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Abstract

New genes (or young genes) are structural novelties pivotal in mammalian evolution. Their phenotypic impact on humans,
however, remains elusive due to the technical and ethical complexities in functional studies. Through combining gene age
dating with Mendelian disease phenotyping, our research reveals that new genes associated with disease phenotypes
steadily integrate into the human genome at a rate of ~0.07% every million years over macroevolutionary timescales. De-
spite this stable pace, we observe distinct patterns in phenotypic enrichment, pleiotropy, and selective pressures between
young and old genes. Notably, young genes show significant enrichment in the male reproductive system, indicating strong
sexual selection. Young genes also exhibit functions in tissues and systems potentially linked to human phenotypic innova-
tions, such as increased brain size, bipedal locomotion, and color vision. Our findings further reveal increasing levels of
pleiotropy over evolutionary time, which accompanies stronger selective constraints. We propose a “pleiotropy-barrier”
model that delineates different potentials for phenotypic innovation between young and older genes subject to natural se-
lection. Our study demonstrates that evolutionary new genes are critical in influencing human reproductive evolution and

adaptive phenotypic innovations driven by sexual and natural selection, with low pleiotropy as a selective advantage.

Keywords: New genes, Pleiotropy, Young genes, Phenotypic innovation, Sexual selection, Natural selection
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Introduction

The imperfection of DNA replication serves as a rich source of variation for evolution and biodiversity [1-3]. Such genetic
variations underpin the ongoing evolution of human phenotypes, with beneficial mutations being conserved under positive
selection, and detrimental ones being eliminated through purifying selection. In medical terminology, this spectrum is cate-
gorized as "case and control" or "health and disease," representing two ends of the phenotypic continuum [4]. Approxi-
mately 8,000 clinical types of rare Mendelian disorders, affecting millions worldwide, are attributed to deleterious DNA mu-
tations in single genes (monogenic) or a small number of genes (oligogenic) with significant effects [5, 6]. To date, over
4,000 Mendelian disease genes have been identified, each contributing to a diverse array of human phenotypes
(https://mirror.omim.org/statistics/geneMap) [7]. These identified genes and associated phenotypes could provide critical

insights into the evolutionary trajectory of human traits [8].

Evolutionarily new genes — such as de novo genes and gene duplicates — have been continually emerging and inte-
grating into the human genome throughout the macroevolutionary process of human lineage [9-15]. Previous reports re-
vealed that human disease genes tend to be primarily ancient, with many tracing back to the last common ancestor of
eukaryotes [16]. This conclusion aligns with the deep conservation of many critical biological processes shared among
cells, such as DNA replication, RNA transcription, and protein translation, which emerged early in the tree of life. Conse-
quently, it may be inferred that new genes play less or no important role in biomedical processes. However, decades of
genetic studies in non-human systems have provided extensive evidence contradicting this intuitive argument. New genes
can integrate into biologically critical processes, such as transcription regulation, RNA synthesis, and DNA repair [17, 18].
For instance, in yeast, some de novo genes (BSC4 and MDF1) play roles in DNA repair process [19-21]. In Drosophila
species, lineage-specific genes can control the key cytological process of mitosis [22]. New genes (Nicknack and Oddjob)
have also been found with roles in early larval development of Drosophila [23]. In Pristionchus Nematodes, some lineage-
specific genes could serve as the developmental switch determining mouth morphology [24]. Moreover, in multiple insect
lineages, embryonic development of body plans, which was long believed to be governed by deeply conserved genetic
mechanisms, was found to be driven by newly arising genes [25]. These studies from model species reveal various im-

portant biological functions of new genes.
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Compared to non-human model organisms, where gene functions can be characterized through genetic knock-
downs and knockouts, interrogating functions of human genes in their native context is unfeasible. Despite this limitation,
numerous omics data and in vitro studies in human genes have suggested the potential roles of evolutionary young genes
in basic cellular processes and complex phenotypic innovations [26-28]. Brain transcriptomic analysis has revealed that
primate-specific genes are enriched among up-regulated genes early in human development, particularly within the hu-
man-specific prefrontal cortex [29]. The recruitment of new genes into the transcriptome suggests that human anatomical
novelties may evolve through the contribution of new gene evolution. Recent studies based on organoid modeling also
support the importance of de novo genes on human brain size enlargement [30, 31]. These lines of evidence in recent
decades about the functions of new genes contradict the conventional conservation-dominant understanding of human

genetics and phenotypes.

In this study, we tackled the complexities of human phenotypic evolution and the underlying genetic basis by integrating
gene age dating with analyses of Mendelian disease phenotypes. As a direct indicator of functional effects, the anatomical
organ/tissue/system phenotypes (OP) affected by causal genic defects can allow us to understand the influence of gene
ages on phenotypic enrichment, pleiotropy, and selective constraints along evolutionary journey. We aimed to understand
include whether, what, and why human anatomical/physiological/cellular phenotypes could be affected by human evolution-
ary new genes. Notably, disease gene emergence rates per million years were found to be similar among different macro-
evolutionary stages, suggesting the continuous integration of young genes into biomedically important phenotypes. Despite
the consistent pace of gene integration per million years, younger disease genes, with lower pleiotropy score, display ac-
celerated sexual selection and human-specific adaptive innovations. By contrast, older genes are higher in pleiotropic bur-
den that impacts more anatomical systems and are thus under stronger selective constraints. These patterns suggest that
new genes can rapidly become the genetic bases of human critical phenotypes, especially the reproductive and innovative

traits, a process likely facilitated by their low pleiotropy.
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Results

