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Abstract—This work presents defoe, a new scalable and
portable digital eScience toolbox that enables historical research.
It allows for running text mining queries across large datasets,
such as historical newspapers and books in parallel via Apache
Spark. It handles queries against collections that comprise several
XML schemas and physical representations. The proposed tool
has been successfully evaluated using five different large-scale
historical text datasets and two HPC environments, as well as on
desktops. Results shows that defoe allows researchers to query
multiple datasets in parallel from a single command-line interface
and in a consistent way, without any HPC environment-specific
requirements.

Index Terms—text mining, distributed queries, Apache Spark,
High-Performance Computing, XML schemas, digital tools, digi-
tised primary historical sources, humanities research

I. INTRODUCTION

Over the past three decades, large scale digitisation has been
transforming the collections of libraries, archives, and muse-
ums [1], [2]. The volume and quality of available digitised
text now makes searching and linking these data feasible,
where previous attempts were restricted due to limited data
availability, quality, and lack of shared infrastructures [3].

There is hunger for large scale text mining facilities from the
humanities community, with commercial providers allowing
limited access to their own digitised collections [4]. However,
there are barriers to querying the wealth of newspapers and
books that now exist in digitised, openly licensed form at scale,
which would allow humanists to be in control of their text
mining research [5].

For example, although the product of most digitisation of
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<text.title>
<pg pgref="5" clipref="1"
Pos="4069,3036,4949,3154" />
<p>
<wd pos="4069,3036,4949,3154">MYSTERIOUS
AFFAIR NEAR PERTH.</wd>
</p>
</text.title>
<text.cr>
<pg pgref="5" clipref="1"
Pos="4039,3191,4987,4235" />
<p>
<wd pos="4041,3192,4496,3241">ALMONDBANK</wd>
<wd pos="4523,3200,4663,3246" >MAN</wd>
<wd pos="4696,3198,4976,3250">MISSING. </wd>
<wd pos="4085,3290,4189,3323">Some</wd>
<wd pos="4214,3290,4312,3329">days ,</wd>

Fig. 1: Digitisation example of the first The Courier and Angus
newspaper issue of 1901.

historical text is structured XML' files derived from Optical
Character Recognition (OCR) (see Figure 1), the schemas,
structure, and size of the datasets are heterogeneous, and they
are often difficult to link and cross-query. Additionally, the
humanities community has limited capacity and/or skills to
use High-Performance Computing (HPC) environments and
analytic frameworks to create applications to mine large-scale
digital collections effectively.

This work focuses on removing some these obstacles by
enabling complex analysis of digital datasets at scale. By
bringing together computer scientists with humanities and
computational linguistics researchers, we have created a new

'XML has been commonly adopted by the cultural heritage and digital
humanities community for the delivery of large scale datasets, commonly with
some relationship to the Text Encoding Initiatives guidelines for structuring
such texts: https:/tei-c.org.
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portable humanities research toolbox, called defoe? for inter-
rogating large and heterogeneous text-based archives. defoe
uses the power of analytic frameworks, such as Apache Spark
[6], Jupyter Notebooks, and HPC environments to manipulate
and mine huge digitised archives in parallel at great speed
using a simple command line. It can be installed and used
in different computing environments (cloud systems, HPC
clusters, laptops), making humanities research portable and
reproducible.

We have demonstrated the feasibility of defoe by using
two case studies as undertaken at the University of Edinburgh
(Eruption of Krakatoa Volcano in 1883 and Female Emigra-
tion), two HPC clusters (Cray Urika and Eddie), and five
different digital collections.

This paper is structured as follows. Section II presents back-
ground. Section III discusses defoe design features. Section IV
presents two case studies for testing feasibility of the tool.
Section V describes the computing environments used for our
studies. We conclude with a summary of achievements and
outline future work.

