 RPM for 5-10 minutes. Over the course of 
subsequent prints, we added ~3-5µL of Milli-Q water (or additional print buffer) as needed to ensure sufficient 
volumes of sample in plates for printing. 

Plasmid printing & device alignment:  We printed plasmids using a SciFlex Arrayer (SCIENION AG) using 
either the PDC50 or PDC70 nozzle (Type 1 coating). We generated a <field file= to map each well on a 384-well 
plate to positions within the printed plasmid array. To prevent cross-contamination between plasmids, the glass 
nozzle was washed with room temperature Milli-Q water in between spotting different plasmid samples. We 
printed plasmid arrays on epoxysilane-coated glass slides (ArrayIt SME2, SuperChip C50-5588-M20, or self-
coated as previously described6). After drying arrays overnight at room temperature, we aligned microfluidic 
devices to <program= each chamber with its own plasmid spot. Prior to alignment, we pre-baked microfluidic 
devices at 80ºC for 20-25 minutes using a hotplate (Torrey Pines Scientific) and allowed them to cool to room 
temperature. These devices were then baked for 4-4.5 hours at 95ºC on a hotplate. 

Preparation of DNA for fluorescence-based binding assays: We designed all DNA sequences for binding assays 
with a 39 region complementary to a AlexaFluor-647 dye-conjugated primer (anneal temperature: 37ºC) (See 
Table S4).  
 
Double-stranded DNA preparation and dilution: We ordered all DNA sequences as single-stranded 
oligonucleotides from Integrated DNA Technologies (IDT) with standard desalting purification and shipped in 
8LabReady9 formulation (100µM in IDTE buffer, pH 8.0). We then duplexed these single-stranded DNA 
sequences by (1) annealing the universal AlexaFluor-647-labeled primer to the 39 region of the oligonucleotide 
and (2) extension using the primer as a template using Klenow fragment, exo-, polymerase. Both steps (1) and 
(2) were performed as previously described4. 
 After the Klenow extension, we filtered the DNA reactions using a 0.45µm filter spin column. We 
subsequently equilibrated duplexed DNA in the final assay buffer (10mM Tris-HCl, 100mM NaCl, 1mM DTT, 
pH 7.5; aliquoted and filtered using 0.45 mM Steriflip vacuum (Millipore, SE1M179M6)) using 10K filter spin 
concentrator columns (Amicon Ultra, UFC501096). We added ~100µL of the duplexed DNA to the filter spin 
columns, added 200µL of assay buffer, mixed by pipetting, and concentrated the reaction to 100µL by 
centrifugation (9000RPM for 8 minutes). We repeated this process 5 times, and subsequently eluted the 
equilibrated DNA via manufacturer9s instructions for the 10K filter spin concentrator column.  
 We serially diluted equilibrated DNA in final assay buffer as previously described4. For this dilution and 
the subsequent assay, the assay buffer was supplemented with 50µg/mL of UltraPure BSA (ThermoFisher, 
AM2618). To calibrate each step of the binding assay with a DNA concentration, we measured the highest 
concentration of DNA using a DeNovix to measure absorbance at 260nm. 
 For all experiments involving a mutation within the core-site, we also performed this procedure for the 
consensus DNA sequence 59-C CACGTG A-39. For these oligonucleotides, we measured binding isotherms for 
5 DNA concentrations. For the sixth measurement, we introduced the duplexed and labeled reference DNA 
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sequence at a high concentration (~7-9µM) so that we could accurately quantify the saturation ratio with which 
to fit all binding isotherms. 
 
Microscopy and instrumentation: We made measurements as previously described4,5 using a Nikon Ti-S 
microscope. Devices were controlled using a pneumatics manifold7. Custom scripting and automation enabled 
integrated control of both the microscope and the pneumatics manifold 
(https://github.com/FordyceLab/RunPack). 
 
Measuring Kd values on-chip via STAMMP: Measuring Kd values on-chip have 3 major steps: (1) On-chip 
expression and purification of MAX mutants, (2) titration of fluorescently labeled DNA, (3) image analysis and 
calculation of Kd values. 
 
