

1 **SARS-CoV-2 nsp15 endoribonuclease antagonizes dsRNA-induced antiviral signaling**

2

3 Clayton J. Otter^{1,2,*}, Nicole Bracci^{1,2,*}, Nicholas A. Parenti^{1,2,*}, Chengjin Ye³, Li Hui Tan⁴,

4 Abhishek Asthana⁵, Jessica J. Pfannenstiel⁶, Nathaniel Jackson³, Anthony R. Fehr⁶, Robert H.

5 Silverman⁵, Noam A. Cohen^{4,7}, Luis Martinez-Sobrido³, Susan R. Weiss^{1,2}

6

7 1. Department of Microbiology, Perelman School of Medicine, University of Pennsylvania,
8 Philadelphia, PA, USA.

9 2. Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman
10 School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

11 3. Texas Biomedical Research Institute, San Antonio, TX, USA.

12 4. Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology,
13 University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.

14 5. Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland,
15 OH, USA.

16 6. Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA.

17 7. Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.

18

19 *These authors contributed equally to this work

20

21 **Keywords:** SARS-CoV-2; endoribonuclease; nsp15; interferon; dsRNA-induced pathways

22

23 **ABSTRACT**

24 Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has caused millions of deaths
25 since emerging in 2019. Innate immune antagonism by lethal CoVs such as SARS-CoV-2 is
26 crucial for optimal replication and pathogenesis. The conserved nonstructural protein 15 (nsp15)
27 endoribonuclease (EndoU) limits activation of double-stranded (ds)RNA-induced pathways,
28 including interferon (IFN) signaling, protein kinase R (PKR), and oligoadenylate
29 synthetase/ribonuclease L (OAS/RNase L) during diverse CoV infections including murine
30 coronavirus and Middle East respiratory syndrome (MERS)-CoV. To determine how nsp15
31 functions during SARS-CoV-2 infection, we constructed a mutant recombinant SARS-CoV-2
32 (nsp15^{mut}) expressing a catalytically inactive nsp15. Infection with SARS-CoV-2 nsp15^{mut} led to
33 increased activation of the IFN signaling and PKR pathways in lung-derived epithelial cell lines
34 and primary nasal epithelial air-liquid interface (ALI) cultures as well as significant attenuation of
35 replication in ALI cultures compared to wild-type (WT) virus. This replication defect was rescued
36 when IFN signaling was inhibited with the Janus activated kinase (JAK) inhibitor ruxolitinib.
37 Finally, to assess nsp15 function in the context of minimal (MERS-CoV) or moderate (SARS-CoV-
38 2) innate immune induction, we compared infections with SARS-CoV-2 nsp15^{mut} and previously
39 described MERS-CoV nsp15 mutants. Inactivation of nsp15 had a more dramatic impact on
40 MERS-CoV replication than SARS-CoV-2 in both Calu3 cells and nasal ALI cultures suggesting
41 that SARS-CoV-2 can better tolerate innate immune responses. Taken together, SARS-CoV-2
42 nsp15 is a potent inhibitor of dsRNA-induced innate immune response and its antagonism of IFN
43 signaling is necessary for optimal viral replication in primary nasal ALI culture.

44

45

46 **SIGNIFICANCE**

47 Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 causes a spectrum of respiratory
48 disease ranging from asymptomatic infections to severe pneumonia and death. Innate immune
49 responses during SARS-CoV-2 infection have been associated with clinical disease severity, with
50 robust early interferon responses in the nasal epithelium reported to be protective. Thus,
51 elucidating mechanisms through which SARS-CoV-2 induces and antagonizes host innate
52 immune responses is crucial to understanding viral pathogenesis. CoVs encode various innate
53 immune antagonists, including the conserved nonstructural protein 15 (nsp15) which contains an
54 endoribonuclease (EndoU) domain. We demonstrate that SARS-CoV-2 EndoU is a crucial
55 interferon antagonist, by providing further evidence for the role of the conserved CoV nsp15 in
56 antagonizing innate immune activation, thereby optimizing CoV replication.

57

58 **INTRODUCTION**

59 There are currently seven known human coronaviruses (HCoVs), three of which emerged in the
60 past 20 years to cause severe disease [severe acute respiratory syndrome (SARS)-CoV, Middle
61 East respiratory syndrome (MERS)-CoV, and SARS-CoV-2]. SARS-CoV-2 is the causative agent
62 of coronavirus disease 2019 (COVID-19) and the ongoing pandemic that has claimed millions of
63 lives worldwide [1].

64

65 CoV genomes are positive-sense, single-stranded (ss)RNAs of approximately 30 kilobases in
66 length. The 5' proximal two-thirds of the CoV genome is composed of two open reading frames
67 (ORFs), ORF1a and ORF1b, that encode 16 non-structural proteins (nsps), while the 3' proximal
68 third encodes the structural and accessory proteins. Following viral entry, ORF1a and ORF1b are
69 translated from genomic RNA and processed into nsps that form replication-transcription
70 complexes (RTCs) localized to double-membrane vesicles formed from rearranged endoplasmic
71 reticulum. Nsps also function as RNA-processing enzymes, proteases, and protein modifiers [2].
72 Here, we focused on nsp15, which contains an endoribonuclease domain (EndoU) that is
73 localized to the RTC during infection. We previously reported that, during infection of bone
74 marrow-derived macrophages (BMMs), murine coronavirus nsp15 EndoU cleaves genomic RNA
75 with a preference for U↓A and C↓A sequences [3]. Alternatively, it has been proposed that nsp15
76 EndoU cleaves polyU sequences on the 5'-end of negative-sense, antigenome RNA [4]. Both
77 studies concluded that EndoU reduces viral double-stranded (ds)RNA, resulting in limited
78 activation of dsRNA-induced antiviral responses, including interferon (IFN) signaling, the
79 oligoadenylate synthetase/ribonuclease L (OAS/RNase L) pathway, and the protein kinase R
80 (PKR) pathway [2, 3, 5].

81

82 DsRNA is a byproduct of viral replication that can be detected by host cell sensors. Melanoma
83 differentiation-associated protein 5 (MDA5) detects dsRNA and triggers the production of type I
84 and type III IFNs [6-9]. Once secreted, IFN binds to its receptor on both infected and uninfected
85 cells, which results in Janus kinase (JAK) activation and phosphorylation of signal transducer and
86 activator of transcription (STAT)1 and STAT2. STAT phosphorylation and subsequent nuclear
87 translocation promotes transcription from promoters that regulate a coordinated antiviral response
88 involving hundreds of interferon-stimulated genes (ISGs) [10-12]. Upon sensing of dsRNA, OASs
89 (isoforms 1-3) produce 2'- 5'-oligoadenylates (2-5A), which activate RNase L. RNase L cleaves
90 both viral and cellular RNAs, thereby suppressing viral replication and protein synthesis as well
91 as inducing inflammation and apoptosis [13, 14]. PKR autophosphorylates upon sensing of
92 dsRNA and then phosphorylates eukaryotic initiation factor 2 (eIF2) α , leading to activation of the
93 integrated stress response and inhibition of protein synthesis [15]. Both PKR and OASs are ISGs
94 and, due to the interconnected nature of these pathways, dsRNA is a key regulator of many
95 antiviral host cell responses.

96

97 Previous studies have characterized the endoribonuclease activity of nsp15 expressed by the
98 murine coronavirus, mouse hepatitis virus (MHV) [3, 5, 16, 17]. Mutation of either catalytic
99 histidine (H262A or H277A) within the EndoU domain of MHV nsp15 promotes increased
100 induction of type I IFN, activation of the OAS/RNase L and PKR pathways, and significant
101 attenuation of replication in both bone-marrow derived macrophages (BMMs) and in mice [16,
102 17]. These findings suggest that inactivation of EndoU results in increased sensing of dsRNA by
103 host sensors which was concluded to occur due to either an increase in total dsRNA or a
104 redistribution of dsRNA away from RTCs [3, 16]. Similar finding were reported with mutant viruses
105 expressing catalytically inactive nsp15 of HCoV-229E, avian infectious bronchitis virus (IBV),
106 porcine epidemic diarrhea virus (PEDV), and MERS-CoV [5, 16-20]. We have previously

107 characterized multiple recombinant MERS-CoV mutant viruses with catalytically inactivated
108 nsp15, deletion of accessory protein NS4a (a dsRNA-binding protein), inactivation of accessory
109 protein NS4b (which contains a phosphodiesterase that specifically antagonizes RNase L
110 activation and also function as an IFN signaling inhibitor via inhibition of the NF- κ B pathway) or
111 double mutants of both nsp15/NS4a or nsp15/NS4b [19, 21-24]. We found that although the
112 MERS-CoV nsp15 mutant virus had a minor replication defect in respiratory epithelial cell lines,
113 the double mutants were significantly more attenuated and elicited increased expression of IFN
114 and ISG mRNAs [19]. These data suggest that nsp15 is crucial to CoV evasion of host detection
115 due to its ability to antagonize dsRNA-induced innate immune responses.

116

117 Published reports on SARS-CoV-2 nsp15 have utilized either *in vitro* biochemical assays, ectopic
118 overexpression, or bioinformatic approaches to characterize the structural and RNA-
119 binding/cleavage capacity of SARS-CoV-2 nsp15 [25-34]. However, these studies were carried
120 out in the absence of other viral proteins and moreover did not address the role of nsp15 in SARS-
121 CoV-2 infection. Therefore, to understand the activity of nsp15 EndoU in the context of authentic
122 infection, we generated and characterized a recombinant SARS-CoV-2 expressing a catalytically
123 inactive nsp15 (SARS-CoV-2 nsp15^{mut}). We assessed the impact of nsp15 on viral replication and
124 host responses in lung-derived epithelial cell lines as well as primary nasal epithelial air-liquid
125 interface (ALI) cultures, which recapitulate many features of the *in vivo* upper airway, including its
126 heterogeneous cellular population (primarily ciliated epithelial cells and mucus-producing goblet
127 cells) and mucociliary functions [35, 36]. These nasal ALI cultures mimic the initial site of infection,
128 where innate immune responses are crucial for early control of viral infections [37, 38]. Our data
129 indicate that SARS-CoV-2 nsp15 contributes to innate immune evasion by dampening IFN
130 induction, ISG expression, and PKR pathway activation in all cell types examined, and that
131 inactivation of nsp15 results in attenuation of replication in primary cell ALI cultures.

132 **RESULTS**

133 **Generation of recombinant SARS-CoV-2 nsp15^{mut} expressing an inactive endoribonuclease**

134 To determine the role of nsp15 in antagonizing dsRNA-induced innate immune responses during
135 SARS-CoV-2 infection, we generated a recombinant SARS-CoV-2 expressing a catalytically
136 inactive nsp15 (denoted SARS-CoV-2 nsp15^{mut}) using a bacterial artificial chromosome (BAC)-
137 based reverse genetic system [39]. SARS-CoV-2 nsp15 contains two catalytic histidines at amino
138 acid residue positions 234 and 249, conserved among coronaviruses, as illustrated for a subset
139 of betacoronaviruses in **Figure 1A** [40]. We generated a catalytically inactive nsp15 via a histidine
140 (H) to alanine (A) substitution at amino acid position 234 (nsp15^{H234A}). To validate that the H234A
141 substitution was sufficient to abrogate endoribonuclease activity, nsp15 wild type (WT) and the
142 H234A mutant proteins were expressed in *E. coli* and purified to homogeneity (**Figure S1**).
143 Endoribonuclease activity of both nsp15 proteins was tested using a fluorescence-based assay
144 in which a synthetic ssRNA substrate containing a Förster resonance energy transfer (FRET) pair
145 was incubated with each recombinant nsp15. Endoribonuclease activity results in cleavage of
146 ssRNA substrate and fluorescence detection (**Figures 1B and 1C**). While nuclease activity was
147 observed for WT nsp15, the activity of nsp15^{H234A} was comparable to that of buffer alone. These
148 results suggest that the H234A substitution in place of a catalytic histidine was sufficient to abolish
149 the endoribonuclease activity of SARS-CoV-2 nsp15.

150

151 To determine if the H234A substitution was associated with an inherent viral growth defect, we
152 compared the kinetics of replication of SARS-CoV-2 nsp15^{mut} with that of WT SARS-CoV-2 in
153 VeroE6 cells, an IFN-deficient cell line [41, 42]. Viral growth curves quantifying infectious virus in
154 the supernatant of infected cells at various time points post-infection revealed no significant
155 difference between WT and nsp15^{mut} SARS-CoV-2 (**Figure 1D**). Corroborating this finding, no
156 significant differences in viral genome copy number (quantified via RT-qPCR from intracellular

157 RNA) were detected (**Figure 1E**). Additionally, western blots probed for nsp15 and nucleocapsid
158 (N) protein revealed no differences in viral protein expression between WT and nsp15^{mut} SARS-
159 CoV-2 (**Figure 1F**). Thus, the H234A catalytic mutation in SARS-CoV-2 nsp15^{mut} does not directly
160 impact SARS-CoV-2 replication in IFN-incompetent VeroE6 cells.

161

162 **Infection with SARS-CoV-2 nsp15^{mut} promotes increased IFN signaling and PKR pathway
163 activation compared to WT SARS-CoV-2 in respiratory epithelial cell lines**

164 To understand the role that SARS-CoV-2 nsp15 plays in evading dsRNA-induced innate
165 immunity, we utilized two lung-derived epithelial cell lines, A549 cells transduced to stably express
166 the SARS-CoV-2 receptor, human angiotensin converting-enzyme 2 (ACE2) (A549-ACE2), and
167 Calu3 cells. Both of these cell lines have fully intact IFN signaling, PKR pathway, and OAS/RNase
168 L pathway responses. We and others have previously reported that WT SARS-CoV-2 induces all
169 of these pathways during infection of both A549-ACE2 and Calu3 cells [9, 43-45].

170

171 Infection of either A549-ACE2 (**Figure 2A**) or Calu3 (**Figure 3A**) cells with SARS-CoV-2 nsp15^{mut}
172 revealed no significant difference in replication kinetics compared to WT SARS-CoV-2 (**Figures
173 2A and 3A**). However, a slight but significant decrease in intracellular viral genome copies was
174 detected at 48 and 72 hours post infection (hpi) during SARS-CoV-2 nsp15^{mut} infection compared
175 to WT in Calu3 cells (**Figures 2B and 3B**).

