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Abstract: (290 words/300)

Immunophenotyping via multi-marker assays significantly contributes to patient selection,
therapeutic monitoring, biomarker discovery, and personalized treatments. Despite its potential,
the multiplex immunofluorescence (mIF) technique faces adoption challenges due to technical and
financial constraints. Alternatively, hematoxylin and eosin (H&E)-based prediction models of cell
phenotypes can provide crucial insights into tumor-immune cell interactions and advance
immunotherapy. Current methods mostly rely on manually annotated cell label ground truths, with
limitations including high variability and substantial labor costs. To mitigate these issues,
researchers are increasingly turning to digitized cell-level data for accurate in-situ cell type
prediction. Typically, immunohistochemical (IHC) staining is applied to a tissue section serial to
one stained with H&E. However, this method may introduce distortions and tissue section shifts,
challenging the assumption of consistent cellular locations. Conversely, mIF overcomes these
limitations by allowing for mIF and H&E staining on the same tissue section. Importantly, the
multiplexing capability of mIF allows for a thorough analysis of the tumor microenvironment by
quantifying multiple cell markers within the same tissue section. In this study, we introduce a
Pix2Pix generative adversarial network (P2P-GAN)-based virtual staining model, using CD3" T-
cells in lung cancer as a proof-of-concept. Using an independent CD3 IHC-stained lung cohort,
we demonstrate that the model trained with cell label ground-truth from the same tissue section as
H&E staining performed significantly better in both CD3* and CD3" T-cell prediction. Moreover,
the model also displayed prognostic significance on a public lung cohort, demonstrating its
potential clinical utility. Notably, our proposed P2P-GAN virtual staining model facilitates image-
to-image translation, enabling further spatial analysis of the predicted immune cells, deepening

our understanding of tumor-immune interactions, and propelling advancements in personalized
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immunotherapy. This concept holds potential for the prediction of other cell phenotypes, including

CD4*, CD8", and CD20" cells.

Introduction

Immune phenotyping in tissue, facilitated by multi-marker assays such as mlF, plays a pivotal
role in patient selection, treatment monitoring, biomarker discovery, and the development of
targeted and personalized therapeutic strategies'>*. Nevertheless, the wider adoption of the mIF
technique faces challenges as it remains inaccessible to many laboratories due to technical and
time constraints or funding limitations. Conversely, the utilization of hematoxylin and eosin
(H&E)-based prediction models present a viable alternative for generating data to enhance our
comprehension of the intricate interactions within the immune system. Given that H&E staining
is cost-effective and routinely performed in numerous histology laboratories, integrating H&E-
based prediction models into existing workflows can be achieved with relative ease. This approach
has the potential to revolutionize the field of immunotherapy, opening new avenues for
advancements in treatment strategies.

Current studies of H&E-based approaches largely rely on manual annotated cell label ground
truth*>. For instance, a study by Wilde et al. demonstrated the use of deep learning (DL) to assess
two prognostic risk parameters, OP-TIL and the multinucleation index (MuNI), in hematoxylin
and eosin (H&E) stained slides from patients with oropharyngeal squamous cell carcinoma®. The
group proposed two DL-based imaging biomarkers, namely OP-TIL, which quantitatively
characterizes the spatial patterns between tumor infiltrating lymphocytes (TILs) and their
surrounding cells’, while the MuNI quantifies the multinucleated tumor cells in epithelial regions®.

Conditional generative adversarial network (cGAN) models were adopted for cell segmentation

based on OP-TIL, and trained for in-silico computation of MuNI. This group also highlighted the
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95  potential clinical importance of identification and tissue localization of TIL subtypes, such as those

96  expressing CD4, CD8, and CD20’. However, the applicability of these approaches was limited by

97  the availability of manual annotation of TILs and multinucleated tumor cells by pathologists, with

98  high inter- and intra-observer variability and high labor costs’.

99 To address both inter- and intra-observer discrepancies in the annotation and scoring of cell
100  phenotypes, there has been a growing interest in the utilization of digitized cell-level data as the
101  definitive reference for predicting cell types in situ'’. Commonly, immunohistochemical (IHC)
102 staining is applied to a tissue section that is consecutive to another one stained with H&E, assuming
103  that similar cells maintain identical locations across both sections. Yet, in conventional IHC
104  methods, manual preparation can cause distortions, and heat fixation can shift the tissue section'!,
105  disrupting this assumption. Furthermore, achieving same-section ground truth is impeded by
106  chromogenic IHC due to deposition of the brown chromogen 3,3’-diaminobenzidine (DAB).

