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Abstract: (290 words/300) 48 

Immunophenotyping via multi-marker assays significantly contributes to patient selection, 49 

therapeutic monitoring, biomarker discovery, and personalized treatments. Despite its potential, 50 

the multiplex immunofluorescence (mIF) technique faces adoption challenges due to technical and 51 

financial constraints. Alternatively, hematoxylin and eosin (H&E)-based prediction models of cell 52 

phenotypes can provide crucial insights into tumor-immune cell interactions and advance 53 

immunotherapy. Current methods mostly rely on manually annotated cell label ground truths, with 54 

limitations including high variability and substantial labor costs. To mitigate these issues, 55 

researchers are increasingly turning to digitized cell-level data for accurate in-situ cell type 56 

prediction. Typically, immunohistochemical (IHC) staining is applied to a tissue section serial to 57 

one stained with H&E. However, this method may introduce distortions and tissue section shifts, 58 

challenging the assumption of consistent cellular locations. Conversely, mIF overcomes these 59 

limitations by allowing for mIF and H&E staining on the same tissue section. Importantly, the 60 

multiplexing capability of mIF allows for a thorough analysis of the tumor microenvironment by 61 

quantifying multiple cell markers within the same tissue section. In this study, we introduce a 62 

Pix2Pix generative adversarial network (P2P-GAN)-based virtual staining model, using CD3+ T-63 

cells in lung cancer as a proof-of-concept. Using an independent CD3 IHC-stained lung cohort, 64 

we demonstrate that the model trained with cell label ground-truth from the same tissue section as 65 

H&E staining performed significantly better in both CD3+ and CD3- T-cell prediction. Moreover, 66 

the model also displayed prognostic significance on a public lung cohort, demonstrating its 67 

potential clinical utility. Notably, our proposed P2P-GAN virtual staining model facilitates image-68 

to-image translation, enabling further spatial analysis of the predicted immune cells, deepening 69 

our understanding of tumor-immune interactions, and propelling advancements in personalized 70 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2023. ; https://doi.org/10.1101/2023.11.12.565422doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.12.565422
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

immunotherapy. This concept holds potential for the prediction of other cell phenotypes, including 71 

CD4+, CD8+, and CD20+ cells.   72 

 73 

Introduction 74 

Immune phenotyping in tissue, facilitated by multi-marker assays such as mIF, plays a pivotal 75 

role in patient selection, treatment monitoring, biomarker discovery, and the development of 76 

targeted and personalized therapeutic strategies1,2,3. Nevertheless, the wider adoption of the mIF 77 

technique faces challenges as it remains inaccessible to many laboratories due to technical and 78 

time constraints or funding limitations. Conversely, the utilization of hematoxylin and eosin 79 

(H&E)-based prediction models present a viable alternative for generating data to enhance our 80 

comprehension of the intricate interactions within the immune system. Given that H&E staining 81 

is cost-effective and routinely performed in numerous histology laboratories, integrating H&E-82 

based prediction models into existing workflows can be achieved with relative ease. This approach 83 

has the potential to revolutionize the field of immunotherapy, opening new avenues for 84 

advancements in treatment strategies. 85 

Current studies of H&E-based approaches largely rely on manual annotated cell label ground 86 

truth4,5. For instance, a study by Wilde et al. demonstrated the use of deep learning (DL) to assess 87 

two prognostic risk parameters, OP-TIL and the multinucleation index (MuNI), in hematoxylin 88 

and eosin (H&E) stained slides from patients with oropharyngeal squamous cell carcinoma6. The 89 

group proposed two DL-based imaging biomarkers, namely OP-TIL, which quantitatively 90 

characterizes the spatial patterns between tumor infiltrating lymphocytes (TILs) and their 91 

surrounding cells7, while the MuNI quantifies the multinucleated tumor cells in epithelial regions8. 92 

Conditional generative adversarial network (cGAN) models were adopted for cell segmentation 93 

based on OP-TIL, and trained for in-silico computation of MuNI. This group also highlighted the 94 
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potential clinical importance of identification and tissue localization of TIL subtypes, such as those 95 

expressing CD4, CD8, and CD207. However, the applicability of these approaches was limited by 96 

the availability of manual annotation of TILs and multinucleated tumor cells by pathologists, with 97 

high inter- and intra-observer variability and high labor costs9.     98 

To address both inter- and intra-observer discrepancies in the annotation and scoring of cell 99 

phenotypes, there has been a growing interest in the utilization of digitized cell-level data as the 100 

definitive reference for predicting cell types in situ10. Commonly, immunohistochemical (IHC) 101 

staining is applied to a tissue section that is consecutive to another one stained with H&E, assuming 102 

that similar cells maintain identical locations across both sections. Yet, in conventional IHC 103 

methods, manual preparation can cause distortions, and heat fixation can shift the tissue section11, 104 

disrupting this assumption. Furthermore, achieving same-section ground truth is impeded by 105 

chromogenic IHC due to deposition of the brown chromogen 3,39-diaminobenzidine (DAB).  106 

