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Abstract: Transcription factors (TFs) bind DNA sequences with a range of affinities, yet the mechanisms
determining energetic differences between high- and low-affinity sequences (‘selectivity’) remain poorly
understood. Here, we investigated two basic helix-loop-helix TFs, MAX (H. sapiens) and Pho4 (S. cerevisiae),
that bind the same high-affinity sequence with highly similar nucleotide-contacting residues and bound
structures but are differentially selective for non-cognate sequences. By measuring >1700 Kgs and >500 rate
constants for Pho4 and MAX mutant libraries binding multiple DNA sequences and comparing these
measurements with thermodynamic and kinetic models, we identify the biophysical mechanisms by which
changes to TF sequence alter both bound and unbound conformational ensembles to shape specificity
landscapes. These results highlight the importance of conformational heterogeneity in determining sequence
specificity and selectivity and can guide future efforts to engineer nucleic acid-binding proteins with enhanced
selectivity.
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Transcription factors (TFs) specifically bind regulatory DNA sequences in the genome to control gene
expression. Many prior efforts have uncovered the “sequence specificity” (the motif bound with the highest
affinity)"* of thousands of TFs across multiple organisms, with preferences often represented as mononucleotide
or dinucleotide models®*®. This information, combined with structural models, has fueled progress in
designing”'® and predicting''™'® sequence-specific nucleic acid binders. However, while motif representations
effectively represent “sequence specificity”, they often fail to capture other important features of TF-DNA
binding, including absolute binding affinities and preferences for sequences that fall outside of the highest
affinity set'’.

These weaknesses impact our ability to understand natural TF-DNA interactions, where selective pressures on
protein and DNA sequence dictate and tune absolute interaction affinities'’. TF paralogs with identical sequence
specificity but different absolute affinities for that sequence play non-interchangeable roles in development'®. In
addition, many closely related TFs that bind the same high-affinity motifs bind alternate low-affinity sites with
different sequences and/or absolute affinities'®'***. Underscoring the importance of these interactions, low-
affinity DNA sites are conserved and important for gene regulation?'****; many enhancers are evolved for
suboptimal affinities such that increasing affinity is pathogenic or disrupts specific and properly timed gene

expression’ ',

Focusing on highest affinity sequences alone also hinders the ability to engineer new TF-DNA interactions.
Many bioengineering’ and gene therapy™ objectives require highly specific binding, yet mitigating off-target
events remains challenging®'. While previous attempts to engineer specificity have focused on engineering the
lowest energy bound state’***, this structure-driven approach is complicated by the structural plasticity of TFs,
which are often enriched in intrinsically disordered sequences™, only fold when bound to DNA*’  and adopt
different conformations to facilitate binding to different DNA sequences®**’. Therefore, realizing the goal of
designing binders with both user-specified “sequence specificity” and high “sequence selectivity” — the
magnitude of the energetic difference between preferred- and non-preferred sequences — requires new data that
can systematically vary both protein and DNA sequence across a range of affinities and map the full DNA
binding affinity landscape.

Towards this goal, we systematically investigated how TF sequence shapes DNA binding landscapes by
profiling binding for two bHLH TFs: H. sapiens Myc-associated factor X (MAX) and S. cerevisiae Pho4. While
both TFs recognize the same CACGTG E-box motif with nearly identical bound structures and are largely
unstructured in the absence of DNA****, Pho4 is highly selective for this motif while MAX is more
promiscuous*'. Using a recently developed technique for high-throughput microfluidic characterization of TF
variant binding (STAMMP, for Simultaneous Transcription Factor Affinity Mapping via Microfluidic Protein
arrays)*” which can systematically characterize DNA binding for hundreds of TF mutants in parallel, we
interrogated how 240 single amino acid substitutions impact MAX DNA binding affinities (Kss) and kinetics
(kotes) for 7 motif-variant DNA sequences.

Comparisons of the 1,700+ novel Kgs measured here for MAX mutants with data previously collected for
Pho4*, in concert with thermodynamic and kinetic modeling, revealed that these two TFs differ in “sequence
selectivity” due to increased conformational heterogeneity in MAX, which can partition between selective and
promiscuous binding conformations. Within these 1700+ novel Kgs, we identified 22 MAX mutations that
increased binding “selectivity”, none of which make base-specific DNA contacts in previous structures;
additional measurements of 500+ binding rate constants suggest that these mutations increase “selectivity”
through perturbations to both bound and unbound states within this heterogeneous conformational ensemble.
These results establish the utility of systematic and high-throughput thermodynamic and kinetic measurements
of specificity, selectivity, and affinity in the context of combinatorial protein/ligand mutations to detect
heterogeneous binding modes, consideration of which will be necessary to engineer highly specific and selective
binders.

Results

MAX and Pho4 are ideal model systems for investigating how TF sequences encode DNA specificity
The DNA-binding domains (DBDs) of MAX and Pho4 are disordered in solution, with their DNA-contacting
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regions folding only upon recognition of a DNA binding site to assume highly similar structural conformations
(RMSD = 1.519 A, Fig. 1A)***. Both TFs possess similar domain architectures comprised of a DNA-contacting
basic region followed by two helices separated by a flexible loop (Figs. 1A,B), make identical base contacts via
identical nucleotide-contacting residues (Fig. 1C), and preferentially bind the same cognate CACGTG E-box
site (Fig. 1D) as dimers. Despite these similarities, prior measurements of WT Pho4 and MAX affinities for a
library of 256 DNA sequences comprised of mutations within an E-box half site revealed differences in their
binding energy landscapes (Fig. 1E)*'. Single-nucleotide mutations to the cognate sequence led to 6-fold higher
reductions in binding affinity for Pho4 than for MAX (174-fold versus 28-fold), with Pho4 binding CACGTG
more tightly and mutant motifs more weakly*' (see Methods). This difference in “sequence selectivity” can be
conceptualized using free energy diagrams in which Pho4 binds its cognate E-box with a deeper energetic well
(Fig. 1E, F). These differences in binding landscapes despite nearly identical DNA-binding interfaces motivated
us to probe how variation in non-contacting residues (Fig. S1) can shape binding affinity landscapes.

STAMMP enables DNA-binding measurements for hundreds of MAX mutations

Using our microfluidic platform (STAMMP, Figs. S2-S3), we previously quantified impacts of 210 single
amino acid substitutions within Pho4 on binding to 9 oligonucleotides (>1,800 Kgs in total)**. Here, we apply
STAMMP to investigate how 240 single amino acid substitutions in and around the MAX DBD (Fig. S4) impact
DNA binding affinity, specificity, and kinetics. This mutant library included 156 alanine and valine scanning
mutants to probe protein sequence determinants of specific DNA motif recognition, 10 mutations substituting
orthologous amino acids present in other bHLHs* to probe how evolutionary differences alter landscapes, 30
mutants hypothesized to alter helicity and charge to probe biophysical mechanisms contributing to
recognition*®*’, and 38 mutations from human allelic variants that were catalogued as pathogenic mutations or
variants of unknown significance (VUS)**° (Fig. 1G-H, Table S1).

Many substitutions throughout the MAX DNA-binding domain statistically significantly alter DNA binding
To identify MAX residues involved in DNA recognition, we first measured impacts of each mutation on binding
to the cognate 5’-CACGTG-3’ motif (Fig. 2). Of 240 mutants, 237 expressed consistently across technical
replicates (Table S2, Fig. S5). Measured Kgs fit from processed data (see Methods, Fig. S6-7, Table S3) were
highly consistent across experimental replicates (RMSE < 0.3 kcal/mol over a 3.5 kcal/mol dynamic range),
including for MAX mutants that increased binding affinity (Figs. 2A, S8), and independent of immobilized TF-
eGFP concentrations (as expected for TF concentrations well below measured Kgs) (Fig. S9). Subsequent
analyses aggregated measurements across all replicates (Fig. S10) for each variant to report median K¢ or AAG
value (£SEM).