107 Alternatively, multiplex immunofluorescence (mIF) overcomes these limitations, enabling
108  staining on the same tissue section used for H&E staining. Crucially, mIF's multiplexing feature
109  allows a comprehensive analysis of the tumor microenvironment (TME) by quantifying multiple
110 cell markers within the same tissue section'?. In the realm of immunotherapy, the simultaneous
111 quantification of immune markers like CD3, CD4, CD8, cytokeratin, PD-1, and CTLA-4 within
112 the same tissue space is critical for a comprehensive understanding of tumor-immune
113 interactions'*!'*. Here, we propose a Pix2Pix generative adversarial network (P2P-GAN)-based
114 virtual staining model, using CD3* T-cells in lung cancer as the study model (Figure 1a). The
115 choice of CD3" T-cells highlights their significant role in lung cancer prognosis and
116  treatment'>'®!7. We hypothesize that the performance of the prediction model can be impacted by

117  cellular differences in adjacent (non-identical) tissue sections. To test this hypothesis, we built and
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118  compared two DL models, one trained using the CD3* T-cell ground truth obtained by mIF staining
119  of the same tissue section stained with H&E (abbreviated as same-section model; Figure 1b), while
120  the other model was trained using the CD3* T-cell ground truth obtained by mIF staining of the
121  serial tissue section stained with H&E (abbreviated as serial-section model; Figure 1b).

122

123 Materials/Subjects and Methods

124 Cohorts

125 This study was conducted using three lung cancer cohorts (2 in-house and 1 public). The
126  training cohort consisted of formalin-fixed paraffin embedded (FFPE) tissues in the tissue
127  microarray (TMA) format prepared in the Department of Anatomical Pathology of Singapore
128  General Hospital (Agency of Science, Technology and Research (A*STAR) IRB: 2021-161, 2021-
129 188, 2021-112). The tissue sections were stained with H&E and mIF (anti-CD3 and DAPI for
130  nuclear staining) in the Institute of Molecular and Cell Biology (IMCB) at the Agency for Science,
131  Technology and Research, Singapore. Using this cohort, we prepared the same-section and serial-
132 section datasets. In the same-section dataset, 57 H&E and mIF image pairs were generated from
133 the same tissue sections of the 57 patients. In the serial-section dataset, a separate set of H&E
134 images were generated using tissue sections adjacent to the tissue sections used for the mlF
135  staining.

136 Separate in-house and public cohorts were used for evaluation of the model performance
137  (Table 1). The in-house cohort comprised CD3 IHC-stained images along with H&E images
138  generated from the corresponding serial-section in TMAs (designated the IHC cohort). The public

139 cohort consisted of H&E-stained images (20x magnification) and the companion patient survival
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140  data were downloaded from OncoSG (Singapore Oncology, Data Portal) (designated the Onco-
141  SG cohort).

142  Tissue staining

143 The FFPE tissues were sectioned (4 um thickness) and heat-fixed at 65°C for 5 min before
144 manual staining with hematoxylin (Epredia, Fisher Scientific, Porto Salvo, Portugal) and eosin
145  (Epredia, Fisher Scientific, Gothenburg, Sweden). IHC staining was performed on the FFPE
146  tissues (4 um thickness) with anti-CD3 primary antibody (1:200; Dako A0452, Santa Clara, CA,
147  USA) using the Leica Bond Max autostainer (Leica Biosystems, Melbourne, Australia) and Bond
148  Refine Detection Kit (Leica Biosystems) as previously described!”. The H&E and IHC stained
149 slides were then scanned using the Axioscan.Z1 Slide Scanner (Zeiss, Oberkochen, Germany).