On-chip expression & purification of MAX mutants: On-chip expression and purification require the 
immobilization of expressed proteins for subsequent assay steps. To accomplish this, we took devices aligned to 
printed plasmids and performed a series of passivation steps as described previously4,5 to immobilize 
biotinylated anti-GFP antibodies selectively underneath the 8button valves9 of the STAMMP microfluidic 
device. As all TF variants are fused to a GFP, these antibodies will trap recruited TF variants for subsequent 
assays. 
 To express all TF variants simultaneously, we used PURExpress (NEB E6800L). Briefly, we 
equilibrated Parts A and B of PURExpress on ice until defrosted. For one device using 25µL total of 
PURExpress, we first incubated 10µL of Part A with 7.5 µL of Part B on ice for 45 minutes. Then, we added 
1.5µL of recombinant RNAsin (Promega N2515) and 6µL of nuclease-free water (Promega P1193) and mixed 
by pipette until no phase separation was visible. We introduced PURExpress onto the device as previously 
described4,5 Devices were then placed on a pre-heated hotplate at 37ºC for 45 minutes to express all proteins. 
We then placed devices on the scope and allowed the GFP to fold over the course of 45-60 minutes with the 
button valves on the device closed. After this was completed, we opened the button valves and recruited GFP-
tagged protein to the antibodies for 20-30 minutes. We then closed the buttons to shield trapped TFs while we 
washed the device with PBS and TrypLE (ThermoFisher 12604-013) to remove nonspecifically bound TFs from 
the device walls. After this, we equilibrated the device with assay buffer to remove trace amounts of TrypLE 
and to equilibrate proteins in assay buffer, composed as follows unless otherwise specified:  

• 20 mM Tris-HCl pH 7.5 (from 100 mM stock)  
• 100 mM NaCl (from 100 mM stock) 
• 1 mM DTT (from 1 M stock) (Sigma-Aldrich, D9779) 
• 50 ug/mL ultrapure BSA (ThermoFisher, AM2618) 

 

DNA Binding measurements: Binding measurements were performed as described previously4. Briefly, we 
introduced fluorescent DNA (prepared as described above) at 6 concentrations ranging between ~60nM to 
~6µM on the device. For binding measurements with DNA sequences containing mutations within the core 
binding site, only five concentration points were measured. For the sixth and final concentration point, we 
measured DNA binding for the reference DNA sequence 59-C CACGTG A-39 at a high concentration to 
determine DNA to protein fluorescence intensity ratio denoting saturation of all binding sites for global fitting 
Kd values. For prewash Cy5 images, we imaged the device at multiple exposure times, ranging from 30 ms to 
100 ms. We imaged postwash GFP images using an exposure time of 500 ms. For postwash Cy5 images, we 
used exposure times of either 1200 ms or 3000 ms to ensure we did not collect measurements at a saturating 
intensity. 
 
Image analysis: Image analysis and calculation of Kd values were largely performed as previously described4. 
Briefly, images were stitched using in-house Python packages ImageStitcher 
(https://github.com/FordyceLab/ImageStitcher). These images were then analyzed using the ProcessingPack 
package (https://github.com/FordyceLab/ProcessingPack), largely as previously reported4. 

Briefly, to quantify affinities for each TF mutant binding to a given DNA sequence, we acquired per-
chamber calibration curves relating observed AlexaFluor-647 fluorescence to spectroscopically measured 
dsDNA concentrations (Fig. S6), converted intensities to DNA concentrations based on orthogonal 
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measurements using a DeNovix instrument, and then fit concentration-dependent binding curves as described 
below.  

To identify TF mutants with DNA binding statistically indistinguishable from background, we 
compared Cy5 intensities from TF-containing chambers with those from blank chambers by repeated measures 
ANOVA (providing a conservative estimate of mutants with detectable binding); we report measured Kds for 
these variants as a lower limit (Fig. S7, Table S3). 
 