II. RELATED WORK

The work presented in this paper builds on two pre-
vious Python text analysis packages, cluster-code® and
i_newspaper_rods“, created by members of the author team
in collaboration with the Research IT Services at University
College London (UCL) >

cluster-code [7] analyses British Library (BL) books con-
forming to a particular XML schema, while i_newspaper_rods
has been designed for analysing British Library newspapers
conforming to another XML schema. XML schemas describe
either the structure of a digital object or the actual textual
content of the object including the word content, styles, and
layout elements. However, the two XML schemas used by both
packages are slightly different in terms of metadata attributes,
tags, and document structure.

Even though cluster-code and i_newspaper_rods share a
common behaviour, they are implemented and run in different
ways. cluster-code uses mpidpy [8] (a wrapper to MPI) to
query data, while i_newspaper_rods uses the Apache Spark
framework. Each defines a single object model based on the
physical representation and XML schemas of the data that each
has been designed to ingest. Furthermore, each was originally
designed to extract data held within a UCL deployment of the
data management software, and run queries on UCLs HPC
services. This means, that we can not use cluster-code for
analysing BL newspapers or i_newspapers for British Library
books, and we have to make several modifications to both
codebases to run them in different HPC environments.

Among the range of text mining queries supported by
cluster-code we can count the total number of pages across all

2 Daniel Defoe was both a journalist and a novelist, which are the two
datasets that this toolkit work with. Therefore, we decided to name it after him.
defoe source code available at https://github.com/alan-turing-institute/defoe

3https://github.com/UCL-dataspring/cluster-code

“https://github.com/UCL/i_newspaper_rods

Shttps://www.ucl.ac.uk/isd/services/research-it-services.
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books, count the frequencies of a given list of words, find the
locations of figures, etc. Some examples of i_newspapers_rods
queries are counting the number of articles per year, the
frequencies of words in a given list of words, and finding
expressions that match a given pattern.

In terms of preprocessing the raw text data, both libraries
only include a basic normalisation strategy by removing non-
’a-z—A-Z’ characters and converting all text to lower case.

With defoe we aimed to create a portable tool for analysing
historical collections that conform to either of several XML
schemas and different physical representations, expanding the
range of supported queries, and including natural language
processing capabilities. All of these functionalities should be
provided using Apache Spark as the distributed and parallel
engine. More details about defoe are given in the next section.

III. THE DEFOE DIGITAL HUMANITIES TOOL

defoe is the result of merging, extending and refactoring code-
bases introduced in Sec. II in the same place, allowing queries
from a single command-line interface in a consistent way. The
main component of defoe is the text analysis pipeline (see
Figure 2), which resides at its core and has been implemented
using Apache Spark.

Digital Collections

Results

-

l

Object model

\

‘ - defoe 3. Text mining query execution

4. Results gathering

Scanned

1. Data ingestion
text

2. NLP preprocessing pipeline

defoe
visualization

7 Y

Jupyter Notebook

Fig. 2: defoe overview.

Apache Spark is an open source HPC distributed computing
framework for large-scale data processing. It uses a directed
acyclic graphs (DAG) that allow for processing multi-stage
pipelines chained in one job. Apache Spark provides an ability
to cache large datasets in memory between stages of the cal-
culation and to reuse intermediate results of the computation
in iterative algorithms. Resilient Distributed Datasets (RDD)
are the fundamental data structures of Apache Spark, which
is an immutable distributed collection of objects. RDDs are
partitioned into logical partitions across cluster nodes and
operate in parallel through transformations and actions. A
transformation is a function that produces new RDD from
existing ones. Transformations are not executed immediately,
only after an action is called. On the other hand, action are
operations that trigger execution of transformation and return
values.

Therefore, we chose Apache Spark because it provides au-
tomatic parallelisation and scalability for the four steps of our
text analysis pipeline. It loads digital collections into RDDs in
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memory, cleans data and runs text mining queries in parallel,
returning results as YAML files. To complement defoe, a
repository of Jupyter notebooks, called defoe visualisation, has
been developed to allow researchers to visualise and explore
further results obtained with defoe.