176

177 Expression of type I (*IFNB*) and type III IFN (*IFNL1*) mRNAs, as well as mRNA expression of four
178 representative ISGs (radical S-adenosyl methionine domain containing 2 (RSAD2), IFN-induced
179 protein with tetratricopeptide repeats 1 (*IFIT1*), C-X-C motif chemokine ligand 10 (*CXCL10*), and
180 *ISG15*) were quantified by RT-qPCR to detect activation of the IFN signaling pathway (**Figures**

181 **2C and 3C).** Despite the lack of viral attenuation, we observed increased mRNA induction of both
182 type I and type III IFNs upon infection with SARS-CoV-2 nsp15^{mut} compared to WT in both cell
183 lines. mRNA expression of representative ISGs was also upregulated in A549-ACE2 and Calu3
184 cells with SARS-CoV-2 nsp15^{mut}.

185
186 To confirm our observations of increased IFN and ISG mRNA induction, western blots were
187 performed to assess protein expression of IFIT1, viperin, MDA5, and PKR in lysates collected
188 from cells either mock-infected or infected with WT or nsp15^{mut} SARS-CoV-2. While levels of IFIT1
189 and viperin were slightly increased during infection with nsp15^{mut} relative to WT early (24 hpi)
190 during infection in A549-ACE2, MDA5 was not detected (**Figure 2D**). Similar analysis of infected
191 Calu3 cells revealed a clear increase in IFIT1, viperin, MDA5, and PKR expression during SARS-
192 CoV-2 nsp15^{mut} infection compared to WT at both 24 and 48 hpi (**Figure 3D**).

193
194 Activation of the PKR pathway was also evaluated via western blot to assess phosphorylation of
195 PKR and its downstream substrate eIF2α. Both p-PKR and p-eIF2α levels were increased during
196 SARS-CoV-2 nsp15^{mut} infection relative to WT in A549-ACE2 cells (**Figure 2D**) indicating both an
197 earlier (24 hpi) and more robust activation of the PKR pathway during SARS-CoV-2 nsp15^{mut}
198 infection. Interestingly, similar analysis in Calu3-infected cells revealed clear phosphorylation of
199 PKR and eIF2α early (24 hpi) during infection, however phosphorylation levels of PKR and eIF2α
200 were reduced at 48 hpi compared to 24 hpi in both WT and nsp15^{mut} infected cells. Though
201 increased PKR pathway activation (above WT levels) was detected in A549-ACE2 cells, we
202 hypothesize that robust activation of the PKR pathway by WT SARS-CoV-2 in Calu3 cells renders
203 any additional PKR activation by SARS-CoV-2 nsp15^{mut} difficult to detect. It is important to note
204 that in both cell lines, comparable levels of SARS-CoV-2 N were observed following infection with
205 either nsp15^{mut} or WT SARS-CoV-2, consistent with the lack of replication defect (**Figures 2D**

206 **and 3D).** Finally, we compared OAS/RNase L activation in A549-ACE2 and Calu3 cells infected
207 with WT and nsp15^{mut} SARS-CoV-2 by assessing ribosomal RNA (rRNA) degradation on a
208 bioanalyzer. No increase in RNase L activity was observed during SARS-CoV-2 nsp15^{mut} infection
209 relative to activation observed by WT SARS-CoV-2 in either cell type (**Figures S2 and S3**).

210

211 **SARS-CoV-2 nsp15^{mut} is attenuated for replication and induces increased IFN signaling
212 and PKR pathway activation in primary nasal epithelial ALI cultures**

213 We sought to investigate the role of nsp15 in a primary nasal epithelial cell culture system which
214 models the initial site of viral replication and the primary barrier to respiratory virus infections.
215 Thus, nasal epithelial cells derived from four to six donors were pooled prior to growth and
216 differentiation at an air-liquid interface (ALI) to recreate the cell types and functions present in the
217 nasal airway. Infections comparing WT and nsp15^{mut} SARS-CoV-2 in nasal ALI cultures were
218 conducted at 33°C (approximate nasal airway temperature) to optimize replication of SARS-CoV-
219 2 and model the *in vivo* nasal temperature dynamics [46-48].

220

221 To investigate the kinetics of viral replication, nasal ALI cultures were infected at the apical surface
222 with WT or nsp15^{mut} SARS-CoV-2. Apical surface liquid (ASL) was collected at 48-hour intervals
223 from 0 to 192 hpi and quantified via plaque assay. Average viral titers are shown in **Figure 4A**.
224 WT SARS-CoV-2 reached peak titers at 144 hpi and then plateaued, as we have previously
225 reported [46]. In contrast to growth curves in both A549-ACE2 and Calu3 cells, SARS-CoV-2
226 nsp15^{mut} replication was significantly attenuated compared to WT by approximately 10-fold
227 PFU/mL at both 144 and 192 hpi. In addition, a significant reduction in intracellular genome copy
228 number was detected at both 96 and 192 hpi during SARS-CoV-2 nsp15^{mut} infection compared to
229 WT as quantified by RT-qPCR (**Figure 4B**).

230

231 Next, we compared dsRNA-induced innate immune responses in nasal ALI cultures infected with
232 either WT or nsp15^{mut} SARS-CoV-2. We observed delayed IFN and ISG responses during both
233 WT and nsp15 mutant virus infections. At 48 and 96 hpi, there was minimal induction of IFN and
234 ISG mRNA in cultures infected with either virus (**Figure 4C**). However, both IFN and the
235 representative ISG mRNAs were significantly (~10-fold) upregulated at 192 hpi during SARS-
236 CoV-2 nsp15^{mut} infection compared to WT. The kinetics of IFN and ISG mRNA induction in nasal
237 ALI cultures were consistent with the timing of the replication defect observed for SARS-CoV-2
238 nsp15^{mut} (**Figure 4A**).

239

240 Given the growth defect and increased expression of IFN and ISG mRNA during infection with
241 SARS-CoV-2 nsp15^{mut} compared to WT in nasal ALI cultures, we examined STAT1
242 phosphorylation (p-STAT1) and ISG induction by western blot. At 96 hpi, we observed an increase
243 in p-STAT1, as well as increased levels of ISG protein expression (IFIT1, Viperin, MDA5, and
244 PKR) in samples infected with nsp15^{mut} compared to WT SARS-CoV-2 (**Figure 4D**). This increase
245 in p-STAT1 and upregulation of ISGs during SARS-CoV-2 nsp15^{mut} infection was even more
246 robust at 192 hpi.

247

248 Protein lysates from infected nasal ALI cultures were further evaluated to assess PKR pathway
249 activation (**Figure 4D**). A clear increase in p-PKR as well as total PKR was observed during
250 infection with both viruses at 192 hpi. Despite a clear increase in p-PKR, we have not detected a
251 consistent increase in p-eIF2 α above mock levels in nasal ALI cultures from 5 independent sets
252 of pooled donors infected with either WT SARS-CoV-2 or the nsp15 mutant at any time point
253 assayed. Western blotting for SARS-CoV-2 N levels showed decreased expression at 192 hpi

254 during nsp15^{mut} infection compared to WT (**Figure 4D**), consistent with nsp15^{mut} attenuation in
255 primary nasal cells.

256

257 **Attenuation of SARS-CoV-2 nsp15^{mut} in primary nasal epithelial cells is IFN-mediated**

258 To determine the extent to which the attenuation of SARS-CoV-2 nsp15^{mut} virus is due to IFN
259 signaling, we infected nasal ALI cultures in the presence of the small molecule JAK1/2 inhibitor,
260 ruxolitinib (RUX). RUX treatment prevents phosphorylation of STATs by JAK1/2 and subsequent
261 nuclear translocation; thus RUX-treated nasal cells can produce and release IFN, but cells are
262 unable to respond to IFN and induce ISG transcription [49]. Nasal ALI cultures pre-treated with
263 RUX were infected with either WT or nsp15^{mut} SARS-CoV-2. ASL was collected every 48 hours
264 and infectious virus quantified via plaque assay. As expected, in control DMSO-treated cultures,
265 replication of SARS-CoV-2 nsp15^{mut} was attenuated compared to WT at late times post infection
266 (144 and 192 hpi) (**Figure 5A**). While RUX treatment led to a significant increase in replication of
267 WT SARS-CoV-2 (ten-fold at 192 hpi), RUX treatment of SARS-CoV-2 nsp15^{mut} infected cultures
268 resulted in a larger increase in viral titers (100-fold). However, no significant difference in
269 replication was observed between the RUX treated cultures infected with either WT or nsp15^{mut}
270 SARS-CoV-2 at 192 hpi. **Figure 5B** highlights the viral titers from **Figure 5A** for each virus and
271 treatment condition at 192 hpi plotted as a bar graph, illustrating complete rescue of the nsp15^{mut}
272 growth defect to WT SARS-CoV-2 levels with RUX treatment. As might be expected, RUX
273 treatment significantly impacts viral titers at the late time points post infection, which coincides
274 with the timing of IFN signaling induction during SARS-CoV-2 infection of nasal cells (**Figures 4C**
275 and **4D**).

276

277 Protein lysates from control- or RUX-pretreated infected nasal ALI cultures were analyzed via
278 western blot to confirm the inhibitory activity of RUX and to further investigate the relationships
279 between the PKR pathway and IFN signaling during SARS-CoV-2 infection (**Figure 5C**). At 192
280 hpi in DMSO-treated control samples, increased ISG expression was observed following SARS-
281 CoV-2 nsp15^{mut} infection compared to WT, as described earlier. RUX treatment completely
282 inhibited STAT1 phosphorylation, as well as upregulation of both STAT1 and STAT2 expression
283 during either WT or nsp15^{mut} SARS-CoV-2 infection. Downstream upregulation of ISG expression
284 was also inhibited in RUX-treated cultures. Interestingly, no increase in p-PKR and total PKR
285 signal was detected in RUX-treated cultures, suggesting that IFN-mediated upregulation of PKR
286 is necessary for PKR pathway activation in nasal ALI cultures. Finally, consistent with viral
287 attenuation, SARS-CoV-2 N levels were decreased during SARS-CoV-2 nsp15^{mut} infection
288 compared to WT in DMSO-treated cultures, but this defect was rescued with RUX treatment.
289 These data indicate that the growth defect observed for SARS-CoV-2 nsp15^{mut} in nasal ALI
290 cultures is IFN-mediated.

291

292 **Nsp15 endoribonuclease activity is more crucial in promoting viral replication during**
293 **MERS-CoV infection compared to SARS-CoV-2 infection.**

294 We sought to evaluate the role of nsp15 in innate immune antagonism and optimization of viral
295 replication during SARS-CoV-2 infection compared with another lethal CoV, MERS-CoV. Since
296 these viruses utilize different cellular receptors, we chose two cell types in which both viruses can
297 efficiently replicate for these comparisons (Calu3 and nasal ALI cultures) [50]. For these
298 comparisons we used our previously characterized MERS-CoV mutants, MERS-CoV nsp15^{mut}
299 and a MERS-CoV nsp15^{mut}/ΔNS4a double mutant, which also lacks expression of dsRNA-binding
300 protein NS4a. Previously, we found that both of these MERS-CoV mutant viruses were attenuated
301 in A549 cells expressing the MERS-CoV receptor, but the deletion of NS4a in addition to the

302 inactivation of nsp15 conferred a more dramatic replication defect and greater stimulation of IFN
303 signaling and PKR activation [19]. Thus, along with WT SARS-CoV-2 and SARS-CoV-2 nsp15^{mut},
304 we infected Calu3 and nasal ALI cultures with WT MERS-CoV, MERS-CoV-nsp15^{mut} and MERS-
305 CoV-nsp15^{mut}/ Δ NS4a.

306 In Calu3 cells, both MERS-CoV nsp15^{mut} and MERS-CoV nsp15^{mut}/ Δ NS4a were attenuated
307 compared to WT MERS-CoV; this contrasts with the lack of attenuation observed for SARS-CoV-
308 2 nsp15^{mut} (**Figures 6A and 6B**). Additionally, MERS-CoV nsp15^{mut}/ Δ NS4a exhibited a larger
309 growth defect than MERS-CoV nsp15^{mut} in Calu3 cells. In nasal ALI cultures, WT SARS-CoV-2
310 replicated to higher titers than WT MERS-CoV (**Figure 7A**), consistent with our previous findings
311 [19, 43]. A significant growth defect for SARS-CoV-2 nsp15^{mut} was observed at 144 and 192 hpi,
312 while both MERS-CoV mutants were attenuated relative to WT MERS-CoV beginning earlier, at
313 96 hpi. The magnitude of the growth defect was also larger for both MERS-CoV mutants (~100-
314 fold) compared to SARS-CoV-2 nsp15^{mut} (~10-fold). Thus, nsp15 activity appears to play a more
315 crucial role in viral replication during MERS-CoV compared to SARS-CoV-2 infection, as MERS-
316 CoV nsp15^{mut} and MERS-CoV nsp15^{mut}/ Δ NS4a exhibited an earlier and larger replication defect
317 in both cell types.