Calculation of Kd values: To fit dissociation constants, we first measured the amount of DNA bound to surface-
immobilized TF mutants over multiple concentrations and converted these to ratios of bound DNA intensities 
(Cy5 channel) over immobilized TF (eGFP channel). We then applied a global fit to the measured DNA/TF 
ratios and fit data from each individual chamber to single-site binding models1,8.  

�([���]) = 	�!"# ; [���]
�$ + [���]  

�([���]) = 	 (�!"# 2 �)	 ; [���]
�$ + [���] + � 

Here, R is the intensity of DNA/TF as a function of DNA concentration within the chamber, Rmax is the constant 
shared across all chambers corresponding to the value at which all binding curves saturate (assuming an 
identical molecular stoichiometry), [DNA] corresponds to the concentration of free DNA within the chamber, 
and Kd is the dissociation constant for a particular chamber. We determined the Rmax value by taking the median 
of the top 10% of DNA binding MAX mutants at the highest DNA concentration point in an experiment for the 
reference DNA sequence; for experiments with a mutated DNA sequence, we measured the highest DNA 
concentration point using a reference DNA sequence to prevent underestimation of Rmax.  

In addition to fitting to a Langmuir isotherm, we fit our data to a modified single-site binding model 
with an offset value, C, to correct for variations in background intensities between experiments that can affect 
ratio values. The fitting method that minimized per-chamber RMSE of fits for each technical replicate was used 
for final determination and export of Kd values.  
 
Measuring koff values on-chip via k-STAMMP: At the end of a STAMMP binding assay, koff  values can also be 
optionally obtained. Measuring koff  values on-chip adds two additional steps to a STAMMP assay: (1) titration 
of unlabeled DNA and (2) image analysis and calculation of kinetic constants.  
 
Dissociation measurements: Dissociation rate data was acquired after equilibrium binding procedures largely as 
previously described9,10. We first flushed each device with non-fluorescent (dark) competitor dsDNA 
oligonucleotides containing an E-box motif at a concentration of ~0.9 ¿M diluted in PBS for 10 minutes with 
button valves closed after the acquisition of the <post-wash= image. These oligos were prepared with Klenow 
polymerase as described above but with unlabeled primers. The inclusion of non-fluorescent (dark) competitor 
at high concentrations during dissociation is critical to prevent rebinding of labeled material, which leads to 
systematic underestimation of dissociation rates10. 

Next, after stopping flow of unlabeled competitor dsDNA and closing sandwich valves, we then opened 
the buttons for 2.0 seconds to allow dissociation of bound fluorescent DNA from surface-immobilized TF. 
Finally, we closed buttons, flushed the device, and imaged in both the Cy5 and eGFP channels to quantify loss 
of DNA binding and surface-bound TF, respectively. For each experiment, we iterated this process for 40 button 
duty cycle iterations.  
 
Calculation of kinetic constants: After acquiring and processing images as described for STAMMP assays, 
kinetic constants (koff) were determined by first calculating the ratio (R) of <post-wash= DNA fluorescence 
(Alexa 647) to <post-wash= GFP fluorescence per chamber at each time point. This ratio was then used to fit a 
single exponential value:  

�(�) = 	�%&' ; �()!"";% + � 
where R(t) is the fluorescence ratio as a function of time, k is the dissociation constant, and C is a constant term 
which accounts for background fluorescence or non-specific sticking of DNA. From these fitted koff values, we 
can infer kon through the definition of the dissociation constant from measured Kd and measured koff as 
previously described10,11:  
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�+, =	�+--�$  

 

Data interpretation 
Calculation of fold-reduction in binding from MITOMI measurements: To calculate fold-reduction in binding 
for MAX and Pho4 from previous measurements8, we collected the measured affinities for all sequences with a 
Hamming distance of one away from the consensus motif (Fig. 1E), compared these binding affinities to the 
median of all consensus motif measurements (with variable flank nucleotides), and calculated and reported the 
90th percentile for fold-reduction in binding.  
 