Ages and organ/tissue phenotypes of human genetic disease genes

We determined the ages of 19,665 non-redundant genes, following the phylogenetic framework of the GenTree data-
base [32] and gene model annotations from Ensembl v110 (Supplementary table 1). To ensure comparable gene num-
bers across different age groups, we merged evolutionary age groups with a small number of genes (<100) into their adja-
cent older group. As a result, we classified these genes into seven ancestral age groups, ranging from Euteleostomi (or
more ancient) nodes to modern humans (br0-br6, Figure 1a). These evolutionary groups have been further categorized
into four evolutionary age epochs, starting from the oldest, Euteleostomi, to progressively younger stages of Tetrapoda,
Amniota, and Eutheria, each containing over 2000 genes. Disease gene data were sourced from Human Phenotype On-
tology database (HPO, Sep 2023), which is the de facto standard for phenotyping of rare Mendelian diseases [33]. This
repository synthesizes information from diverse databases, including Orphanet [34, 35], DECIPHER [36], and OMIM [37].
An intersection of these data sets yielded 4,946 genes annotated with both evolutionary age and organ/tissue/system-
specific phenotypic abnormalities (Figure 1a and Supplementary Table 2). Contrasting earlier estimates which suggest
that only 0.6% of young genes arising in Eutherian lineage could contribute to human disease genes, we observed nearly
10 times higher percentage of disease genes in this age group (6.67%, Figure 1a and Supplementary Table 2). This indi-

cates that the role of younger genes as disease genes might have been significantly underestimated.

To better ascertain if disease genes evolve under different evolutionary pressures compared to non-disease genes, we
compared the metric of Ka/Ks ratio, which is the ratio of the number of nonsynonymous substitutions per nonsynonymous
site (Ka) to the number of synonymous substitutions per synonymous site (Ks). We retrieved the “one to one” human-
chimpanzee orthologous genes and the corresponding pairwise Ka/Ks ratios (12830 genes) from Ensembl database. We
also evaluated whether the pattern is consistent with Ka/Ks ratios of human-bonobo and human-macaque orthologs. To
include more orthologous genes, we did not use Ka/Ks ratios based on more distant species (such as the test of branch-

model). Interestingly, Ka/Ks ratios were consistently lower in disease genes than in non-disease genes for human-chim-

panzee orthologs (0.250 vs. 0.321), human-bonobo orthologs (0.273 vs. 0.340), and human-macaque orthologs (0.161 vs.

0.213) (Wilcoxon rank sum test, p < 2.2e-16 for all three datasets). These results revealed that disease genes are under
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significantly stronger purifying selection than non-disease genes, suggesting the important component of selective pres-
sure in constraining the sequence evolution of disease genes. In addition, we observed an increase in Ka/Ks ratios (<1)
for genes from older to younger stages, suggesting a trend of relaxed purifying selection in young genes (Figure 1b and
Supplementary figure 1). Notably, despite the relaxation of purifying selection for younger genes, disease genes still tend
to show lower Ka/Ks ratio than non-disease genes, suggesting a general pattern of stronger purifying selection in disease

genes during evolutionary process.

We observed a heterogeneous distribution of disease genes underlying 22 HPO-defined anatomical systems, suggest-
ing varied genetic complexity for diseases of different systems (Figure 1c-1d). None of disease genes was found to impact
all 22 systems. In contrast, 6.96% of disease genes (344/4946) were specific to a single system’s abnormality. Notably,
four systems — the genitourinary system (with 81 genes), the eyes (68 genes), the ears (63 genes), and the nervous sys-
tem (55 genes) — collectively represented 77.62% of these system-specific genes (267/344, Supplementary table 2). The
nervous system displayed the highest fraction of diseases genes (79%, Figure 1d). A significant 93.04% of genes were
linked to the abnormalities of at least two systems (4602/4946), indicating broad disease impacts or pleiotropy for human
disease genes on multiple anatomical systems. This phenotypic effect across systems might arise from the complex clini-
cal symptoms of rare diseases that manifests in multiple organs, tissues, or systems, which could indicate the levels of
pleiotropy [38-40]. Hence, the comprehensive and deep phenotyping offered by HPO delivers a more systematic perspec-
tive on the functional roles of human disease genes, compared to the commonly used functional inferences based on hu-
man gene expression profile or in vitro screening. Interestingly, we discovered a significant negative correlation between
the median Ka/Ks ratios and the number of affected anatomical systems in disease genes (the Pearson correlation coeffi-
cient p =-0.83, p = 0.0053). This implies that disease genes exhibiting higher pleiotropy, impacting multiple anatomical

systems, are subject to more stringent evolutionary constraints compared to genes with low pleiotropy (Figure 1e).

Disease gene emergence rate per million years is similar across macroevolutionary epochs.

To comprehend whether different evolutionary epochs have different emergence rate for disease genes, we assessed
the disease gene emergence rate per million years across macroevolutionary stages from Euteleostomi to Primate (ua).