318 We further compared activation of the IFN and PKR pathways in Calu3 cells. WT MERS-CoV
319 infection resulted in nearly undetectable IFN and ISG mRNA expression whereas WT SARS-CoV-
320 2 infection promoted mild induction of the IFN signaling pathway, consistent with prior
321 experiments (**Figure 6C**) [19, 43]. Infection with SARS-CoV-2 nsp15^{mut} promoted an increase in
322 IFN induction compared to WT SARS-CoV-2 while infection with either MERS-CoV-nsp15^{mut} or
323 MERS-CoV-nsp15^{mut}/ Δ NS4a induced a more robust increase in *IFNB* and *IFNL1* mRNA
324 expression compared SARS-CoV-2 nsp15^{mut} (>three-fold and >ten-fold, respectively).
325 Interestingly, differences in ISG induction were more nuanced. MERS-CoV mutants induced
326 some ISGs more robustly than SARS-CoV-2 nsp15^{mut} (*CXCL10* and *RSAD2*), while other ISGs

327 were induced to similar degrees by SARS-CoV-2 nsp15^{mut} and both MERS-CoV mutants (*IFIT1*
328 and *ISG15*). At the protein level, the SARS-CoV-2 nsp15 mutant as well as both MERS-CoV
329 mutants exhibited peak STAT1 phosphorylation at 16 hpi, although p-STAT1 levels were higher
330 during infection with both MERS-CoV mutants (**Figure 6D**). Both MERS-CoV mutants induced
331 ISGs (IFIT1, viperin, MDA5) earlier (beginning at 16 hpi) than SARS-CoV-2 nsp15^{mut} (first
332 induction at 24 hpi). The SARS-CoV-2 nsp15^{mut} did not reach peak ISG induction levels until 48
333 hpi. This suggests that nsp15 antagonizes IFN earlier during MERS-CoV infections compared
334 with SARS-CoV-2. Regarding the PKR pathway, neither SARS-CoV-2 nsp15^{mut} nor MERS-CoV-
335 nsp15^{mut} induced PKR phosphorylation as robustly as MERS-CoV-nsp15^{mut}/ΔNS4a. This may
336 partially explain why MERS-CoV-nsp15^{mut}/ΔNS4a is more attenuated in Calu3 cells.

337

338 In nasal ALI cultures, given the delayed IFN induction observed during SARS-CoV-2 infection, we
339 first evaluated IFN and ISG induction for each of the SARS-CoV-2 and MERS-CoV viruses at a
340 late time point (192 hpi). We found that IFN and ISG mRNA expression had returned to mock
341 levels for both MERS-CoV mutants at 192 hpi, suggesting that this time point was too late to
342 detect IFN induction for these viruses (**Figure S4**). Therefore, protein expression of ISGs and
343 PKR pathway activation were examined via western blot at relevant time points for each virus (96,
344 192 hpi for SARS-CoV-2 and 48, 96 hpi for MERS-CoV) (**Figure 7B**). In line with our observations
345 in Calu3 cells, increased phosphorylation of STAT1 as well as ISG expression occurred at earlier
346 times post-infection in nasal ALI cultures with either of the MERS-CoV mutants compared to
347 SARS-CoV-2 nsp15^{mut}. Interestingly, SARS-CoV-2 nsp15^{mut} stimulated the highest accumulation
348 of p-STAT1 at 192 hpi. However, induction of each of the ISGs analyzed occurred to a similar
349 extent with MERS-CoV-nsp15^{mut} and MERS-CoV-nsp15^{mut}/ΔNS4a at 96 hpi and SARS-CoV-2
350 nsp15^{mut} at 192 hpi. Comparable levels of PKR phosphorylation were detected at 48 and 96 hpi
351 with the MERS-CoV mutants and at 192 hpi with SARS-CoV-2 nsp15^{mut}. Overall, the kinetics of

352 IFN induction and ISG expression occur at earlier times post infection following inactivation of
353 MERS-CoV nsp15 compared to SARS-CoV-2 nsp15. This kinetic signature correlates with an
354 earlier and more dramatic impact on viral replication during infection with either of the MERS-CoV
355 nsp15 mutants compared to SARS-CoV-2 nsp15^{mut} in nasal ALI cultures. These data indicate that
356 other viral antagonists in addition to nsp15 may be contributing to innate immune antagonism by
357 SARS-CoV-2.

358 **DISCUSSION**

359 The conserved CoV nsp15 endoribonuclease has been shown to be a potent inhibitor of host
360 innate immunity during infection with multiple CoVs. Infections with viruses expressing nsp15 with
361 an inactive endoribonuclease have resulted in significant attenuation of viral replication compared
362 to their WT counterparts. Increased dsRNA-induced responses, including IFN production and
363 signaling, as well as PKR and OAS/RNase L pathway activation was also observed [5, 16-19]. To
364 build upon previous literature that utilized overexpression systems to identify SARS-CoV-2 nsp15
365 as an inhibitor of IFN signaling, we generated a recombinant SARS-CoV expressing a catalytically
366 inactive nsp15 EndoU to investigate the role of nsp15 in limiting dsRNA-induced pathway
367 activation and thereby optimizing viral replication.

368

369 Despite evidence of robust IFN signatures as well as increased PKR activation in lung-derived
370 epithelial cell lines and primary nasal ALI cultures, replication of SARS-CoV-2 nsp15^{mut} was only
371 attenuated in primary nasal cultures (**Figures 2, 3, and 4**). These data suggest a role for SARS-
372 CoV-2 nsp15 as an IFN antagonist whose function is essential for optimizing viral replication in
373 certain cellular contexts. Various studies have demonstrated that SARS-CoV-2 is highly sensitive
374 to IFN pre-treatments [51]. Thus, its ability to evade or antagonize IFN and ISG signaling impacts
375 its ability to replicate.

376

377 We have previously reported that SARS-CoV-2 infections of nasal ALI cultures produce a
378 relatively low percentage of infected cells (~10%) compared to cell lines [46]. We hypothesize that
379 this low percentage of infected cells, which may more closely reflect *in vivo* infections, may
380 accentuate the impact that inactivation of nsp15 has on SARS-CoV-2 infection. Secreted IFN from
381 a relatively small population of infected cells provides a signal to neighboring cells to create an
382 antiviral state to limit viral spread [52, 53]. Additionally, nasal ALI cultures are more robust in terms
383 of overall IFN and ISG signaling when compared to transformed epithelial cell lines. We compared

384 the magnitude of IFN and ISG mRNA induction during infection of A549-ACE2, Calu3, and nasal
385 ALI cultures and found that nasal cultures consistently exhibited the strongest induction of *IFIT1*
386 and *ISG15* mRNAs (**Figure S5**). It is also important to note that we observed some variability in
387 the magnitude of IFN and ISG induction within these primary nasal ALI cultures. There is a level
388 of donor-dependent variability in the susceptibility to infection as well as magnitude of immune
389 responses that we and other groups have previously observed (**Figure 4C**) [46, 54]. To help
390 mitigate this variability, four to six individual donors were pooled prior to seeding nasal cultures to
391 model average host responses.

392
393 Given that SARS-CoV-2 nsp15^{mut} replication is attenuated in nasal cells, we used a JAK1/2
394 inhibitor, RUX, to test to what extent the observed growth defect is IFN-mediated. While RUX
395 treatment led to an increase in WT SARS-CoV-2 titers, it had a more robust impact on SARS-
396 CoV-2 nsp15^{mut} titers, such that its replication was rescued to WT SARS-CoV-2 levels in the
397 presence of RUX (**Figure 5**). The correlation between SARS-CoV-2 attenuation and IFN induction
398 is consistent with our previous findings that characterized multiple MERS-CoV nsp15 mutant
399 viruses in A549 cells. We found that growth defects in these mutant viruses were similarly IFN-
400 mediated, as infections conducted in mitochondrial antiviral-signaling protein (MAVS) knockout
401 cells resulted in complete rescue of viral titers to WT MERS-CoV levels in the absence of IFN
402 signaling [19]. Similar findings have been observed with MHV: nsp15 mutant viruses can only
403 replicate efficiently in BMMs deficient in either IFNAR or both PKR and RNase L [17]. Our data
404 further illustrate that nsp15 is an IFN antagonist since SARS-CoV-2 nsp15^{mut} is able to replicate
405 to WT levels when IFN signaling is abrogated in nasal ALI cultures.

406
407 RUX treatment of nasal cells also highlighted the interconnected nature of dsRNA-induced
408 pathways. PKR pathway activation indicated by increased p-PKR occurred in nasal cells infected
409 with either WT or nsp15^{mut} SARS-CoV-2. However, RUX treatment resulted in p-PKR levels that

410 were comparable to mock levels during infection by both viruses (**Figure 5**). Since PKR itself is
411 an ISG, this suggested that IFN-mediated upregulation may be necessary for sufficient PKR
412 expression that allows for its activation and autophosphorylation in nasal cell cultures [55, 56].
413 Parallel observations have been made during infection of BMMs with MHV, whereby low basal
414 expression of OASs resulted in undetectable RNase L activation [57]. In contrast, the downstream
415 target of PKR, eIF2 α , is not an ISG and thus would not be upregulated in the context of increased
416 IFN signaling during SARS-CoV-2 nsp15^{mut} infection. Detection of increased phosphorylated
417 eIF2 α proved difficult in both Calu3 and nasal cells, which may be linked to its lack of IFN-
418 mediated upregulation. It is important to note that PKR is not the only kinase responsible for eIF2 α
419 phosphorylation. Three other kinases (PKR-like ER Kinase (PERK), general control
420 nonderepressible 2 (GCN2), and Heme-regulated eIF2 α kinase (HRI)) have the capacity to
421 phosphorylate eIF2 α , but only PKR is activated secondary to dsRNA detection. Instead, these
422 kinases are activated by the integrated stress response when an accumulation of unfolded
423 proteins, amino acid starvation, or a heme deficiency is detected [58, 59]. Additionally, we
424 hypothesize that due to the robust activation of both the PKR and RNase L pathways during WT
425 SARS-CoV-2 infection in the epithelial-derived cell lines, any further activation by the nsp15
426 mutant was difficult to detect.

427
428 The IFN-mediated growth defect of the SARS-CoV-2 nsp15^{mut} in nasal ALI cultures was only
429 detected at late times post infection (144 and 192 hpi), concurrent with time points at which the
430 nsp15^{mut} induced more IFN signaling than WT SARS-CoV-2 (**Figure 4**). Similar findings of
431 delayed kinetics of IFN and ISG signaling in primary nasal cells were previously reported based
432 on comparisons with influenza which induces the IFN pathway much earlier than SARS-CoV-2
433 [60]. The mechanism behind this delay in IFN signaling can likely be explained in part by the
434 immune antagonist activities of accessory and additional nonstructural proteins encoded by

435 SARS-CoV-2. Additional conserved CoV nsps likely contribute to SARS-CoV-2 immune evasion,
436 including nsp1 (which selectively inhibits host protein translation), nsp3 (which modifies host
437 proteins via its macrodomain and deubiquitinase domain to suppress antiviral responses), as well
438 as nsp14 and nsp16 (which contribute to RNA modification important for CoV immune evasion)
439 [61-65]. SARS-CoV-2 encodes multiple additional accessory genes, encoded in ORF3b, ORF6,
440 ORF7a, ORF7b, and ORF8, some of which may play roles in immune evasion [66]. Specifically,
441 the protein encoded by SARS-CoV-2 ORF6 has been reported to inhibit nuclear translocation of
442 transcription factors STAT1/2, thus functioning as an IFN signaling inhibitor [67-70]. Since the
443 SARS-CoV-2 nsp15^{mut} retains other functional IFN antagonist activities in its accessory proteins,
444 this may contribute to the delayed IFN responses observed in the nasal ALI cultures. We
445 previously reported that MERS-CoV encodes three potent IFN antagonists that together shut
446 down dsRNA-induced pathways (the conserved CoV nsp15 EndoU and accessory proteins NS4a
447 and NS4b), so it is likely that SARS-CoV-2 also encodes multiple strategies to evade host innate
448 immunity [19, 21].

449
450 Another potential contributor to delayed IFN kinetics observed during SARS-CoV-2 infection and
451 its nsp15 mutant counterpart is temperature. Infections in primary nasal cultures were conducted
452 at 33°C to model *in vivo* nasal airway temperatures, whereas infections in respiratory epithelial
453 cell lines were conducted at 37°C [47, 71]. Temperatures in the nasal passages range from 32-
454 35°C, whereas temperatures in the lung are closer to ambient body temperature (37°C).
455 Temperature has been shown to modulate innate immune responses and replication of SARS-
456 CoV-2 as well as other viruses such as human rhinovirus-16 [48, 72]. Our prior work has indicated
457 that while SARS-CoV-2 can replicate in nasal cultures incubated at either 33°C or 37°C, its
458 replication is optimal at nasal airway temperature (33°C) [46]. This preference for replication of
459 SARS-CoV-2 at 33°C was corroborated in a lower airway ALI model [48]. The delayed kinetics of

460 activation of IFN and ISG signaling in nasal ALI cultures is likely multifactorial, contributed to by
461 both temperature and immune antagonists encoded by SARS-CoV-2.

462

463 Having established that nsp15 EndoU activity contributes to IFN antagonism and promotes viral
464 replication during SARS-CoV-2 infection, we directly compared the effects of an inactive nsp15
465 nsp15 EndoU domain during either SARS-CoV-2 or MERS-CoV infection in Calu3 cells and nasal
466 ALI cultures (**Figures 6 and 7**). MERS-CoV nsp15 mutants exhibited an earlier and more robust
467 IFN signature associated with attenuation in both Calu3 and nasal cultures. While SARS-CoV-2
468 nsp15^{mut} induced IFN and downstream ISG expression in all cellular systems analyzed, it was
469 only associated with a growth defect in nasal ALI cultures (**Figures 2, 3, and 4**). WT MERS-CoV
470 is particularly adept at shutting down dsRNA-induced pathway activation in contrast to WT SARS-
471 CoV-2, which induces activation of IFN, PKR, and RNase L [43]. Indeed, WT MERS-CoV induced
472 ten-fold less IFN- β and two-fold less IFN- λ mRNA compared to WT SARS-CoV-2 in Calu3 cells
473 (**Figure 6C**). Additionally, although WT SARS-CoV-2 titers were relatively equal to WT MERS-
474 CoV in Calu3 cells, the levels of IFN and ISG induction were all higher during WT SARS-CoV-2
475 infection (**Figure 6**). We hypothesize that SARS-CoV-2 has evolved to replicate despite moderate
476 innate immune induction, and thus its replication is not significantly impacted when IFN induction
477 is increased above WT levels due to the inactivation nsp15 EndoU. Although nsp15 serves as a
478 strong IFN antagonist encoded by both viruses, our data indicate that nsp15 may play a more
479 crucial role in optimizing MERS-CoV replication. It is not surprising that CoVs would have varying
480 degrees of sensitivity to IFN. SARS-CoV-2, its variants, and SARS-CoV are all genetically similar
481 to each other but demonstrate variability in their sensitivity to IFN [51, 73-76]. Experiments directly
482 comparing the sensitivity of SARS-CoV-2 and MERS-CoV, as well as their respective nsp15
483 mutants, to IFN would be useful in characterizing these two lethal coronaviruses.