Thermodynamic modeling of coupled folding-and-binding equilibria: Thermodynamic model fitting and binding 
simulations were defined by the following variables: 
(1) �, the percentage of TF that is folded (helical) in solution.  
(2) �, the percentage of TF that is unfolded (coil) in solution. 
(3) �, the concentration of free DNA. 
(4) �� (for Complex), the bound TF-DNA complex.  
(5) �� (for total protein), the total amount of TF available in the reaction.  
(6) �� (for total DNA), the total amount of DNA available in the reaction.  
 
These variables were used to construct the following equations and define equilibrium constants:  
(1) Mass balance equation for protein species, defined as: 

�� = � + � + �� 
(2) Mass balance equation for DNA, defined as: 

�� = � + �� 
(3) Equilibrium constant defining partitioning between folded and unfolded states in the unbound state: 

�-+.$ =	��  

(4) True binding equilibrium constant, where only the folded (helical) form can complex with DNA: 

�$ =	� 7 �
��  

 
 
Developing a function for ��,��������: In a STAMMP experiment, only the total amount of free DNA, total 
amount of immobilized TF, and fractional occupancy of bound TF-DNA complex is known; the distribution of 
folded/unfolded unbound states and true values underlying equilibrium constants is not known. Therefore, first 
we used the preceding 4 equations and sympy.solve to define: ��:��, ��;	�-+.$ , �$=, the concentration of 
bound TF-DNA complexes as a function of total protein and DNA given the folding and binding equilibrium 
constants, as follows: 
��:��, ��;	�-+.$ , �$=
= 	12 [�� +	�$�-+.$ +	�$ + ��
2	@��7 + 2���$�-+.$ + 2���$ 2 2���� +	�$7�-+.$7 + 2�$7�-+.$ +	�$7 + 2�$�-+.$�� + 2�$�� +	��7] 

 
For all subsequent calculations, pT was defined as 50 nM, based on previous estimates for the concentration of 
immobilized protein on MITOMI microfluidic devices5. Apparent (measured) DNA-binding affinities were then 
obtained by: (1) calculating equilibrium occupancy of �� at �� spanning from 0 to 10 ��, analogous to the 
procedure for measuring binding affinities in STAMMP experiments, and then (2) defining the �� resulting in 
8+

9:
= 0.5 as the apparent DNA-binding �$,"99";<,%.  
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Defining changes in ����� for helicity-altering TF mutations: TF mutations that alter the propensity to fold or 
unfold in the unbound state can also alter the observed DNA binding affinity. We assumed that all surveyed TF 
mutations only change the free energy difference between the folded and unfolded state, changing �-+.$ but not 
�$. The amount by which a TF mutation changes �-+.$ can then be defined as the change in helical propensity 
relative to WT TF, which changes the folding equilibrium as follows: 

�-+.$,!@%",% =	 �-+.$
� &&B#$
(C.EFG7C'%&77EF

 

where &&�IJ is defined as the change in helical propensity, which defines the free energy difference for 
partitioning between unfolded and folded, helical states. 
 
Fitting STAMMP data to derived thermodynamic model: To first develop intuition for how Kd,true, Kfold, and 
&&GHP alter the range of Kd,measured for both WT and mutant TFs, we determined how the expected linear free 
energy relationships between helical propensity-altering TF mutants and apparent DNA binding affinity impact 
Kd,measured for TF mutations with intrinsic changes in helical propensity spanning 22.0 to 2.5 kcal/mol (Figures 

S13 and S14). 
 
Next, we fit Kd,measured for Max and Pho4 to the thermodynamic model defined for ��(�$ , �-+.$ , ��, ��) to 
extract Kd,true and Kfold for WT TF (Figure S15). To accomplish this, we first restricted our analysis to TF 
mutations in the basic region that do not make crystal contacts with DNA or at the dimerization interfaces, as 
these mutants presumably alter Kd,measured through mechanisms other than changes to Kfold. Each of these TF 
mutations was then defined to have a &&GHP in accordance with previously measured changes in Gibbs free 
energy for helix formation12. Next, (for both MAX and Pho4) we calculated the RMSE of log10 thermodynamic 
model-predicted Kd,measured for all measured TF mutations to the STAMMP-derived log10 Kd,measured for values of 
Kd,true,WT ranging from 1 to 103.5 nM and values of Kfold,WT where the fraction of unfolded TF in the unbound state 
ranged from 99 to 1 percent. The fitted values of Kd,true,WT and Kfold,WT were defined as those that minimized 
RMSE for the mutations and Kd,measureds measured via STAMMP relative to the thermodynamic model of 
folding-and-binding. Code to reproduce all simulations and fitting procedures is available at https://osf.io/jmz8t. 
 