Overall, 112 mutants significantly altered the affinity for the consensus motif relative to WT (Bonferroni-
corrected p < 0.05). Many mutations strongly reduced DNA binding, including substitutions at conserved
nucleotide-contacting residues H28, E32, R35, and R36* (Figs. 2B). Many significant pathogenic (18/31) and
some (I7IN and R47W) VUS reduced binding as well (Fig S11). Allelic variants imparted some of the largest
changes in DNA binding affinity in the library, with significant mutations at the dimerization interface either
decreasing (e.g. L46, A67, and 171) or enhancing binding (e.g. M74L*°) (Fig. S11). Similarly, mutations to
crystal structure-predicted phosphoryl oxygen backbone-contacting residues increased or decreased affinity
depending on the substituted residue (Fig. 2B). Nevertheless, 12 of the 29 significant mutations that enhanced
binding occurred at non-contacting, solvent-facing residues in the basic region, confirming that TF regions well
outside of known interfaces can have substantial impacts on binding*.

Comparable substitutions in Pho4 decrease binding affinity to a greater degree

Just as the magnitude of changes in affinity upon DNA mutation was smaller for MAX than for Pho4,
comparable mutations at corresponding residue positions also had smaller impacts in MAX (Wilcoxon signed-
rank test p=10"°) (Figs. 2C, 1E). In particular, substitutions altering charged contacts with the DNA phosphate
backbone yielded substantially larger reductions in binding affinity for Pho4 (Pho4 R252Q/MAX R25Q, Pho4
K292A/MAX R60A) (Figs. 2C, S12). This trend also held for mutations to residues that do not contact bound
DNA in published structures (Pho4 K251/MAX K24), where some analogous substitutions even increased
binding affinity for MAX (L31V) while reducing it for Pho4 (A258V) (Figs. 2C, S12). These differences in
‘mutational sensitivity” support prior observations®' that the strength of otherwise similar molecular contacts is
contextual and that only certain protein homologs can support ‘rheostat’ positions™?.
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MAX and Pho4 differ in folding-and-binding transition, suggesting MAX adopts multiple conformations

For TFs that are unstructured in the absence of DNA, altering helical propensity™ can commensurately change
binding affinity by modulating folding entropic penalties®***#***, Thus, if mutations to comparable solvent-
facing residues have different impacts on measured binding affinity for CACGTG in Pho4 and MAX, it could
indicate differing folding-and-binding transitions.

To better understand how changes in a coupled folding and binding pathway impact measured Kgs, we modeled
equilibrium bHLH TF/DNA binding as a system in which: (1) unbound TFs can be either unfolded or helical,
(2) only the helical form can bind DNA, and (3) TF mutations alter the folding equilibrium (Figs. 2D, S13;
Methods). The observed DNA concentration at which half of the TF population is DNA-bound (Kgapparent) can
then be expressed as a function of a Ky for the interaction between folded TF and free DNA, a folding
equilibrium constant K4 (describing the partitioning between folded and unfolded conformations of the
unbound TF), and the total concentration of free DNA and protein. Simulated binding isotherms for many
mutants that alter folding revealed that the magnitude by which mutations shift Kqapparen: depends on the WT
value of Kpiq (Figs. S13, S14), and provides a thermodynamic model framework to fit Kq wr and Kiog, wr from
measured affinities of non-contacting mutations.

For Pho4, mutations that alter helical propensity concomitantly shift apparent affinities (Kqapparent) (7° = 0.55),
consistent with a 3-state model in which WT Pho4’s basic region is significantly disordered (~81%) in the
unbound state (Methods, Fig 2E, S15) and in agreement with NMR data® . By contrast, mutations that alter the
predicted helicity of the MAX basic region have little impact on Kgapparent (72 = 0.20). For this observation to be
consistent with a 3-state model, MAX would have to be primarily helical in solution (~1% disordered), at odds
with documented structural disorder in this region®® and the observation that many solvent-facing mutations
strongly modulate binding affinity (Methods, Fig 2E, S14-15). Instead, these results suggest a more complex
model in which MAX can adopt multiple conformations with different intrinsic affinities for DNA. In this
model, rather than altering the propensity to fold into a single conformation, non-contacting mutations impact
measured affinity by altering partitioning between multiple conformations. This hypothesis is consistent with
previously identified bound state conformational heterogeneity within the MAX basic region™.

Mutations that alter dimerization modulate MAX binding affinity independent of DNA sequence

To understand how MAX mutations alter low affinity binding and sequence selectivity within the MAX “DNA-
binding landscape”, we also measured binding to 5 low-affinity sequences containing mutations within core
nucleotide positions in the E-box consensus (AACGTG, CGCGTG, CATGTG, CACGCG, and CACGTT)
(Figs. 3A-B, Table S4). Across all replicates, expression (Figs. S16-20) and K4 measurements remained highly
reproducible (Figs. S21-S25) and affinities were independent of expression (Fig. S26). Over a median of 8-12
K4 measurements per variant (Fig. S27), single nucleotide substitutions within the consensus E-box motif
reduced WT MAX binding by 2 to 5-fold, with the AACGTG mutation being most deleterious (Figs. 3B, S28).
MAX allelic variants yield diverse biochemical effects on the DNA-binding landscape, summarized in Table
SS.

To identify TF mutations that modulate DNA-binding affinity (i.e. alter binding to all DNA sequences equally
by shifting the binding energy landscape by a consistent free energy difference), we computed the variance
across all measured AAGs per mutant and selected mutants in the lowest quartile (Methods). Examination of the
24 identified “affinity-altering” mutations (Figs 3C, S29) revealed that they were generally located within the
loop region or dimerization interface (Fig. 3D) and all weakened binding relative to WT MAX.

At some positions, all tested mutations had similar impacts. Substitutions to P51, a key residue for proper
positioning of helix 1*, uniformly decreased binding affinity by > 0.75 kcal/mol across DNA sequences (Figs.
3E, 3G). In contrast, mutations at other positions both increased and decreased affinity. MAX M74L, a mutation
on the interior of the leucine zipper that forms stabilizing homotypic interactions, enhanced binding across all
DNA sequences (consistent with prior studies of leucine zipper dimerization®), but other substitutions
uniformly weakened binding (e.g. M74V, M74A). (Figs. 3F, 3G).

Double-mutant cycles reveal drivers of DNA-binding specificity at the MAX-DNA interface
To systematically identify specificity-altering substitutions (which differentially affect binding to some DNA
sequences, warping the binding energy landscape), we performed biochemical double mutant cycles®’
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comparing energetic impacts on binding from TF mutations and mutations to cognate DNA (Figs. 4A, S30-
S33). When visualized as a scatter plot, additive mutations to non-interacting residues and nucleotides lie along
an additive fit line, while mutations to interacting and/or epistatic residue and nucleotide pairs yield non-additive
energetic impacts that fall off-diagonal (Fig. 4A).

While most (150) mutations additively alter binding to a low-affinity motif known to be bound by Myc/MAX
heterodimers in vivo (CACGCG)® relative to the cognate, 34 of the 81 non-additive mutants bind the mutated
DNA with a reduced energetic penalty (Fig. 4A, Table S6). These include mutations to structurally-predicted
contacts, such as to E32 — which contacts the outer two nucleotide bases in the palindromic E-box motif
(CACGTG) — and residues that make stabilizing salt bridges with E32 like R35°%°. Some epistatic mutations,
such as E32A, even alter the intrinsic sequence specificity of MAX to yield significant (p<0.05 via T-test) and
absolute tighter binding to CACGCG; 10 additional mutations also alter sequence specificity to bind most
tightly to other non-CACGTG E-box motifs (Fig S34). Other mutations non-additively bound CACGCG
without an obvious structural rationale, such as solvent-facing D37 or H28 which canonically contact the 5’
guanine™ (Fig. 4A-B), suggesting that dynamic binding modes not apparent from low-energy bound structures
contribute to sequence-specific binding (as explored further below).

Mutations make MAX more selective by favoring the cognate or disfavoring non-cognate sequences

To identify mutations that increase selectivity for the cognate sequence relative to many mutated motifs, we
computed residuals for each pairwise comparison between a mutated E-box and cognate sequence, and defined a
‘specificity score’ as the median of all residual Z-scores across each double mutant cycle comparison (Figs. 4C,
S35). Mutants with negative specificity scores thus decrease the energetic penalty for binding to mutant motifs
relative to the cognate (decreasing selectivity); as expected, many mutations to nucleotide base-contacting
residues are among the most promiscuous mutations (e.g. H28, E32) (Fig. 4D). In contrast, mutants with
positive specificity scores render MAX more selective. Strikingly, 22 MAX mutations increase selectivity for
CACGTG (Figs. 4D, S36, Methods). Nearly all selectivity-increasing mutations lie in the DNA-contacting
basic region or helix 1 (Fig S37) and are enriched for mutations at backbone-contacting residues (p=1*107 via
Chi-squared test) and solvent-facing basic region residues (p=8*107" via Chi-squared test).

