

1 **Title: Assessment of an AI virtual staining model performance across same and serial tissue**
2 **sections using CD3⁺ T cell ground truth**

3

4 **Abu Bakr Azam^{1†}, Felicia Wee^{2†}, Juha P. Väyrynen³, Willa Wen-You Yim², Yue Zhen**
5 **Xue², Bok Leong Chua¹, Jeffrey Chun Tatt Lim², Daniel Shao Weng Tan⁴, Angela**
6 **Takano⁵, Chun Yuen Chow⁵, Li Yan Khor⁵, Tony Kiat Hon Lim⁵, Joe Yeong^{2,5*}, Mai Chan**
7 **Lau^{6,7*}, Yiyu Cai^{1*}**

8 ¹School of Mechanical and Aerospace Engineering, Nanyang Technological University,
9 Singapore 639798

10 ²Institute of Molecular and Cell Biology, Agency for Science, Technology and Research
11 (A*STAR), Singapore 138673

12 ³Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University
13 Hospital, and University of Oulu, POB 5000, 90014 Oulu, Finland

14 ⁴Division of Medical Oncology, National Cancer Centre, Singapore 168583

15 ⁵Department of Anatomical Pathology, Division of Pathology, Singapore General Hospital,
16 Singapore 169856

17 ⁶Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30
18 Biopolis Street, Matrix, Singapore 138671, Republic of Singapore

19 ⁷Singapore Immunology Network (SIgN), Agency for Science, Technology and Research
20 (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore.

21 [†]These authors contributed equally to this work and share first authorship

22

23 ***Corresponding Authors:**

24 Joe YEONG

25 Institute of Molecular and Cell Biology (IMCB), A*STAR, Proteos, 61 Biopolis Drive,
26 Singapore 138673
27 Department of Anatomical Pathology, Division of Pathology, Singapore General Hospital,
28 Academia, 20 College Road, Singapore 169856
29 Email: yeongps@imcb.a-star.edu.sg, Tel: +65 65869527

30

31 Yiyu CAI
32 School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50
33 Nanyang Avenue, Singapore 639798
34 Email: MYYCai@ntu.edu.sg, Tel: +65 67905777

35

36 Mai Chan LAU
37 Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Matrix, 30
38 Biopolis Street, Singapore 138671
39 Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8a
40 Biomedical Grove, Singapore 138648
41 Email: Lau_Mai_Chan@bii.a-star.edu.sg, Tel: +65 64070606

42 **Keywords: deep learning T-cell prediction, Pix2Pix generative adversarial network (P2P-
43 GAN), tumor-infiltrating lymphocytes (TILs), hematoxylin and eosin (H&E), quantitative
44 cell-level ground truth**

45

46

47

48 **Abstract: (290 words/300)**

49 Immunophenotyping via multi-marker assays significantly contributes to patient selection,
50 therapeutic monitoring, biomarker discovery, and personalized treatments. Despite its potential,
51 the multiplex immunofluorescence (mIF) technique faces adoption challenges due to technical and
52 financial constraints. Alternatively, hematoxylin and eosin (H&E)-based prediction models of cell
53 phenotypes can provide crucial insights into tumor-immune cell interactions and advance
54 immunotherapy. Current methods mostly rely on manually annotated cell label ground truths, with
55 limitations including high variability and substantial labor costs. To mitigate these issues,
56 researchers are increasingly turning to digitized cell-level data for accurate in-situ cell type
57 prediction. Typically, immunohistochemical (IHC) staining is applied to a tissue section serial to
58 one stained with H&E. However, this method may introduce distortions and tissue section shifts,
59 challenging the assumption of consistent cellular locations. Conversely, mIF overcomes these
60 limitations by allowing for mIF and H&E staining on the same tissue section. Importantly, the
61 multiplexing capability of mIF allows for a thorough analysis of the tumor microenvironment by
62 quantifying multiple cell markers within the same tissue section. In this study, we introduce a
63 Pix2Pix generative adversarial network (P2P-GAN)-based virtual staining model, using CD3⁺ T-
64 cells in lung cancer as a proof-of-concept. Using an independent CD3 IHC-stained lung cohort,
65 we demonstrate that the model trained with cell label ground-truth from the same tissue section as
66 H&E staining performed significantly better in both CD3⁺ and CD3⁻ T-cell prediction. Moreover,
67 the model also displayed prognostic significance on a public lung cohort, demonstrating its
68 potential clinical utility. Notably, our proposed P2P-GAN virtual staining model facilitates image-
69 to-image translation, enabling further spatial analysis of the predicted immune cells, deepening
70 our understanding of tumor-immune interactions, and propelling advancements in personalized

71 immunotherapy. This concept holds potential for the prediction of other cell phenotypes, including
72 CD4⁺, CD8⁺, and CD20⁺ cells.

73

74 **Introduction**

75 Immune phenotyping in tissue, facilitated by multi-marker assays such as mIF, plays a pivotal
76 role in patient selection, treatment monitoring, biomarker discovery, and the development of
77 targeted and personalized therapeutic strategies^{1,2,3}. Nevertheless, the wider adoption of the mIF
78 technique faces challenges as it remains inaccessible to many laboratories due to technical and
79 time constraints or funding limitations. Conversely, the utilization of hematoxylin and eosin
80 (H&E)-based prediction models present a viable alternative for generating data to enhance our
81 comprehension of the intricate interactions within the immune system. Given that H&E staining
82 is cost-effective and routinely performed in numerous histology laboratories, integrating H&E-
83 based prediction models into existing workflows can be achieved with relative ease. This approach
84 has the potential to revolutionize the field of immunotherapy, opening new avenues for
85 advancements in treatment strategies.

86 Current studies of H&E-based approaches largely rely on manual annotated cell label ground
87 truth^{4,5}. For instance, a study by Wilde *et al.* demonstrated the use of deep learning (DL) to assess
88 two prognostic risk parameters, OP-TIL and the multinucleation index (MuNI), in hematoxylin
89 and eosin (H&E) stained slides from patients with oropharyngeal squamous cell carcinoma⁶. The
90 group proposed two DL-based imaging biomarkers, namely OP-TIL, which quantitatively
91 characterizes the spatial patterns between tumor infiltrating lymphocytes (TILs) and their
92 surrounding cells⁷, while the MuNI quantifies the multinucleated tumor cells in epithelial regions⁸.
93 Conditional generative adversarial network (cGAN) models were adopted for cell segmentation
94 based on OP-TIL, and trained for in-silico computation of MuNI. This group also highlighted the

95 potential clinical importance of identification and tissue localization of TIL subtypes, such as those
96 expressing CD4, CD8, and CD20⁷. However, the applicability of these approaches was limited by
97 the availability of manual annotation of TILs and multinucleated tumor cells by pathologists, with
98 high inter- and intra-observer variability and high labor costs⁹.

99 To address both inter- and intra-observer discrepancies in the annotation and scoring of cell
100 phenotypes, there has been a growing interest in the utilization of digitized cell-level data as the
101 definitive reference for predicting cell types *in situ*¹⁰. Commonly, immunohistochemical (IHC)
102 staining is applied to a tissue section that is consecutive to another one stained with H&E, assuming
103 that similar cells maintain identical locations across both sections. Yet, in conventional IHC
104 methods, manual preparation can cause distortions, and heat fixation can shift the tissue section¹¹,
105 disrupting this assumption. Furthermore, achieving same-section ground truth is impeded by
106 chromogenic IHC due to deposition of the brown chromogen 3,3'-diaminobenzidine (DAB).