484

485 We have characterized a recombinant SARS-CoV-2 nsp15 mutant virus, demonstrating that
486 nsp15 is a potent antagonist of IFN induction and ISG signaling in multiple cellular contexts.
487 Abrogation of IFN antagonism by SARS-CoV-2 nsp15 can have a dramatic impact on viral
488 replication, illustrated most clearly in primary nasal cells in which the SARS-CoV-2 nsp15 mutant
489 exhibits IFN-mediated attenuation of replication. Future studies will investigate the combinatorial
490 role of other SARS-CoV-2 accessory genes that antagonize IFN signaling, such as the ORF6
491 encoded protein, as well as the downstream consequences of increased dsRNA-induced pathway
492 activation, such as inflammatory cytokine production and cell death, and how these responses
493 may contribute to overall pathogenesis. Additionally, although nasal ALI cultures possess a
494 heterogenous cellular population of ciliated and mucus-secreting epithelial cells, they lack
495 immune cells, which have been shown to play a prominent role in pathogen recognition as well
496 as inflammatory cytokine production [77]. The establishment of a co-culture nasal ALI system
497 containing various innate immune cell populations would mitigate this pitfall present in all three
498 cellular systems used in this study. It is imperative to characterize the mechanisms of innate
499 immune evasion by SARS-CoV-2 and other HCoVs to understand how viruses interact with host
500 cells to optimize replication and spread. Moreover, these findings will inform discovery of effective
501 antivirals and development of live-attenuated vaccines against SARS-CoV-2 and other respiratory
502 coronaviruses.

503 **MATERIALS & METHODS**

504 Nasal epithelial cells were collected via cytologic brushing of patients' nasal cavities after
505 obtaining informed consent and then grown and differentiated on transwell inserts to establish air-
506 liquid interface (ALI) cultures. The full study protocol was approved by the University of
507 Pennsylvania Institutional Review Board (protocol # 800614) and the Philadelphia VA Institutional
508 Review Board (protocol #00781). A549-ACE2, Calu3, and primary nasal epithelial cells were
509 infected with recombinant WT SARS-CoV-2, SARS-CoV-2 nsp15^{mut}, WT MERS-CoV, MERS-CoV
510 nsp15^{mut}, or MERS-CoV nsp15^{mut}/ΔNS4a at the indicated multiplicities of infection [19, 43]. At
511 various times post infection, infectious virus in cellular supernatants or in apical surface liquid
512 collected via apical wash of nasal ALI cultures were quantified via plaque assay. Total RNA or
513 protein was also collected from infected cells for analysis of dsRNA-induced pathway activation.
514 All of these techniques are described in SI Appendix, Materials & Methods. Any materials or
515 related protocols mentioned in this work can be obtained by contacting the corresponding author.

516 **Acknowledgments**

517 We thank members of the Weiss lab for feedback and discussion of this project and Dr. Volker
518 Thiel (University of Bern, Switzerland) for discussion and early mutant construction. We thank
519 Drs. David W. Kennedy, James N. Palmer, Nithin D. Adappa, and Michael A. Kohanski for aid in
520 the collection of nasal tissue for establishing primary nasal epithelial cultures. This work was
521 supported by National Institutes of Health grants R01 AI140442 (SRW), R01AI169537
522 (SRW&NAC), R01AI104887 (SRW&RHS), R35GM138029 (ARF), P20GM113117 (ARF);
523 RO1A1AI161175 (LM-S); Department of Veterans Affairs Merit Review 1-I01-BX005432-01
524 (NAC&SRW); the Penn Center for Research on Coronaviruses and Other Emerging Pathogens
525 (SRW). CO was supported in part by F30AI172101 and T32AI055400 and NB in part by
526 T32AI007324 and K12GM081259.

527

528 **DISCLOSURES**

529 Susan R Weiss is on the Scientific Advisory Board of Ocugen, Inc. and consults for Powell Gilbert
530 LLP. Noam A Cohen consults for GSK, AstraZeneca, Novartis, Sanofi/Regeneron; has US Patent
531 "Therapy and Diagnostics for Respiratory Infection" (10,881,698 B2, WO20913112865) and a
532 licensing agreement with GeneOne Life Sciences.

533 **Figure legends**

534 **Figure 1 Construction of recombinant SARS-CoV-2 with inactive nsp15^{mut}**
535 **endoribonuclease**

536 (A) Diagram of the SARS-CoV-2 genome. Full-length nsp15 of SARS-CoV-2 is shown in the
537 center. Sequence alignment among beta-coronaviruses, from top to bottom: SARS-CoV, SARS-
538 CoV-2 USA-WA1/2020, MERS-CoV EMC/2012, and MHV strain A59. Conserved residues are
539 shown in yellow with the catalytic histidine residues of SARS-CoV-2, H234 and H249, designated
540 with asterisks. Nsp15 mutation site for SARS-CoV-2 nsp15^{mut} generated in this study, H234,
541 shown in red. (B) SARS-CoV-2 WT, nsp15^{mut}, and buffer alone catalytic activity measured by
542 dequenching of 6-FAM upon ssRNA cleavage measured in relative fluorescence units (RFU)
543 recorded at 5-minute intervals over a 60-minute period. (C) Total quantified ssRNA cleavage
544 measured for the WT nsp15, nsp15^{mut}, buffer alone, and RNase A at the end of the 1 hour. (D-F)
545 Vero E6 cells were infected with either WT or nsp15^{mut} SARS-CoV-2 (MOI 0.1 in D and MOI 1 in
546 E and F). (D) Supernatants were collected at indicated times post-infection and titered via plaque
547 assay. Limit of detection (LOD) at 100 PFU/mL is indicated. Data shown is the average of 2
548 independent experiments. (E) Intracellular RNA was collected at the indicated time points post-
549 infection and copies of the RdRp per μ g RNA was measured by RT-qPCR targeting nsp12 using
550 a standard curve. (F) Cells were lysed at indicated time points using protein lysis buffer. Samples
551 were separated via SDS-PAGE and transferred to a PVDF membrane for immune detection with
552 antibodies against SARS-CoV-2 nsp15, SARS-CoV-2 N, and GAPDH.

553

554 **Figure 2 SARS-2-nsp15^{mut} induces increased IFN mRNA and ISG expression as well as**
555 **PKR activation in A549-ACE cells compared to WT SARS-CoV-2**

556 A549-ACE2 cells were infected with either WT or nsp15^{mut} SARS-CoV-2 at MOI 0.1 (A) or MOI 1
557 (B-D). (A) At indicated time points, supernatants were collected and infectious virus was
558 measured by plaque assay. Data shown is the average of three independent experiments. (B-D)
559 At 24, 48, and 72hpi either intracellular RNA was extracted and analyzed by RT-qPCR or whole
560 cell lysates were collected. (B) Genome copy number was calculated using a standard curve and
561 primers targeting SARS-CoV-2 RdRp. (C) Relative mRNA expression of *IFNLB*, *IFNL1*, and four
562 representative ISGs: *RSAD2*, *IFIT1* *CXCL10*, and *ISG15* were measured. Fold change is
563 expressed as $\Delta\Delta Ct$. (D) Whole cell lysates were separated via SDS-PAGE and analyzed by
564 western blot analysis with antibodies against indicated proteins. Data in B-D are from one
565 representative experiment of three total experiments.

566

567 **Figure 3 SARS-2-nsp15^{mut} induces increased IFN mRNA and ISG expression in Calu3 cells**
568 **compared to WT SARS-CoV-2.**

569 Calu3 cells were infected with either WT or nsp15^{mut} SARS-CoV-2 (A) MOI 0.1 and (B-D) MOI 1.
570 (A) Supernatants were collected at 0, 24, 48, and 72hpi and viral titers were measured by plaque
571 assay. Data shown is the average of three independent experiments. (B-C) At the indicated time
572 points post-infection, intracellular RNA was extracted and analyzed by RT-qPCR. (B) Genomes
573 copy numbers were quantified using primers against SARS-CoV-2 nsp12 and a standard curve.
574 (C) Relative mRNA expression of *IFNB*, *IFNL1*, and four representative ISGs: *RSAD2*, *IFIT1*,
575 *CXCL10*, and *ISG15*. Fold change is expressed as $\Delta\Delta Ct$. D) Whole cell lysates were resolved
576 using SDS-PAGE and analyzed via western blot analysis using antibodies against indicated
577 proteins Data in B-D are from one representative experiment of three total experiments.

578

579 **Figure 4 SARS-2-nsp15^{mut} is attenuated for replication compared to WT SARS-CoV-2 and**
580 **induces increased IFN signaling and PKR pathway activation in primary nasal epithelial**
581 **ALI cultures**

582 Primary nasal ALI cultures were infected at an MOI of 1 with either WT or nsp15^{mut} SARS-CoV-
583 2. (A) Apical surface liquid was collected every 48 hours and infectious virus was titered by plaque
584 assay. Growth curves shown are the average titers from 6 independent experiments, each
585 performed in triplicate with a different set of 4-6 pooled nasal cell donors. (B-C) Intracellular RNA
586 was extracted and analyzed by RT-qPCR at 48, 96 and 192 hpi. B) Genomes copies were
587 measured using primers against nsp12 and compared against a standard curve. (C) Relative
588 mRNA expression of *IFNB* and *IFNL1* as well as four representative ISGs: *RSAD2*, *IFIT1*
589 *CXCL10*, and *ISG15*. Fold Change is expressed as $\Delta\Delta Ct$. (D) Western blot analysis of whole cell
590 lysates collected at 96 and 192 hpi was performed using antibodies against indicated proteins.
591 Data in B-D are from one representative experiment of 3 total experiments.

592

593 **Figure 5 The attenuated replication of SARS-2-nsp15^{mut} relative to WT in primary nasal ALI**
594 **cultures is IFN-mediated**

595 Primary nasal ALIs were treated with either DMSO or ruxolitinib (RUX) at a concentration of 10
596 μ M for 48 hours prior to infection. Cultures were then infected with either WT or nsp15^{mut} SARS-
597 CoV-2. (A) Apical surface fluid was collected every 48 hours and titered via plaque assay. (B)
598 Represents the 192 hpi data from A presented as a bar graph with significance comparisons
599 shown. (C) Whole cell lysates were collected at 192 hpi for separation via SDS-PAGE and western
600 blot analysis using antibodies against indicated proteins. All data shown is from one experiment
601 representative of two total experiments, and each set of pooled nasal cell cultures is derived from
602 4-6 individual donors.

603

604 **Figure 6 Inactivation of nsp15 endoribonuclease has more impact on viral replication**
605 **during MERS-CoV infection in Calu3 cells compared to SARS-CoV-2**

606 Calu3 cells were infected with either WT SARS-CoV-2, SARS-CoV-2 nsp15^{mut}, WT MERS-CoV,
607 MERS-CoV nsp15^{mut}, or MERS-CoV nsp15^{mut}/ΔNS4a at an MOI of 0.1. (A-B) Supernatants were
608 collected at the indicated time points post-infection and infectious virus was quantified by plaque
609 assay. (C) Intracellular RNA was extracted at 24 hpi and relative mRNA expression of *IFNB* and
610 *IFNL1* as well as four representative ISGs: *RSAD2*, *IFIT1*, *CXCL10*, and *ISG15* was determined
611 by RT-qPCR. Fold change is expressed as ΔΔCt. (D) Western blot analysis of whole cell lysates
612 was performed at indicated time points using antibodies against indicated proteins. Data shown
613 is from one representative experiment of three total experiments.

614

615 **Figure 7 Inactivation of nsp15 endoribonuclease significantly impacts viral replication and**
616 **IFN signaling of MERS-CoV as well as SARS-CoV-2 in nasal ALI cultures**

617 Nasal ALI cultures were infected with either WT SARS-CoV-2, SARS-CoV-2 nsp15^{mut}, WT MERS-
618 CoV, MERS-CoV nsp15^{mut}, or MERS-CoV nsp15^{mut}/ΔNS4a at an MOI of 1. (A) Apical surface
619 liquid was collected every 48 hours and titered via plaque assay. (B) Whole cell lysates were
620 collected at the indicated time point post-infection for western blot analysis. The blots were probed
621 with antibodies against indicated proteins. All data shown is from one experiment representative
622 of three total experiments, and each set of pooled nasal cell cultures is derived from 4-6 individual
623 donors.

624 **REFERENCES**

625 1. World Health Organization. *WHO COVID-19 Dashboard*. 2020 [cited 2023; Available
626 from: <https://covid19.who.int/>].

627 2. V'Kovski, P., et al., *Coronavirus biology and replication: implications for SARS-CoV-2*.
628 *Nat Rev Microbiol*, 2021. **19**(3): p. 155-170.

629 3. Ancar, R., et al., *Physiologic RNA targets and refined sequence specificity of coronavirus*
630 *EndoU. Rna*, 2020. **26**(12): p. 1976-1999.

631 4. Hackbart, M., X. Deng, and S.C. Baker, *Coronavirus endoribonuclease targets viral*
632 *polyuridine sequences to evade activating host sensors*. *Proc Natl Acad Sci U S A*, 2020.
633 **117**(14): p. 8094-8103.

634 5. Deng, X. and S.C. Baker, *An "Old" protein with a new story: Coronavirus*
635 *endoribonuclease is important for evading host antiviral defenses*. *Virology*, 2018. **517**: p.
636 157-163.

637 6. Roth-Cross, J.K., S.J. Bender, and S.R. Weiss, *Murine coronavirus mouse hepatitis virus*
638 *is recognized by MDA5 and induces type I interferon in brain macrophages/microglia*. *J*
639 *Virol*, 2008. **82**(20): p. 9829-38.

640 7. Dias Junior, A.G., N.G. Sampaio, and J. Rehwinkel, *A Balancing Act: MDA5 in Antiviral*
641 *Immunity and Autoinflammation*. *Trends in Microbiology*, 2019. **27**(1): p. 75-85.