Furthermore, a lot of work has gone into defoe to remove
all HPC environment-specific requirements, allowing us to
run defoe in any computing environment that has Apache
Spark installed. The following subsections give a detailed
explanation of each step of the defoe text analysis pipeline.

A. Data Ingestion

We are able to able to consume historical textual collections
scanned via OCR into XML documents using defoe. It has
specific support for newspapers and books conforming any of
these three physical representations: 1) one XML document
per issue; 2) one XML document with search results including
several articles; and 3) one XML metadata document and XML
page. It also supports the following digital library standards:

e METS XML schema® for descriptive, structural, technical
and administrative metadata;

MODS XML for descriptive and bibliographic metadata;
ALTO XML schema?® for encoding OCR text

British Library-specific XML schema® for OCR text; and
PaperPast-specific XML schema '© for encoding OCR
text.

As we mentioned before, XML schemas describe either the
structure of a digital document or the actual textual content. All
of these are slightly different, and none of them is universally
used. Therefore, we have created three object models (PA-
PERS, NZPP and ALTO) to map the physical representations
and XMLs schemas (see Figure 3) mentioned before. These
allow defoe to ingest digital collections into Spark RDDs,
which is the only requirement to select the appropriate object
model the digital collection to analyse is mapped onto.

For example, if we want to import a historical newspaper
collection to be analysed, first we have to check whether
the collection has been digitised using a document per is-
sue and the British Library-specific XML schema, in which
case the PAPERS object model needs to be selected. If, on
the other hand, each XML document follows the PaperPast-
specific XML schema and holds a collection of articles that
corresponds to one more issue, the NZPP object should be
selected instead. In the case of analysing ALTO archives, the
ALTO model should be selected.

We have also explored the option of ingesting XML doc-
uments using Spark SQL and DataFrames. Unlike an RDD,
DataFrames organise data into named columns, and impose
a structure on a distributed collection of data. To use this
option, we also need to infer the different XML schemas.

Ohttp://www.loc.gov/standards/mets/

http://www.loc.gov/standards/mods/

Shttps://www.loc.gov/standards/alto/

http://www.jisc.ac.uk/media/documents/programmes/digitisation/blfinal.
pdf

10https://paperspast.natlib.govt.nz/about
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Class Issue - Representation of an issue (XML document)
Each XML holds articles that belong to the same issue

Class Article > Representation of an article

article_tree
filename
issue_tree

attributes | filename

quality

attributes | 'Ssue_id !
date title
page_count preamble
day_of_the_week conterit
article list article_id
page_ids

words = content + title
+preamble

(a) PAPERS object model

Class Issue > of an issue of XML
Each XML holds one or more articles that belong to one or more issues.

attributes | article list

§lass Article > Representation of an article

article_tree
filename

filename
issue_tree

attributes
quality
title

article
1 preamble

Article article article
1 1 1

display-collection
language

type
words = content + title

(b) NZPP object model

Rops

Class Archive - Representation of a zipped archive Class Document -> Representation of a metadata
document ( XML in METS/MODS) and an ALTO
directory.

Class Page > Representation
of a page (XML in ALTO).

attributes

filename Mo

archive

tbutes | documentlist kL
code e

namespace page_tree
width

height

num_pages
metadata
metadata_tree
- page_words
year .
page_strings
publisher page. images
place

page_codes

L_ page list
el | pagez | pages

(c) ALTO object model

Fig. 3: Object models available in defoe

Therefore, we developed two new python parsers'! based on
the databricks spark-xml package'?, which has been designed
to read XML documents as DataFrames.

However, due to the nested nature of the historical XML
schemas (such as ALTO, METS and British-Library specific
XML), the spark-xml package is not able to infer them
automatically, requiring a lot of manual work to flatten their
attributes. Since this option did not add further benefits to
what we already had, we decided to continue with our original
implementation using RDDs.

Once the data is loaded into RDDs with a particular object
model, defoe continues the analysis with the Natural Language
Processing (NLP) step for cleaning the text. Note that Apache
Spark ingests the data in parallel which is automatically
partitioned (in memory) across the Spark cluster.