107 Alternatively, multiplex immunofluorescence (mIF) overcomes these limitations, enabling
108 staining on the same tissue section used for H&E staining. Crucially, mIF's multiplexing feature
109 allows a comprehensive analysis of the tumor microenvironment (TME) by quantifying multiple
110 cell markers within the same tissue section¹². In the realm of immunotherapy, the simultaneous
111 quantification of immune markers like CD3, CD4, CD8, cytokeratin, PD-1, and CTLA-4 within
112 the same tissue space is critical for a comprehensive understanding of tumor-immune
113 interactions^{13,14}. Here, we propose a Pix2Pix generative adversarial network (P2P-GAN)-based
114 virtual staining model, using CD3⁺ T-cells in lung cancer as the study model (Figure 1a). The
115 choice of CD3⁺ T-cells highlights their significant role in lung cancer prognosis and
116 treatment^{15,16,17}. We hypothesize that the performance of the prediction model can be impacted by
117 cellular differences in adjacent (non-identical) tissue sections. To test this hypothesis, we built and

118 compared two DL models, one trained using the CD3⁺ T-cell ground truth obtained by mIF staining
119 of the same tissue section stained with H&E (abbreviated as same-section model; Figure 1b), while
120 the other model was trained using the CD3⁺ T-cell ground truth obtained by mIF staining of the
121 serial tissue section stained with H&E (abbreviated as serial-section model; Figure 1b).

122

123 **Materials/Subjects and Methods**

124 Cohorts

125 This study was conducted using three lung cancer cohorts (2 in-house and 1 public). The
126 training cohort consisted of formalin-fixed paraffin embedded (FFPE) tissues in the tissue
127 microarray (TMA) format prepared in the Department of Anatomical Pathology of Singapore
128 General Hospital (Agency of Science, Technology and Research (A*STAR) IRB: 2021-161, 2021-
129 188, 2021-112). The tissue sections were stained with H&E and mIF (anti-CD3 and DAPI for
130 nuclear staining) in the Institute of Molecular and Cell Biology (IMCB) at the Agency for Science,
131 Technology and Research, Singapore. Using this cohort, we prepared the same-section and serial-
132 section datasets. In the same-section dataset, 57 H&E and mIF image pairs were generated from
133 the same tissue sections of the 57 patients. In the serial-section dataset, a separate set of H&E
134 images were generated using tissue sections adjacent to the tissue sections used for the mIF
135 staining.

136 Separate in-house and public cohorts were used for evaluation of the model performance
137 (Table 1). The in-house cohort comprised CD3 IHC-stained images along with H&E images
138 generated from the corresponding serial-section in TMAs (designated the IHC cohort). The public
139 cohort consisted of H&E-stained images (20 \times magnification) and the companion patient survival

140 data were downloaded from OncoSG (Singapore Oncology, Data Portal) (designated the Onco-
141 SG cohort).

142 Tissue staining

143 The FFPE tissues were sectioned (4 μ m thickness) and heat-fixed at 65°C for 5 min before
144 manual staining with hematoxylin (Epredia, Fisher Scientific, Porto Salvo, Portugal) and eosin
145 (Epredia, Fisher Scientific, Gothenburg, Sweden). IHC staining was performed on the FFPE
146 tissues (4 μ m thickness) with anti-CD3 primary antibody (1:200; Dako A0452, Santa Clara, CA,
147 USA) using the Leica Bond Max autostainer (Leica Biosystems, Melbourne, Australia) and Bond
148 Refine Detection Kit (Leica Biosystems) as previously described¹⁹. The H&E and IHC stained
149 slides were then scanned using the Axioscan.Z1 Slide Scanner (Zeiss, Oberkochen, Germany).

150 Next, mIF staining was performed on the FFPE tissue sections (4 μ m thickness) using the
151 Leica Bond Max autostainer (Leica Biosystems, Melbourne, Australia), Bond Refine Detection
152 Kit (Leica Biosystems) and Opal 6-Plex Detection Kit for Whole Slide Imaging (Akoya
153 Biosciences, Marlborough, MA, USA) as previously described¹⁹. In brief, FFPE tissue sections
154 were subjected to repeated cycles of heat-induced epitope retrieval, incubation with anti-CD3
155 primary antibody (Dako #A0452), anti-rabbit poly-HRP-IgG (Ready-to-use; Leica Biosystems)
156 and Opal tyramide signal amplification (TSA) (Akoya Biosciences). Spectral DAPI (4',6-
157 diamidino-2-phenylindole) (Akoya Biosciences) was applied as the final nuclear counterstain.
158 Images were captured using the Vectra 3 Automated Quantitative Pathology Imaging System
159 (Akoya Biosciences). After scanning, the mIF slides were subjected to H&E staining, followed by
160 scanning on the Axioscan.Z1 Slide Scanner (Zeiss).

161 Ground truth cell labels

162 For model training, ground truth cell labelling involved the identification of CD3⁺ cells in the
163 H&E image space according to a series of steps. First, nuclei in the H&E image were identified
164 using the StarDist Python library (pre-trained for H&E images)²⁰. Second, nuclei and CD3⁺ regions
165 in the mIF image were identified individually using the StarDist Python library (pre-trained for
166 fluorescence images) based on DAPI staining and CD3 expression, respectively. These regions
167 were then overlaid to identify CD3⁺ T-cells in the mIF image. Third, the CD3⁺ T-cells identified
168 in the mIF image were matched to the closest nuclei in the H&E image stained on the same (post-
169 mIF H&E staining) or serial tissue section (designated same-section and serial-section datasets,
170 respectively). The H&E image with CD3⁺ information (i.e., ground truth image) was then
171 deconvoluted into red (R), green (G), and blue (B) channels representing the CD3⁺ T-cell,
172 haematoxylin (H), and eosin (E) staining, respectively. Representation of the CD3⁺ T-cell
173 information in a separate channel i.e., R, facilitates the identification of predicted CD3⁺ T-cells
174 during model deployment. Considering that CD3 localizes to the cell membrane whereas DAPI
175 staining is localized in the nucleus, Gaussian noise (kernel size 101) was applied to the R channel
176 of the image to increase the spread of the CD3⁺ signals while keeping the maximum intensity at
177 its center. This facilitates the identification of predicted CD3⁺ T-cells, which relies on an overlap
178 between CD3 and DAPI intensities i.e., R and G channels.

179 In the IHC testing dataset, CD3 signal localization in an IHC image was first determined by
180 applying a threshold (value >100) to the DAB stain intensity, resulting in a binary mask where 1
181 indicates CD3 detection and 0 indicates otherwise. The CD3 mask was then overlaid on the nuclei
182 segmented in the paired H&E image to identify CD3⁺ T-cells (ground truth cell labels) according
183 to the same procedure described for mIF dataset. In the Onco-SG testing dataset, two pathologists

184 (YZX and JPV) assessed the H&E images and scored the %TIL. Model performance was evaluated
185 by comparing overall %CD3⁺ T-cell with the %TIL in individual patients by Spearman's
186 correlation analysis. We also assessed the 5-year overall survival association with the patient
187 groups stratified using the mean DL-predicted %CD3⁺ T-cell versus the mean of the %TIL values
188 determined by the two pathologists. If multiple images were available for the same patient, the
189 patient-average %CD3⁺ T-cell or %TIL value was used.