Alternatively, multiplex immunofluorescence (mIF) overcomes these limitations, enabling 107 

staining on the same tissue section used for H&E staining. Crucially, mIF's multiplexing feature 108 

allows a comprehensive analysis of the tumor microenvironment (TME) by quantifying multiple 109 

cell markers within the same tissue section12. In the realm of immunotherapy, the simultaneous 110 

quantification of immune markers like CD3, CD4, CD8, cytokeratin, PD-1, and CTLA-4 within 111 

the same tissue space is critical for a comprehensive understanding of tumor-immune 112 

interactions13,14. Here, we propose a Pix2Pix generative adversarial network (P2P-GAN)-based 113 

virtual staining model, using CD3+ T-cells in lung cancer as the study model (Figure 1a). The 114 

choice of CD3+ T-cells highlights their significant role in lung cancer prognosis and 115 

treatment15,16,17. We hypothesize that the performance of the prediction model can be impacted by 116 

cellular differences in adjacent (non-identical) tissue sections. To test this hypothesis, we built and 117 
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compared two DL models, one trained using the CD3+ T-cell ground truth obtained by mIF staining 118 

of the same tissue section stained with H&E (abbreviated as same-section model; Figure 1b), while 119 

the other model was trained using the CD3+ T-cell ground truth obtained by mIF staining of the 120 

serial tissue section stained with H&E (abbreviated as serial-section model; Figure 1b).  121 

 122 

Materials/Subjects and Methods 123 

Cohorts 124 

This study was conducted using three lung cancer cohorts (2 in-house and 1 public). The 125 

training cohort consisted of formalin-fixed paraffin embedded (FFPE) tissues in the tissue 126 

microarray (TMA) format prepared in the Department of Anatomical Pathology of Singapore 127 

General Hospital (Agency of Science, Technology and Research (A*STAR) IRB: 2021-161, 2021-128 

188, 2021-112). The tissue sections were stained with H&E and mIF (anti-CD3 and DAPI for 129 

nuclear staining) in the Institute of Molecular and Cell Biology (IMCB) at the Agency for Science, 130 

Technology and Research, Singapore. Using this cohort, we prepared the same-section and serial-131 

section datasets. In the same-section dataset, 57 H&E and mIF image pairs were generated from 132 

the same tissue sections of the 57 patients. In the serial-section dataset, a separate set of H&E 133 

images were generated using tissue sections adjacent to the tissue sections used for the mIF 134 

staining.  135 

Separate in-house and public cohorts were used for evaluation of the model performance 136 

(Table 1). The in-house cohort comprised CD3 IHC-stained images along with H&E images 137 

generated from the corresponding serial-section in TMAs (designated the IHC cohort). The public 138 

cohort consisted of H&E-stained images (20 magnification) and the companion patient survival 139 
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data were downloaded from OncoSG (Singapore Oncology, Data Portal) (designated the Onco-140 

SG cohort). 141 

Tissue staining 142 

The FFPE tissues were sectioned (4 µm thickness) and heat-fixed at 65°C for 5 min before 143 

manual staining with hematoxylin (Epredia, Fisher Scientific, Porto Salvo, Portugal) and eosin 144 

(Epredia, Fisher Scientific, Gothenburg, Sweden). IHC staining was performed on the FFPE 145 

tissues (4 µm thickness) with anti-CD3 primary antibody (1:200; Dako A0452, Santa Clara, CA, 146 

USA) using the Leica Bond Max autostainer (Leica Biosystems, Melbourne, Australia) and Bond 147 

Refine Detection Kit (Leica Biosystems) as previously described19. The H&E and IHC stained 148 

slides were then scanned using the Axioscan.Z1 Slide Scanner (Zeiss, Oberkochen, Germany). 149 

Next, mIF staining was performed on the FFPE tissue sections (4 µm thickness) using the 150 

Leica Bond Max autostainer (Leica Biosystems, Melbourne, Australia), Bond Refine Detection 151 