642 8. Yin, X., et al., *MDA5 Governs the Innate Immune Response to SARS-CoV-2 in Lung*
643 *Epithelial Cells*. *Cell Rep*, 2021. **34**(2): p. 108628.

644 9. Rebendenne, A., et al., *SARS-CoV-2 Triggers an MDA-5-Dependent Interferon Response*
645 *Which Is Unable To Control Replication in Lung Epithelial Cells*. *Journal of Virology*,
646 2021. **95**(8): p. 10.1128/jvi.02415-20.

647 10. Platanias, L.C., *Mechanisms of type-I- and type-II-interferon-mediated signalling*. *Nature*
648 *Reviews Immunology*, 2005. **5**(5): p. 375-386.

649 11. Schoggins, J.W. and C.M. Rice, *Interferon-stimulated genes and their antiviral effector*
650 *functions*. *Curr Opin Virol*, 2011. **1**(6): p. 519-25.

651 12. Der, S.D., et al., *Identification of genes differentially regulated by interferon alpha, beta,*
652 *or gamma using oligonucleotide arrays*. *Proc Natl Acad Sci U S A*, 1998. **95**(26): p. 15623-
653 8.

654 13. Banerjee, S., et al., *OAS-RNase L innate immune pathway mediates the cytotoxicity of a*
655 *DNA-demethylating drug*. *Proceedings of the National Academy of Sciences*, 2019.
656 **116**(11): p. 5071-5076.

657 14. Chakrabarti, A., B.K. Jha, and R.H. Silverman, *New insights into the role of RNase L in*
658 *innate immunity*. *J Interferon Cytokine Res*, 2011. **31**(1): p. 49-57.

659 15. García, M.A., et al., *Impact of protein kinase PKR in cell biology: from antiviral to*
660 *antiproliferative action*. *Microbiol Mol Biol Rev*, 2006. **70**(4): p. 1032-60.

661 16. Deng, X., et al., *Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors*
662 *and limits apoptosis in macrophages*. *Proceedings of the National Academy of Sciences*,
663 2017. **114**(21): p. E4251-E4260.

664 17. Kindler, E., et al., *Early endonuclease-mediated evasion of RNA sensing ensures efficient*
665 *coronavirus replication*. *PLOS Pathogens*, 2017. **13**(2): p. e1006195.

666 18. Zhao, J., et al., *Coronavirus Endoribonuclease Ensures Efficient Viral Replication and*
667 *Prevents Protein Kinase R Activation*. *Journal of Virology*, 2021. **95**(7): p.
668 10.1128/jvi.02103-20.

669 19. Comar, C.E., et al., *MERS-CoV endoribonuclease and accessory proteins jointly evade*
670 *host innate immunity during infection of lung and nasal epithelial cells*. Proceedings of the
671 National Academy of Sciences, 2022. **119**(21): p. e2123208119.

672 20. Wu, Y., et al., *Porcine Epidemic Diarrhea Virus nsp15 Antagonizes Interferon Signaling*
673 *by RNA Degradation of TBK1 and IRF3*. Viruses, 2020. **12**(6).

674 21. Comar, C.E., et al., *Antagonism of dsRNA-Induced Innate Immune Pathways by NS4a and*
675 *NS4b Accessory Proteins during MERS Coronavirus Infection*. mBio, 2019. **10**(2).

676 22. Niemeyer, D., et al., *Middle East respiratory syndrome coronavirus accessory protein 4a*
677 *is a type I interferon antagonist*. J Virol, 2013. **87**(22): p. 12489-95.

678 23. Thornbrough, J.M., et al., *Middle East Respiratory Syndrome Coronavirus NS4b Protein*
679 *Inhibits Host RNase L Activation*. mBio, 2016. **7**(2): p. e00258.

680 24. Rabouw, H.H., et al., *Middle East Respiratory Coronavirus Accessory Protein 4a Inhibits*
681 *PKR-Mediated Antiviral Stress Responses*. PLoS Pathog, 2016. **12**(10): p. e1005982.

682 25. Wilson, I.M., et al., *Biochemical Characterization of Emerging SARS-CoV-2 Nsp15*
683 *Endoribonuclease Variants*. Journal of Molecular Biology, 2022. **434**(20): p. 167796.

684 26. Godoy, A.S., et al., *Allosteric regulation and crystallographic fragment screening of*
685 *SARS-CoV-2 NSP15 endoribonuclease*. Nucleic Acids Res, 2023. **51**(10): p. 5255-5270.

686 27. Zhang, D., et al., *SARS-CoV-2 Nsp15 suppresses type I interferon production by inhibiting*
687 *IRF3 phosphorylation and nuclear translocation*. iScience, 2023. **26**(9): p. 107705.

688 28. Frazier, M.N., et al., *Characterization of SARS2 Nsp15 nuclease activity reveals it's mad*
689 *about U*. Nucleic Acids Res, 2021. **49**(17): p. 10136-10149.

690 29. Salukhe, I., et al., *Regulation of coronavirus nsp15 cleavage specificity by RNA structure*.
691 PLOS ONE, 2023. **18**(8): p. e0290675.

692 30. Pillon, M.C., et al., *Cryo-EM structures of the SARS-CoV-2 endoribonuclease Nsp15*
693 *reveal insight into nuclease specificity and dynamics*. Nature Communications, 2021.
694 **12**(1): p. 636.

695 31. Bhardwaj, K., et al., *RNA Recognition and Cleavage by the SARS Coronavirus*
696 *Endoribonuclease*. Journal of Molecular Biology, 2006. **361**(2): p. 243-256.

697 32. Bhardwaj, K., L. Guarino, and C.C. Kao, *The Severe Acute Respiratory Syndrome*
698 *Coronavirus Nsp15 Protein Is an Endoribonuclease That Prefers Manganese as a*
699 *Cofactor*. Journal of Virology, 2004. **78**(22): p. 12218-12224.

700 33. Yuen, C.-K., et al., *SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon*
701 *antagonists*. Emerging Microbes & Infections, 2020. **9**(1): p. 1418-1428.

702 34. Boodhoo, N., et al., *The severe acute respiratory syndrome coronavirus 2 non-structural*
703 *proteins 1 and 15 proteins mediate antiviral immune evasion*. Current Research in
704 *Virological Science*, 2022. **3**: p. 100021.

705 35. Lee, R.J., et al., *Bacterial d-amino acids suppress sinonasal innate immunity through sweet*
706 *taste receptors in solitary chemosensory cells*. Sci Signal, 2017. **10**(495).

707 36. Lee, R.J., et al., *Fungal Aflatoxins Reduce Respiratory Mucosal Ciliary Function*. Sci Rep,
708 2016. **6**: p. 33221.

709 37. Gallo, O., et al., *The central role of the nasal microenvironment in the transmission,*
710 *modulation, and clinical progression of SARS-CoV-2 infection*. Mucosal Immunol, 2021.
711 **14**(2): p. 305-316.

712 38. Mifsud, E.J., M. Kuba, and I.G. Barr, *Innate Immune Responses to Influenza Virus*
713 *Infections in the Upper Respiratory Tract*. Viruses, 2021. **13**(10).

714 39. Ye, C., et al., *Rescue of SARS-CoV-2 from a Single Bacterial Artificial Chromosome*.
715 mBio, 2020. **11**(5).

716 40. Fehr, A.R. and S. Perlman, *Coronaviruses: an overview of their replication and*
717 *pathogenesis*. Methods Mol Biol, 2015. **1282**: p. 1-23.

718 41. Chew, T., et al., *Characterization of the interferon regulatory factor 3-mediated antiviral*
719 *response in a cell line deficient for IFN production*. Molecular Immunology, 2009. **46**(3):
720 p. 393-399.

721 42. Emeny, J.M. and M.J. Morgan, *Regulation of the interferon system: evidence that Vero*
722 *cells have a genetic defect in interferon production*. J Gen Virol, 1979. **43**(1): p. 247-52.

723 43. Li, Y., et al., *SARS-CoV-2 induces double-stranded RNA-mediated innate immune*
724 *responses in respiratory epithelial-derived cells and cardiomyocytes*. Proc Natl Acad Sci
725 U S A, 2021. **118**(16).

726 44. Li, M., et al., *Pharmacological activation of STING blocks SARS-CoV-2 infection*. Sci
727 Immunol, 2021. **6**(59).

728 45. Lei, X., et al., *Activation and evasion of type I interferon responses by SARS-CoV-2*. Nature
729 Communications, 2020. **11**(1): p. 3810.

730 46. Otter, Clayton J., et al., *Infection of primary nasal epithelial cells differentiates among*
731 *lethal and seasonal human coronaviruses*. Proceedings of the National Academy of
732 Sciences, 2023. **120**(15): p. e2218083120.

733 47. Keck, T., et al., *Temperature profile in the nasal cavity*. Laryngoscope, 2000. **110**(4): p.
734 651-4.

735 48. V'Kovski, P., et al., *Disparate temperature-dependent virus-host dynamics for SARS-CoV-2*
736 *and SARS-CoV in the human respiratory epithelium*. PLoS Biol, 2021. **19**(3): p.
737 e3001158.

738 49. Mesa, R.A., U. Yasothan, and P. Kirkpatrick, *Ruxolitinib*. Nature Reviews Drug Discovery,
739 2012. **11**(2): p. 103-104.

740 50. Nassar, A., et al., *A Review of Human Coronaviruses' Receptors: The Host-Cell Targets*
741 *for the Crown Bearing Viruses*. Molecules, 2021. **26**(21).

742 51. Lokugamage Kumari, G., et al., *Type I Interferon Susceptibility Distinguishes SARS-CoV-2*
743 *from SARS-CoV*. Journal of Virology, 2020. **94**(23): p. 10.1128/jvi.01410-20.

744 52. Sen, G.C., *Viruses and Interferons*. Annual Review of Microbiology, 2001. **55**(1): p. 255-
745 281.

746 53. Stanifer, M.L., K. Pervolaraki, and S. Boulant, *Differential Regulation of Type I and Type*
747 *III Interferon Signaling*. International Journal of Molecular Sciences, 2019. **20**(6): p. 1445.

748 54. Rijsbergen, L.C., et al., *In Vitro Modelling of Respiratory Virus Infections in Human*
749 *Airway Epithelial Cells - A Systematic Review*. Front Immunol, 2021. **12**: p. 683002.

750 55. Gal-Ben-Ari, S., et al., *PKR: A Kinase to Remember*. Frontiers in Molecular Neuroscience,
751 2019. **11**.

752 56. Pindel, A. and A. Sadler, *The role of protein kinase R in the interferon response*. J
753 Interferon Cytokine Res, 2011. **31**(1): p. 59-70.

754 57. Birdwell, L.D., et al., *Activation of RNase L by Murine Coronavirus in Myeloid Cells Is*
755 *Dependent on Basal Oas Gene Expression and Independent of Virus-Induced Interferon*. J
756 Virol, 2016. **90**(6): p. 3160-72.

757 58. Wek, R.C., *Role of eIF2 α Kinases in Translational Control and Adaptation to Cellular*
758 *Stress*. Cold Spring Harb Perspect Biol, 2018. **10**(7).

759 59. Pakos-Zebrucka, K., et al., *The integrated stress response*. EMBO Rep, 2016. **17**(10): p. 1374-1395.

760 60. Hatton, C.F., et al., *Delayed induction of type I and III interferons mediates nasal epithelial cell permissiveness to SARS-CoV-2*. Nat Commun, 2021. **12**(1): p. 7092.

761 61. Nakagawa, K. and S. Makino, *Mechanisms of Coronavirus Nsp1-Mediated Control of Host and Viral Gene Expression*. Cells, 2021. **10**(2).

762 62. Clementz, M.A., et al., *Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases*. J Virol, 2010. **84**(9): p. 4619-29.

763 63. Alhammad, Y.M., et al., *SARS-CoV-2 Mac1 is required for IFN antagonism and efficient virus replication in cell culture and in mice*. Proceedings of the National Academy of Sciences, 2023. **120**(35): p. e2302083120.

764 64. Case, J.B., et al., *Murine Hepatitis Virus nsp14 Exoribonuclease Activity Is Required for Resistance to Innate Immunity*. J Virol, 2018. **92**(1).

765 65. Russ, A., et al., *Nsp16 shields SARS-CoV-2 from efficient MDA5 sensing and IFIT1-mediated restriction*. EMBO reports, 2022. **23**(12): p. e55648.

766 66. Redondo, N., et al., *SARS-CoV-2 Accessory Proteins in Viral Pathogenesis: Knowns and Unknowns*. Frontiers in Immunology, 2021. **12**.

767 67. Kehrer, T., et al., *Impact of SARS-CoV-2 ORF6 and its variant polymorphisms on host responses and viral pathogenesis*. Cell Host Microbe, 2023. **31**(10): p. 1668-1684.e12.

768 68. Miorin, L., et al., *SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling*. Proceedings of the National Academy of Sciences, 2020. **117**(45): p. 28344-28354.

769 69. Li, T., et al., *Molecular Mechanism of SARS-CoVs Orf6 Targeting the Rae1–Nup98 Complex to Compete With mRNA Nuclear Export*. Frontiers in Molecular Biosciences, 2022. **8**.

770 70. Addetia, A., et al., *SARS-CoV-2 ORF6 Disrupts Bidirectional Nucleocytoplasmic Transport through Interactions with Rae1 and Nup98*. mBio, 2021. **12**(2).

771 71. Lindemann, J., et al., *Nasal mucosal temperature during respiration*. Clin Otolaryngol Allied Sci, 2002. **27**(3): p. 135-9.

772 72. Foxman, E.F., et al., *Temperature-dependent innate defense against the common cold virus limits viral replication at warm temperature in mouse airway cells*. Proc Natl Acad Sci U S A, 2015. **112**(3): p. 827-32.

773 73. Rayhane, N., et al., *Reduced replication but increased interferon resistance of SARS-CoV-2 Omicron BA.1*. Life Science Alliance, 2023. **6**(6): p. e202201745.

774 74. Guo, K., et al., *Interferon resistance of emerging SARS-CoV-2 variants*. Proceedings of the National Academy of Sciences, 2022. **119**(32): p. e2203760119.