Considering the sampling space variations at different age group, we calculated uda as the fraction of disease genes per
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million years at each stage (Figure 2a). Although the proportions of disease genes were found to gradually increase from
young to old age groups (Figure 1a), the rate pqa is nearly constant ~0.07% per million years for different age groups (Fig-
ure 2a). This constant disease gene emergence rate suggests a continuous and similar fraction of genes evolving to have
significant impacts on health. Using the recently reported average human generation time of 26.9 years [41], the most
updated number of coding genes (19,831 based on Ensembl v110), and assuming the simplified monogenic model [42],
we estimated the number of casual genes for rare diseases per individual per generation (uq) as 3.73 x 10* (= 19,831 x
26.9 x 0.07 x 108). Using this rate, we can derive the rare disease prevalence rate (rro = 10,000 x uq), which equates to
approximately 4 in 10,000 individuals. This prevalence agrees remarkably well with the EU definition of rare disease rate
prevalence of 5 in 10,000 people [43]. The constant parameter highlights the idea that young genes continually acquire
functions vital for human health, which agrees with previous observations of young genes and their importance in contrib-

uting to phenotypic innovations [44-46].

Young genes are highly enriched into phenotypes of the reproductive and nervous system.

Despite the nearly constant integration of young genes (Figure 2a), it remains uncertain if gene age could influence
disease phenotypic spectrums (or pleiotropy). The overall distribution of OP system counts for disease genes (Supple-
mentary figure 2) is similar with the distribution of gene expression breath across tissues (Supplementary figure 3a-3c).
The distribution for the numbers of OP systems showed that young genes have lower peak and median values than older
genes (Figure 2b-2c). This pattern was consistent with the results that younger genes tend to express in a limited range of
tissues, while older genes exhibit a broader expression profile (Supplementary figure 3d), which also aligns with previ-

ously reported expression profiles [11, 47-49]. We found an increasing trend for the median numbers of OP systems from

AOP_median

young to old evolutionary epochs (Figure 2c). Interestingly, the increase rates ( m

) are higher at the younger

epochs than other older ones (0.12/mya at Eutherian stage vs. 0.05/mya at older stages on average, Supplementary table
4a), suggesting a non-linear and restricted growth model for the level of pleiotropy. We applied a logistic growth function
and observed a significant pattern: as evolutionary time increases, the level of pleiotropy rises (Figure 2d). Moreover, the
model demonstrates a diminishing marginal effect, indicating that the rate of increase in pleiotropy slows down as evolu-

tionary time continues to grow. This pattern suggests that pleiotropy is initially lower in new genes but increases at a faster
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rate compared to older genes. In addition, the higher pleiotropy in older genes is attributed to the cumulative effects over

evolutionary history, rather than being inherently high from the outset.

To understand a finer-scale pattern of disease phenotypes for young and old genes, we introduced a metric of the dis-
ease phenotype enrichment index (PEI), which accounts for the range of phenotypes on multiple systems (see method for
details). Our findings revealed that the most ancient genes, specifically from the Euteleostomi and Tetrapoda periods, had
the strongest PEI association with the nervous system (OP1). Conversely, young genes from Amniota and Eutheria
epochs tend to display the highest PEI for disease phenotypes of the genitourinary system (OP7) and the nervous system
(OP1), with the former showing a 38.65% higher PEI than the latter (Figure 2e, Supplementary table 4). Among the 22
disease phenotype systems, only the reproductive system (OP7) was unique in showing a steady rise in PEI from older
epochs to younger ones (Figure 2e). There were smaller variations in PEI for the older epochs when compared to the
more recent Eutheria epoch (~2.79 vs. 3.67), hinting that older disease genes impact a greater number of organ systems,
as also shown in Figure 2c. This finding is consistent with the “out-of-testis” hypothesis [45], which was built on many ob-
servations where the expression patterns of young genes are limited to the testes and can have vital roles in male repro-
duction. As genes evolve over time, their expression tends to broaden potentially leading to increased phenotypic effects

that impact multiple organ systems.

Apart from the reproductive system (OP7), we found that the nervous system (OP1) showed the second highest PEI for
Eutherian young disease genes (Figure 2e). Moreover, 42% of the 19 Primate-specific disease genes with diseases af-
fecting the nervous system (OP1) correlate with phenotypes involving brain size or intellectual development (CFC1,
DDX11, H4C5, NOTCH2NLC, NOTCH2NLA, NPAP1, RRP7A, and SMPD4. Supplementary table 2 and Discussion), con-
sistent with the expectation of previous studies based on gene expression [29]. Furthermore, young genes emerging dur-
ing the primate stage are connected to disease phenotypic enrichment in other adaptive systems, particularly in the HPO
systems of the head, neck, eyes, and musculoskeletal structure (Figure 2e). Overall, the Primate-specific disease genes
could impact phenotypes from both reproductive and non-reproductive systems, particularly the genitourinary, nervous,

and musculoskeletal systems (Supplementary table 2), supporting their roles in both sexual and adaptive evolution.

Sex chromosomes are enriched for disease-associated genes.

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194


https://doi.org/10.1101/2023.11.14.567139
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.14.567139; this version posted November 16, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Young gene duplicates with a bias toward male expression show chromosomal shifts between sex chromosomes and
autosomes [50]. This movement might be an adaptation to address sexual conflicts in gamete formation or to avoid mei-
otic sex chromosome inactivation (MSCI) in sperm production [50-54]. Considering the rapid concentration of the young-
est disease genes in the reproductive system (Figure 2e, OP7), we hypothesized that disease genes related to various
organs or tissues could have skewed chromosomal distributions. First, we examined the distribution of all disease genes
and found a distinct, uneven spread across chromosomes (Figure 3a and Supplementary table 5). The X and Y chromo-
somes have more disease genes than autosomal ones. While autosomes have a linear slope of 0.23 (Figure 3b, R? =
0.93; p=2.2 x 103, the Y chromosome's disease gene proportion is 82.61% higher at 0.42. Meanwhile, the X chromo-

some's proportion is 30.43% more than autosomes, sitting at 0.301.