190 **P2P-GAN model architecture**

191 A conventional GAN incorporates a generative network to produce image candidates and a
192 discriminative network for their evaluation. The former network is trained to 'fool' the latter, hence
193 facilitating unsupervised learning by the model. The P2P-GAN is a variation of a conditional
194 GAN, in which the generator output image is conditional on the input image, and hence is designed
195 perfectly for the image-to-image translation task. In this study, we adopted the P2P-GAN
196 architecture reported by Isola *et al.*²¹ in which a U-Net was used as the generator and a
197 convolutional neural network (CNN) was used as the discriminator (Figure 2). Model training
198 involved presenting the generator with stain-deconvoluted H&E images, while presenting the
199 discriminator with ground truth images (i.e., stain-deconvoluted H&E images overlaid with mIF-
200 identified CD3⁺ T-cell information). These images were then compared with the generator
201 predicted images to output a 30×30 matrix for updating both the generator and discriminator
202 (Figure 2; more details are provided below).

203 **Model training**

204 Two P2P-GAN models were trained using the same-section and serial-section training
205 datasets (henceforth referred to as the same-section and serial-section models, respectively). Each
206 image in the training dataset (Table 1) was divided into 256×256 image patches (total 9,633

207 patches). Of these, 96% (9,249 patches) were used for model training and 4% (384 patches) were
208 randomly selected for model testing (hereafter referred as the held-out subset). The generator and
209 discriminator work in an adversarial fashion such that the respective losses are balanced out. The
210 overall objective is to reach an optimum for the two conflicting goals, where the generator
211 produces an output that is almost indistinguishable from the ground truth images, while the
212 discriminator can distinguish images generated by the generator from ground truth images.
213 Overall, three different types of losses must be minimized: LOSS 1, which measures the mean
214 absolute difference between the generator output image and the ground truth image, is used to
215 update the generator network; LOSS2/LOSS 3 and LOSS 4 measure the difference between the
216 30×30 feature matrix output from the discriminator with two 30×30 target matrices, one of which
217 contains all 0 digits and the other contains all 1 digits. This allows quantification of ‘lack of
218 capability’ and ‘capability’, respectively, of the discriminator in distinguishing the generator
219 output image; LOSS2 (essentially LOSS3) is feedback to the generator, while LOSS 3 and LOSS4
220 are feedback to the discriminator (Figure 2). The training of both models involved 150 epochs with
221 a batch size of 350. A regularization value of 100 was applied to LOSS 1 (i.e., the mean absolute
222 loss).

223 Model performance characteristics

224 Model performance was quantified based on two key metrics, namely CD3⁺ and CD3⁻ T-cell
225 counts, and overall accuracy (defined as the ratio of correctly predicted CD3⁺ and CD3⁻ T-cell
226 counts to the total number of cells). The model-predicted CD3⁺ and CD3⁻ T-cell counts were
227 identified as shown in Figure 3. Specifically, model-predicted CD3 signals (represented in the red
228 channel) were overlaid with the nuclei segmented from the input H&E image to identify the CD3⁺
229 T-cell, whereas nuclei (or cells) with no matching CD3 signals were deemed to be CD3⁻ T cells.

230 The model-predicted CD3⁺ and CD3⁻ T-cell values were then overlaid with the paired mIF
231 (training cohort) or IHC (testing cohort) images to quantify the accurately predicted CD3⁺ and
232 CD3⁻ T-cell counts.

233

234 **Results**

235 Validating model performance using training samples

236 As a sanity check, we assessed the model performance with the image patches used for training
237 (Table 1; N = 57). Of note, the same-section and serial-section datasets were used for testing the
238 same-section and serial-section models, respectively. The predicted CD3⁺ and CD3⁻ T-cell counts
239 from both same-section and serial-section models were highly comparable to the mIF-quantified
240 CD3⁺ and CD3⁻ T-cell counts (i.e., ground truth; all p < 0.005) with Pearson's correlation >0.95
241 (Figure 4a-d). However, based on the Mann-Whitney U-test, the same-section model outperformed
242 the serial-section model by a slight margin in terms of overall accuracy (Figure 4e; p < 0.005).

243 Performance comparison of same-section and serial-section models with held-out training cohort

244 We randomly selected 4% of image patches (384 patches) from the same-section training
245 cohort for model testing. While model-predicted CD3⁺ and CD3⁻ T-cell counts from both the same-
246 section and serial-section models were reasonably comparable to the mIF-quantified CD3⁺ and
247 CD3⁻ T-cell counts (i.e., ground truth) (all p < 0.005, Figure 5), same-section model predictions
248 showed better concordance with the ground truth as compared with that of serial-section model
249 (Pearson's correlation coefficients 0.784 vs. 0.733, and 0.675 vs. 0.57, respectively; Figure 5a-d).
250 Based on Mann-Whitney U-tests, there was no significant difference in the overall accuracy of the
251 same-section and serial-section models (Figure 5e; p = 0.62).

252 Performance comparison of same-section and serial-section models on an independent IHC cohort
253 (N = 48)

254 In agreement with the results from the held-out cohort analysis, the CD3⁺ and CD3⁻ T-cell
255 counts predicted by both the same-section and serial-section models (Figure 6a) corresponded
256 closely to the IHC-quantified counts, representing the ground truth ($p < 0.005$, Figures 6b-e).
257 Importantly, the same-section model outperformed the serial-section model, displaying stronger
258 correlations with the IHC ground truth (Figure 6b-c; CD3⁻ T-cell $r = 0.85$ vs. 0.678; Figure 6d-e;
259 CD3⁺ T-cell $r = 0.886$ vs. 0.798), and achieving a higher average accuracy (Figure 6f; mean
260 accuracy = 0.92 vs. 0.65).

261

262 Validating the prognostic association of model-predicted CD3⁺ T-cells

263 Evaluation of the models' performance on the public Onco-SG cohort (Figure 7a), composed
264 of 204 lung samples (Table 1), revealed a significant correlation between model-predicted CD3
265 patient groups and 5-year overall survival (Figure 7b; $p = 0.013$). This association was more
266 pronounced than that observed when patient stratification was based on manual TIL scoring by
267 two pathologists (Figure 7c-d; $p = 0.3$ and $p = 0.06$), suggesting the added value of our model in
268 predicting patient outcomes. Nonetheless, the abundance of model-predicted CD3⁺ T-cells showed
269 significant correspondence with the TIL scoring by both pathologists (Figure 7e; $p < 0.05$).