To understand how mutations change absolute affinities to increase selectivity, we examined specificity scores
versus AAGceacara (Fig. 4D). Mutations in the upper-left quadrant — such as H27V and K40A — increase
selectivity by disproportionately increasing affinity for the cognate sequence (i.e. “deepening the energetic
well” for cognate binding) without altering affinity for many mutated sequences (Fig. 4E-F). Structural and
mutational data suggests that these mutations often increase selectivity by stabilizing selective microstates (often
by altering positioning of residues at the DNA interface). For example, given that all measured mutations at H27
position increase affinity for the cognate sequence (Fig S38) and to a lesser degree CATGTG (the only mutated
motif for which H28 mutations are additive) (Fig S36, Table S6), this suggests any substitutions at residue 27
may better position or reduce competition for protonation of H28 to promote selective E-box recognition.
Similarly, K40A does not directly contact DNA or DNA-contacting residues, but mutations at this position may
disrupt a structurally predicted polar contact with D37*. As mutations to D37 reduce the energetic penalty for
binding DNA sequences with mutations to the outer 2 bases in the E-box, disrupting this interaction may
epistatically stabilize binding to all DNA sequences without mutations to these bases (Fig 4F, S36). The aligned
position in Pho4 contains an alanine (Fig. 1B), possibly contributing to Pho4’s selectivity via the same
mechanism.

We note that no Pho4 mutations simultaneously increase affinity and selectivity for CACGTG (Fig S39).
Instead, “affinity-altering” Pho4 substitutions simultaneously also increase affinity for mutated E-box sequences
and are typically found within the basic region (rather than the dimerization region, as for MAX) (Figs S40).
This Pho4 behavior is again consistent with a simple model of folding-and-binding where the same bound
conformation recognizes all E-box variants, and mutations therefore proportionally change binding to all
sequences.

MAX mutations in the upper middle of Fig. 4D increase selectivity by decreasing binding to non-CACGTG
sequences (i.e. “raising the energetic wall” for non-cognate binding). For example, N29V (which ablates a
structurally predicted polar contact with the DNA phosphate backbone®') does not alter affinity for CACGTG
but decreases affinity for all measured mutated E-box sequences (Fig 4G). Similarly, mutating residue A30
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(which faces the solvent on DNA-bound structures and is not adjacent to any other nucleotide base-contacting
residues) to glycine leaves CACGTG binding unaltered but decreases affinities for all mutated E-boxes (Fig
4H). Mutations that “distinguish” between cognate and mutated motifs without any apparent sequence
preference among mutated sequences suggest that the two alternative conformations hypothesized for MAX are
either selective or non-specific, as explored below.

Non-additivity of pairs of specificity-enhancing MAX mutations suggests existence of multiple binding
conformations

To test for conformational partitioning between selective and nonspecific conformations, we examined mutant
cycles between two protein residue pairs® binding to many motifs (Fig 41, S41). To exclude convolved effects
of nearby mutations, we restricted interpretation to TF mutant pairs >15 A apart in published structures (Fig
S42). In this analysis, motif-independent binding additivity implies independent perturbations (such as
rearrangement of local contacts that impact population of local microstates), while motif-dependent binding
additivity implies distinct structural conformations such that the impact of a single mutation can be masked by
altered macrostate occupancies.

Consistent with these expectations, the MAX H27V/K40A double mutant yielded additive energetic impacts
relative to the single TF mutants for all measured E-box sequences (Fig 4I), with both mutations likely
increasing selectivity by rearranging local contacts to independently enhance cognate binding. By contrast, the
K40A/A30G double mutant yielded additive impacts for all motifs except for CACGTG, where impacts were
less-than-additive (like A30G alone) (Fig 4I). This non-additivity suggests that some mutations, like A30G,
enhance motif selectivity by changing partitioning between multiple conformations with distinct sequence
preferences: one that selectively binds CACGTG and another that promiscuously binds many mutated E-box
sequences.

Kinetic measurements provide insights into binding mechanism

Next, we asked if selective mutations caused changes in the MAX bound conformational ensemble, unbound
ensemble, or both. As equilibrium binding measurements cannot resolve at which stages of the folding-and-
binding reaction selective mutations alter microscopic transitions®, we developed a kinetic version of these
microfluidic binding assays (k-STAMMP, derived from k-MITOMI®) (Fig S43). Specifically, we measured
macroscopic dissociation rates (kostmacroscopic, N€reon referred to as kotr) (Fig SA) and inferred apparent on-rates
(inferred kon,= kott/K4, calculated assuming a macroscopic 2-state model in which TFs are either bound or not
bound to DNA)® for Pho4 and MAX variants interacting with 7 motif-variant DNA sequences®, totaling 610
total measured rate constants (Fig S44-49). Off-rates were well-fit by a single exponential for both Pho4 and
MAX (Fig 5A), with measured rates typically varying by ~2-fold between experiments.

Mutations to both Pho4 and MAX yielded larger changes to inferred on-rates than measured off-rates (7.8 and
5.6-fold change difference between fastest and slowest off-rates and 56.6 and 36.7-fold for on-rates for Pho4
and MAX, respectively) (Fig. 5B), consistent with recent work suggesting TF affinity and specificity is
primarily governed by variation in association rates’*®. The subset of mutations that significantly changed
dissociation rates tended to ablate or disrupt nucleotide (such as E32N), backbone, or dimer contacts (Fig 5C),
likely due to destabilization of the bound state(s).

MAX and Pho4 differ in folding-and-binding transition, suggesting a conformation with reduced affinity for
the cognate is more stable in MAX

For a folding-and-binding reaction with a single binding conformation, preformation of structure should increase
kon and decrease ko*’. Consistent with this model, increasing helical propensity in Pho4 increased

kon apparent,cacgtG and decreased kofrcaccts (Fig. SD). In contrast, increasing helical propensity in MAX slightly
decreased kon, apparent and had little impact on kosr (Fig. SD). This observation is again consistent with the existence
of multiple unbound binding-competent states in MAX such that the energetic impact of a mutation on cognate
binding becomes uncoupled with intrinsic changes to helicity and instead alters conformational partitioning.
Moreover, the observation that putatively helix-breaking mutations such as A30G speed up on-rate suggests that
a weaker-binding conformation for CACGTG may be more stable. This is also consistent with stopped-flow
kinetics data that suggest a conformational-change is the rate-limiting step for binding in MAX®,
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Selective mutations change binding landscape through different microscopic mechanisms

By the Hammond postulate, on-rates are more impacted by changes in the unbound state and off-rates by
changes in the bound state. Investigating the inverse relationship between kon and korracross multiple DNA
sequences (relative to WT) can therefore provide insight into which microscopic transition(s) are impacted®.
MAX mutations to phosphate backbone-contacting residues that enhanced selectivity by weakening binding to
non-cognate motifs (e.g. N29V, R60V; Fig. 4G) primarily altered Kot apparent With little-to-no changes in inferred
kon,apparent (Fig. 6A, S50). Other mutations to non-DNA-contacting, solvent-facing residues that enhanced
selectivity by selectively increasing affinity for the consensus motif (e.g. H27V, K40A) (Fig. 4E-F) primarily
increased Kon,apparent fOr the cognate motif (Fig. 6B, S50) with little changes to off-rate across many measured
motifs (Fig. 6B). This again implies that these mutations may change the unbound ensemble, increasing the rate
of initial MAX DNA association in a DNA sequence-independent fashion. Finally, some selective mutations to
solvent-facing residues (e.g. A30G) (Fig. 4H) altered both kot apparent and kon apparent (Fig. 6C, S50), suggesting
changes to both bound and unbound states or to the transition state itself.

Kinetic model with selective and promiscuous states reconstitutes measured changes

To test our proposed multi-state model of MAX binding and the microscopic origins of selective binding , we
employed Gillespie simulations to model binding for a single TF and DNA molecule via multiple reaction
schemes (Fig. 6D-G). For each reaction scheme, we sought to identify which, if any, changes in microscopic
rate constants altered binding selectivity through similar kinetic and affinity pathways to those measured in
selective MAX mutations.