To evaluate defoe, we have used a range of digital collec-
tions, which main features are summarised in Table 1.

hittps://github.com/rosafilgueira/SparkSQL_DataFrames_Defoe
Zhttps://github.com/databricks/spark-xml
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Dataset Period | Structure Scale Size Object
Model

British 1510- ZIP per book | 63700 220 GB ALTO
Library 1899 with a XML | ZIP files model
Books metadata
(BLB)!3 (METS

schema) and

a XML per

page (ALTO

schema)
British 1714- XML 179669 424 GB PAPERY
Library 1950 document XML model
News- per issue | docu-
papers (British ments
(BLN)™ Library-

specific

XML

schema).
Times 1785- XML 69699 362 GB PAPERY
Digital 1848 (British XML model
Archive Library- docu-
(TDA)"S specific ments

XML

schema)

per issue
Papers 1839- XML 13411 4 GB NZPP
Past New | 1863 document XML model
Zealand (with 22 | docu-
and articles) ments
Pacific corresponds (PaperPastt
news- to results | specific
papers from a | XML
(NZPPp)'0 search via an | schema).

API)
Find 1752 - | Folder per | 2067235 1.8TB ALTO
My Past 1957 issue, with | XML model
(FPM) a XML | docu-

metadata ments

document

(METS) and

XML file per

issue  page

(ALTO)

TABLE I: Main features, abbreviations and defoe object mod-
els for the digital collections explored.

B. NLP Text Preprocessing

The poor quality that often emerges from large-scale text digi-
tisation is well-documented [9], [10]. This can create issues
for searching and research based on imperfect digital copies
of text. Basic string-matching searching is unlikely to return
all the results intended by the user. We have implemented
a NLP preprocessing pipeline (see Figure 4) that deals with
character-level errors in the OCR, and which is a first step
towards allowing a more semantically meaningful exploration
of the data. Our NLP pipeline consists in the following steps.
After the raw text (from pages or articles) is ingested, the
first step is to split it into sentences. Then, each sentence
is tokenised separately, which results in a new sequence of
tokens that roughly correspond to ‘words’. Later each token
is normalised by removing non-‘a-z—A-Z’ characters and

Bhttps://data.bl.uk/digbks/
https://www.gale.com/uk/s?query=british+library+newspapers
Bhttps://www.gale.com/intl/c/the-times-digital-archive
16http://paperspast.natlib.govt.nz/newspapers

Authorized licensed use limited to: Universiteit van Amsterdam.
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Raw Text

Sentence
Splitter

sentence

tokens Part-of-Speech

Tokenization (POS)

tagged tokens

Name Entity
Recognition
(NER)

Normalization

Lemmatization

Stemming

Fig. 4: defoe NLP preprocessing pipeline implemented.

making them lower-case. Once tokens are normalised, users
can choose whether to apply stemming or lemmatisation.
Stemming reduces words to their word stem (base or root
form), whereas lemmatisation reduces inflectional forms to a
common base form.

After that, the pipeline performs Part-Of-Speech (POS)
tagging, which assigns parts of speech to each token (tagging
them as nouns, verbs, adjectives, and others) based on its
definition and context. Finally, the pipeline proceeds with the
named-entity recognition (NER) step to find named entities in
the tagged tokens and classify them into pre-defined categories
(names of persons, locations, organisations, times, etc).

Since the NLP pipeline is implemented in Apache Spark,
each step is a transformation, in which a function (e.g. sen-
tence splitter, tokenisation, normalisation, etc) produces new
RDDs from the existing ones.

Furthermore, we have implemented two versions of this
pipeline using widely used NLP frameworks: NLTK [11] and
spaCy [12] (see Listing 5). spaCy is an open-source software
library for advanced NLP written in Python and Cython. NLTK
is a suite of libraries and programs for symbolic and statistical
NLP for English written in Python. Their main features are
shown in Table II.

g
=

Feature

Easy installation
Python API

Multi Language support
Tokenization
Part-Of-Speech tagging
Sentence segmentation
Dependency parsing
Name Entity Recognition
Integrated word vectors
Sentiment analysis
Conference resolution

TABLE II: Comparison of spaCy and NLTK features.