270

271 **Discussion**

272 In this study, we developed and examined P2P-GAN virtual staining models to predict CD3⁺
273 T-cells from low-cost digitized H&E images. A significant aspect of our investigation was the
274 exploration of performance disparities that arise when ground truth cell labels are obtained from
275 the same tissue section used for H&E staining, as opposed to a serial section. Our findings
276 demonstrate that the model trained using the same-section approach consistently surpasses the

277 serial-section model. This superiority manifests as stronger correlations with mIF and IHC-
278 quantified CD3⁺ and CD3⁻ T-cells, along with heightened overall prediction accuracies. It also
279 reinforces the potential of the same-section model as a robust technique in histopathology-driven
280 immune phenotyping. Crucially, our work also showcased the enhanced prognostic utility of our
281 model-predicted CD3⁺ T-cell abundance when compared to traditional manual TIL scores. This
282 emphasizes the clinical relevance of our proposed virtual staining model in a real-world setting,
283 potentially facilitating improved patient stratification and treatment decision-making. A distinctive
284 feature that sets our proposed model apart from traditional DL models for cell prediction is its
285 capability for image-to-image translation, virtually staining the CD3 marker within the original
286 H&E context. This has two major implications. First, it facilitates further downstream analysis of
287 the TME and spatial interplay between predicted cell types and other cellular or tissue data derived
288 from H&E through either pathological assessment or digital pathology. Second, it creates a new
289 pathway for integrating incremental cell type predictions from different models onto the same
290 H&E space. Collectively, these advancements could significantly enhance our understanding of
291 the TME, potentially leading to the identification of novel spatial biomarkers or therapeutic targets.

292 While our proposed approach has yielded encouraging results, it is important to acknowledge
293 its inherent limitations. First, our current model is designed specifically for CD3⁺ T-cells
294 prediction from H&E images and may not generalize well to other cell types or markers without
295 significant adjustments or retraining. Additionally, its performance may be compromised when
296 applied to tumor types beyond lung cancer. Second, the application of this model is largely limited
297 to high-quality digital slides. Its performance may be affected by variations in tissue preparation,
298 staining procedures, and image acquisition methods across different laboratories. Nevertheless, the
299 clinical significance of our model has been validated using a publicly available lung cohort. Lastly,

300 despite overall robust performance, we noted outliers in our model's predictions, indicating
301 potential areas for improvement. These discrepancies suggest complex, unaddressed variables
302 within biological samples that need further investigation. Future endeavors should focus on
303 understanding these outlier causes, refining modeling techniques, and incorporating larger, more
304 diverse datasets for improved generalizability and outlier management.

305 In conclusion, our thorough exploration into the necessity of employing ground truth cell
306 labels from identical tissue sections in a CD3⁺ T-cell prediction model signifies a notable advance
307 in the domain of H&E-based virtual staining research. Our novel image-to-image translation
308 capability paves the way for in-depth TME analyses. Combined with the potential of predicting
309 refined cell types via the mIF technique, our model unveils exciting new possibilities for biomarker
310 discovery and the advancement of therapeutic strategies. While certain limitations are observed,
311 these challenges underscore the direction for future investigations, the results of which could
312 greatly enhance the prediction accuracy and clinical applicability of this innovative approach.

313

314 **Acknowledgements**

315 This work was supported by the Bioinformatics Institute (BII), the Singapore Immunology
316 Network (SIgN), the Institute of Molecular and Cell Biology (IMCB) and the Agency for Science,
317 Technology and Research (A*STAR).

318

319 **Conflict of Interest**

320 All authors declare no conflict of interest.

321

322 **Ethics Approval and Consent to Participate**

323 This study was approved by the Agency of Science, Technology and Research (A*STAR) Human
324 Biomedical Research Office (A*STAR IRB: 2021-161, 2021-188, 2021-112).

325

326 **Author Contributions**

327 J.P.S.Y, M.C.L. and Y.C. conceived and directed the study. A.B.A. performed the development,
328 training and testing of the DL models and conducted the biostatistical analysis; B.L.C. performed
329 the testing of codes. F.W. and J.C.T.L. performed immunohistochemical techniques; J.P.V. and
330 Y.Z.X. performed the TIL scoring. W.W.Y. created the publication figures. D.S.W.T, A.T.,
331 C.C.Y., L.Y.K. and T.K.H.L. conducted the sample acquisition and provided clinical pathological
332 and oncological perspectives. A.B.A., F.W. and M.C.L. prepared the manuscript. All authors
333 reviewed the manuscript.

334

335 **Funding**

336 We would like to express our gratitude towards the following parties for their valuable
337 contributions to this work:

338 A*STAR BIOMEDICAL ENGINEERING PROGRAMME (Project No: C211318003),
339 Singapore National Medical Research Council (MOH-000323-00, OFYIRG19may-0007),
340 IAF-PP (HBMS Domain): H19/01/a0/024-SInGapore ImmuNogrAm for Immuno-Oncology
341 (SIGNAL)
342 Bioinformatics Institute and Singapore Immunology Network, Agency for Science, Technology
343 and Research (A*STAR), A*STAR Biomedical Engineering Programme (C211318003)
344 Industry Alignment Fund-Industry Collaboration Fund (IAF-ICP I2201E0014)
345 Singapore National Medical Research Council (MOH-000323-00, OFYIRG19may-0007).

346

347 **Data Availability Statement**

348 The mIF and in-house IHC data sets used during the current study are available from the
349 corresponding author upon reasonable request. The external lung cancer cohort is available in the
350 OncoSG repository, <https://src.gisapps.org/OncoSG/>. The scripts used in this study can be found
351 in the following GitHub repository, https://github.com/abubakrazam/Pix2Pix_TIL_H-E.git

352

353 **References**

354 1. Parra ER, Villalobos P, Behrens C, Jiang M, Pataer A, Swisher SG, et al. Effect of neoadjuvant
355 chemotherapy on the immune microenvironment in non–small cell lung carcinomas as determined
356 by multiplex immunofluorescence and image analysis approaches. *J ImmunoTher Cancer*.
357 2018;6(1):48.

358 2. Pilla L, Maccalli C. Immune Profiling of Cancer Patients Treated with Immunotherapy:
359 Advances and Challenges. *Biomedicines*. 2018;6(3):76.

360 3. Cascone T, Sepesi B, Lin HY, Kalhor N, Parra ER, Jiang M, et al. A Phase I/II Study of
361 Neoadjuvant Cisplatin, Docetaxel, and Nintedanib for Resectable Non–Small Cell Lung Cancer.
362 *Clin Cancer Res*. 2020;26(14):3525-36.

363 4. Shamai G, Livne A, Polónia A, Sabo E, Cretu A, Bar-Sela G, et al. Deep learning-based image
364 analysis predicts PD-L1 status from H&E-stained histopathology images in breast cancer. *Nat
365 Commun*. 2022;13(1):6753.

366 5. Duenweg SR, Brehler M, Bobholz SA, Lowman AK, Winiarz A, Kyereme F, et al. Comparison
367 of a machine and deep learning model for automated tumor annotation on digitized whole slide
368 prostate cancer histology. *PLoS One*. 2023;18(3):e0278084.

369 6. Wilde DC, Castro PD, Bera K, Lai S, Madabhushi A, Corredor G, et al. Oropharyngeal cancer
370 outcomes correlate with p16 status, multinucleation and immune infiltration. *Mod Pathol*.
371 2022;35(8):1045-54.

372 7. Corredor G, Toro P, Koyuncu C, Lu C, Buzzy C, Bera K, et al. An Imaging Biomarker of
373 Tumor-Infiltrating Lymphocytes to Risk-Stratify Patients With HPV-Associated Oropharyngeal
374 Cancer. *J Natl Cancer Inst*. 2022;114(4):609-17.