First, we examined a 3-state model in which TFs are either unbound to DNA (‘free’), nonspecifically bound and
‘testing’ to see if a site underfoot represents the target site, or specifically bound (Fig 6D), identical to a scheme
previously used to model E. coli Lacl binding to various operator sequences®®. Similar to observations for Pho4,
systematically varying or co-varying rate constants globally shifted the binding landscape without changing
selectivity (Fig 6E, S51); explicitly modeling folding-and-binding transitions also did not change selectivity
(AAG# motit=0.99 - fmotit=0.01) (Fig S52-53). These results are consistent with our experimental observations that Pho4
model mutations that alter helical propensity globally tune affinity (Fig S39-40) and hypothesis that explaining
the mechanisms by which solvent-facing MAX mutations alter selectivity requires the existence of an additional
state.

Consistent with MAX observations, changes to microscopic rate constants within a 5-state model in which
proteins transition to 2 different helical®® ‘testing’ states that bind with different intrinsic selectivities (Fig 6F)
yielded a variety of distinct affinity and selectivity effects (Figs. 6G, S54-58). Increasing the microscopic off-
rate from the promiscuous state simultaneously increases macroscopic Kofrapparent and decreases macroscopic

kon apparent, mimicking the changes to binding kinetics observed for mutations that disrupt phosphate backbone
contacts yet increase selectivity by reducing affinities for mutated E-box motifs (e.g. N29V and R60V, Figs. 4E,
6G). Similarly, increasing the microscopic on-rate to the specific state mimics effects seen for the solvent-facing
H27V and K40A mutations that enhance selectivity by increasing cognate binding, increasing kon apparent While
leaving kogtapparent relatively unchanged (Figs. 4F, 6H). Thus, these mutations may increase energetic specificity
by changing the unbound ensemble to “preconfigure” certain conformations with side-chains positioned for
specific recognition. Combinations of changes to microscopic rate constants can even recapitulate more complex
behaviors, such as those observed for A30G (Fig S59). While we find that models with two differentially
selective states (not models with a single binding conformation) are consistent with selective MAX mutant data,
this toy model likely approximates two “macrostates” are each the sum of some large number of microstates in
which residues at the DNA interface are differentially positioned within the folding landscape (Fig 6I). We
conclude that consideration of multiple states with different intrinsic selectivity for the same set of sequences is
necessary to explain kinetic and thermodynamic data for MAX.

Discussion

Understanding selectivity — the quantitative difference in binding energy between preferred and non-preferred
ligands — remains an unsolved biophysical question and unrealized engineering goal, with applications to
binding generally beyond TF-nucleic acid interactions. Here, we investigated how mutations to MAX and Pho4,
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two structurally similar bHLH TFs with conserved DNA contacts yet different selectivity, alter binding to motif-
variant DNA sequences. These measurements, in concert with kinetic and thermodynamic modeling, revealed
putative non-contacting mutations in MAX that increased selectivity for the cognate motif via diverse molecular
mechanisms: while some mutations likely stabilize selective microstates prior to binding (similar to mechanisms
thought to drive antibody affinity maturation®), others change partitioning between different differentially
selective macroscopic conformations (Fig. 6I). Pho4, in contrast, lacks evidence of appreciable alternate binding
states, suggesting highly selective binding may be achieved with narrow folding funnels (lacking ability to
access alternate conformations or rearrangements) (Fig. 6I). Overall, our results demonstrate that high-
throughput measurements of mutational impacts on binding affinities and kinetics can reveal important
properties about conformational ensembles difficult to resolve via other methods, and that these properties can
dramatically impact the selectivity of otherwise highly similar proteins.

The observed selectivity differences between Pho4 and MAX may represent distinct evolutionary pressures
stemming from their different biological roles and speed/specificity tradeoffs within different genome sizes’®.
Pho4 initiates transcription in response to phosphate stress’', while MAX acts as a heterodimerization node to
control cell proliferation in concert with other TFs’%. The observed decreased “mutational sensitivity” of MAX
compared to Pho4 (Fig. 2C) may result from a need to preserve a wide variety of existing functions and reflect
the fact that mutations in promiscuous binders may be more likely to yield functional binding proteins’ ¢,
Finally, our observed non-additivity of selective mutations (Fig 41 & S41) suggest a rugged mutational
landscape that complicates protein engineering efforts to combine favorable mutations to enhance
selectivity””’®,

This work is aligned with many other investigations linking conformational ensembles to TF specificity, from
bispecific binding to divergent motifs®****7*% to structural characterization of selective and promiscuous
complexes® ™. These selective and promiscuous conformations are not just static bound states; TFs undergo
conformational rearrangements between these complexes with varying degrees of selectivity as part of the
binding pathway****¢, Moreover, the ability to access different conformations — and therefore bind increasingly
diverse sites — can originate from decreased global fold stability”.

This work highlights the need for new data detailing how selective mutations discriminate between not just a
handful of motif-like sequences, but rather large landscapes of diverse sites. Obtaining these measurements will
be essential for improved design of selective binders. While algorithms to design synthetic TF-like binders with
user-specified sequence specificity™'” are increasingly successful, attempts to improve selectivity — such as by
mutating contacts involved in “non-specific” contacts like charged interactions with the phosphate backbone —
yield scaffold-dependent success’ (Fig 4G, 6A). Our work suggests that prediction and design of selective
binders (beyond TF-DNA interactions) will necessitate consideration of energy landscapes that govern both
folding and specific recognition. Currently, many structure-based binding algorithms cannot capture this
information; we predict that incorporating conformational dynamics will be essential for properly predicting and
engineering molecular specificity.
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Figure 1: Amino acid sequence, structure, and DNA specificity of MAX and Pho4.

(A) Schematic of folding-and-binding pathway and structural alignment for Pho4 (orange, PDB: 1A0A) and MAX (teal, PDB: 1HLO).
(B) Domain architectures and sequence alignment for MAX and Pho4 DNA binding domains alongside conservation across bHLH TFs.
(C) Crystallographic contacts between the CACGTG cognate E-box and TFs MAX (teal) and Pho4 (orange).

(D) PWMs for MAX (JASPAR MA0058.3) and Pho4 (JASPAR MA0357.1).

(E) Distribution of binding affinities for all degenerate E-box motif variants*' with most tightly bound sequences annotated (/ef?); median

affinity as a function of Hamming distance away from the CACGTG cognate motif (right).
(F) Cartoon illustrating differential selectivity.
(G) Classification of MAX mutations in this study.

(H) Microfluidic device and zoomed-in view of surface-immobilized TFs (/eff) along with location and identity of MAX mutations

studied here (right).
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Figure 2: MAX and Pho4 differ in folding-and-binding to CACGTG.
(A) Sample binding isotherms for WT (teal) and R36A (red) MAX variants binding to cognate DNA (/eft) and reproducibility of AAG
measurements across two technical replicates (right). Light grey markers indicate mutants un-resolvable from background binding for
which reported Kgs represent a lower limit.
(B) Affinities for MAX mutants binding CACGTG (median + SEM). Red markers denote mutations to DNA-contacting residues, grey
markers with red outlines denote mutations to phosphate backbone-contacting residues, and arrows denote Ky limits.
(C) Binding isotherms for WT MAX, MAX L31V, WT Pho4, and Pho4 A258V (left) and comparison of AAG measurements for aligned
substitutions to MAX and Pho4 (right); marker size indicates residue conservation across the bHLH family.
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(D) Thermodynamic model for a three-state system such that observable K¢ depends on the folding equilibrium (Kf14) and true binding
affinity (Kq).

(E) Measured change in cognate affinity (AAG, median = SEM) versus changes in helical propensity> for mutations to non-DNA
contacting basic region residues in MAX (teal) and Pho4 (orange); dashed line indicates fitted thermodynamic model with indicated
fitted values of Kioq and Ky,
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Figure 3: Dimer and loop mutations modulate MAX binding affinity.

(A) Cartoon illustrating double mutant cycles across the TF/DNA interface.

(B) Histograms of Kgs for all MAX mutants against each measured E-box; vertical lines denote WT.