150 Next, mIF staining was performed on the FFPE tissue sections (4 pm thickness) using the
151 Leica Bond Max autostainer (Leica Biosystems, Melbourne, Australia), Bond Refine Detection
152 Kit (Leica Biosystems) and Opal 6-Plex Detection Kit for Whole Slide Imaging (Akoya
153  Biosciences, Marlborough, MA, USA) as previously described'. In brief, FFPE tissue sections
154  were subjected to repeated cycles of heat-induced epitope retrieval, incubation with anti-CD3
155  primary antibody (Dako #A0452), anti-rabbit poly-HRP-IgG (Ready-to-use; Leica Biosystems)
156 and Opal tyramide signal amplification (TSA) (Akoya Biosciences). Spectral DAPI (4°,6-
157  diamidino-2-phenylindole) (Akoya Biosciences) was applied as the final nuclear counterstain.
158  Images were captured using the Vectra 3 Automated Quantitative Pathology Imaging System
159  (Akoya Biosciences). After scanning, the mIF slides were subjected to H&E staining, followed by

160  scanning on the Axioscan.Z1 Slide Scanner (Zeiss).
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161 Ground truth cell labels

162 For model training, ground truth cell labelling involved the identification of CD3" cells in the
163  H&E image space according to a series of steps. First, nuclei in the H&E image were identified
164  using the StarDist Python library (pre-trained for H&E images)*°. Second, nuclei and CD3* regions
165 in the mIF image were identified individually using the StarDist Python library (pre-trained for
166  fluorescence images) based on DAPI staining and CD3 expression, respectively. These regions
167  were then overlaid to identify CD3" T-cells in the mIF image. Third, the CD3" T-cells identified
168  in the mIF image were matched to the closest nuclei in the H&E image stained on the same (post-
169  mlF H&E staining) or serial tissue section (designated same-section and serial-section datasets,
170  respectively). The H&E image with CD3* information (i.e., ground truth image) was then
171  deconvoluted into red (R), green (G), and blue (B) channels representing the CD3* T-cell,
172 haematoxylin (H), and eosin (E) staining, respectively. Representation of the CD3*" T-cell
173  information in a separate channel i.e., R, facilitates the identification of predicted CD3* T-cells
174 during model deployment. Considering that CD3 localizes to the cell membrane whereas DAPI
175  staining is localized in the nucleus, Gaussian noise (kernel size 101) was applied to the R channel
176  of the image to increase the spread of the CD3" signals while keeping the maximum intensity at
177  its center. This facilitates the identification of predicted CD3" T-cells, which relies on an overlap
178  between CD3 and DAPI intensities i.e., R and G channels.

179 In the IHC testing dataset, CD3 signal localization in an IHC image was first determined by
180  applying a threshold (value >100) to the DAB stain intensity, resulting in a binary mask where 1
181  indicates CD3 detection and 0 indicates otherwise. The CD3 mask was then overlaid on the nuclei
182  segmented in the paired H&E image to identify CD3" T-cells (ground truth cell labels) according

183  to the same procedure described for mIF dataset. In the Onco-SG testing dataset, two pathologists
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184  (YZXand JPV) assessed the H&E images and scored the % TIL. Model performance was evaluated
185 by comparing overall %CD3" T-cell with the %TIL in individual patients by Spearman’s
186  correlation analysis. We also assessed the 5-year overall survival association with the patient
187  groups stratified using the mean DL-predicted %CD3" T-cell versus the mean of the %TIL values
188  determined by the two pathologists. If multiple images were available for the same patient, the
189  patient-average %CD3" T-cell or %TIL value was used.

190 P2P-GAN model architecture

191 A conventional GAN incorporates a generative network to produce image candidates and a
192  discriminative network for their evaluation. The former network is trained to ‘fool’ the latter, hence
193  facilitating unsupervised learning by the model. The P2P-GAN is a variation of a conditional
194 GAN, in which the generator output image is conditional on the input image, and hence is designed
195  perfectly for the image-to-image translation task. In this study, we adopted the P2P-GAN
196  architecture reported by Isola et al?! in which a U-Net was used as the generator and a
197  convolutional neural network (CNN) was used as the discriminator (Figure 2). Model training
198  involved presenting the generator with stain-deconvoluted H&E images, while presenting the
199  discriminator with ground truth images (i.e., stain-deconvoluted H&E images overlaid with mIF-
200  identified CD3* T-cell information). These images were then compared with the generator
201  predicted images to output a 30x30 matrix for updating both the generator and discriminator
202  (Figure 2; more details are provided below).