375 8. Koyuncu CF, Lu C, Bera K, Zhang Z, Xu J, Toro P, et al. Computerized tumor multinucleation
376 index (MuNI) is prognostic in p16+ oropharyngeal carcinoma. *J Clin Invest*. 2021;131(8).

377 9. Schalper KA, Brown J, Carvajal-Hausdorf D, McLaughlin J, Velcheti V, Syrigos KN, et al.
378 Objective measurement and clinical significance of TILs in non-small cell lung cancer. *J Natl
379 Cancer Inst*. 2015;107(3).

380 10. Roy M, Wang F, Teodoro G, Bhattarai S, Bhargava M, Rekha TS, et al. Deep learning based
381 registration of serial whole-slide histopathology images in different stains. *J Pathol Inform*.
382 2023;14:100311.

383 11. Grizzle WE. Special symposium: fixation and tissue processing models. *Biotech Histochem*.
384 2009;84(5):185-93.

385 12. Tan WCC, Nerurkar SN, Cai HY, Ng HHM, Wu D, Wee YTF, et al. Overview of multiplex
386 immunohistochemistry/immunofluorescence techniques in the era of cancer immunotherapy.
387 *Cancer Commun (Lond)*. 2020;40(4):135-153.

388 13. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety,
389 activity, and immune correlates of anti-PD-1 antibody in cancer. *N Engl J Med*.
390 2012;366(26):2443-54.

391 14. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic
392 science to clinical practice. *Nature Reviews Immunology*. 2020;20(11):651-68.

393 15. Al-Shibli KI, Donnem T, Al-Saad S, Persson M, Bremnes RM, Busund LT. Prognostic effect
394 of epithelial and stromal lymphocyte infiltration in non-small cell lung cancer. *Clin Cancer Res*.
395 2008;14(16):5220-7.

396 16. Chen B, Li H, Liu C, Xiang X, Wang S, Wu A, et al. Prognostic value of the common tumour-
397 infiltrating lymphocyte subtypes for patients with non-small cell lung cancer: A meta-analysis.
398 *PLoS One*. 2020;15(11):e0242173.

399 17. Geng Y, Shao Y, He W, Hu W, Xu Y, Chen J, et al. Prognostic Role of Tumor-Infiltrating
400 Lymphocytes in Lung Cancer: a Meta-Analysis. *Cell Physiol Biochem*. 2015;37(4):1560-71.

401 18. cBioPortal for Cancer Genomics [cited 2023 May 21].

402 19. Lim JCT, Yeong JPS, Lim CJ, Ong CCH, Wong SC, Chew VSP, et al. An automated staining
403 protocol for seven-colour immunofluorescence of human tissue sections for diagnostic and
404 prognostic use. *Pathology*. 2018 Apr;50(3):333-341

405 20. Schmidt U, Weigert M, Broaddus C, Myers G, editors. Cell Detection with Star-Convex
406 Polygons. Medical Image Computing and Computer Assisted Intervention – MICCAI 2018; 2018
407 2018//; Cham: Springer International Publishing.

408 21. Isola P, Zhu J-Y, Zhou T and Efros AA. Image-to-Image Translation with Conditional
409 Adversarial Networks. Computer Science: Computer Vision and Pattern Recognition. 2018.
410 Available from <https://doi.org/10.48550/arXiv.1611.07004>.

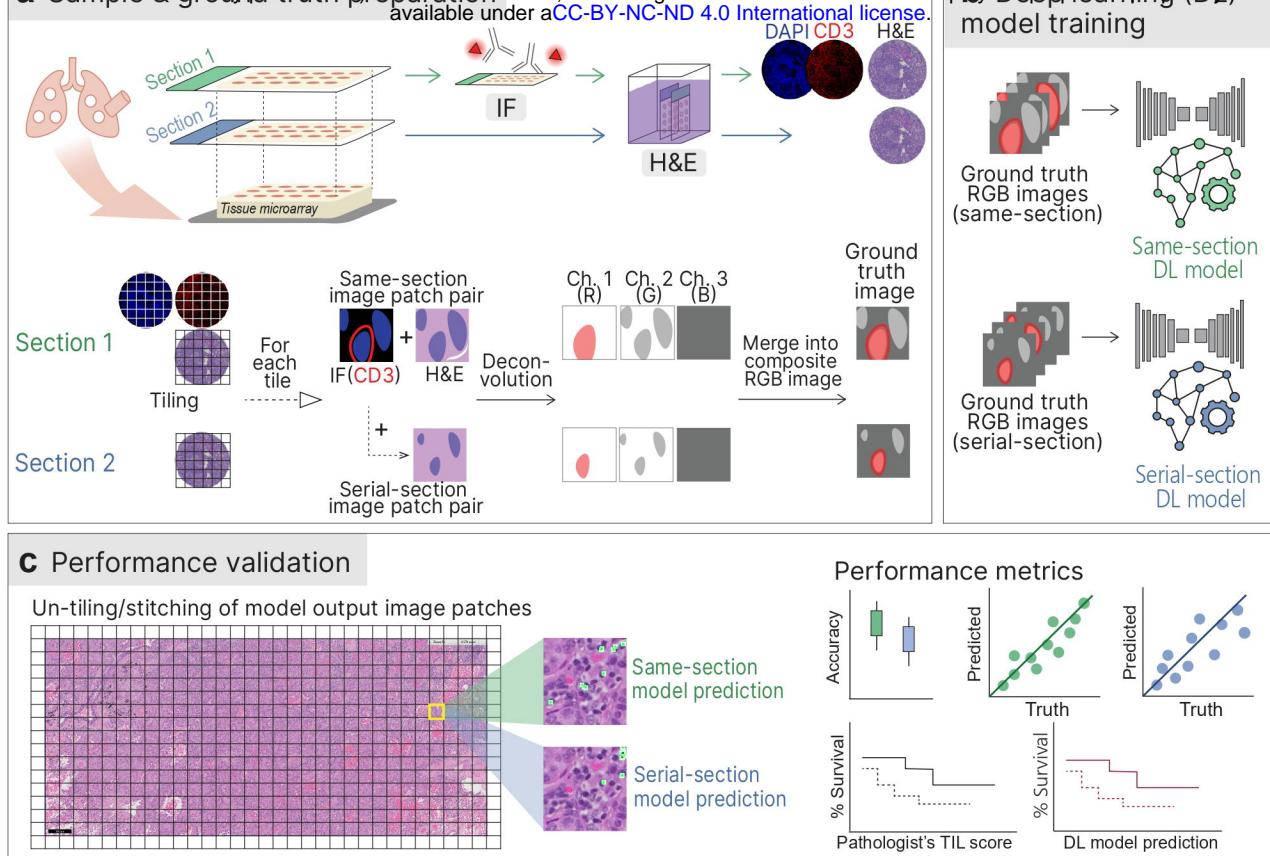


Figure 1: Schematic diagram of the study protocol. a) Preparation of samples and ground truth for both serial-section and same-section datasets; b) Construction and training of two P2P-GAN DL models utilizing the serial-section and same-section datasets; c) Validation of DL model performance using an independent in-house IHC cohort and an external lung cancer cohort.