775 75. Shalamova, L., et al., *Omicron variant of SARS-CoV-2 exhibits an increased resilience to the antiviral type I interferon response*. PNAS Nexus, 2022. **1**(2): p. pgac067.

776 76. Jacob, R.A., et al., *Sensitivity to Neutralizing Antibodies and Resistance to Type I Interferons in SARS-CoV-2 R.1 Lineage Variants, Canada*. Emerg Infect Dis, 2023. **29**(7): p. 1386-1396.

777 77. Akira, S., S. Uematsu, and O. Takeuchi, *Pathogen recognition and innate immunity*. Cell, 2006. **124**(4): p. 783-801.

778 78.

779 79.

780 80.

781 81.

782 82.

783 83.

784 84.

785 85.

786 86.

787 87.

788 88.

789 89.

790 90.

791 91.

792 92.

793 93.

794 94.

795 95.

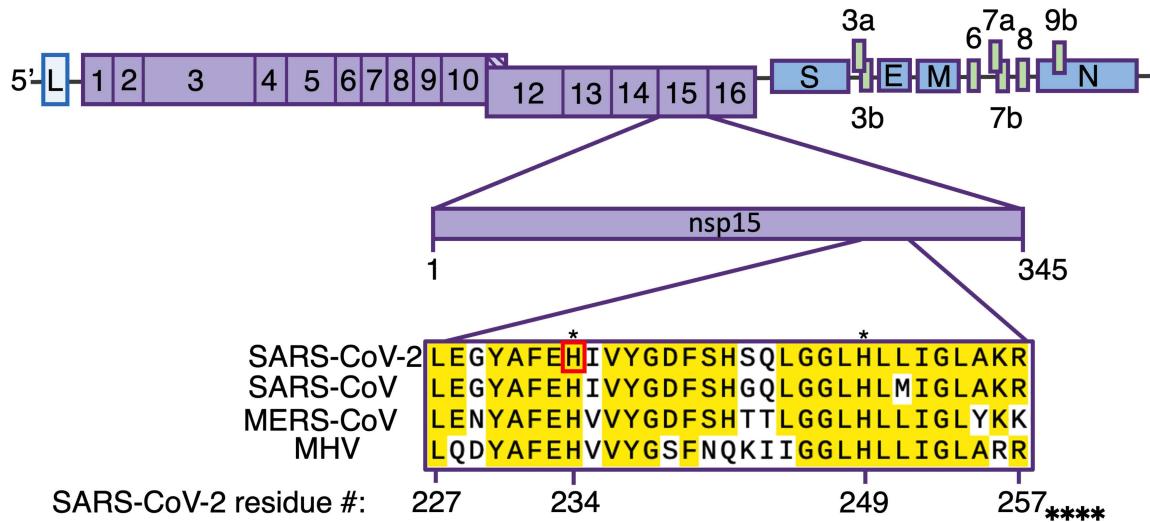
796 96.

797 97.

798 98.

799 99.

800 100.


801 101.

802 102.

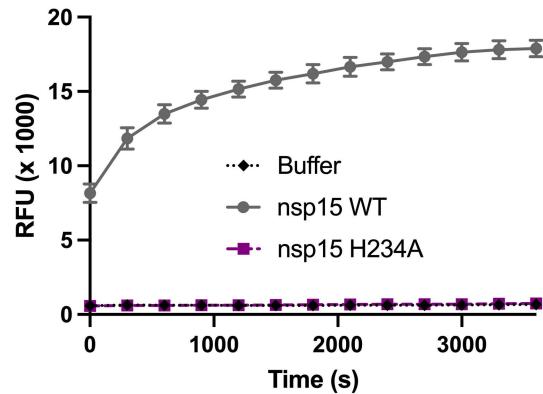
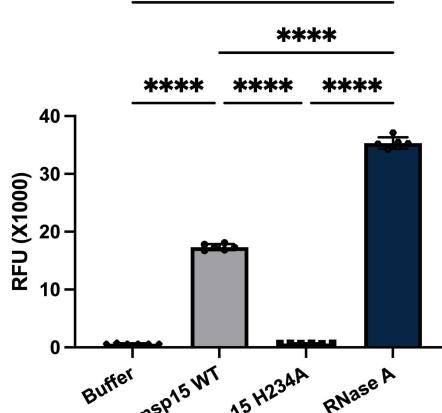
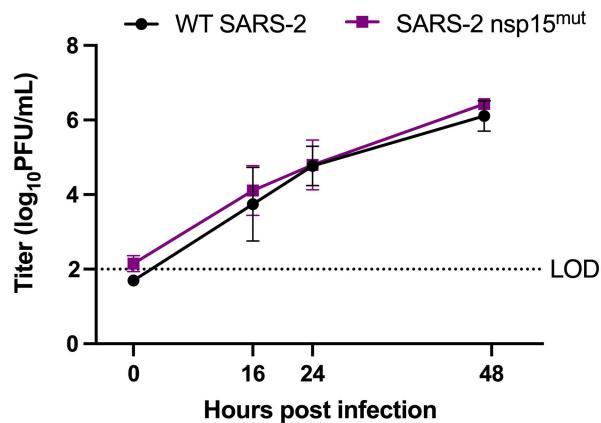
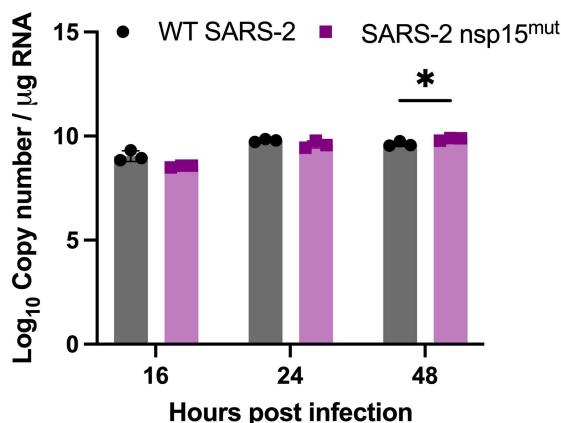
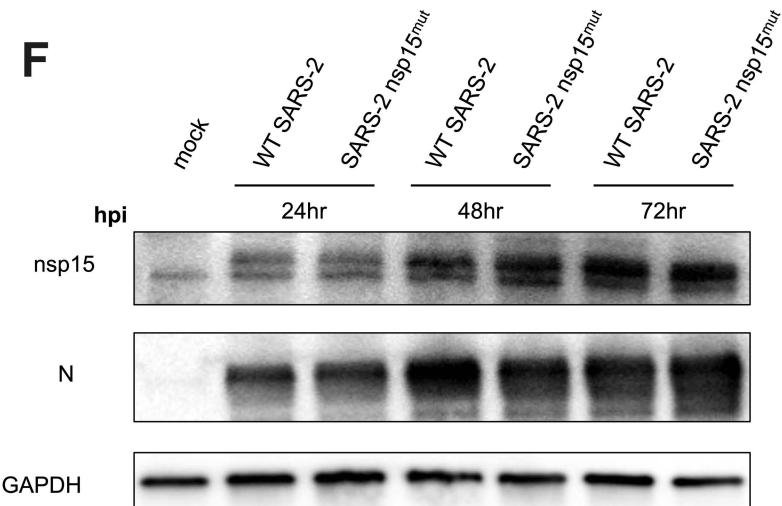

803 103.

Figure 1 Construction of recombinant SARS-CoV-2 with inactive nsp15^{mut} endoribonuclease

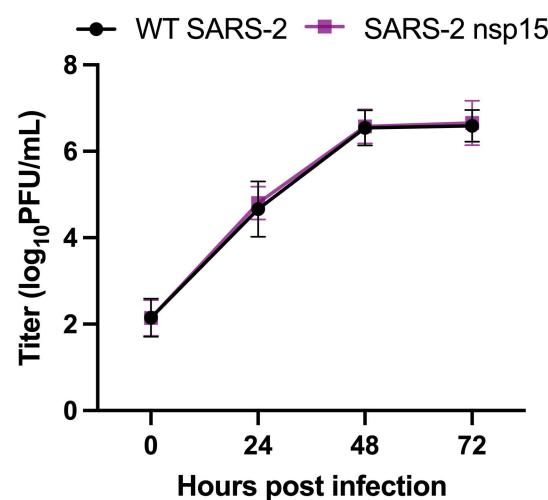

A


B


C


D

E



F

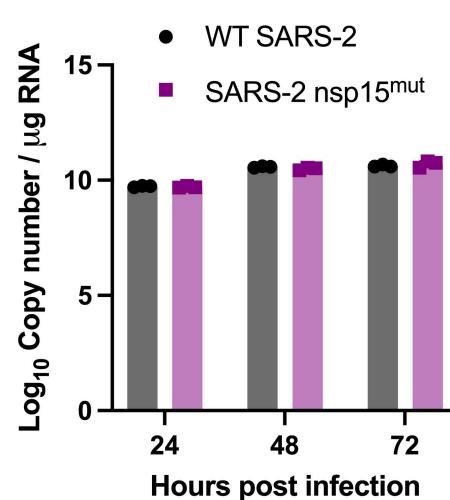
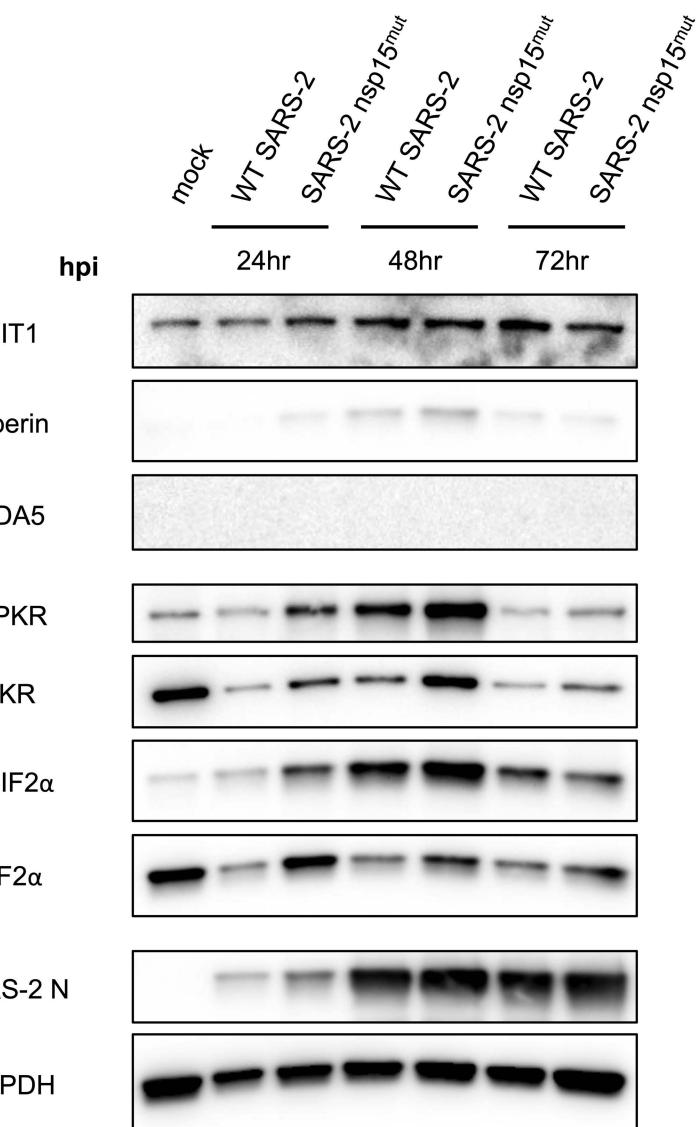
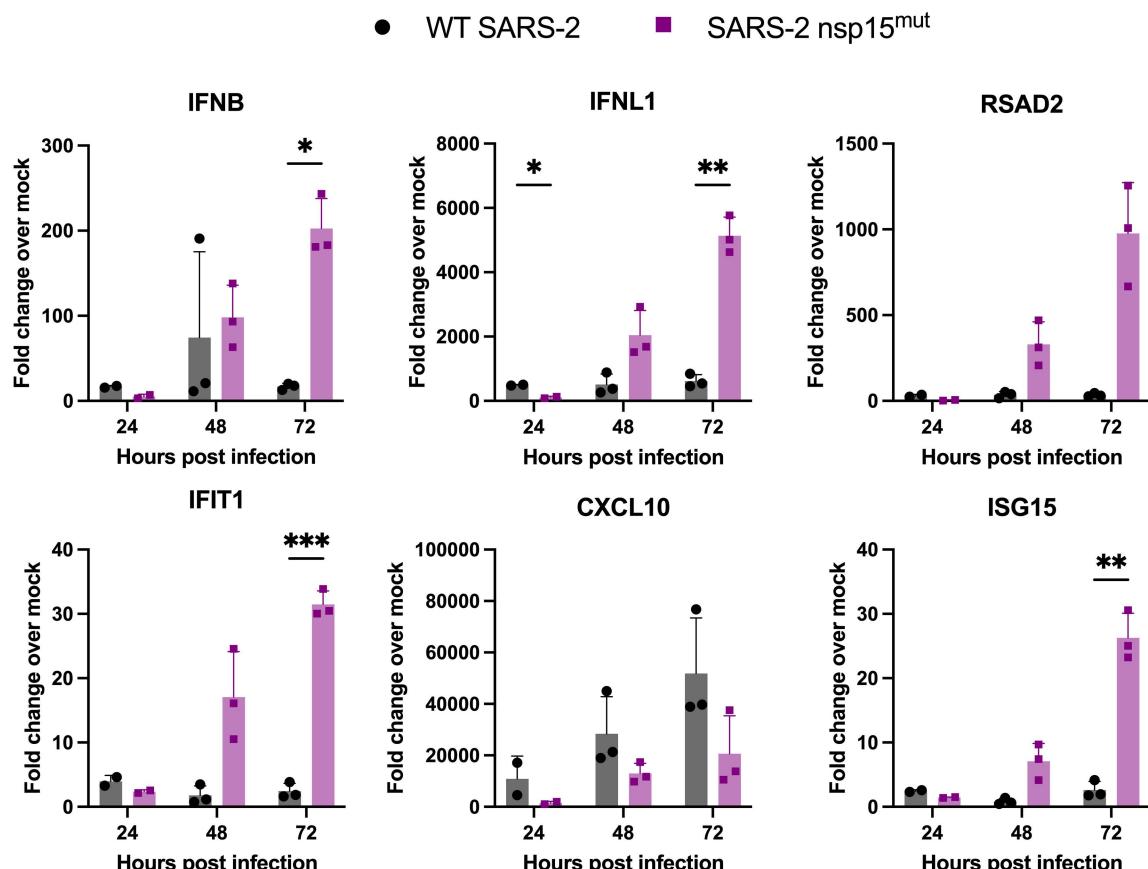
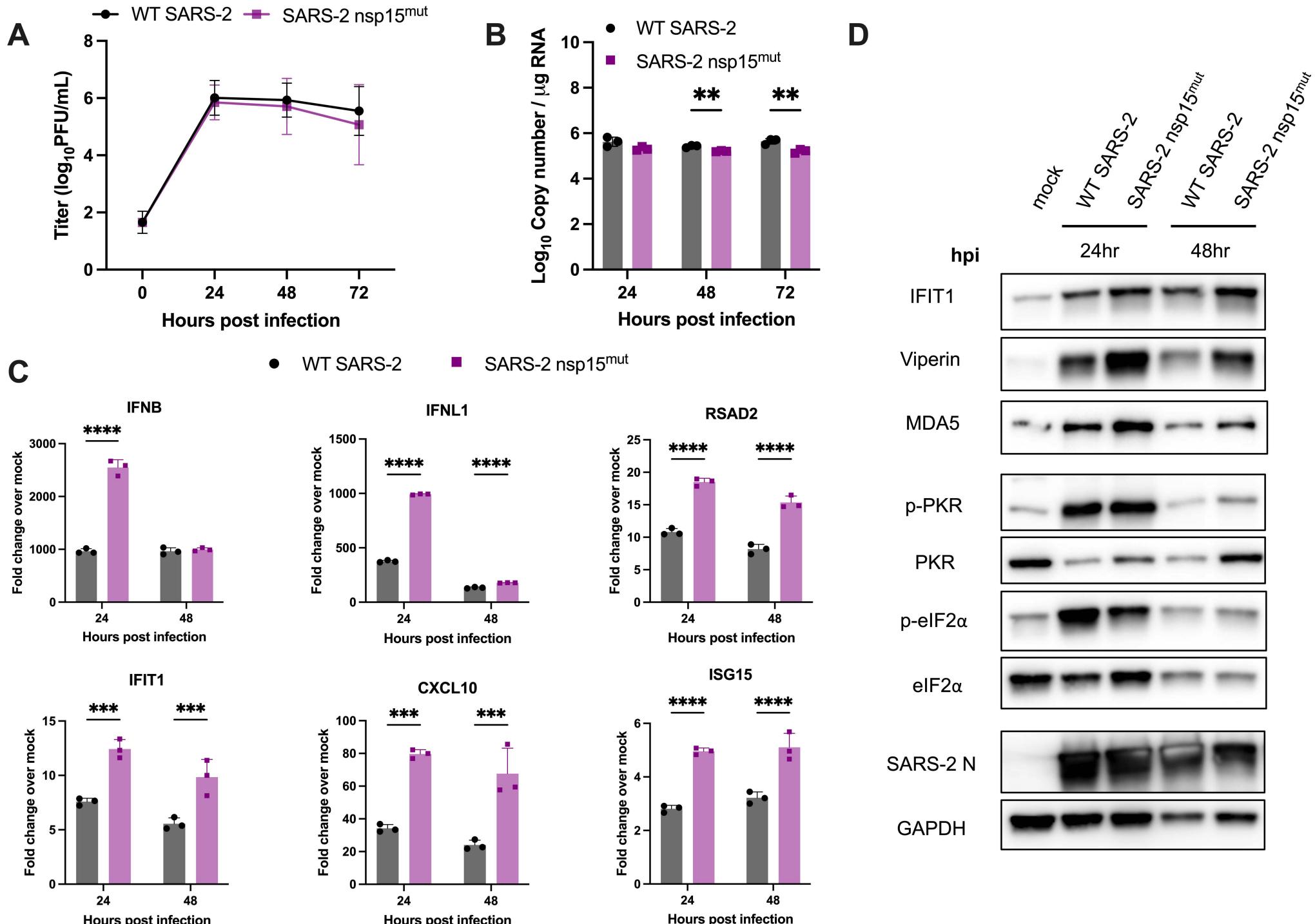