203  Model training

204 Two P2P-GAN models were trained using the same-section and serial-section training
205  datasets (henceforth referred to as the same-section and serial-section models, respectively). Each

206  image in the training dataset (Table 1) was divided into 256x256 image patches (total 9,633
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207  patches). Of these, 96% (9,249 patches) were used for model training and 4% (384 patches) were
208  randomly selected for model testing (hereafter referred as the held-out subset). The generator and
209  discriminator work in an adversarial fashion such that the respective losses are balanced out. The
210  overall objective is to reach an optimum for the two conflicting goals, where the generator
211  produces an output that is almost indistinguishable from the ground truth images, while the
212 discriminator can distinguish images generated by the generator from ground truth images.
213 Overall, three different types of losses must be minimized: LOSS 1, which measures the mean
214  absolute difference between the generator output image and the ground truth image, is used to
215  update the generator network; LOSS2/LOSS 3 and LOSS 4 measure the difference between the
216  30x30 feature matrix output from the discriminator with two 30x30 target matrices, one of which
217  contains all 0 digits and the other contains all 1 digits. This allows quantification of ‘lack of
218  capability’ and ‘capability’, respectively, of the discriminator in distinguishing the generator
219  output image; LOSS2 (essentially LOSS3) is feedback to the generator, while LOSS 3 and LOSS4
220  are feedback to the discriminator (Figure 2). The training of both models involved 150 epochs with
221  abatch size of 350. A regularization value of 100 was applied to LOSS 1 (i.e., the mean absolute
222 loss).

223  Model performance characteristics

224 Model performance was quantified based on two key metrics, namely CD3* and CD3" T-cell
225  counts, and overall accuracy (defined as the ratio of correctly predicted CD3* and CD3" T-cell
226  counts to the total number of cells). The model-predicted CD3* and CD3" T-cell counts were
227  identified as shown in Figure 3. Specifically, model-predicted CD3 signals (represented in the red
228  channel) were overlaid with the nuclei segmented from the input H&E image to identify the CD3*

229  T-cell, whereas nuclei (or cells) with no matching CD3 signals were deemed to be CD3 T cells.

10
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230  The model-predicted CD3* and CD3" T-cell values were then overlaid with the paired mIF
231  (training cohort) or IHC (testing cohort) images to quantify the accurately predicted CD3* and
232 CD3" T-cell counts.

233
234  Results

235  Validating model performance using training samples

236 As a sanity check, we assessed the model performance with the image patches used for training
237  (Table 1; N = 57). Of note, the same-section and serial-section datasets were used for testing the
238  same-section and serial-section models, respectively. The predicted CD3* and CD3" T-cell counts
239  from both same-section and serial-section models were highly comparable to the mIF-quantified
240  CD3* and CD3 T-cell counts (i.e., ground truth; all p < 0.005) with Pearson’s correlation >0.95
241 (Figure 4a-d). However, based on the Mann-Whitney U-test, the same-section model outperformed

242 the serial-section model by a slight margin in terms of overall accuracy (Figure 4e; p < 0.005).

243 Performance comparison of same-section and serial-section models with held-out training cohort

244 We randomly selected 4% of image patches (384 patches) from the same-section training
245  cohort for model testing. While model-predicted CD3" and CD3" T-cell counts from both the same-
246  section and serial-section models were reasonably comparable to the mIF-quantified CD3* and
247  CD3 T-cell counts (i.e., ground truth) (all p < 0.005, Figure 5), same-section model predictions
248  showed better concordance with the ground truth as compared with that of serial-section model
249  (Pearson’s correlation coefficients 0.784 vs. 0.733, and 0.675 vs. 0.57, respectively; Figure Sa-d).
250  Based on Mann-Whitney U-tests, there was no significant difference in the overall accuracy of the

251  same-section and serial-section models (Figure Se; p = 0.62).

11
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252  Performance comparison of same-section and serial-section models on an independent IHC cohort

253 (N =48)

254 In agreement with the results from the held-out cohort analysis, the CD3* and CD3" T-cell
255  counts predicted by both the same-section and serial-section models (Figure 6a) corresponded
256  closely to the IHC-quantified counts, representing the ground truth (p < 0.005, Figures 6b-e).
257  Importantly, the same-section model outperformed the serial-section model, displaying stronger
258  correlations with the IHC ground truth (Figure 6b-c; CD3" T-cell r = 0.85 vs. 0.678; Figure 6d-¢;
259  CD3* T-cell r = 0.886 vs. 0.798), and achieving a higher average accuracy (Figure 6f; mean
260  accuracy = 0.92 vs. 0.65).