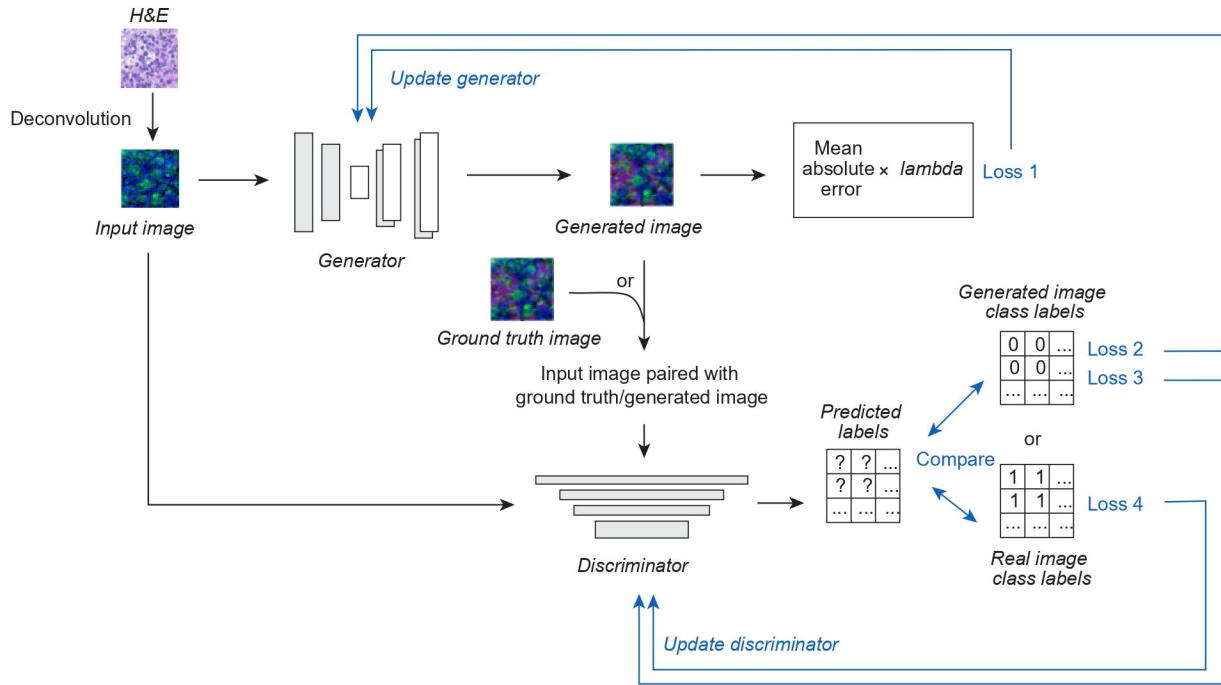


Figure 2: P2P-GAN model architecture and parameter updating process during model training.

Two key components, namely the generator, which inputs the H&E image patch and generates (predicts) CD3+ signals on the input image, and its adversary, the discriminator, which distinguishes the generator output from the image with true CD3+ signals (ground truth). The adversarial nature of the network enables the generator to produce good predictions.

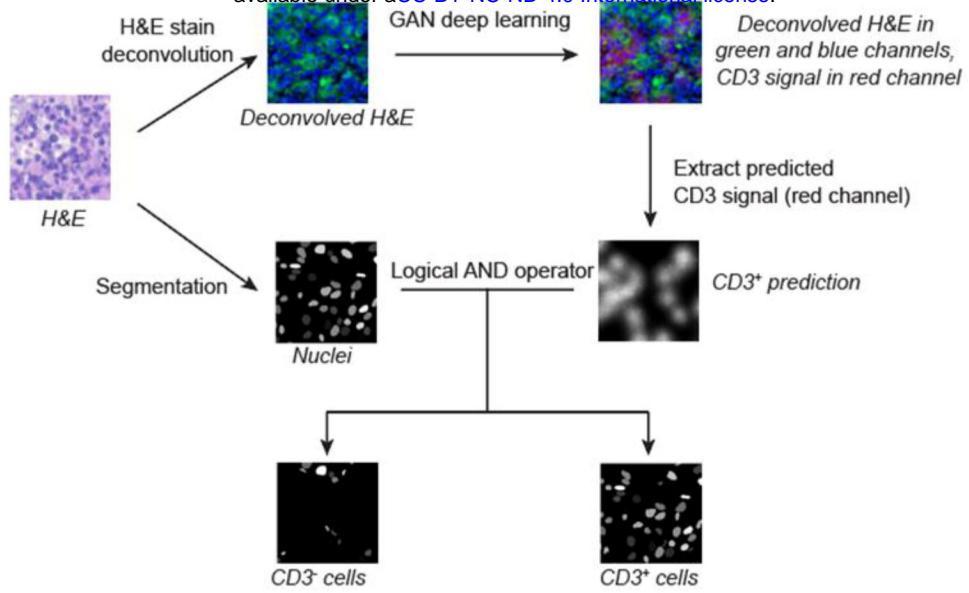


Figure 3: Identification of $CD3^+$ and $CD3^-$ T-cells predicted by our proposed P2P-GAN models. The process involves extracting the model-predicted CD3 signals (in the red channel) and overlaying the detected signal onto nuclei detected in the H&E image. Nuclei with matching CD3 signals are regarded as $CD3^+$ T-cells, otherwise the nuclei are regarded as $CD3^-$ T-cells.