(C) Measured AAGiper oligo Telative to WT across all E-boxes (median + SEM) (fop) and variance in AAGyer oligo (botton) for each

mutation. Light grey markers indicate mutations where at least one motif was unresolvable from background; red markers indicate
“affinity-altering” mutations.

(D) “Affinity-altering” mutations projected on MAX structure (1HLO).

(E-F) Kgs (median + SEM) for all E-box sequences (/ef?), location of residue of interest (red) within MAX structure (1HLO, fop right),
and cartoon illustrating impact of mutations on DNA-binding landscape (bottom right) for substitutions to P51 (E) and M74 (F).

(G) AAGqer oligo for MAX P51 (fop) and M74 (bottom) mutations for all E-box sequences.
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Figure 4: Mutations increase selectivity of MAX by enhancing cognate or weakening mutant DNA binding.
(A) Cartoon depicting additive and epistatic energetic impacts for double mutants (fop); pairwise comparisons between measured AAG
relative to WT for all MAX mutants interacting with low-affinity CACGCG versus cognate CACGTG. Light grey markers indicate
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mutations unresolvable from background for >1 DNA sequence; red markers indicate known crystallographic contacts to mutated
nucleotide bases. Red marker edges indicate non-additive binding; dashed black line indicates linear regression.

(B) Residues with epistatic energetic impacts shown on the MAX structure (1HLO).

(C) Schematic illustrating calculation of “specificity scores” from double mutant cycles.

(D) “Specificity scores” vs. AAGcacgre for all MAX mutations. Light grey markers indicate mutations unresolvable from background for
>1 DNA sequence; dashed grey line indicates thresholds for “specificity-altering” mutations.

(E-H) Relative affinities (/eft) and median K4 + SEM (7ight) across all E-box variants for WT and selected MAX mutants.

(I) Cartoon depicting double mutant cycle analysis to probe for energetic coupling between selective TF mutations (/eff), results for 2
combinations of selective mutations (right).
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Figure S: Binding kinetics suggest MAX and Pho4 differ in folding-and-binding transition

(A) Example dissociation traces for WT (grey) and E32N (red) variants of MAX (top); comparison of koff, macroscopic measurements
(median + SEM) across two replicates of MAX and Pho4 variants dissociating from two sequences (bottom). Dashed black line indicates
1:1 relationship.

(B) Inferred kon versus measured Koft, macroscopic fOr all Pho4 (orange) and MAX (teal) mutants interacting with the cognate E-box (median
+ SEM); dashed lines denote WT values.

(C) Ky versus measured Koff, macroscopic for all Pho4 (fop) and MAX (bottom) mutants interacting with the cognate E-box (median = SEM);
dashed lines denote WT values. Marker color indicates WT-like ko values (p > 0.05, light grey) or mutations to known crystallographic
DNA base contacts (red)/dimerization interface contacts (blue), imposed on Pho4 (1A0A) and MAX (1HLO) crystal structures.

(D) Inferred kon and measured koff, macroscopic VETsus changes in helical propensity™ for non-DNA contacting basic region substitutions in
MAX (teal) and Pho4 (orange); dashed line indicates linear fit.
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Figure 6: Selective mutations change the DNA binding landscape through different microscopic mechanisms
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(A-C) Inferred kon versus measured Kofr, macroscopic for WT MAX and selective mutations across many E-box variants; dashed line indicates
linear fit minimizing error in both x- and y-dimensions

(D) Three-state model and associated microscopic rate constants for TF binding with a single bound conformation.

(E) Simulated rate constants (/ef), affinities (middle), and differences in free energy of binding (relative to the most preferred sequence,
right) as a function of microscopic on-rate and fueif value with binding model illustrated in (D). kon,max is the rate constant for
transitioning between the free and testing states (representing a theoretical upper bound for the on-rate when all non-specific TF-DNA
interactions result in specific binding), koff,p is the rate constant for transitioning from the bound state to the festing state, and the
probability of transitioning to the bound state depends on the likelihood of binding a given sequence (fmoif) and the rate at which TFs
transition from festing back to the fiee state (fmotit X koff,M).

(F) Five-state model and associated microscopic rate constants for TF binding with multiple unbound and bound conformations with
different intrinsic selectivities. Transitions to and from the selective and promiscuous ‘testing’ states are described by konmax,s, KoffM,s,
Kon,max,p and Kosrm p; transitions to and from the selective and promiscuous ‘bound’ states are described by the microscopic rate constants
fr-notif X koff,M,s, koff,p,s, kon,p, and koff,u,s-

(G-H) Simulated rate constants (leff) and affinities (right) as a function of microscopic on-rate and fioir value with binding model
illustrated in (F).

(I) Cartoon model illustrating idealized energetic landscapes for Pho4 (orange), MAX (teal), and three specificity-altering MAX
mutations.
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Materials and Methods

Data acquisition and curve fitting

Fabrication of microfluidic molds and devices: Flow and control molds were fabricated as described
previously'? and all design files are available on the Fordyce Lab website
(http://www.fordycelab.com/microfluidic-design-files).

We fabricated two-layer MITOMI devices from these molds using polydimethylsiloxane (PDMS)
polymer (RS Hughes, RTV615) in the Stanford Microfluidics Foundry. To fabricate the control layer, we
combined 55 g of PDMS (1:5 ratio of cross-linker to base), mixed and degassed the components within a
centrifugal mixer at 2000 and 2200 rpm, respectively, for 3 minutes each (THINKY). We then poured the
mixture onto the molds, degassed them in a vacuum chamber for 45 minutes under house vacuum, and baked
them in an 80°C convection oven for 40 minutes. We then cut control layers for individual devices from the cast
PDMS and punched fluid inlet lines using a drill press (Technical Innovations) with a mounted catheter hole
punch (SYNEO, CR0350255N20R4).

To fabricate the flow layer, we combined PDMS at a 1:20 ratio (cross-linker to base) and mixed and
degassed the components within a centrifugal mixer at 2000 and 2200 rpm, respectively, for 3 minutes each. We
then spin-cast the PDMS onto molds for 10 s at 500 rpm followed by 1850 rpm for 75 s. Spin-cast layers were
allowed to relax on a flat surface at room temperature for 5 minutes before baking at 80°C for 40 minutes. We
then manually aligned individual control layers to the partially cured flow layer and baked the aligned devices
for an additional 40 minutes at 80°C. Bonded two-layer devices were cut from the flow mold with a scalpel and
the flow-layer fluid inlet lines were punched as described above.

QuikChange Mutagenesis for MAX mutant library:

MAX Plasmid: We generated a MAX plasmid carrying the full sequence of the MAX transcription factor with a
c-terminal monomeric eGFP tag® separated from the MAX coding sequence via a gly-ser linker (GGSGGGGS).
We used Gibson assembly to clone the MAX-eGFP fusion into a purified, linearized PURExpress vector with
ampicillin resistance. The construct was sequenced validated using Sanger sequencing prior to generating
mutants.

Mutagenesis primer design: Primers encoding mutants were generated as described previously*’ using a
custom-made program, available at (https://github.com/FordycelLab/designQuikChangePrimers). Briefly, the
program takes as input the DNA sequence encoding the MAX ORF sequence and a list of desired mutants (e.g.
“A67D” for Ala 67 to Asp mutation), generates a set of candidate primers for each mutant, and returns
suggested mutagenic primer pairs scored according to criteria previously published in the QuikChange manual.
Primers were ordered in a 96-well plate format from IDT (Integrated DNA Technologies) at the 10nmol
synthesis scale with standard desalting purification; the forward and reverse primers for each mutant were
premixed in each well. For library design, pathogenic mutations and VUS were curated from clinical sequencing
databases as of March 2021.

Plate-based QuikChange mutagenesis: Mutagenesis reactions were performed as previously reported* in a 96-
well plate format. Each well contained its own mutagenesis reaction. Reactions were performed using the
QuikChange protocol as directed by the manufacturer (Agilent Technologies, New England Biolabs). Upon
completion of mutagenesis, we digested any remaining methylated wildtype plasmid using Dpnl (New England
Biolabs, RO176L) for 1 hour at 37°C. We then transformed 1puL of each reaction into SuL. of competent E. coli
DHS5alpha cells (New England Biolabs, C29871). Transformants were grown to saturation in 5-8mL of LB
media supplemented with ampicillin (100pg/mL) and miniprepped (Qiagen) for Sanger sequencing. To validate
successful mutagenesis, we aligned each sequence to the template ORF and ensured that only the intended
mutation was present in the plasmid. We re-picked colonies in the event of errant mutations elsewhere in
construct (eg. indels, additional mutations in plasmid), or poor sequencing quality.