Kit (Leica Biosystems) and Opal 6-Plex Detection Kit for Whole Slide Imaging (Akoya 152 

Biosciences, Marlborough, MA, USA) as previously described19. In brief, FFPE tissue sections 153 

were subjected to repeated cycles of heat-induced epitope retrieval, incubation with anti-CD3 154 

primary antibody (Dako #A0452), anti-rabbit poly-HRP-IgG (Ready-to-use; Leica Biosystems) 155 

and Opal tyramide signal amplification (TSA) (Akoya Biosciences). Spectral DAPI (49,6-156 

diamidino-2-phenylindole) (Akoya Biosciences) was applied as the final nuclear counterstain. 157 

Images were captured using the Vectra 3 Automated Quantitative Pathology Imaging System 158 

(Akoya Biosciences). After scanning, the mIF slides were subjected to H&E staining, followed by 159 

scanning on the Axioscan.Z1 Slide Scanner (Zeiss). 160 
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Ground truth cell labels 161 

For model training, ground truth cell labelling involved the identification of CD3+ cells in the 162 

H&E image space according to a series of steps. First, nuclei in the H&E image were identified 163 

using the StarDist Python library (pre-trained for H&E images)20. Second, nuclei and CD3+ regions 164 

in the mIF image were identified individually using the StarDist Python library (pre-trained for 165 

fluorescence images) based on DAPI staining and CD3 expression, respectively. These regions 166 

were then overlaid to identify CD3+ T-cells in the mIF image. Third, the CD3+ T-cells identified 167 

in the mIF image were matched to the closest nuclei in the H&E image stained on the same (post-168 

mIF H&E staining) or serial tissue section (designated same-section and serial-section datasets, 169 

respectively). The H&E image with CD3+ information (i.e., ground truth image) was then 170 

deconvoluted into red (R), green (G), and blue (B) channels representing the CD3+ T-cell, 171 

haematoxylin (H), and eosin (E) staining, respectively. Representation of the CD3+ T-cell 172 

information in a separate channel i.e., R, facilitates the identification of predicted CD3+ T-cells 173 

during model deployment. Considering that CD3 localizes to the cell membrane whereas DAPI 174 

staining is localized in the nucleus, Gaussian noise (kernel size 101) was applied to the R channel 175 

of the image to increase the spread of the CD3+ signals while keeping the maximum intensity at 176 

its center. This facilitates the identification of predicted CD3+ T-cells, which relies on an overlap 177 

between CD3 and DAPI intensities i.e., R and G channels. 178 

In the IHC testing dataset, CD3 signal localization in an IHC image was first determined by 179 

applying a threshold (value >100) to the DAB stain intensity, resulting in a binary mask where 1 180 

indicates CD3 detection and 0 indicates otherwise. The CD3 mask was then overlaid on the nuclei 181 

segmented in the paired H&E image to identify CD3+ T-cells (ground truth cell labels) according 182 

to the same procedure described for mIF dataset. In the Onco-SG testing dataset, two pathologists 183 
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(YZX and JPV) assessed the H&E images and scored the %TIL. Model performance was evaluated 184 

by comparing overall %CD3+ T-cell with the %TIL in individual patients by Spearman9s 185 

correlation analysis. We also assessed the 5-year overall survival association with the patient 186 

groups stratified using the mean DL-predicted %CD3+ T-cell versus the mean of the %TIL values 187 

determined by the two pathologists. If multiple images were available for the same patient, the 188 

patient-average %CD3+ T-cell or %TIL value was used. 189 

P2P-GAN model architecture 190 

A conventional GAN incorporates a generative network to produce image candidates and a 191 

discriminative network for their evaluation. The former network is trained to 8fool9 the latter, hence 192 

facilitating unsupervised learning by the model. The P2P-GAN is a variation of a conditional 193 

GAN, in which the generator output image is conditional on the input image, and hence is designed 194 

perfectly for the image-to-image translation task. In this study, we adopted the P2P-GAN 195 

architecture reported by Isola et al.21 in which a U-Net was used as the generator and a 196 

convolutional neural network (CNN) was used as the discriminator (Figure 2). Model training 197 

involved presenting the generator with stain-deconvoluted H&E images, while presenting the 198 

discriminator with ground truth images (i.e., stain-deconvoluted H&E images overlaid with mIF-199 

identified CD3+ T-cell information). These images were then compared with the generator 200 

predicted images to output a 3030 matrix for updating both the generator and discriminator 201 