To understand if the differences between sex chromosomes and autosomes relate to reproductive functions, we di-
vided disease genes into reproductive (1285 genes) and non-reproductive (3661 genes) categories (See Supplementary
tables 6 and 7). By fitting the number of disease genes against all dated genes on chromosomes, we observed that the X
chromosome exhibited a bias towards reproductive functions. Specifically, the X chromosome had slightly fewer disease
genes affecting non-reproductive systems compared to autosomes (excess rate -1.65%, observed number 154, expected
number 156.59). In contrast, the X chromosome displayed a significant surplus of reproductive-related disease genes (ob-
served number 99, expected number 52.73, excess rate 87.75%, p < 5.56e-9) (Figure 3d). This result highlights the prom-
inent difference in functional distribution between the X chromosome and autosomes, which might be attributed to the X
chromosome’s unique role in reproductive functions. Given the sex-imbalanced mode of inheritance for the X chromo-
some, theoretical models have predicted that purifying selection would remove both dominant female-detrimental muta-
tions and recessive male-detrimental mutations [55, 56]. We determined that the ratio of male to female reproductive dis-
ease genes (Mdisease/Fdisease OF ) is considerably higher for the X chromosome (80/9 = 8.89) than for autosomes on aver-
age (38/21 = 1.81, odds ratio = 16.08, 95% CI: 6.73-38.44, p < 0.0001). This suggests a disproportionate contribution of
disease genes from the male hemizygous X chromosome compared to the female homozygous X. Thus, our analysis indi-
cates that the abundance of disease genes on the X chromosome compared to autosomes might largely stem from male-
specific functional effects. These data also hint that the overrepresentation of disease genes on the X chromosome is
driven primarily by the recessive X-linked inheritance affecting male phenotypes rather than the dominant X-linked effect

that impacts both genders.
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Sexual selection drives the uneven chromosomal distribution of reproductive disease genes.

To determine which gender might influence the biased distribution of reproductive-related genes on different chromo-
somes, we focused on genes specific to male and female reproductive disease. Based on the HPO terms of abnormalities
in reproductive organs and gene age dating, we retrieved 154 female-specific and 945 male-specific disease genes re-
lated to the reproductive system with age dating data (Supplementary table 5 and 6). Through linear regression analysis,
we assessed the number of gender-specific reproductive disease genes against the total counted genes for each chromo-

some. We observed strikingly different patterns that are dependent on gender and chromosomes.

For female reproductive disease genes, the X chromosome did not differ from autosomes, adhering to a linear autoso-
mal pattern (R? = 0.53, p = 1.04e-4, Figure 3e). However, when examining male reproductive disease genes, the X and Y
chromosomes starkly stood out compared to autosomes, which followed a linear pattern (R?> = 0.82, p = 5.56e-9, Figure
3f). The X chromosome held an 111.75% more male reproductive genes than expected. Moreover, compared to auto-
somes (averaging 38/853), the sex chromosomes, Y (17/45) and X (80/840), demonstrated significantly higher ratios of
male reproductive disease genes, with odds ratios of 8.48 (95% CI: 4.45 - 16.17, p < 0.0001) and 2.14 (95% CI: 1.44 to
3.18, p = 0.0002), respectively. On the X chromosome, the fraction of male reproductive genes was 10.43 times greater
than that of female reproductive genes (80/840 vs. 7/840). This observation is consistent with the “faster-X hypothesis”,
where purifying selection is more effective in eliminating recessive deleterious mutations on the X chromosome due to the
male hemizygosity of the X chromosome [55, 56]. Interestingly, we also observed a male-bias in reproductive disease
gene density on autosomes, where the slope of the autosomal linear model for males was approximately 4.21 times
steeper than for female (0.038 vs. 0.0073) (Figure 3e and 3f). Thus, our observed excess of male reproductive disease
genes is not caused solely by the “faster-X” effect. It might also be influenced by the “faster-male” effect, postulating that

the male reproductive system evolves rapidly due to heightened sexual selection pressures on males [57].

Excess of young genes with male reproductive disease phenotypes

While we observed a male-bias in reproductive disease genes, the influence of gene ages as a factor on this excess
remains unclear. We compared gene distribution patterns between older (or ancient, stage Euteleostomi) and younger

(post-Euteleostomi) stages. For female-specific reproductive disease genes, the X chromosome has an excess of ancient

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246


https://doi.org/10.1101/2023.11.14.567139
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.14.567139; this version posted November 16, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

genes but a deficiency of young genes (25.42% vs. -57.16%, Figure 4a). Conversely, for male-specific reproductive dis-
ease genes, younger genes exhibited a higher excess rate than ancient genes (193.96% vs. 80.09%) (Figure 4a). These
patterns suggest an age-dependent functional divergence of genes on the X chromosome, which is consistent with gene
expression data. The X chromosome is “masculinized” with young, male-biased genes and old X chromosomal genes
tend to be “feminized,” maintaining expression in females but losing it in males [52]. On autosomes, the linear regression
slope values were higher for male reproductive disease genes than for female ones, both for ancient (0.027 vs. 0.0041)
and young genes (0.012 vs. 0.0021) (Figure 4a). The ratio of male to female reproductive disease gene counts (aq)
showed a predominantly male-biased trend across epochs, with a higher value in the most recent epoch of Eutheria (9.75)
compared to the ancient epochs Euteleostomi and Tetrapoda (6.40 and 3.94, Figure 4b). Selection pressure comparison
between young and ancient genes revealed no significant difference for female-specific reproductive disease genes, but
significant difference for male-specific ones (Figure 4c, the Wilcoxon rank-sum test, p < 0.0001), indicating that young

genes under sexual selection have less evolutionary constraints than older ones (median Ka/Ks ratio 0.35 vs. 0.23).