261

262  Validating the prognostic association of model-predicted CD3* T-cells

263 Evaluation of the models’ performance on the public Onco-SG cohort (Figure 7a), composed
264  of 204 lung samples (Table 1), revealed a significant correlation between model-predicted CD3
265  patient groups and S-year overall survival (Figure 7b; p = 0.013). This association was more
266  pronounced than that observed when patient stratification was based on manual TIL scoring by
267  two pathologists (Figure 7c-d; p = 0.3 and p = 0.06), suggesting the added value of our model in
268  predicting patient outcomes. Nonetheless, the abundance of model-predicted CD3* T-cells showed
269  significant correspondence with the TIL scoring by both pathologists (Figure 7e; p < 0.05).

270
271  Discussion

272 In this study, we developed and examined P2P-GAN virtual staining models to predict CD3*
273 T-cells from low-cost digitized H&E images. A significant aspect of our investigation was the
274  exploration of performance disparities that arise when ground truth cell labels are obtained from
275  the same tissue section used for H&E staining, as opposed to a serial section. Our findings

276  demonstrate that the model trained using the same-section approach consistently surpasses the

12
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277  serial-section model. This superiority manifests as stronger correlations with mIF and ITHC-
278  quantified CD3*" and CD3" T-cells, along with heightened overall prediction accuracies. It also
279  reinforces the potential of the same-section model as a robust technique in histopathology-driven
280  immune phenotyping. Crucially, our work also showcased the enhanced prognostic utility of our
281  model-predicted CD3* T-cell abundance when compared to traditional manual TIL scores. This
282  emphasizes the clinical relevance of our proposed virtual staining model in a real-world setting,
283  potentially facilitating improved patient stratification and treatment decision-making. A distinctive
284  feature that sets our proposed model apart from traditional DL models for cell prediction is its
285  capability for image-to-image translation, virtually staining the CD3 marker within the original
286  H&E context. This has two major implications. First, it facilitates further downstream analysis of
287  the TME and spatial interplay between predicted cell types and other cellular or tissue data derived
288  from H&E through either pathological assessment or digital pathology. Second, it creates a new
289  pathway for integrating incremental cell type predictions from different models onto the same
290  H&E space. Collectively, these advancements could significantly enhance our understanding of
291  the TME, potentially leading to the identification of novel spatial biomarkers or therapeutic targets.
292 While our proposed approach has yielded encouraging results, it is important to acknowledge
293 its inherent limitations. First, our current model is designed specifically for CD3* T-cells
294  prediction from H&E images and may not generalize well to other cell types or markers without
295  significant adjustments or retraining. Additionally, its performance may be compromised when
296  applied to tumor types beyond lung cancer. Second, the application of this model is largely limited
297  to high-quality digital slides. Its performance may be affected by variations in tissue preparation,
298  staining procedures, and image acquisition methods across different laboratories. Nevertheless, the

299  clinical significance of our model has been validated using a publicly available lung cohort. Lastly,
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300 despite overall robust performance, we noted outliers in our model's predictions, indicating
301  potential areas for improvement. These discrepancies suggest complex, unaddressed variables
302  within biological samples that need further investigation. Future endeavors should focus on
303  understanding these outlier causes, refining modeling techniques, and incorporating larger, more
304  diverse datasets for improved generalizability and outlier management.

305 In conclusion, our thorough exploration into the necessity of employing ground truth cell
306 labels from identical tissue sections in a CD3" T-cell prediction model signifies a notable advance
307  in the domain of H&E-based virtual staining research. Our novel image-to-image translation
308  capability paves the way for in-depth TME analyses. Combined with the potential of predicting
309  refined cell types via the mIF technique, our model unveils exciting new possibilities for biomarker
310 discovery and the advancement of therapeutic strategies. While certain limitations are observed,
311  these challenges underscore the direction for future investigations, the results of which could
312 greatly enhance the prediction accuracy and clinical applicability of this innovative approach.
313
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Figure 1: Schematic diagram of the study protocol. a) Preparation of samples and ground truth

for both serial-section and same-section datasets; b) Construction and training of two P2P-GAN