Identification of <affinity-altering= mutations: To identify <affinity-altering= mutations, we: (1) calculated the 
free energy change (��G) imparted by each TF mutation on binding to each DNA sequence relative to WT 
MAX and computed the variance across this set of 6 ��G values, (2) eliminated sequences with strongly 
differential effects on ��Gs by excluding MAX mutations in the top quartile of variance, and (3) excluded 
mutations unresolvable from background binding to any DNA sequence (Fig. S7, Table S4) and mutations that 
do not significantly alter affinities relative to WT MAX (p < 0.05 via independent T-test) in all measured E-Box 
sequences (Figs. 3C, S29). 
 
Identification of non-additive TF+DNA mutation pairs: Identifying epistasis across the TF-DNA interface 
requires 4 affinity measurements: (1) WT TF binding a 8reference9 DNA sequence, (2) mutant TF binding a 
8reference9 DNA sequence, (3) WT TF binding a 8mutant9 DNA sequence, and (4) mutant TF binding a 8mutant9 
DNA sequence. We then determined if each pair was statistically significantly non-additive in Kd space, largely 
as previously reported4.  
 Briefly, to visualize the concentration-dependent binding behavior that would have been expected if the 
energetic effects of TF and oligonucleotide mutations were purely additive, we first calculated an expected 
8additive9 Kd value using the median reference Kd value (for WT TF interacting with the 8reference9 
oligonucleotide), the median Kd resulting from the relevant oligonucleotide mutation alone, and the median Kd 
resulting from the TF mutation alone as follows: 

�$:K'(),LMN'() =	�$
:K'(),LMN*+*,-, 7 �$:K.-,LMN'()

�
$

:K.-,LMN*+*,-,
 

To determine whether the candidate TF mutant appeared epistatic with the DNA nucleotide mutation, we used 
measurements of (1) WT MAX and CACGTG, (2) WT MAX and mutant DNA, and (3) mutant MAX and WT 
DNA to generate a distribution of additive Kd measurements (n=500 simulated additive measurements). We then 
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performed an independent T-test comparing the distribution of 8additive9 affinities with the experimentally 
measured affinities for the double-mutant and used a p-value cut-off of 0.05 to define TF mutants that are 
epistatic with DNA mutants. 
 
Identification of <selective= MAX mutations: To identify mutations that differentially increase selectivity, we 
computed residuals for each pairwise comparison between a mutated E-box motif and the CACGTG cognate, 
calculated Z-scores for each residual (to account for the fact that residual distributions vary with absolute 
affinity), and defined a 8specificity score9 as the median of all Z-scores across each double mutant cycle 
comparison (Figs. 4C, S35), with 8selective9 mutations exceeding a threshold defined by the standard deviation 
of the Gaussian fit to the residuals (Fig S37). Mutations which were unresolvable from background in the 
cognate motif measurement (for which reported Kds are underestimated) were excluded from the list of reported 
8selective9 mutations, and candidate 8selective9 mutations were inspected and culled by eye.  
 
Gillespie model of TF binding kinetics with one or more binding conformations 
Gillespie algorithms are stochastic simulations based on reaction rates that use discrete molecule counts and 
variable time steps13. Here, we simulated TF <energetic specificity= using Gillespie models of different binding 
pathways depicted in Fig. 6D and 6F. At each time step, we compute: (1) How long until the next reaction 
occurs? and (2) Which reaction happens?  