<
2
&

ZHRHKHRHKHRKRZA
ZHKZRKZK KKK

We are currently evaluating end-to-end performance by
comparing the outputs of the two versions of the pipeline

Downloaded on July 06,2021 at 08:27:42 UTC from IEEE Xplore. Restrictions apply.



against a gold standard dataset of historical texts that is being
manually annotated. This will inform which library is most
suitable for preprocessing historical newspapers and books.
At the time of writing, both implementations are available in
defoe.

Sentence: "And devoted some time to social work in London."

| spaCy preprocessing]|

Word Normaliz. Lemma PoS Tag NER
And and and CCONJ cC
devoted devoted devote VERB VBN

some some some DET DT

time time time NOUN NN

to to to ADP IN

social social social ADJ JJ

work work work NOUN NN

in in in ADP IN

London london London PROPN NNP GPE

PUNCT o

|NLTK preprocessing]

Word Normaliz. Lemma Stem PoSTag NER

And and and and cC (S And/CC)
devoted devoted devoted devot VBN (S devoted/VBN)
some some some some DT (S some/DT)

time time time time NN (S (NP time/NN))
to to to to TO (S to/TO)

social social social social JJ (S social/JJ)
work work work work NN (S (NP work/NN))
in in in in IN (S in/IN)

London london london london NNP (S (GPE London/NNP) )

(s ./7.)

Fig. 5: defoe preprocessing output example. The sentence
belongs to the FMP digital corpus.

C. Text mining queries

After preprocessing the raw text data, defoe executes the
selected text mining query over clean RDDs. It offers users
a wide range of queries, some of which were directly im-
ported from i_newspapers_rods (such as total_issues,
total_articles or normalize). Others were im-
ported from cluster-code (such as total_pages or
total_books), but these need to be re-implemented first
in Apache Spark, since they were written in mpi4py. We also
augmented these query types with a number of new ones, such
as:

e keyword_and_concordance_by_date: Searches
for occurrences of any word in a list of keywords and
returns information on each matching article including
title, matching keyword, article text and filename. Results
are grouped by dates.

e collocates_by_year: Searches for two co-located
words separated by a maximum number of intervening
words. For each match, information about the matching
book/issue, including the book/article title, the matching
words, the intervening words, and the book/newspaper
file name are returned. Results are grouped by dates.

e keysentence_by_year: Searches for occurrences of
a sentence (or phrase) and returns counts of the number
of articles that include the sentence. Results are grouped
by year.

e target_and_keywords_by_year: Searches for oc-
currences of a target word occurring with any word in
a list of keywords and returns counts of the number of
articles which include the target word and a subset of the
keywords. Results are grouped by year.

e target_and_keywords_count_by_year:
Searches for occurrences of a target word (occurring
with any word in a list of keywords) and returns counts
of occurrences of each target word and these keywords.
Results are grouped by year.

e target_concordance_collocation_by_date:
Searches for occurrences of a target word occurring with
any word in a list of keywords and returns the keyword
plus its concordance (the text surrounding the keyword).
The filename in which the match occurs and the OCR
quality is also returned. Results are grouped by dates.

All defoe queries are based on a number of transformations
(e.g. filter, flatMap, reduceByKey, etc.) and actions
(e.g. reduce, collect, etc.) that are combined to perform
text mining analyses. Listing 6 shows as an implementation
example, the ocr_quality_by_year query, in which a
flatMap transformation is applied to issues RDDs.
For each article stored inside a given issue RDD, the trans-
formation extracts the information from the quality and
years attributes (check these on the PAPERS object model
shown in Figure 3.a) and returns it as a new qualities RDD.
Later the reduceByKey transformation is applied to group
the qualities by years. Finally the collect action is performed
to trigger the execution of previous transformations and to
gather the result in a YAML file.

def do_query(issues, config_file=None, logger=None) :

# [(year, [qualityl), ...]

qualities = issues.flatMap (
lambda issue: [(issue.date.year, [article.quality])\
for article in issue.articles])

result = qualities \
.reduceByKey (concat) \
.collect ()

return result

Fig. 6: defoe ocr_quality_by_year query: Gets the
information on the OCR accuracy of each article and groups
the results by year.