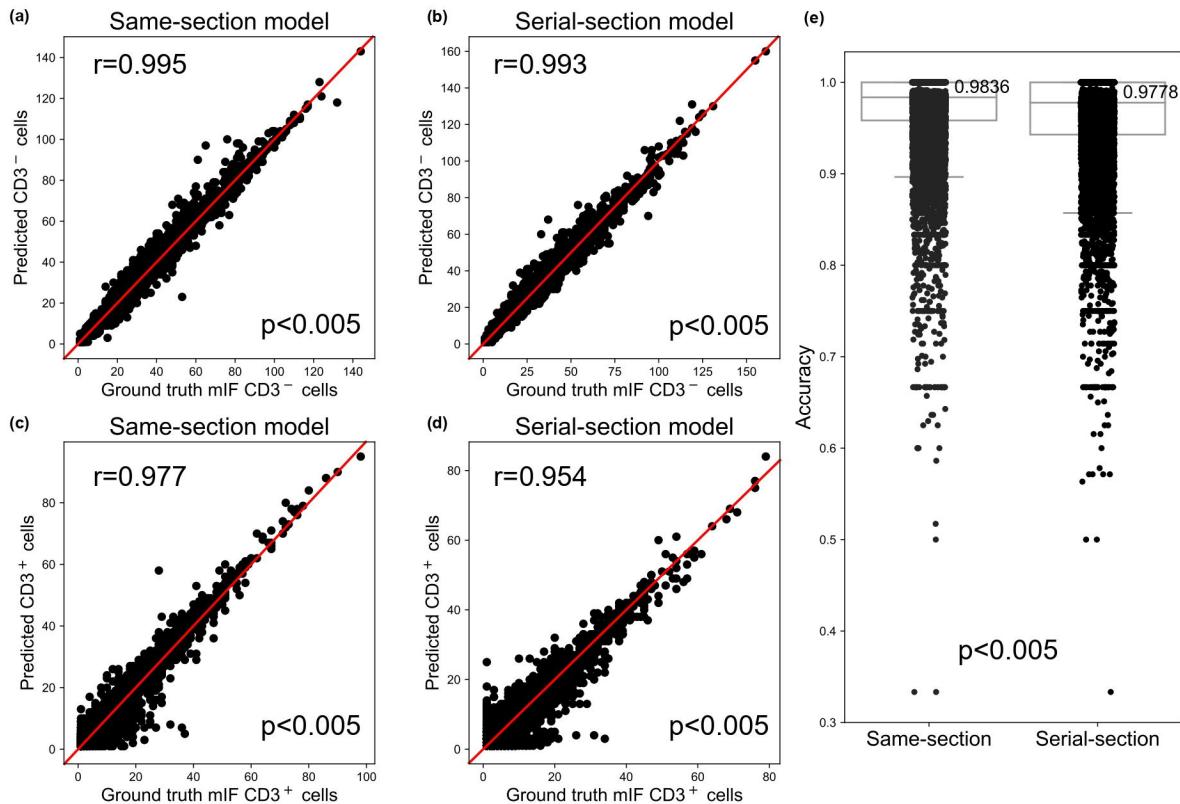


Figure 4: Model performance evaluation using the corresponding training cohorts (i.e., same-section and serial-section datasets, respectively). Comparison of model-predicted (a-b) CD3⁻ and (c-d) CD3⁺ cell (y-axis) counts with mIF-quantified CD3⁺ cell counts (x-axis) using Pearson's correlation analysis. (e) Overall accuracy comparison between the model prediction accuracy (y-axis) of the same-section (left) and serial-section (right) models, using the randomly selected held-out samples from the same-section training cohort based on Mann-Whitney U-tests; each dot represents an image patch.

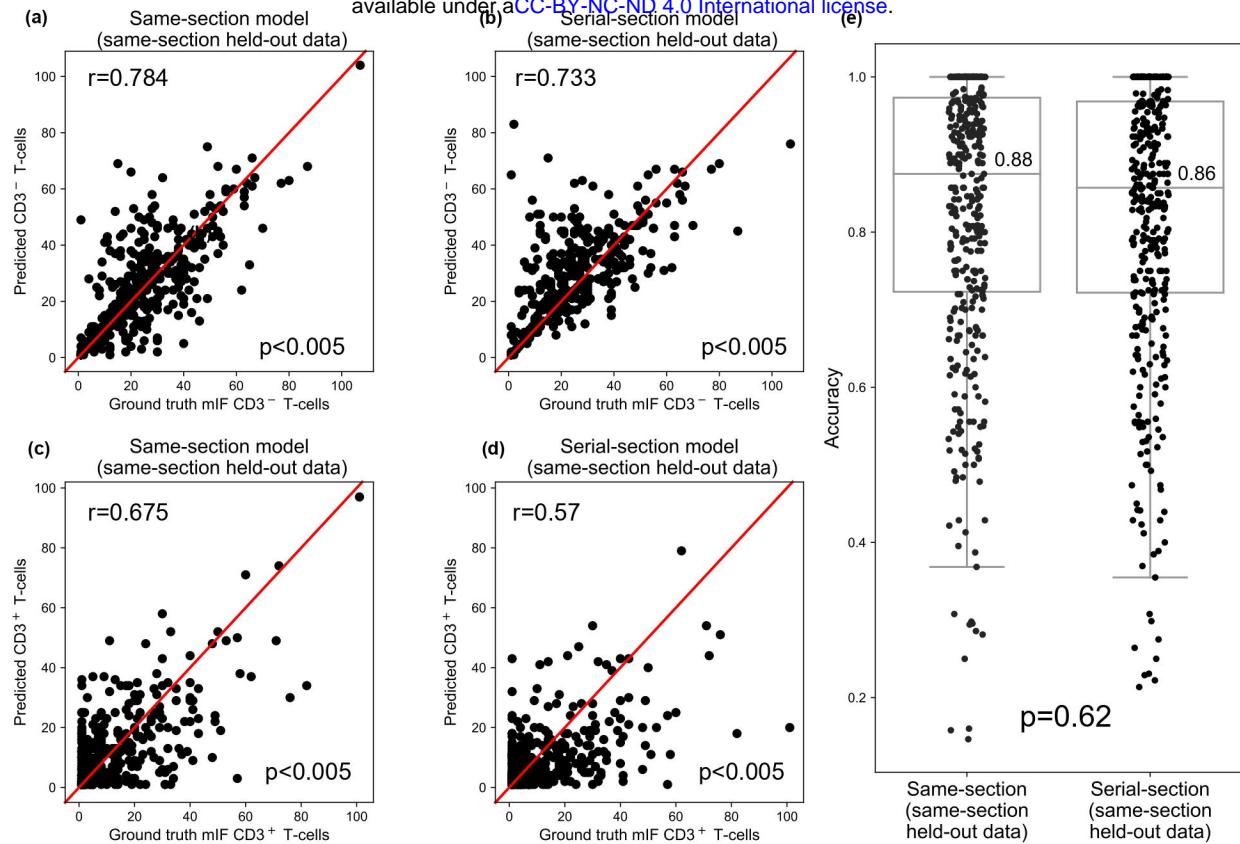


Figure 5: Model performance evaluation using the randomly selected held-out samples from the same-section training cohort. Comparison of model-predicted (a-b) CD3⁻ and (c-d) CD3⁺ cell (y-axis) counts with mIF-quantified CD3⁺ cell counts (x-axis) using Pearson's correlation analysis. (e) Overall accuracy comparison between the model prediction accuracy (y-axis) of the same-section (left) and serial-section (right) models, using the randomly selected held-out samples from the same-section training cohort based on Mann-Whitney U-tests; each dot represents an image patch.