(Figure 2; more details are provided below). 202 

Model training 203 

Two P2P-GAN models were trained using the same-section and serial-section training 204 

datasets (henceforth referred to as the same-section and serial-section models, respectively). Each 205 

image in the training dataset (Table 1) was divided into 256256 image patches (total 9,633 206 
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patches). Of these, 96% (9,249 patches) were used for model training and 4% (384 patches) were 207 

randomly selected for model testing (hereafter referred as the held-out subset). The generator and 208 

discriminator work in an adversarial fashion such that the respective losses are balanced out. The 209 

overall objective is to reach an optimum for the two conflicting goals, where the generator 210 

produces an output that is almost indistinguishable from the ground truth images, while the 211 

discriminator can distinguish images generated by the generator from ground truth images. 212 

Overall, three different types of losses must be minimized: LOSS 1, which measures the mean 213 

absolute difference between the generator output image and the ground truth image, is used to 214 

update the generator network; LOSS2/LOSS 3 and LOSS 4 measure the difference between the 215 

3030 feature matrix output from the discriminator with two 3030 target matrices, one of which 216 

contains all 0 digits and the other contains all 1 digits. This allows quantification of 8lack of 217 

capability9 and 8capability9, respectively, of the discriminator in distinguishing the generator 218 

output image; LOSS2 (essentially LOSS3) is feedback to the generator, while LOSS 3 and LOSS4 219 

are feedback to the discriminator (Figure 2). The training of both models involved 150 epochs with 220 

a batch size of 350. A regularization value of 100 was applied to LOSS 1 (i.e., the mean absolute 221 

loss). 222 

Model performance characteristics 223 

Model performance was quantified based on two key metrics, namely CD3+ and CD3- T-cell 224 

counts, and overall accuracy (defined as the ratio of correctly predicted CD3+ and CD3- T-cell 225 

counts to the total number of cells). The model-predicted CD3+ and CD3- T-cell counts were 226 

identified as shown in Figure 3. Specifically, model-predicted CD3 signals (represented in the red 227 

channel) were overlaid with the nuclei segmented from the input H&E image to identify the CD3+ 228 

T-cell, whereas nuclei (or cells) with no matching CD3 signals were deemed to be CD3- T cells. 229 
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The model-predicted CD3+ and CD3- T-cell values were then overlaid with the paired mIF 230 

(training cohort) or IHC (testing cohort) images to quantify the accurately predicted CD3+ and 231 

CD3- T-cell counts. 232 

 233 

Results 234 

Validating model performance using training samples  235 

As a sanity check, we assessed the model performance with the image patches used for training 236 

(Table 1; N = 57). Of note, the same-section and serial-section datasets were used for testing the 237 

same-section and serial-section models, respectively. The predicted CD3+ and CD3- T-cell counts 238 

from both same-section and serial-section models were highly comparable to the mIF-quantified 239 

CD3+ and CD3- T-cell counts (i.e., ground truth; all p < 0.005) with Pearson9s correlation >0.95 240 

(Figure 4a-d). However, based on the Mann-Whitney U-test, the same-section model outperformed 241 

the serial-section model by a slight margin in terms of overall accuracy (Figure 4e; p < 0.005). 242 

Performance comparison of same-section and serial-section models with held-out training cohort  243 

 We randomly selected 4% of image patches (384 patches) from the same-section training 244 

cohort for model testing. While model-predicted CD3+ and CD3- T-cell counts from both the same-245 

section and serial-section models were reasonably comparable to the mIF-quantified CD3+ and 246 

CD3- T-cell counts (i.e., ground truth) (all p < 0.005, Figure 5), same-section model predictions 247 

showed better concordance with the ground truth as compared with that of serial-section model 248 

(Pearson9s correlation coefficients 0.784 vs. 0.733, and 0.675 vs. 0.57, respectively; Figure 5a-d). 249 

Based on Mann-Whitney U-tests, there was no significant difference in the overall accuracy of the 250 

same-section and serial-section models (Figure 5e; p = 0.62). 251 
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Performance comparison of same-section and serial-section models on an independent IHC cohort 252 

(N = 48)  253 

In agreement with the results from the held-out cohort analysis, the CD3+ and CD3- T-cell 254 

counts predicted by both the same-section and serial-section models (Figure 6a) corresponded 255 

closely to the IHC-quantified counts, representing the ground truth (p < 0.005, Figures 6b-e). 256 