Figure 2 - SARS-2-nsp15^{mut} induces increased IFN mRNA and ISG expression as well as PKR pathway activation in A549 cells despite lack of viral attenuation


A


B


D

C

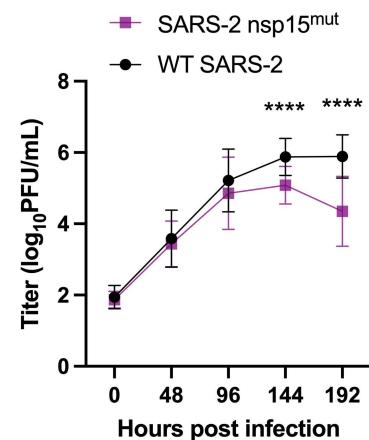


Figure 3 - SARS-2-nsp15^{mut} induces increased IFN mRNA and ISG expression in Calu3 cells despite lack of viral attenuation compared to WT SARS-CoV-2

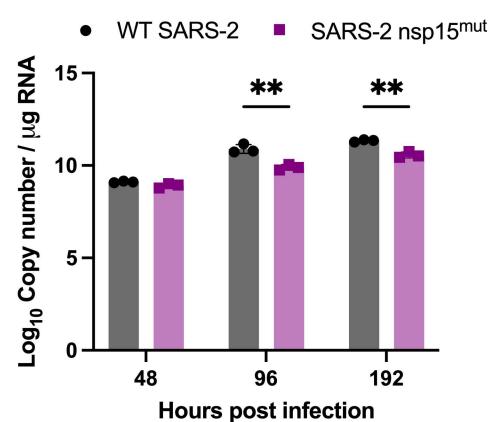
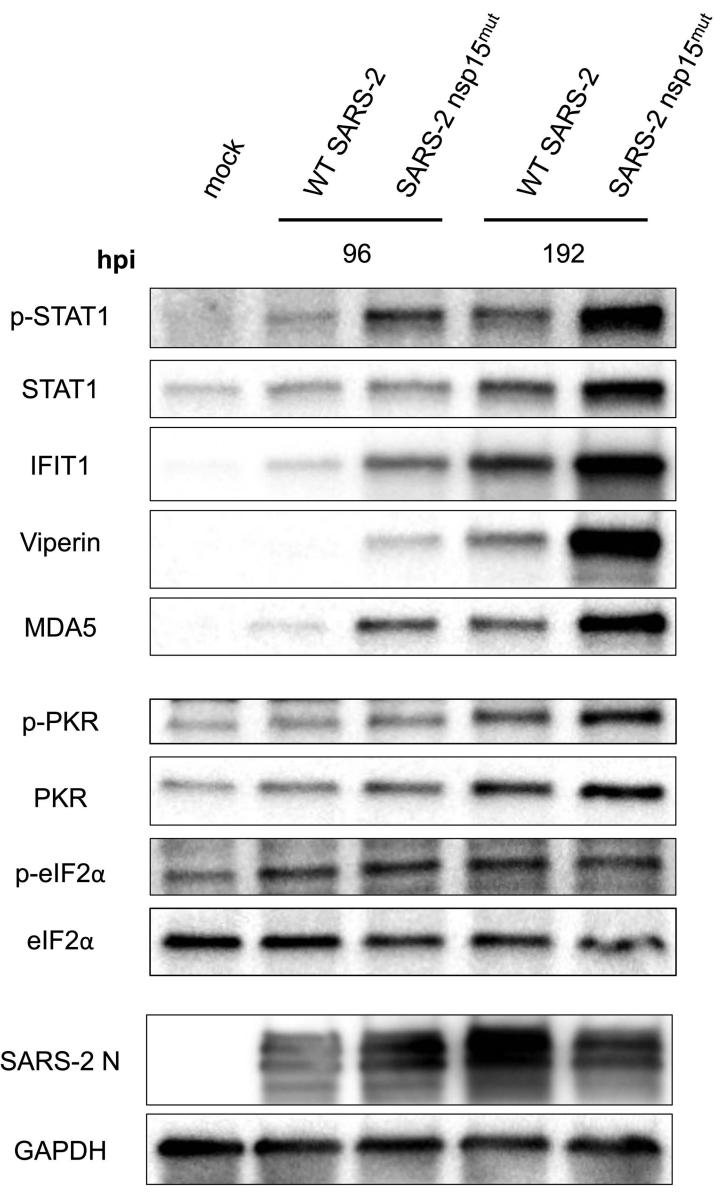
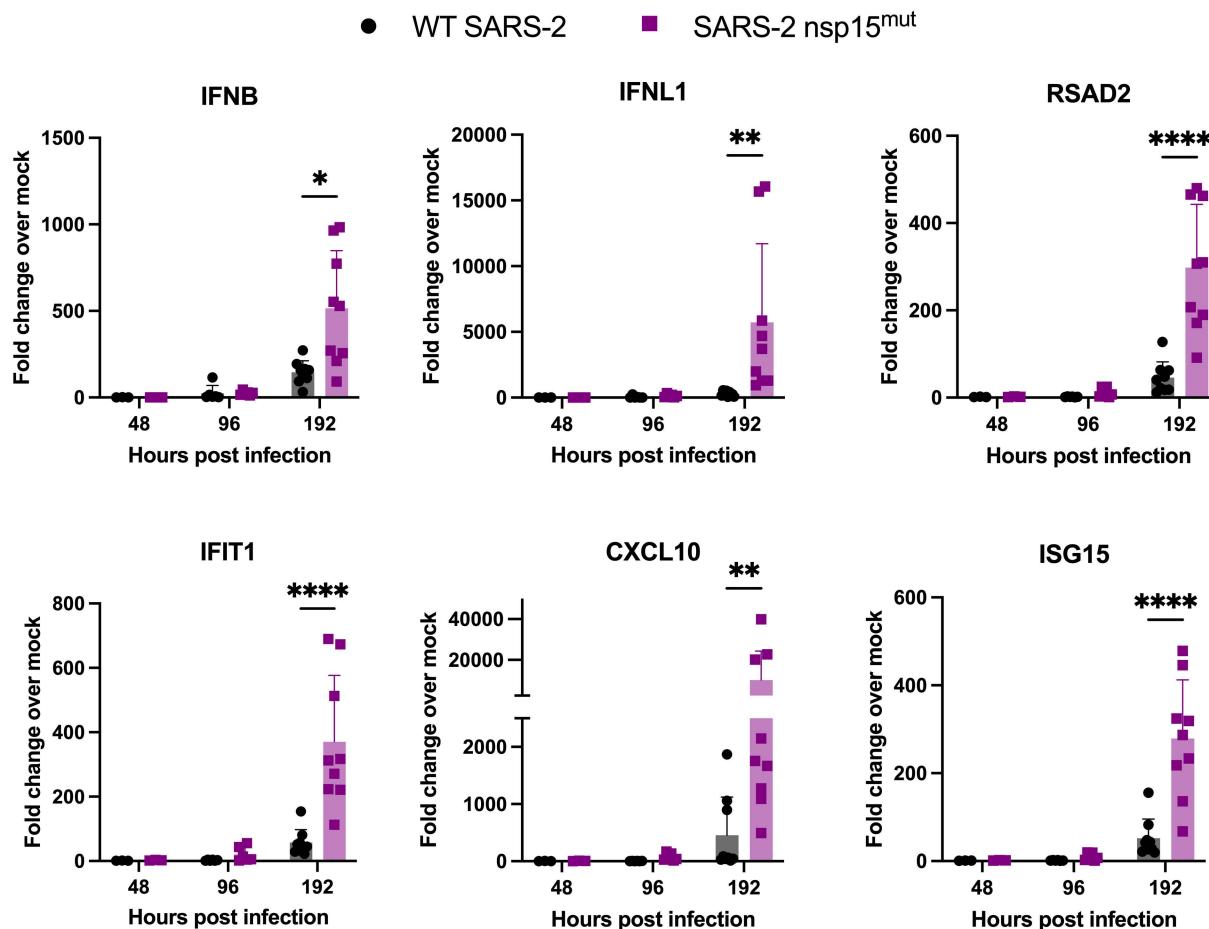
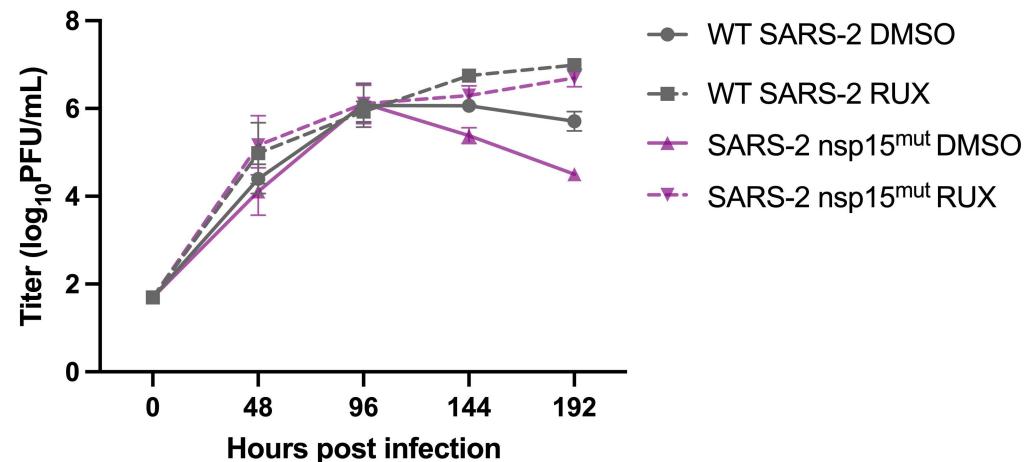


Figure 4 - SARS-2-nsp15^{mut} is attenuated for replication compared to WT SARS-CoV-2 and induces increased IFN signaling and PKR pathway activation in primary nasal epithelial ALI cultures