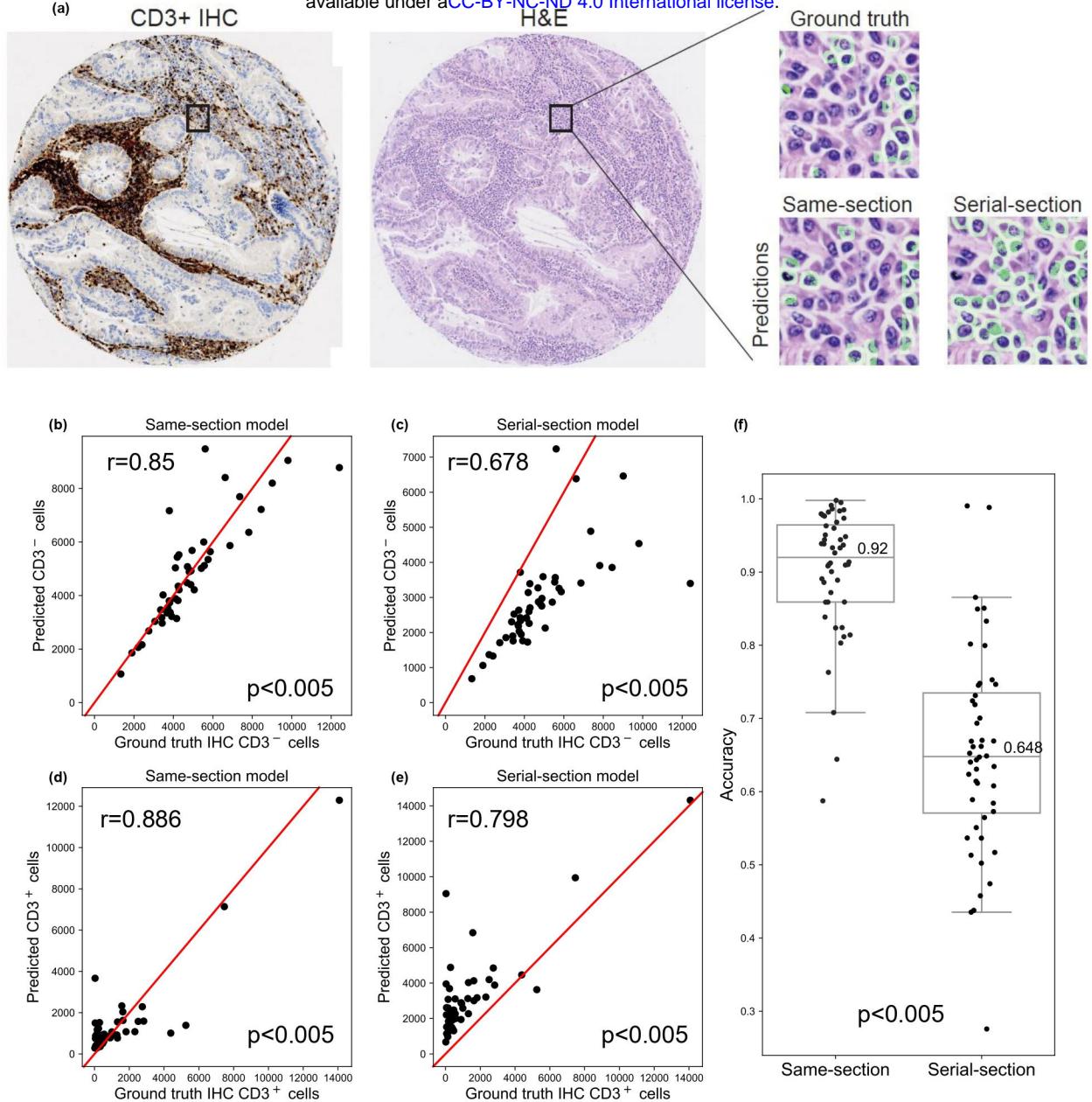


Figure 6: Model performance evaluation using the randomly selected held-out samples from the same-section training cohort with representative images along with model predicted CD3⁺ T-cell visualization in (a). Comparison of model-predicted (b-c) CD3⁻ and (d-e) CD3⁺ (y-axis) cell counts with mIF-quantified CD3⁺ cell counts (x-axis) using Pearson's correlation. (f) Overall accuracy comparison between the model prediction accuracy (y-axis) of the same-section (left) and serial-section (right) models, using the randomly selected held-out samples

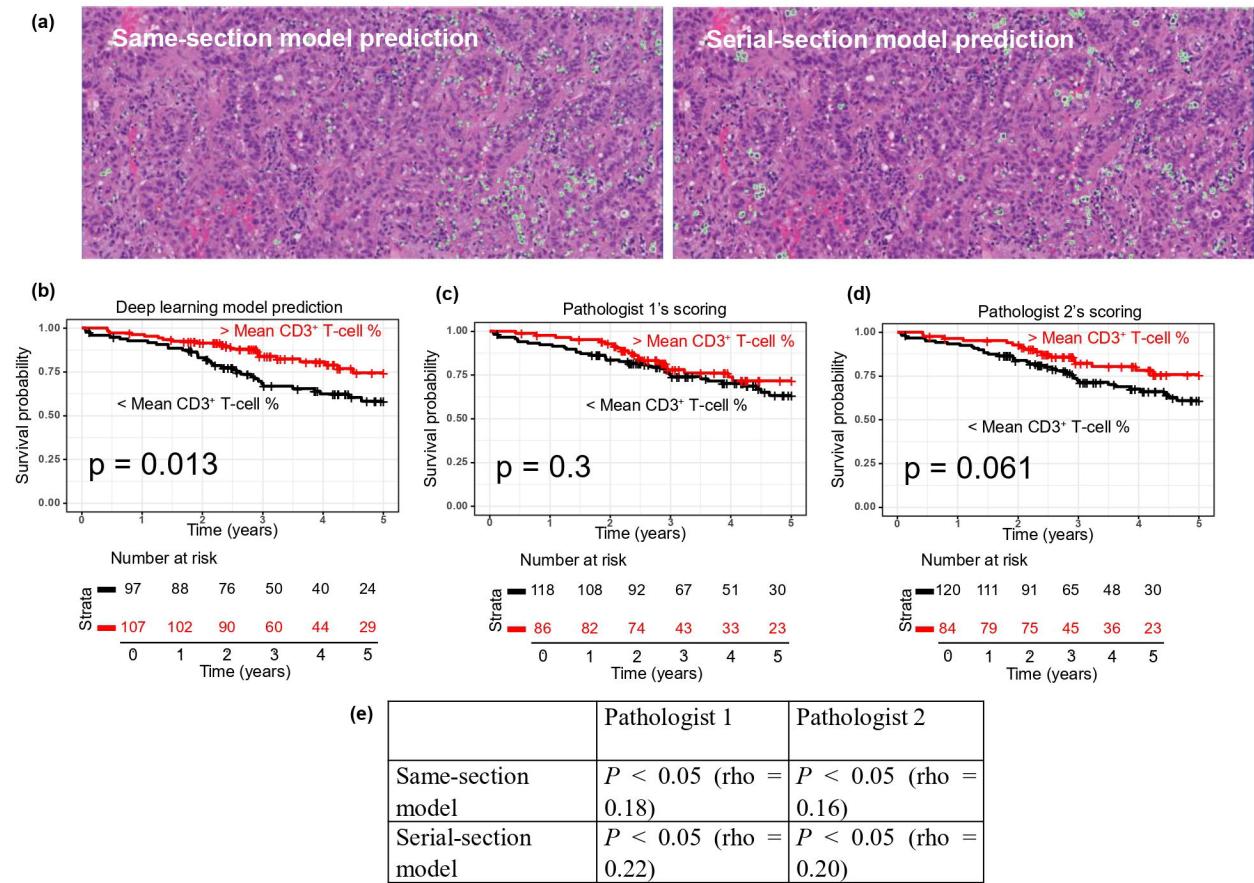


Figure 7: Model performance evaluation using an external lung cohort, with representative images along with model predicted CD3⁺ T-cell visualization in (a). Survival analyses using the external lung cohort show (b) significant association between (same-section) model-predicted CD3 patient groups (low versus high %CD3⁺ abundance groups based on the average %CD3⁺ T-cell counts), while no significant association was observed with the use of manual TIL scoring by (c) pathologist 1, and (d) pathologist 2. (e) Spearman correlation of the prediction of CD3⁺ densities using the same- and serial-section models with the manual TIL density scoring by two independent pathologists.

Table 1: Cohort characteristics

Dataset type	Number of patients	Images per patient	Image modalities	Tissue format	Image size (pixels)
mIF training dataset (same- and serial-section)	57 for both the same-section and serial-section datasets	1	H&E and mIF	TMA cores	3228'3228
IHC testing dataset (serial-section)	48	1	H&E and IHC	TMA cores	Approximately 4000'4000
Onco-SG testing dataset ¹⁸	204	1-3	H&E	Region of interest in resected tissues	1792'768