Plasmid Array Printing:
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Plate preparation: Prior to printing plasmids, we transferred mini-prepped plasmid into 96-well plates. To
standardize volumes of plasmids, the wells were evaporated to dryness. We resuspended each plasmid with
50uL of Milli-Q water. Plasmids were transferred from 96-well plates into 384-well plates using a Biomek FX
Automated Workstation (Beckman Coulter, model A31843). Each plasmid was pipetted into 4 consecutive wells
within the 384-well plate, and each well of the 384-well plate contained 10uL of plasmid. We recorded positions
to keep track of empty wells for adding subsequent mutants manually.

We evaporated 384-well plates to dryness at room temperature and resuspended dried wells in print
bufter formulated as below:

e 1% (10mg/mL) Bovine Serum Albumin (Sigma Life Science, B4287-25G)
e 200mM (11.65 mg/mL) NaCl (Sigma Life Science, 71376-1KG)
e 12mg/mL trehalose dihydrate (Sigma Life Science, T9531-25G)

All reagents were combined in Milli-Q water and mixed to dissolution at room temperature and sterile
filtered to remove aggregates. To each well in the 384-well plate, we added 12-15uL of print buffer for arrayer
printing. When not in use, we sealed plasmid plates with foil covers and stored them at -20°C. Prior to printing,
plates were defrosted overnight at 4°C and centrifuged at 2000 RPM for 5-10 minutes. Over the course of
subsequent prints, we added ~3-5uL of Milli-Q water (or additional print buffer) as needed to ensure sufficient
volumes of sample in plates for printing.

Plasmid printing & device alignment: We printed plasmids using a SciFlex Arrayer (SCIENION AG) using
either the PDC50 or PDC70 nozzle (Type 1 coating). We generated a “field file” to map each well on a 384-well
plate to positions within the printed plasmid array. To prevent cross-contamination between plasmids, the glass
nozzle was washed with room temperature Milli-Q water in between spotting different plasmid samples. We
printed plasmid arrays on epoxysilane-coated glass slides (Arraylt SME2, SuperChip C50-5588-M20, or self-
coated as previously described®). After drying arrays overnight at room temperature, we aligned microfluidic
devices to “program” each chamber with its own plasmid spot. Prior to alignment, we pre-baked microfluidic
devices at 80°C for 20-25 minutes using a hotplate (Torrey Pines Scientific) and allowed them to cool to room
temperature. These devices were then baked for 4-4.5 hours at 95°C on a hotplate.

Preparation of DNA for fluorescence-based binding assays: We designed all DNA sequences for binding assays

with a 3° region complementary to a AlexaFluor-647 dye-conjugated primer (anneal temperature: 37°C) (See
Table S4).

Double-stranded DNA preparation and dilution: We ordered all DNA sequences as single-stranded
oligonucleotides from Integrated DNA Technologies (IDT) with standard desalting purification and shipped in
‘LabReady’ formulation (100uM in IDTE buffer, pH 8.0). We then duplexed these single-stranded DNA
sequences by (1) annealing the universal AlexaFluor-647-labeled primer to the 3’ region of the oligonucleotide
and (2) extension using the primer as a template using Klenow fragment, exo’, polymerase. Both steps (1) and
(2) were performed as previously described*.

After the Klenow extension, we filtered the DNA reactions using a 0.45um filter spin column. We
subsequently equilibrated duplexed DNA in the final assay buffer (10mM Tris-HCI, 100mM NaCl, ImM DTT,
pH 7.5; aliquoted and filtered using 0.45 mM Steriflip vacuum (Millipore, SEIM179M6)) using 10K filter spin
concentrator columns (Amicon Ultra, UFC501096). We added ~100uL of the duplexed DNA to the filter spin
columns, added 200puL of assay buffer, mixed by pipetting, and concentrated the reaction to 100uL by
centrifugation (9000RPM for 8 minutes). We repeated this process 5 times, and subsequently eluted the
equilibrated DNA via manufacturer’s instructions for the 10K filter spin concentrator column.

We serially diluted equilibrated DNA in final assay buffer as previously described”. For this dilution and
the subsequent assay, the assay buffer was supplemented with 50ug/mL of UltraPure BSA (ThermoFisher,
AM2618). To calibrate each step of the binding assay with a DNA concentration, we measured the highest
concentration of DNA using a DeNovix to measure absorbance at 260nm.

For all experiments involving a mutation within the core-site, we also performed this procedure for the
consensus DNA sequence 5’-C CACGTG A-3’. For these oligonucleotides, we measured binding isotherms for
5 DNA concentrations. For the sixth measurement, we introduced the duplexed and labeled reference DNA


https://doi.org/10.1101/2023.11.13.566946
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.13.566946; this version posted November 16, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

sequence at a high concentration (~7-9uM) so that we could accurately quantify the saturation ratio with which
to fit all binding isotherms.

Microscopy and instrumentation: We made measurements as previously described* using a Nikon Ti-S
microscope. Devices were controlled using a pneumatics manifold’. Custom scripting and automation enabled
integrated control of both the microscope and the pneumatics manifold
(https://github.com/FordyceLab/RunPack).

Measuring K4 values on-chip via STAMMP: Measuring K4 values on-chip have 3 major steps: (1) On-chip
expression and purification of MAX mutants, (2) titration of fluorescently labeled DNA, (3) image analysis and
calculation of Ky values.

On-chip expression & purification of MAX mutants: On-chip expression and purification require the
immobilization of expressed proteins for subsequent assay steps. To accomplish this, we took devices aligned to
printed plasmids and performed a series of passivation steps as described previously*® to immobilize
biotinylated anti-GFP antibodies selectively underneath the ‘button valves’ of the STAMMP microfluidic
device. As all TF variants are fused to a GFP, these antibodies will trap recruited TF variants for subsequent
assays.

To express all TF variants simultaneously, we used PURExpress (NEB E6800L). Briefly, we
equilibrated Parts A and B of PURExpress on ice until defrosted. For one device using 25uL total of
PURExpress, we first incubated 10uL of Part A with 7.5 pL of Part B on ice for 45 minutes. Then, we added
1.5uL of recombinant RNAsin (Promega N2515) and 6uL of nuclease-free water (Promega P1193) and mixed
by pipette until no phase separation was visible. We introduced PURExpress onto the device as previously
described*® Devices were then placed on a pre-heated hotplate at 37°C for 45 minutes to express all proteins.
We then placed devices on the scope and allowed the GFP to fold over the course of 45-60 minutes with the
button valves on the device closed. After this was completed, we opened the button valves and recruited GFP-
tagged protein to the antibodies for 20-30 minutes. We then closed the buttons to shield trapped TFs while we
washed the device with PBS and TrypLE (ThermoFisher 12604-013) to remove nonspecifically bound TFs from
the device walls. After this, we equilibrated the device with assay buffer to remove trace amounts of TrypLE
and to equilibrate proteins in assay buffer, composed as follows unless otherwise specified:

e 20 mM Tris-HCI pH 7.5 (from 100 mM stock)

e 100 mM NaCl (from 100 mM stock)

e 1 mM DTT (from 1 M stock) (Sigma-Aldrich, D9779)
e 50 ug/mL ultrapure BSA (ThermoFisher, AM2618)

DNA Binding measurements: Binding measurements were performed as described previously®. Briefly, we
introduced fluorescent DNA (prepared as described above) at 6 concentrations ranging between ~60nM to
~6uM on the device. For binding measurements with DNA sequences containing mutations within the core
binding site, only five concentration points were measured. For the sixth and final concentration point, we
measured DNA binding for the reference DNA sequence 5’-C CACGTG A-3’ at a high concentration to
determine DNA to protein fluorescence intensity ratio denoting saturation of all binding sites for global fitting
Kq values. For prewash Cy5 images, we imaged the device at multiple exposure times, ranging from 30 ms to
100 ms. We imaged postwash GFP images using an exposure time of 500 ms. For postwash Cy5 images, we
used exposure times of either 1200 ms or 3000 ms to ensure we did not collect measurements at a saturating
intensity.