Apache Spark excels at distributing these transformations
and actions across a cluster while abstracting away many of the
underlying implementation details, and runs them in parallel.

D. Results

As we mentioned before, defoe gathers results into
YAML files. Listing 7 shows the result obtained by the
ocr_quality_by_year query using a small subset of
BLN digital corpus. For simplification, only OCR qualities
from 1850 and 1851 articles are displayed.

Furthermore, a new repository of Jupyter Notebooks, called
defoe visualisation'”, has been developed to visualise and eval-
uate further results/answers obtained from defoe. For example,

17available at https://github.com/alan-turing-institute/defoe_visualization
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1850: [72.5, 85.97, 88.51, 85.41, 52.11, 82.01 85.97,
75.51, 86.28, 72.13, 75.55, 74.77, 80.05, 73.14,
88.96, 89.3, 92.01, 93.42, 91.3, 89.21, 86.29,
84.86, 80.41, 76.07, 80.41, 88.11, 90.6, 75.07,
81.62, 65.82, 85.61, 89.84, 76.15, 82.65, 84.63]

1851: [86.51, 82.82, 82.86, 82.98, 76.74, 82.59, 86.79,
88.26, 87.61, 57.51, 79.4, 68.52, 85.11, 90.07,
93.29, 85.73, 76.71, 78.2, 89.42, 92.78, 92.67,
88.92, 92.76, 89.41, 90.57, 92.77, 88.7, 85.43]

Fig. 7: defoe ocr_quality_by_year query results us-
ing a subset of BLN digital corpus

we have developed a Jupyter Notebook to analyse the results of
the colocates_by_year query (described at Sec. III-C,
that examines the presence and rate of occurrence of the
‘Stranger Danger’ phrase over the time using the BLB digital
corpus. With the developed notebook we were able to compare
results, plot them by year, normalise the results to account for
increased used of the phrase over time (see Figure 8) and
perform sentiment analyses, or visualise which words appear
more often near the ‘Stranger Danger’ phrase (see Figure 9).

Normalised year distribution

0.25 X
0.20
1]
S 015 y
o
m
5 x
2 0lo " X
* X
%, x S
0.05 ra x
0.00
1650 1700 1750 1800 1850 1900
Years

Fig. 8: Examination of the total number of BL books published
to understand how much ‘Stranger Danger’ phrase is affected
by the way that the number of BL books published increases
over the measurement period

he

int

time

Fig. 9: Exploration of word frequency near ‘Stranger Danger’
using the BLB corpus
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IV. CASE STUDIES

There are two common ways that scholars in the humanities
use text mining. One is to visualise overall patterns and trends
in text. The other is to use the search facility to return a sub-
corpus (such as whole newspaper articles that include given
terms), which can then be subject to further computational
analysis as well as manual closer analysis. defoe supports both
types of use, which we describe further with two different case
studies below.

A. Female Emigration

The first case study is part of the Oceanic Exchanges'®
project and aims to mine the TDA and BLN archives for
attitudes towards female emigration from Great Britain to the
‘Colonies’ and North America from 1850 to 1914. It seeks to
understand the role that newspapers may have played as an
agent of empire, asking the following question: Can we detect
an emphasis on a ‘service of the British empire’ narrative
as a motivating factor and driver in the pursuit of female
emigration?.