Importantly, the same-section model outperformed the serial-section model, displaying stronger 257 

correlations with the IHC ground truth (Figure 6b-c; CD3- T-cell r = 0.85 vs. 0.678; Figure 6d-e; 258 

CD3+ T-cell r = 0.886 vs. 0.798), and achieving a higher average accuracy (Figure 6f; mean 259 

accuracy = 0.92 vs. 0.65). 260 

 261 

Validating the prognostic association of model-predicted CD3+ T-cells 262 

Evaluation of the models9 performance on the public Onco-SG cohort (Figure 7a), composed 263 

of 204 lung samples (Table 1), revealed a significant correlation between model-predicted CD3 264 

patient groups and 5-year overall survival (Figure 7b; p = 0.013). This association was more 265 

pronounced than that observed when patient stratification was based on manual TIL scoring by 266 

two pathologists (Figure 7c-d; p = 0.3 and p = 0.06), suggesting the added value of our model in 267 

predicting patient outcomes. Nonetheless, the abundance of model-predicted CD3+ T-cells showed 268 

significant correspondence with the TIL scoring by both pathologists (Figure 7e; p < 0.05). 269 

 270 

Discussion   271 

In this study, we developed and examined P2P-GAN virtual staining models to predict CD3+ 272 

T-cells from low-cost digitized H&E images. A significant aspect of our investigation was the 273 

exploration of performance disparities that arise when ground truth cell labels are obtained from 274 

the same tissue section used for H&E staining, as opposed to a serial section. Our findings 275 

demonstrate that the model trained using the same-section approach consistently surpasses the 276 
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serial-section model. This superiority manifests as stronger correlations with mIF and IHC-277 

quantified CD3+ and CD3- T-cells, along with heightened overall prediction accuracies. It also 278 

reinforces the potential of the same-section model as a robust technique in histopathology-driven 279 

immune phenotyping. Crucially, our work also showcased the enhanced prognostic utility of our 280 

model-predicted CD3+ T-cell abundance when compared to traditional manual TIL scores. This 281 

emphasizes the clinical relevance of our proposed virtual staining model in a real-world setting, 282 

potentially facilitating improved patient stratification and treatment decision-making. A distinctive 283 

feature that sets our proposed model apart from traditional DL models for cell prediction is its 284 

capability for image-to-image translation, virtually staining the CD3 marker within the original 285 

H&E context. This has two major implications. First, it facilitates further downstream analysis of 286 

the TME and spatial interplay between predicted cell types and other cellular or tissue data derived 287 

from H&E through either pathological assessment or digital pathology. Second, it creates a new 288 

pathway for integrating incremental cell type predictions from different models onto the same 289 

H&E space. Collectively, these advancements could significantly enhance our understanding of 290 

the TME, potentially leading to the identification of novel spatial biomarkers or therapeutic targets. 291 

While our proposed approach has yielded encouraging results, it is important to acknowledge 292 

its inherent limitations. First, our current model is designed specifically for CD3+ T-cells 293 

prediction from H&E images and may not generalize well to other cell types or markers without 294 

significant adjustments or retraining. Additionally, its performance may be compromised when 295 

applied to tumor types beyond lung cancer. Second, the application of this model is largely limited 296 

to high-quality digital slides. Its performance may be affected by variations in tissue preparation, 297 

staining procedures, and image acquisition methods across different laboratories. Nevertheless, the 298 

clinical significance of our model has been validated using a publicly available lung cohort. Lastly, 299 
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despite overall robust performance, we noted outliers in our model's predictions, indicating 300 

potential areas for improvement. These discrepancies suggest complex, unaddressed variables 301 

within biological samples that need further investigation. Future endeavors should focus on 302 

understanding these outlier causes, refining modeling techniques, and incorporating larger, more 303 

diverse datasets for improved generalizability and outlier management. 304 

In conclusion, our thorough exploration into the necessity of employing ground truth cell 305 

labels from identical tissue sections in a CD3+ T-cell prediction model signifies a notable advance 306 

in the domain of H&E-based virtual staining research. Our novel image-to-image translation 307 

capability paves the way for in-depth TME analyses. Combined with the potential of predicting 308 

refined cell types via the mIF technique, our model unveils exciting new possibilities for biomarker 309 

discovery and the advancement of therapeutic strategies. While certain limitations are observed, 310 

these challenges underscore the direction for future investigations, the results of which could 311 

greatly enhance the prediction accuracy and clinical applicability of this innovative approach. 312 
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