Structurally, the eutherian hemizygous X chromosome comprises an ancestral X-conserved region and a relatively
new X-added region [58]. The ancestral X-conserved region is shared with the marsupial X chromosome, whereas the X-
added region originates from autosomes (Figure 4d). To understand which human X chromosome regions might contrib-
ute differentially to human genetic disease phenotypes, we compared genes within the X-conserved and X-added regions,
based on previous evolutionary strata and X chromosome studies [59-61]. After excluding genes on X-PAR (pseudoauto-
somal regions) regions (Ensembl v110), we found that the proportion of male-specific reproductive disease genes in X-
added region (13.07%, 23/176) exceeds that in the X-conserved region (8.33%, 55/660) (Figure 4d and 4e, Supplemen-
tary table 7). Moreover, analyses of the evolutionary strata, which relies on substitutions method (Lahn and Page 1999;
McLysaght 2008) and the segmentation and clustering method (Pandey et al. 2013), consistently showed higher fractions
of male-specific reproductive disease genes in younger evolutionary strata than in older ones (Figure 4e). These observa-
tions indicate that, on the X chromosome, young genes could be more susceptible to the forces of sexual selection than

old genes, despite their nearly identical hemizygous environment.
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Discussion

The underestimated roles of young genes in human biomedically important phenotypes and innovations.

After the discovery of the first disease gene in 1983, which was based on linkage mapping for a Huntington's dis-
ease with pedigree [62], there has been a rapid advancement in medical genetics research. As of now, this field has iden-
tified approximately 20% of human genes (~4000-5000 genes) with phenotypes of the rare or "orphan” diseases [7, 63-
74]. In our study, we utilized the latest disease gene and clinical phenotype data from HPO annotations [33] and incorpo-
rated synteny-based gene age dating to account for new gene duplication events [32]. Contradicting the prior belief that
only a tiny fraction of Eutherian young genes are related to diseases [16], our synteny-based gene age dating reveals al-
most a tenfold increase, suggesting the substantial role of young genes in human biomedical phenotypes. Despite previ-
ous debates on the selective pressure of disease genes [16, 75-77], our comparative analyses of Ka/Ks ratios between
humans and primates consistently show stronger purifying selection on disease genes than non-disease genes, indicating
evolutionary constraints to remove harmful mutations. The epoch-wise estimates of the emergence rate of disease genes
per million years () reveal a steady integration of genes into disease phenotypes, which supports Haldane's seminal 1937

finding that new deleterious mutations are eliminated at the same rate they occur [78, 79].

Young genes rapidly acquire phenotypes under both sexual and natural selection.

The chromosomal distribution of all disease genes shows the excess of disease genes in X chromosome (Figure 3),
which supports the “faster-X effect” [55, 56], that male X-hemizygosity could immediately expose the deleterious X chro-
mosome mutations to purifying selection. Conversely, the X-chromosome inactivation (XCI) in female cells could lessen
the deleterious phenotypes of disease variants on the X chromosome [80]. The X chromosome excess of disease genes
is attributed predominantly to that of the male reproductive disease genes (Figure 3). This male-specific bias was not lim-
ited to the sex chromosome but also detectable in autosomes (Figure 3). These findings align with the “faster-male” effect,
where the reproductive system evolves more rapidly in males than in females due to heightened male-specific sexual se-
lection [57]. Intriguingly, of the 22 HPO systems, young genes are enriched in disease phenotypes affecting the reproduc-
tive-related system. As genes age, there's a marked decline in both PEI (phenotype enrichment index) and (the male-to-

female ratio of reproductive disease gene numbers). These patterns are consistent with the “out of testis” hypothesis [45],
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which describes the male germline as a birthplace of new genes due to factors including the permissive chromatin state
and the immune environment in testis [81, 82]. The “out of testis” hypothesis predicts that genes could gain broader ex-
pression patterns and higher phenotypic complexity over evolutionary time [82]. Consistently, we observed a pattern
where older sets of disease genes have phenotypes over a much broader anatomical systems compared to younger
genes which tend to impact limited systems. The strong enrichment of male reproductive phenotypes for young genes is
also consistent with findings from model species that new genes often exhibit male-reproductive functions [50, 83], in both
Drosophila [53, 83, 84] and mammals [51, 85]. Some new gene duplicates on autosomes are indispensable during male
spermatogenesis, to preserve male-specific functions that would otherwise be silenced on the X chromosome due to the

meiotic sex chromosome inactivation (MSCI) [51, 52, 85].