Therefore, three text mining questions were designed to
move from a purely quantitative, birds-eye view into a more
semantic analysis of the topic of female emigration:

o Normalised frequencies of the names of female
emigration  societies'®, for  which we used
keysentence_by_year and normalise defoe
queries (described in Sec. III-C).
Normalised frequencies of specially chosen taxonomy
terms?® relating to female emigration, for which
we used target_and_keywords_by_year,
target_and_keywords_count_by_year, and
normalize defoe queries (described in Sec. III-C).
Analysing  the  concordance  and  collocation
of the taxonomy terms , for which we used
target_concordance_collocation_by_date
defoe query (described in Sec. III-C).

defoe was not only used for running these queries in parallel
using TDA and BLN newspapers, but also for aggregating,
transforming results into CSV files (see Figure 10), post-
processing analyses, and visualising results. Analysis of the
results continues, but we can demonstrate the ability of defoe
to create n-grams to visualise the occurrences of the words
“daughter”, “engagement”, and “empire” across the corpus,
as shown in Figure 11.

B. Eruption of Krakatoa Volcano in 1883

Krakatoa (Krakatau in Indonesian) erupted over 26-27th Au-
gust 1883 and was one of the most spectacular volcanic
eruptions in contemporary times. defoe was used to identify
every mention of this eruption using the BLN, TDA, and NZPP

18https://oceanicexchanges.org

List of the emigration societies available at https:/github.com/
alan-turing-institute/defoe/blob/master/queries/emigration_societies.txt

20The taxonomy terms derived from close reading of relevant newspaper,
journal and periodical archives, as well as pamphlets on the topic of emigration
from the time. These are available at https://github.com/alan- turing-institute/
defoe/blob/master/queries/emigration_taxonomy.txt
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Fig. 10: Snapshot of the taxonomy terms concordance and
collocation results, using a window of 10 words preceding and
following each match across the TDA corpus. OCR quality for
each article is also captured.
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Fig. 11: N-gram for the normalised frequencies of the words
“daughter”, “engagement”, and “empire” across the TDA
corpus.

newspaper corpus from late 1883 in order to contribute to an
international analysis on how the story was reported around
the world, looking at news dissemination in the late Victorian
period.

For this analysis, we used the
keyword_and_concordance_by_date query described
at Sec. III-C, which searches for occurrences of “krakatoa”
and “krakatua” and returns information on each matching
article.

The resulting small corpus of approximately 50 newspaper
articles from all over England provides a rich data set where
we can track copying and transmission of text, and this is being
analysed at the time of writing by historians, and visualised
in more advanced ways by data scientists. Further results are
available in the Jupyter Notebook repository 2!

As we mentioned before, defoe allows for querying datasets
from a single command-line interface and in a consistent way.
It hides all the complexity to users, allowing to query data just
specifying the corpus, object model, and query to use via the
command line (see Listing 12).

V. COMPUTING ENVIRONMENTS

We have run the previous case studies using defoe on two HPC
clusters, Urika-GX and Eddie, both hosted at the University
of Edinburgh. We briefly descibe these two systems.

A. The Cray Urika-GX system

The Cray Urika-GX system is a high-performance analytics
cluster with a pre-integrated stack of popular analytics pack-
ages, including Apache Spark, Apache Hadoop and Jupyter

2l https://github.com/alan- turing- institute/defoe_visualization.
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spark-submit --py-files defoe.zip \

defoe/run_query.py \

bln_files.txt papers \
defoe.papers.queries.keyword_and_concordance_by_date \
queries/preprocess.yml \

-r results_krakatoa \

-n 324

Fig. 12: Example of the command line for submitting the
keyword_and_concordance_by_date query. Users
needs to select the digital corpus to use (bln_files),
the corresponding object model (papers), the query
(keyword_and_concordance_by_date), the
preprocessing pipeline implementation (preprocess.yml),
the file to save the results in (results_krakatoa) and
the number of processes to use (324).

Notebooks, all managed using the Apache Mesos?? resource
manager. These are complemented with a tools and frame-
works to allow data analytics applications to be developed in
Python, Scala, ,R and Java.

The Alan Turing Institutes deployment of the Urika-GX
system (hereon called Urika) includes 12 compute nodes (each
with 2x18 core Broadwell CPUs), 256GB of memory and
60TB of storage (within a Lustre high-performance parallel
file system) and 2 login nodes. Both compute and login nodes
run the CentOS 7.4 operating system.