A


B

D



C

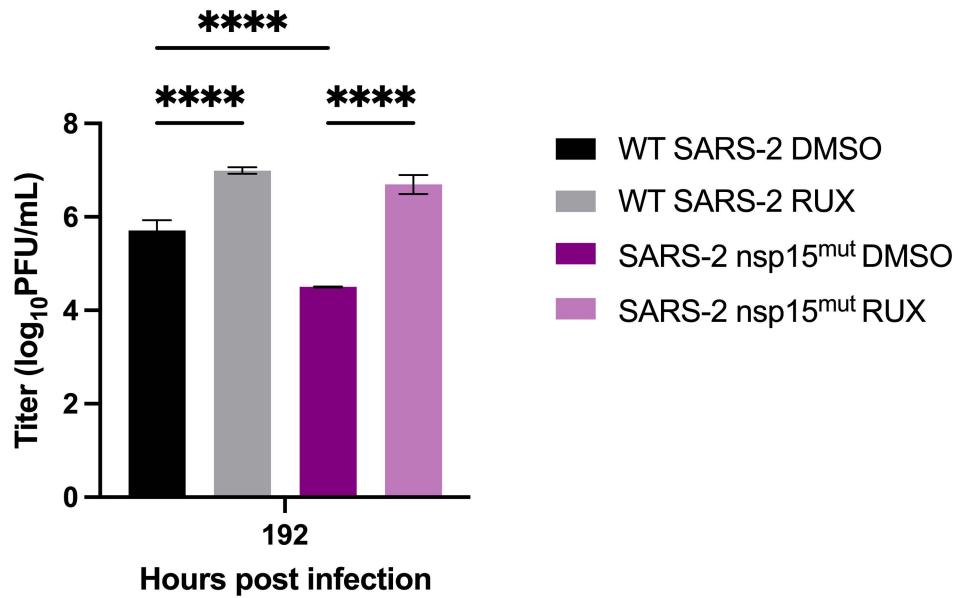
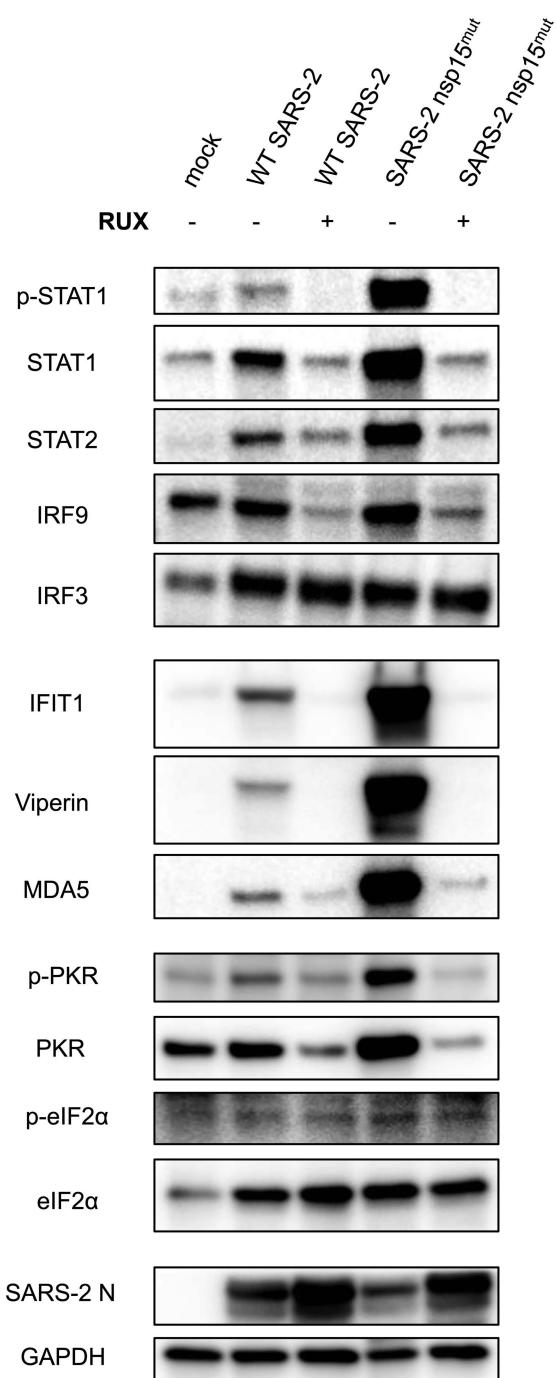
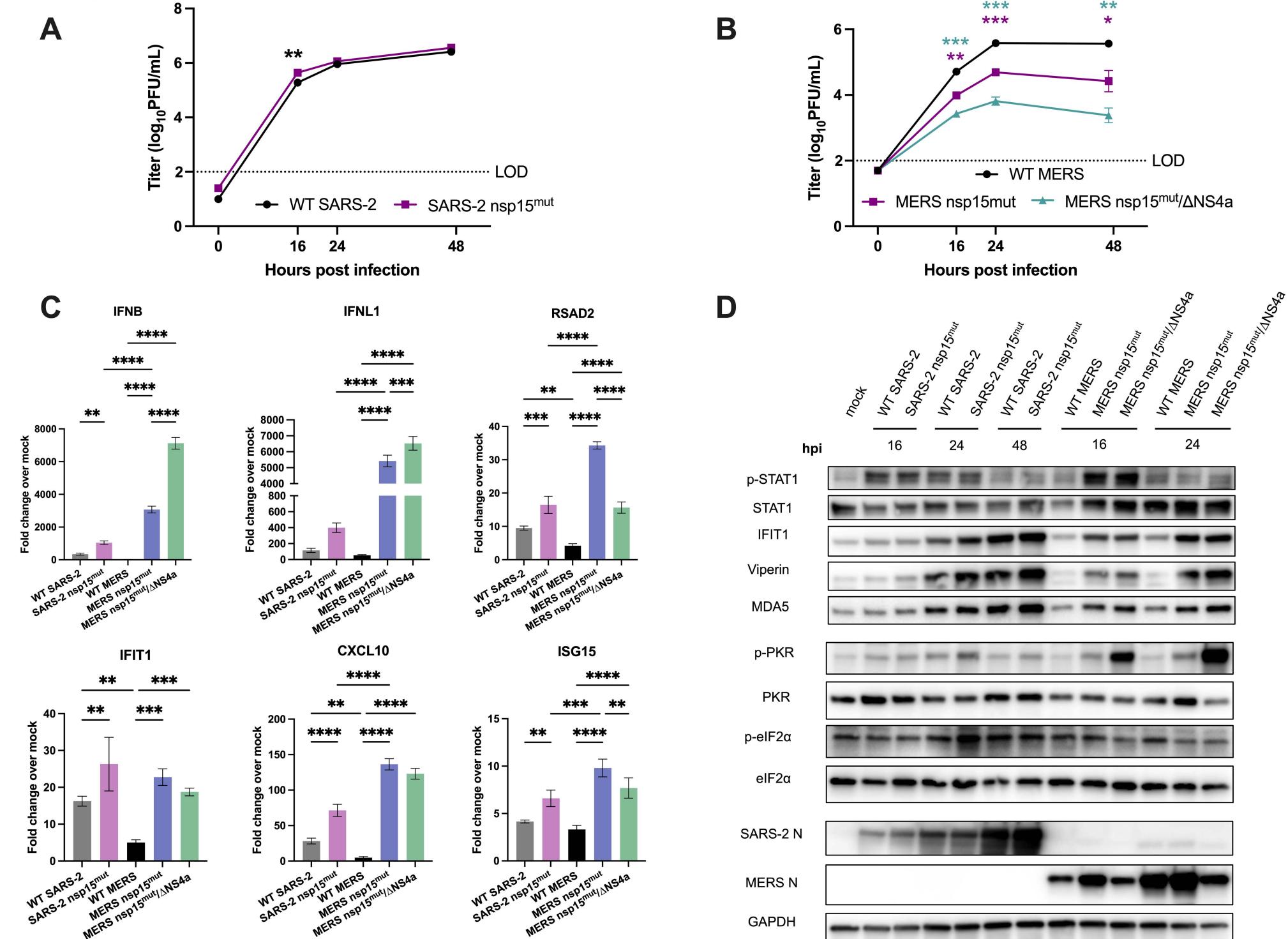


Figure 5 - The replication defect of SARS-2-nsp15^{mut} in primary nasal ALI cultures is IFN-mediated


A


B

C

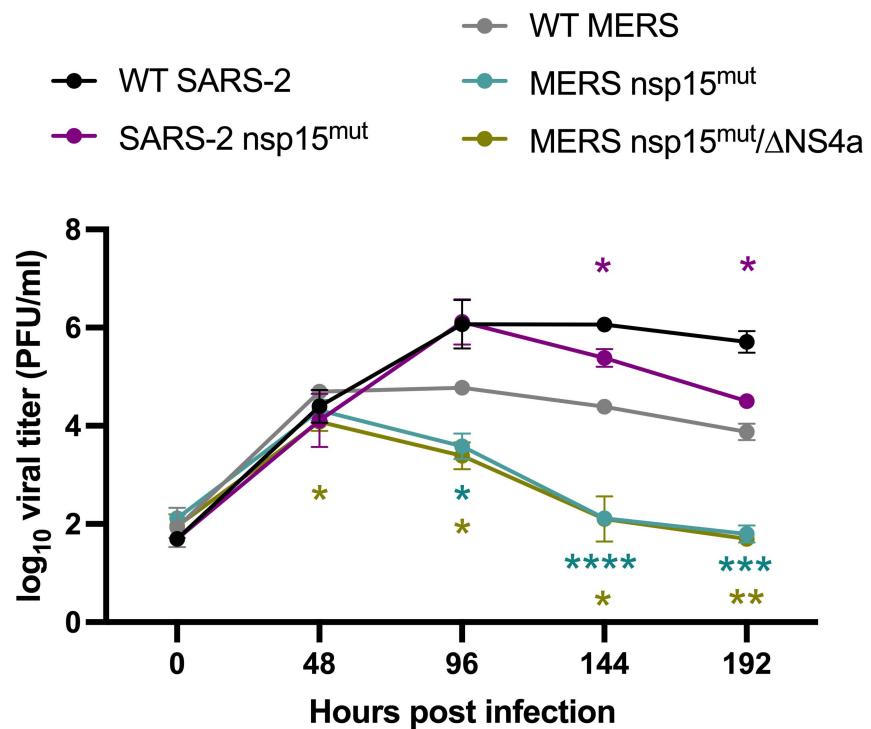


Figure 6 - Inactivation of nsp15 endoribonuclease has more impact on viral replication during MERS-CoV compared to SARS-CoV-2 infection in Calu3 cells

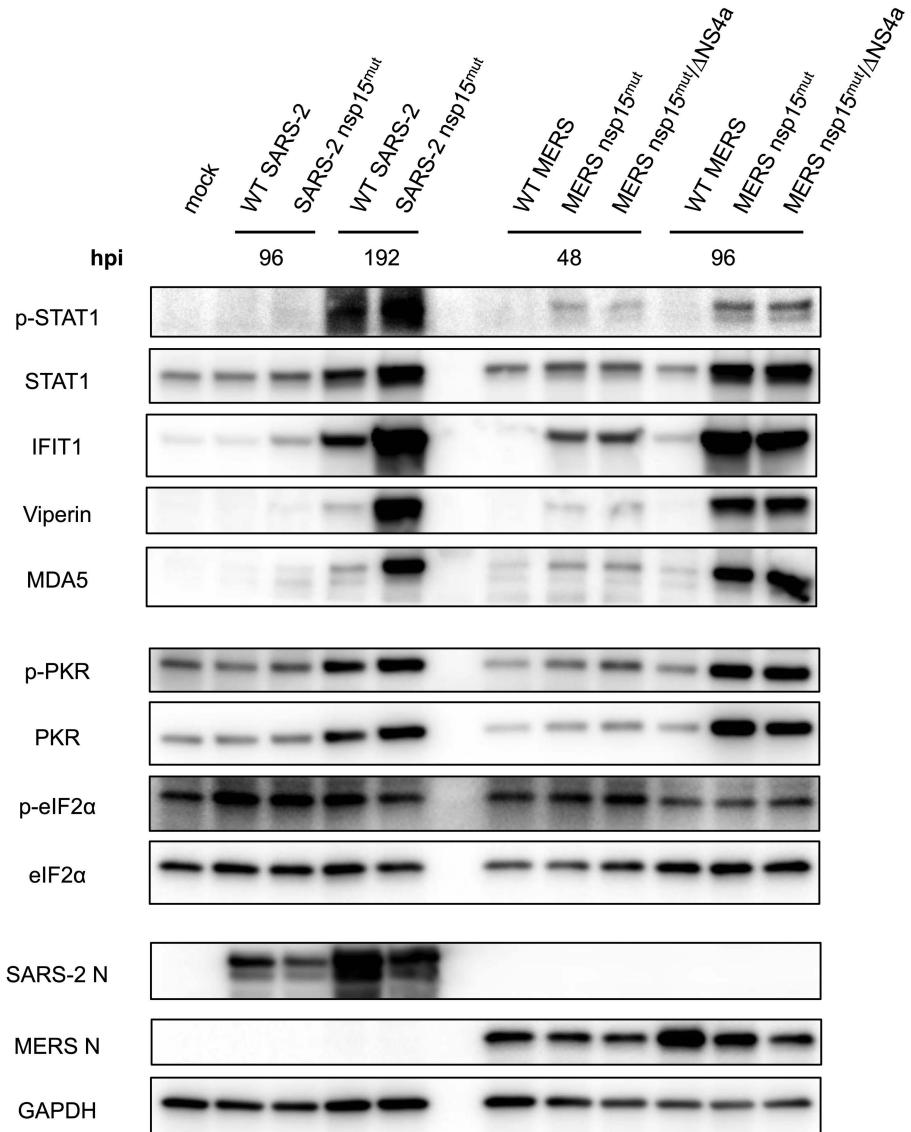


Figure 7 - Inactivation of nsp15 endoribonuclease significantly impacts viral replication and IFN signaling of two lethal CoVs in nasal ALI cultures

A

B