DL models utilizing the serial-section and same-section datasets; ¢) Validation of DL model

performance using an independent in-house IHC cohort and an external lung cancer cohort.
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Figure 2: P2P-GAN model architecture and parameter updating process during model training.
Two key components, namely the generator, which inputs the H&E image patch and generates
(predicts) CD3+ signals on the input image, and its adversary, the discriminator, which
distinguishes the generator output from the image with true CD3+ signals (ground truth). The

adversarial nature of the network enables the generator to produce good predictions.
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Figure 4: Model performance evaluation using the corresponding training cohorts (i.e., same-
section and serial-section datasets, respectively). Comparison of model-predicted (a-b) CD3"
and (c-d) CD3" cell (y-axis) counts with mIF-quantified CD3" cell counts (x-axis) using
Pearson’s correlation analysis. (e) Overall accuracy comparison between the model prediction
accuracy (y-axis) of the same-section (left) and serial-section (right) models, using the
randomly selected held-out samples from the same-section training cohort based on Mann-

Whitney U-tests; each dot represents an image patch.
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Figure 5: Model performance evaluation using the randomly selected held-out samples from

the same-section training cohort. Comparison of model-predicted (a-b) CD3 and (c-d) CD3"

cell (y-axis) counts with mIF-quantified CD3" cell counts (x-axis) using Pearson’s correlation

analysis. (e) Overall accuracy comparison between the model prediction accuracy (y-axis) of

the same-section (left) and serial-section (right) models, using the randomly selected held-out

samples from the same-section training cohort based on Mann-Whitney U-tests; each dot

represents an image patch.
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Figure 6: Model performance evaluation using the randomly selected held-out samples from

the same-section training cohort with representative images along with model predicted CD3"

T-cell visualization in (a). Comparison of model-predicted (b-c) CD3"and (d-e) CD3" (y-axis)

cell counts with mIF-quantified CD3" cell counts (x-axis) using Pearson’s correlation. (f)

Overall accuracy comparison between the model prediction accuracy (y-axis) of the same-

section (left) and serial-section (right) models, using the randomly selected held-out samples


https://doi.org/10.1101/2023.11.12.565422
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.12.565422; this version posted November 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

from the same-section trainfflCSHELEHHsed GHMIRAL- WARHH? (556ts; each dot represents an

image patch.

(a)

(b) (c) (d)

Deep learning model prediction Pathologist 1's scoring Pathologist 2’s scoring

> Mean CD3* T-cell % 1.00 > Mean CD3* T-cell % > Mean CD3* T-cell %
! 0.75
< Mean CD3* T-cell % < Mean CD3"* T-cell %

< Mean CD3* T-cell %
p=0.013 p=0.061

°

S
b
S

°
3
o

°

5

o

o o
5 2
Survival probability
Survival probability
g

Survival probability
°
b

p=0.3

°
°
S
o
2
3
°
°
S

3 2 3
Time (years) Time (years)
Number at risk Number at risk Number at risk

- 97 88 76 50 40 24

T|?ne (yea?s)

== 118 108 92 67 51 30 =120 111 91 65 48 30

Strata
Strata
Strata

== 107 102 90 60 44 29 - 86 82 74 43 33 23 ==84 79 75 45 36 23

6o 1 _2 3 4 5 6 1 _2 3 4 5 6 1 2 3 4 5
Time (years) Time (years) Time (years)
(e) Pathologist 1 Pathologist 2
Same-section P < 0.05 (tho =|P < 0.05 (tho =
model 0.18) 0.16)
Serial-section P < 0.05 (tho =|P < 0.05 (tho =
model 0.22) 0.20)

Figure 7: Model performance evaluation using an external lung cohort, with representative
images along with model predicted CD3" T-cell visualization in (a). Survival analyses using
the external lung cohort show (b) significant association between (same-section) model-
predicted CD3 patient groups (low versus high %CD3 " abundance groups based on the average
%CD3" T-cell counts), while no significant association was observed with the use of manual
TIL scoring by (c) pathologist 1, and (d) pathologist 2. (¢) Spearman correlation of the
prediction of CD3" densities using the same- and serial-section models with the manual TIL

density scoring by two independent pathologists.


https://doi.org/10.1101/2023.11.12.565422
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 1: Cohort characteristics

Number of Images fmage . Image size
Dataset type . per . Tissue format .
patients . modalities (pixels)
patient
mlF training dataset 57 for both the
Same.'sle"t‘ot‘? and || HgEandmIF | TMA cores 32283228
(same- and serial-section) setial-section
datasets
IHC testing dataset (serial- Approximately
section) 48 1 H&E and THC TMA cores 400074000
Region of
Onco-SG testing dataset!® 204 1-3 H&E interest in 1792768

resected tissues
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