Little work was needed to run the defoe queries in Urika-GX
using several nodes. The Urika-GX software stack includes
a fault-tolerant Spark cluster configured and deployed to
run under Mesos, which acts as the cluster manager (see
Figure 13).

MESOS e
Worker | - )
~ |
O o 1
spark’ .| P
Enacuter |- - -_‘-J{ﬂ.‘i:_-
I ¢ wiliy | E
Spark g MESOST T
: £
Dviver. =l Master il o 5
B o e
J e
rr £
.SPQI'.Ka_ - .hr ’j’-ﬂl!»'.‘i-'
Executor |
. P
LI pmEs

Fig. 13: Apache Spark Architecture in Urika-GX.

Therefore, we just needed to adjust four Spark parameters:
Spark master with the URL of the Mesos master node; number
of executors (worker nodes’ processes in charge of running
individual Spark tasks); number of cores per executor (up to
36 cores); and the amount of memory to be allocated to each
executor (up to 250GB). Even though Urika-GX has 12 nodes,
at the time of our experiments, only 9 nodes and 324 cores
were available.

22http://mesos.apache.org/
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B. Eddie

Not all researchers have access to Urika-GX. It is useful to
enable researchers to use defoe on other HPC environments
upon which, unlike Urika-GX, Spark has not been pre-installed
and configured. Eddie is a University of Edinburgh HPC
cluster. It consists of some 7000 Intel Xeon cores with up to
3TB of memory available per compute node. The cluster uses
the Open Grid Scheduler batch system on Scientific Linux 7.

Worker Node

Executor | Cache

Worker Node

/’—5&
Executor | Cache

Cluster Manager

Fig. 14: Apache Spark Architecture in Eddie

Driver Program

Since Apache Spark is not available in Eddie as a module,
we have created a new set of scripts to provision it on demand
and for a specific period of time within a batch job. The batch
job starts the Spark master (see Figure 14), Spark workers,
and registers all workers against the master.”3

This new Spark on-demand cluster facility could be used
for running all types of Spark applications, going beyond to
the original scope of this work.

In terms of data analytic capacities of both HPC environ-
ments used in our case studies, running Spark queries on
Eddie requires a more complex process than on Urika-GX. We
are also more exposed to failures, since if the Spark master
crashes, no new queries can be submitted until we restart the
cluster. However, Eddie gives us more flexibility to configure a
Spark cluster, having the possibility of using a higher number
of executors (and cores) to run our text mining queries.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a new digital eScience toolbox
called defoe. It allows for extracting knowledge from historical
data by running text analyses across large digital collections
in parallel. It offers a rich set of text mining queries, which
have been defined by humanities researchers. We have in-
cluded NLP prepossessing techniques to mitigate against OCR
errors and standardise the textual data. We have tested defoe
portability by running it on different computing environments
and using five different digital collections. Furthermore, we
have also provided new facilities to provision a multi-node
Apache Spark on demand cluster for HPC enviroments that
do not support Spark directly.

All this work provides the means to search across large-
scale datasets and to return results for further analysis and
interpretation by historians.

23 Details about how to deploy, configure, and run defoe queries on on-
demand Spark clusters can be found at https://github.com/rosafilgueira/Spark_
EDDIE_TextMining.
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In the future we would like to extend defoe to identify
and extract commonality across the object models and run
queries across them transparently to users. We are currently
exploring different ways to store the preprocessed RDDs (e.g.
in object storage) so we will be able to run more than a
query reusing these RDDs without the necessity to ingest a
digital collection repeatedly. Finally, we plan to create a web
interface (e.g. virtual environment) for enabling researchers to
select query(ies) to run against selected data collection(s) in a
distributed computing environment (in a transparent way for
researchers) and obtain the results in this interface. In this way,
we hope to make this facility more accessible to humanities
researchers hoping to access text mining facilities.
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