Image analysis: Image analysis and calculation of Ky values were largely performed as previously described*.
Briefly, images were stitched using in-house Python packages ImageStitcher
(https://github.com/FordycelLab/ImageStitcher). These images were then analyzed using the ProcessingPack
package (https:/github.com/FordyceLab/ProcessingPack), largely as previously reported.

Briefly, to quantify affinities for each TF mutant binding to a given DNA sequence, we acquired per-
chamber calibration curves relating observed AlexaFluor-647 fluorescence to spectroscopically measured
dsDNA concentrations (Fig. S6), converted intensities to DNA concentrations based on orthogonal
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measurements using a DeNovix instrument, and then fit concentration-dependent binding curves as described
below.

To identify TF mutants with DNA binding statistically indistinguishable from background, we
compared Cy5 intensities from TF-containing chambers with those from blank chambers by repeated measures
ANOVA (providing a conservative estimate of mutants with detectable binding); we report measured Kgs for
these variants as a lower limit (Fig. S7, Table S3).

Calculation of Kq values: To fit dissociation constants, we first measured the amount of DNA bound to surface-
immobilized TF mutants over multiple concentrations and converted these to ratios of bound DNA intensities
(Cy5 channel) over immobilized TF (eGFP channel). We then applied a global fit to the measured DNA/TF
ratios and fit data from each individual chamber to single-site binding models'*.

Rpax - [DNA]
HAPRAD = %, + Towa)
(Rmax - C) ' [DNA]
RUPNAD = == = ToN 4]

Here, R is the intensity of DNA/TF as a function of DNA concentration within the chamber, Ry is the constant
shared across all chambers corresponding to the value at which all binding curves saturate (assuming an
identical molecular stoichiometry), [DNA] corresponds to the concentration of free DNA within the chamber,
and Ky is the dissociation constant for a particular chamber. We determined the Rimax value by taking the median
of the top 10% of DNA binding MAX mutants at the highest DNA concentration point in an experiment for the
reference DNA sequence; for experiments with a mutated DNA sequence, we measured the highest DNA
concentration point using a reference DNA sequence to prevent underestimation of Ruax.

In addition to fitting to a Langmuir isotherm, we fit our data to a modified single-site binding model
with an offset value, C, to correct for variations in background intensities between experiments that can affect
ratio values. The fitting method that minimized per-chamber RMSE of fits for each technical replicate was used
for final determination and export of K4 values.

Measuring k. values on-chip via k-STAMMP: At the end of a STAMMP binding assay, k¢ values can also be
optionally obtained. Measuring k.- values on-chip adds two additional steps to a STAMMP assay: (1) titration
of unlabeled DNA and (2) image analysis and calculation of kinetic constants.

Dissociation measurements: Dissociation rate data was acquired after equilibrium binding procedures largely as
previously described”'®. We first flushed each device with non-fluorescent (dark) competitor dsSDNA
oligonucleotides containing an E-box motif at a concentration of ~0.9 pM diluted in PBS for 10 minutes with
button valves closed after the acquisition of the “post-wash” image. These oligos were prepared with Klenow
polymerase as described above but with unlabeled primers. The inclusion of non-fluorescent (dark) competitor
at high concentrations during dissociation is critical to prevent rebinding of labeled material, which leads to
systematic underestimation of dissociation rates'.

Next, after stopping flow of unlabeled competitor dsDNA and closing sandwich valves, we then opened
the buttons for 2.0 seconds to allow dissociation of bound fluorescent DNA from surface-immobilized TF.
Finally, we closed buttons, flushed the device, and imaged in both the Cy5 and eGFP channels to quantify loss
of DNA binding and surface-bound TF, respectively. For each experiment, we iterated this process for 40 button
duty cycle iterations.

Calculation of kinetic constants: After acquiring and processing images as described for STAMMP assays,
kinetic constants (k.fr) were determined by first calculating the ratio (R) of “post-wash” DNA fluorescence
(Alexa 647) to “post-wash” GFP fluorescence per chamber at each time point. This ratio was then used to fit a
single exponential value:

R(t) = Ry e Forrt 4+ ¢
where R(t) is the fluorescence ratio as a function of time, k is the dissociation constant, and C is a constant term
which accounts for background fluorescence or non-specific sticking of DNA. From these fitted 4. values, we
can infer k,, through the definition of the dissociation constant from measured K4 and measured kofras
previously described'®!!:
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Data interpretation

Calculation of fold-reduction in binding from MITOMI measurements: To calculate fold-reduction in binding
for MAX and Pho4 from previous measurements®, we collected the measured affinities for all sequences with a
Hamming distance of one away from the consensus motif (Fig. 1E), compared these binding affinities to the
median of all consensus motif measurements (with variable flank nucleotides), and calculated and reported the
90™ percentile for fold-reduction in binding.

Thermodynamic modeling of coupled folding-and-binding equilibria: Thermodynamic model fitting and binding
simulations were defined by the following variables:

(1) H, the percentage of TF that is folded (helical) in solution.

(2) C, the percentage of TF that is unfolded (coil) in solution.

(3) D, the concentration of free DNA.

(4) Co (for Complex), the bound TF-DNA complex.

(5) pT (for total protein), the total amount of TF available in the reaction.

(6) dT (for total DNA), the total amount of DNA available in the reaction.

These variables were used to construct the following equations and define equilibrium constants:
(1) Mass balance equation for protein species, defined as:
pT=H+C+ Co
(2) Mass balance equation for DNA, defined as:
dT =D + Co

(3) Equilibrium constant defining partitioning between folded and unfolded states in the unbound state:
H
Krolg = —=
fold I

(4) True binding equilibrium constant, where only the folded (helical) form can complex with DNA:
H=x*D

27 (o

Developing a function for K g apparens: In a STAMMP experiment, only the total amount of free DNA, total
amount of immobilized TF, and fractional occupancy of bound TF-DNA complex is known; the distribution of
folded/unfolded unbound states and true values underlying equilibrium constants is not known. Therefore, first
we used the preceding 4 equations and sympy.solve to define: Co (pT, dT; Krora Kd), the concentration of
bound TF-DNA complexes as a function of total protein and DNA given the folding and binding equilibrium
constants, as follows:

Co(pT,dT; Kroa, Ka)

1
= E [dT + KdKfOld + Kd + pT

- Jde + ZdTKdKfOld + ZdTKd - ZdTpT + KC%Kfzold + ZKc%Kfold + Ké + ZKdKfOlde + ZdeT + pTZ]

For all subsequent calculations, pT was defined as 50 nM, based on previous estimates for the concentration of
immobilized protein on MITOMI microfluidic devices’. Apparent (measured) DNA-binding affinities were then
obtained by: (1) calculating equilibrium occupancy of Co at dT spanning from 0 to 10 uM, analogous to the

procedure for measuring binding affinities in STAMMP experiments, and then (2) defining the dT resulting in

IC)—; = 0.5 as the apparent DNA-binding Ky opparent-
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Defining changes in K414 for helicity-altering TF mutations: TF mutations that alter the propensity to fold or
unfold in the unbound state can also alter the observed DNA binding affinity. We assumed that all surveyed TF
mutations only change the free energy difference between the folded and unfolded state, changing K¢,;4 but not
K. The amount by which a TF mutation changes K¢,;4 can then be defined as the change in helical propensity
relative to WT TF, which changes the folding equilibrium as follows:

Kfold
Kfold,mutant = AAGrp
©—1.987+10-3%298
where AAGyp is defined as the change in helical propensity, which defines the free energy difference for

partitioning between unfolded and folded, helical states.

Fitting STAMMGP data to derived thermodynamic model: To first develop intuition for how Ky sue, Kfoia, and
AAGgp alter the range of Ky measurea for both WT and mutant TFs, we determined how the expected linear free
energy relationships between helical propensity-altering TF mutants and apparent DNA binding affinity impact
K measurea for TF mutations with intrinsic changes in helical propensity spanning —2.0 to 2.5 kcal/mol (Figures
S13 and S14).