Apart from the reproductive functions, new genes are also enriched for adaptive phenotypes. Previous tran-
scriptomic studies indicate that new genes have excessive upregulation in the human neocortex and under positive selec-
tion [29]. The brain size enlargement, especially the neocortex expansion over ~50% the volume of the human brain,
ranks among the most extraordinary human phenotypic innovations [29, 86]. Here, we found that at least 42% of primate-
specific disease genes affecting the nervous systems could impact phenotypes related to brain size and intellectual devel-
opment. For example, DDX11 is critical in pathology of microcephaly [87-90]. The NOTCH2NLA, NOTCH2NLB, and
NOTCH2NLC may promote human brain size enlargement, due to their functions in neuronal intranuclear inclusion dis-
ease (NIID), microcephaly, and macrocephaly [91-93]. The RRP7A is also a microcephaly disease gene evidenced from
patient-derived cells with defects in cell cycle progression and primary cilia resorption [94]. The defects of SMPD4 can
lead to a neurodevelopmental disorder characterized by microcephaly and structural brain anomalies [95]. The SRGAP2C
accounts for human-specific feature of neoteny and can promote motor and execution skills in mouse and monkey model

[96-98]. The de novo gene SMIM45 [99] associates with cortical expansion based on extensive models [31].

New genes were also found with enrichment in other adaptive phenotypes, particularly involving the head and neck,
eye, and musculoskeletal system. Some examples of these primate-specific disease genes encompass CFHR3 associ-
ated with macular degeneration [100], SMPD4 with the retinopathy [101], TUBA3D with the keratoconus [102], OPNTMW
with loss of color vision [103, 104], YY1AP1 with Fibromuscular dysplasia [105], SMN2 with the Spinal Muscular Atrophy

[106], GH1 with defects in adult bone mass and bone loss [107], KCNJ18 with thyrotoxicosis complicated by paraplegia
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and hyporeflexia [108], TBX5 with the cardiac and limb defects of Holt-Oram syndrome [109, 110], and DUX4 with muscu-
lar dystrophy [111]. Additionally, some other specific functions have also been reported for these young genes. For exam-
ple, the Y chromosome gene TBL1Y could lead to male-specific hearing loss [112]. The TUBB8 defects could lead to
complete cleavage failure in fertilized eggs and oocyte maturation arrest [113-115]. Interestingly, a previous case study on
mice also shows the role of de novo genes on female-specific reproductive functions [116]. These emerging studies inde-
pendently support the importance of new genes in phenotypic innovation and sexual selection, refuting previous assump-

tions that new genes contribute little to phenotypic innovation [117].

New genes underlying rapid phenotypic innovations: low pleiotropy as a selective advantage.

Our findings raise the question of why new genes can quickly enrich into phenotypic traits that are crucial for both
sexual evolution and adaptive innovation. This question could not be fully addressed by previous hypotheses. The "out of
testis" theory, as well as the "male-driven," "faster-X," and "faster-male" theories, do not offer specific predictions regard-
ing the propensity of new or young genes to be involved in adaptive traits. Here, we proposed a “pleiotropy-barrier” model
to explain the relationship between innovation potential and gene ages (Figure 5a). The evidence of extensive pleiotropy
was found early in the history of genetics [118-120]. It is established that young genes exhibit higher specificity and nar-
rower expression breadth across tissues [48]. In this study, we used a broader definition of pleiotropy to understand phe-
notype evolution [38, 121-123]. We reveal a pattern that older genes tend to impact more organs/systems, while young
genes display phenotype enrichment in specific organs (Figure 2c). Therefore, both phenotype pattern and expression
trend across evolutionary epochs suggest lower pleiotropy for young genes, compared to the progressively higher pleiot-

ropy observed in older genes.

Numerous theoretical and genomic studies have revealed that pleiotropy impedes evolutionary adaptation (a so-
called ‘cost of complexity’) [118, 124-127], while low pleiotropy could foster more morphological evolutions [128, 129]. The
inhibitory effect of pleiotropy on novel adaptation aligns with our observations of the strong purifying selection on both high
extent of pleiotropy [124, 125] and expression breadth [130]. As expected, we observed that multi-system genes and older
genes, which exhibit higher pleiotropy, undergo stronger purifying selection (Figure 1b-1e). This evolutionary constraint

suggests a restricted mutation space to introduce novel traits for old genes due to the “competing interests” of
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multifunctionality (Figure 5). The inhibitory pressure could also reduce genetic diversity due to background selection [131].
The evolution of new genes, especially gene duplicates, serves as a primary mechanism to mitigate pleiotropic effects
through subfunctionalization and neofunctionalization [132, 133] and avoid adverse pleiotropy in ancestral copies [134].
The tissue-specific functions of new genes, as a general pattern in numerous organisms, could circumvent the adaptive
conflicts caused by the multifunctionality of parental genes [135]. The reduced pleiotropy in young genes could thereby
allow for a more diverse mutational space for functional innovation without triggering unintended pleiotropic trade-offs

[136].

The “pleiotropy-barrier” model predicts that the capacity for phenotypic innovation is limited by genetic pleiotropy
under nature selection (Figure 5a). Over evolutionary time, the pleiotropy increase follows a logistic growth pattern, where
the speed of growth could be higher for younger genes but lower for older genes (Figure 5b). The multifunctional genes
could encounter an escalating “barrier” toward the pleiotropy maximum. This barrier arises because more functions ne-
cessitate stronger selective constraints, which could in turn reduce mutational space of beneficial mutations for novel phe-
notypes. In contrast, low or absent pleiotropy in new genes allows for a higher mutation space under the relaxed purifying
selection. The permissive environment provides a fertile ground for beneficial mutations to appear with novel functions.
Such innovations, initially as polymorphisms within a population, can become advantageous in certain environment under
positive selection. Therefore, young genes, with lower pleiotropic effect as a selective advantage, not only spurs molecu-
lar evolution under sexual and natural selection but, from a medical standpoint, also are promising targets for precise

medicine, warranting deeper investigation.