First, we calculated reaction propensities (a) from reaction probabilities (c) and the number of reactants 
available for each reaction. Reaction probabilities can be derived from the kinetic rate constants as previously 
described10. For all simulations, microscopic rate parameters previously estimated from CTMC modeling were 
used as a starting estimation10. In this model, we initialized with 1 molecule of MAX and DNA and set the 
volume to 1.66*10-12 pL (chosen for simplicity so simulated s-1 values equal M s-1 on-rate constants).  

Observed off-rates (macroscopic koff) were calculated as the median value across 3 replicates of the 
inverse of the average time it takes MAX to become fully dissociated once specifically bound; observed on-rates 
(macroscopic kon) were calculated as the median value across 3 replicates of the inverse of the average time it 
takes MAX to become specifically bound once dissociated in solution. The observed Kd is calculated as the ratio 
between macroscopic on- and off-rates.  

To calculate <energetic specificity=, we calculated koff, kon, and Kd for a range of <motifs=, ranging from 
<strongly= to <weakly= bound sequences. <Motif strength= is defined in all models by fmotif, an implicit 
parameterization of the probability of binding such that an increase in fmotif (tightly bound motifs) causes an 
increase in association rate and a decrease in off-rate, as previously described10,14. Given that all observed 
specificity-increasing mutations do not occur at conserved nucleotide contacting residues, we assumed that TF 
mutations do not change the intrinsic probability of recognizing a motif (fmotif) but instead only alter microscopic 
rate parameters. Specificity was defined as the free energy difference between the <strongest= (fmotif = 0.99) and 
<weakest= (fmotif = 0.01) motif surveyed. Code to reproduce all simulations is available at https://osf.io/jmz8t.  
 
Sensitivity analysis for 3-state model: Reaction likelihoods were defined according to the 3-state model 
consisting of unbound, testing, and bound states shown in Fig. 6D. Simulated kon, koff, and Kd values across 20 
<motifs= of strengths ranging from fmotif = 0.99 to 0.01 were obtained by coarsely varying 3 free microscopic rate 
constants kon, max, koff, max, and koff, u across 4 orders of magnitude each in 10 step increments. For each 
combination of free parameters, we simulated 3 independent trajectories with 104 reaction steps. The resulting 
free energy difference between the tightest and weakest surveyed motifs was calculated.  
 

Sensitivity analysis for 4-state model: Reaction likelihoods were defined according to the 4-state model 
consisting of an unbound binding-incompetent conformation, an unbound binding-competent conformation, 
testing states, and bound states shown in Fig. S55.  Simulated kon, koff, and Kd values across 20 <motifs= of 
various strengths (from fmotif = 0.99 to 0.01) were obtained by coarsely varying 3 free microscopic rate constants 
kon, max, koff, max, and koff, u across 4 orders of magnitude each in 10 step increments, and an additional equilibrium 
folding constant Kfold (defined as kon, fold/(1- kon, fold)) over 5 increments (spanning percent folded in the unbound 
state from 1 3 99%). For each combination of free parameters, we simulated 3 independent trajectories with 104 
reaction steps. The resulting free energy difference between the tightest and weakest surveyed motifs was 
calculated to report selectivity.  
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Sensitivity analysis for model with multiple bound conformations: Reaction likelihoods were defined 
according to a 5-state model of consisting of unbound TF, a selective testing and bound state, and a promiscuous 
testing and bound state (as shown in Fig. 6F). Simulated kon, koff, and Kd values across 10 <motifs= of various 
strengths (from fmotif = 0.99 to 0.01) were obtained by coarsely varying 6 free microscopic rate constants kon, max, s, 
koff, max, s, koff, u, s, kon, max, p, koff, max, p, and koff, u, p across 4 orders of magnitude each in 5 step increments. For each 
combination of free parameters, we simulated 3 independent trajectories with 3*103 reaction steps. The resulting 
free energy difference between the tightest and weakest surveyed motifs was calculated to report on selectivity. 
For relevant parameter spaces, trajectories were re-simulated with 104 steps across 20 <motifs= with 5 
independent replicates.  
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