Next, we fit Ky measurea for Max and Pho4 to the thermodynamic model defined for Co(Ky, Kfo1q, dT, pT) to
extract Kq e and Kpiafor WT TF (Figure S15). To accomplish this, we first restricted our analysis to TF
mutations in the basic region that do not make crystal contacts with DNA or at the dimerization interfaces, as
these mutants presumably alter Kgmeasures through mechanisms other than changes to Kye. Each of these TF
mutations was then defined to have a AAGup in accordance with previously measured changes in Gibbs free
energy for helix formation'?. Next, (for both MAX and Pho4) we calculated the RMSE of logo thermodynamic
model-predicted Kgmeasurea for all measured TF mutations to the STAMMP-derived logio Kameasurea for values of
K irue wrranging from 1 to 103.5 nM and values of Kyyiq wr where the fraction of unfolded TF in the unbound state
ranged from 99 to 1 percent. The fitted values of Ky e wrand Ky wrwere defined as those that minimized
RMSE for the mutations and Ky measuress measured via STAMMP relative to the thermodynamic model of
folding-and-binding. Code to reproduce all simulations and fitting procedures is available at https://osf.io/jmz8t.

Identification of “affinity-altering” mutations: To identify “affinity-altering” mutations, we: (1) calculated the
free energy change (AAG) imparted by each TF mutation on binding to each DNA sequence relative to WT
MAX and computed the variance across this set of 6 AAG values, (2) eliminated sequences with strongly
differential effects on AAGs by excluding MAX mutations in the top quartile of variance, and (3) excluded
mutations unresolvable from background binding to any DNA sequence (Fig. S7, Table S4) and mutations that
do not significantly alter affinities relative to WT MAX (p < 0.05 via independent T-test) in all measured E-Box
sequences (Figs. 3C, S29).

Identification of non-additive TF+DNA mutation pairs: Identifying epistasis across the TF-DNA interface
requires 4 affinity measurements: (1) WT TF binding a ‘reference’ DNA sequence, (2) mutant TF binding a
‘reference’ DNA sequence, (3) WT TF binding a ‘mutant” DNA sequence, and (4) mutant TF binding a ‘mutant’
DNA sequence. We then determined if each pair was statistically significantly non-additive in Kq space, largely
as previously reported®.

Briefly, to visualize the concentration-dependent binding behavior that would have been expected if the
energetic effects of TF and oligonucleotide mutations were purely additive, we first calculated an expected
‘additive’ K4 value using the median reference K¢ value (for WT TF interacting with the ‘reference’
oligonucleotide), the median K resulting from the relevant oligonucleotide mutation alone, and the median K4
resulting from the TF mutation alone as follows:

TFnut,DNAcaceTG KTFWTIDNAmut
K TFmuePNAmue _ Ka * Kq
4 =

TFwr,DNAcacGTG
Kd

To determine whether the candidate TF mutant appeared epistatic with the DNA nucleotide mutation, we used
measurements of (1) WT MAX and CACGTG, (2) WT MAX and mutant DNA, and (3) mutant MAX and WT
DNA to generate a distribution of additive Kq measurements (n=500 simulated additive measurements). We then


https://doi.org/10.1101/2023.11.13.566946
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.13.566946; this version posted November 16, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

performed an independent T-test comparing the distribution of ‘additive’ affinities with the experimentally
measured affinities for the double-mutant and used a p-value cut-off of 0.05 to define TF mutants that are
epistatic with DNA mutants.

Identification of “selective” MAX mutations: To identify mutations that differentially increase selectivity, we
computed residuals for each pairwise comparison between a mutated E-box motif and the CACGTG cognate,
calculated Z-scores for each residual (to account for the fact that residual distributions vary with absolute
affinity), and defined a ‘specificity score’ as the median of all Z-scores across each double mutant cycle
comparison (Figs. 4C, S35), with ‘selective’ mutations exceeding a threshold defined by the standard deviation
of the Gaussian fit to the residuals (Fig S37). Mutations which were unresolvable from background in the
cognate motif measurement (for which reported Kgs are underestimated) were excluded from the list of reported
‘selective’ mutations, and candidate ‘selective’ mutations were inspected and culled by eye.

Gillespie model of TF binding kinetics with one or more binding conformations

Gillespie algorithms are stochastic simulations based on reaction rates that use discrete molecule counts and
variable time steps'®. Here, we simulated TF “energetic specificity” using Gillespie models of different binding
pathways depicted in Fig. 6D and 6F. At each time step, we compute: (1) How long until the next reaction
occurs? and (2) Which reaction happens?

First, we calculated reaction propensities (a) from reaction probabilities (c) and the number of reactants
available for each reaction. Reaction probabilities can be derived from the kinetic rate constants as previously
described'. For all simulations, microscopic rate parameters previously estimated from CTMC modeling were
used as a starting estimation'”. In this model, we initialized with 1 molecule of MAX and DNA and set the
volume to 1.66*10'% pL (chosen for simplicity so simulated s™' values equal M s on-rate constants).

Observed off-rates (macroscopic koir) were calculated as the median value across 3 replicates of the
inverse of the average time it takes MAX to become fully dissociated once specifically bound; observed on-rates
(macroscopic ko) were calculated as the median value across 3 replicates of the inverse of the average time it
takes MAX to become specifically bound once dissociated in solution. The observed Kg is calculated as the ratio
between macroscopic on- and off-rates.

To calculate “energetic specificity”, we calculated kofr, kon, and Ky for a range of “motifs”, ranging from
“strongly” to “weakly” bound sequences. “Motif strength” is defined in all models by fi.:, an implicit
parameterization of the probability of binding such that an increase in fuoqr (tightly bound motifs) causes an
increase in association rate and a decrease in off-rate, as previously described'®'*. Given that all observed
specificity-increasing mutations do not occur at conserved nucleotide contacting residues, we assumed that TF
mutations do not change the intrinsic probability of recognizing a motif (fu..y) but instead only alter microscopic
rate parameters. Specificity was defined as the free energy difference between the “strongest” (fuoir= 0.99) and
“weakest” (fumoir = 0.01) motif surveyed. Code to reproduce all simulations is available at https://osf.io/jmz8t.

Sensitivity analysis for 3-state model: Reaction likelihoods were defined according to the 3-state model
consisting of unbound, testing, and bound states shown in Fig. 6D. Simulated kon, koft, and K4 values across 20
“motifs” of strengths ranging from f...;r= 0.99 to 0.01 were obtained by coarsely varying 3 free microscopic rate
constants kon, max, Koft max, and ko 4 across 4 orders of magnitude each in 10 step increments. For each
combination of free parameters, we simulated 3 independent trajectories with 10* reaction steps. The resulting
free energy difference between the tightest and weakest surveyed motifs was calculated.

Sensitivity analysis for 4-state model: Reaction likelihoods were defined according to the 4-state model
consisting of an unbound binding-incompetent conformation, an unbound binding-competent conformation,
testing states, and bound states shown in Fig. S55. Simulated k., ko5 and K, values across 20 “motifs” of
various strengths (from f...r = 0.99 to 0.01) were obtained by coarsely varying 3 free microscopic rate constants
kon, maxs Koff, max, and kog , across 4 orders of magnitude each in 10 step increments, and an additional equilibrium
folding constant Ky, (defined as ko, foia/(1- kon, o1a)) Over 5 increments (spanning percent folded in the unbound
state from 1 — 99%). For each combination of free parameters, we simulated 3 independent trajectories with 10*
reaction steps. The resulting free energy difference between the tightest and weakest surveyed motifs was
calculated to report selectivity.
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Sensitivity analysis for model with multiple bound conformations: Reaction likelihoods were defined
according to a 5-state model of consisting of unbound TF, a selective testing and bound state, and a promiscuous
testing and bound state (as shown in Fig. 6F). Simulated ko, ko5 and K4 values across 10 “motifs” of various
strengths (from fioir= 0.99 to 0.01) were obtained by coarsely varying 6 free microscopic rate constants kon, mas, s,
kofi max, s, Koff u, s Kon, max, py Ko, max, p, and kogr 1, p across 4 orders of magnitude each in 5 step increments. For each
combination of free parameters, we simulated 3 independent trajectories with 3*10° reaction steps. The resulting
free energy difference between the tightest and weakest surveyed motifs was calculated to report on selectivity.
For relevant parameter spaces, trajectories were re-simulated with 10* steps across 20 “motifs” with 5
independent replicates.
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