Conclusion

In this study, we unveil a remarkable pattern of new gene evolution with vital pathogenic functions shaped by the
non-neutral selection. Although the ratio of genes associated with health-related functions per million years remains rela-
tively consistent across macroevolutionary epochs, we note an enrichment pattern of disease systems for young genes.
Importantly, young genes are preferentially linked to disease phenotypes of the male reproductive system, as well as sys-
tems that undergone significant phenotypic innovations in primate or human evolution, including the nervous system,

head and neck, eyes, and the musculoskeletal system. The enrichment of these disease systems points to the driving
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forces of both sexual selection and adaptive evolution for young genes. As evolutionary time progresses, older genes dis-
play fewer specialized functions compared to their young counterparts. Our findings highlight that young genes are likely

the frontrunners of molecular evolution, being actively selected for functional roles by both adaptive innovation and sexual
selection, a process aided by their reduced pleiotropy. Collectively, young genes are crucial in addressing the fundamen-

tal question: 'What makes us human?"

Materials and Methods

Gene age dating and disease phenotypes

The gene age dating was conducted using an inclusive approach. For autosomal and X chromosomal genes, we pri-
marily obtained gene ages (or branches, origination stages) from the GenTree database [32, 52] that is based on Ensembl
v95 of human reference genome version hg38 [137]. We then trans-mapped the v95 gene list of GenTree into the current
release of Ensembl gene annotation (v110). The gene age inference in the GenTree database relied on genome-wide
synteny and was based on the presence of syntenic blocks obtained from whole-genome alignments between human and
outgroup genomes [11, 32, 52]. The most phylogenetically distant branch at which the shared syntenic block was detected
marks the time when a human gene originated. In comparison to the method based on the similarity of protein families,
namely the phylostratigraphic dating [138], this method employed in GenTree is robust to recent gene duplications [32],
despite its under-estimation of the number of young genes [87]. We obtained gene age for human Y genes through the
analysis of 15 representative mammals [139]. Notably, Y gene ages are defined as the time when these genes began to
evolve independently of their X counterpart or when they translocated from other chromosomes to the Y chromosome due
to gene traffic (transposition/translocation) [139]. For the remaining Ensembl v110 genes lacking age information, we dated
them using the synteny-based method with the gene order information from ENSEMBL database (v110), following the in-
ference framework of GenTree [32]. These comprehensive methods resulted in the categorization of 19,665 protein-coding
genes into distinct gene age groups, encompassing evolutionary stages from Euteleostomi to the human lineage, following
the phylogenetic framework of the GenTree database. The HPO annotation used in this study for phenotypic abnormalities
contains disease genes corresponding to 23 major organ/tissue systems (09/19/2023, https://hpo.jax.org/app/data/annota-
tions). After filtering out mitochondrial genes, unplaced genes, RNA genes, and genes related to neoplasm ontology, we

obtained with gene ages and phenotypic abnormalities (across 22 categories) for 4946 protein-coding genes. The
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"«

reproductive system disease genes were retrieved from the “phenotype to genes.txt” file based on “reproduct”, “male”,
“female” keywords (neoplasm-related items were removed).
Ka/Ks ratio

Ka/Ks is widely used in evolutionary genetics to estimate the relative strength of purifying selection (Ka/Ks < 1), neutral
mutations (Ka/Ks = 1), and beneficial mutations (Ka/Ks > 1) on homologous protein-coding genes. Ka is the number of
nonsynonymous substitutions per non-synonymous site, while Ks is the number of synonymous substitutions per synony-
mous site that is assumed to be neutral. The pairwise Ka/Ks ratios (human-chimpanzee, human-bonobo, and human-ma-
caque) were retrieved from the Ensembl database (v99) [137], as estimated with the Maximum Likelihood algorithm [140].
Disease gene emergence rate per million years (r)

To understand the origination tempo of disease genes within different evolutionary epochs, we estimated the disease
gene emergence rate per million years r for disease genes, which is the fractions of disease genes per million years for
each evolutionary branch. The calculating is based on the following formula:

= %

where rirepresents the phenotype integration index for ancestral branch i. The O; indicates the number of disease
genes with organ phenotypes in ancestral branch i. The denominator A; is the number of genes with gene age information
in branch i. The T; represents the time obtained from the Timetree database (http://www.timetree.org/) [141].

Pleiotropic modeling with logistic growth function

For each evolutionary epoch (t), we estimated the median numbers of OP systems that genic defects could affect,
which serve as the proxy of pleiotropy over evolutionary time (P(t)) for regression analysis. The logistic growth function was
used to fit the correlation with the Nonlinear Least Squares in R.

Phenotype enrichment along evolutionary stages

The phenotype enrichment along evolutionary epochs was evaluated based on a phenotype enrichment index (PEI).
Specifically, within "gene-phenotype" links, there are two types of contributions for a phenotype, which are "one gene, many
phenotypes" due to potential pleiotropism as well as "one gene, one phenotype". Considering the weighting differences
between these two categories, we estimated the PEl(;; for a given phenotype (pi) within an evolutionary stage (br;) with the

following formula.

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424


https://doi.org/10.1101/2023.11.14.567139
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.14.567139; this version posted November 16, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

n 1
_ i=1
PElq) =55

i=1m
The m indicates the number of phenotype(s) one gene can affect, n represents the number of genes identified for a
given phenotypes, and [ is number of phenotypes within a given evolutionary stage. Considering the genetic complexity of

phenotypes, the enrichment index (PE]) firstly adjusted the weights of genes related to a phenotype with the reciprocal value
of m, i.e., % Thus, the more phenotypes a gene affects, the less contributing weight this gene has. Then, we can obtain

the accumulative value (p) of the adjusted weights of all genes for a specific phenotype within an evolutionary stage. Be-

cause of the involvement of multiple phenotypes within an evolutionary stage, we summed weight values for all phenotypes

p

(X)=1 p) and finally obtained the percentage of each phenotype within each stage (Zl .
J=1

) as the enrichment index.

The linear regression and excessive rate

The linear regression for disease genes and total genes on chromosomes was based on the simple hypothesis that
the number of disease genes would be dependent on the number of total genes on chromosomes. The linear regression
and statistics were analyzed with R platform. The excessive rate was calculated as the percentages (%) of the vertical
difference between a specific data point, which is the number of gene within a chromosome (n), and the expected value

based on linear model (n-e) out of the expected value (ane).

The X-conserved and X-added regions

The Eutherian X chromosome is comprised of the pseudoautosomal regions (PAR), X-conserved region, and X-added
region. The regions of two PAR were determined based on NCBI assembly annotation of GRCh38.p13 (X:155701383-
156030895 and X:10001-2781479). The X-boundary between X-conserved and X-added regions was determined with En-
sembl biomart tool. The "one to one" orthologous genes between human and opossum were used for gene synteny identi-
fication. The X-conserved region is shared between human and opossum, while X-added region in human has synteny with
the autosomal genes of opossum [61]. The "evolutionary strata” on X were based on previous reports of two methods:
substitutions method and the Segmentation and Clustering method [59, 60, 142]. The coordinates of strata boundaries were

up-lifted into hg38 genome with liftover tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver).
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Figure 1. Number distribution and Ka/Ks ratios of genes categorized by ages and disease phenotypes (also organ phenotype genes). (a)
The phylogenetic framework illustrating gene ages and disease genes associated with organ phenotypes. The phylogenetic branches
represent age assignment for all genes and disease genes. The "br" values from br0 to br7 signify ancestral age groups (or branches).
These are further categorized into four evolutionary age stages. The vertical axis depicts the divergence time sourced from the Timetree
database (July 2023). The numbers of total genes and disease genes and their ratios are shown for each evolutionary age stage. (b) The
pairwise Ka/Ks ratios from Ensembl database based on Maximum Likelihood estimation for “one to one” orthologs between human and
chimpanzee. Only genes under purifying selection are shown (Ka/Ks < 1). The significance levels are determined using the Wilcoxon

Gdedek?

rank sum test, comparing disease genes to non-disease genes. The symbol indicates significance level of p < 0.001. (c) The 22
HPO-defined organ/tissue systems, which are ordered based on the proportion of genes among all disease genes. (d) Percentages

representing disease genes affecting various organs/tissues/systems in relation to the total number of disease genes.
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and Euteleostomi stage. (c) Boxplot distributions showcase the numbers of affected organ phenotypic systems (OPs) for 765
genes grouped by their evolutionary age (median values are 4, 8, 7, 8, 9, 9, 10, from left to right). (d) The nonlinear least 766

squares (NLS) regression between pleiotropy score (P) and evolutionary times ¢ with the logistic growth function (P(f) = 767

% k =1.66, p = 0.000787, 95% confidence interval is shown shade. P_max and P_0 are empirical medians 768
—Po ¢

10 and 4, respectively) (e) The distribution of age and phenotype for the phenotype enrichment index (PEI). The bar plots, 769
colored differently, represent various age epochs, namely Euteleostomi, Tetrapoda, Amniota, and Eutheria, in ascending 770
order of age. The organ phenotypes (OP) are displayed on the horizontal axis and defined in Figure 1c. The standard de- 771

viations of PEI are 3.67 for Eutherian epochs and approximately 2.79 for older epochs. 772
773
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gene age information. (e) Linear regression of dated disease gene counts against the total numbers of dated gene on chromosomes for female-specific
reproductive disease genes. (f) Linear regression of dated disease gene counts against the total numbers of dated gene on chromosomes for male-
specific reproductive disease genes. The autosomal linear models are shown on the top left corner. Note: All linear regression formulas and statistics

pertain only to autosomes. “A”, “X”, and “Y” indicate autosomes, X and Y chromosomes, respectively.
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comparison of selection pressure (human-chimpanzee pairwise Ka/Ks) for sex-specific reproductive disease genes between the ancient (stage Eutele- 789
ostomi) and younger (post-Euteleostomi) epochs. Only the autosomal comparison is shown, with p value from the Wilcoxon test. (d) The numbers of 790
male-specific reproductive disease genes (m) and the background genes (b) within the subregions from old to young on the X chromosome are pro- 791
vided, with the numbers displayed within round brackets for each subregion (m/b). SM, SCM, and HOS denote three classification methods for X chro- 792
mosome structure: the substitutions method [60, 62], the segmentation and clustering method [59], and the synteny method (orthologous gene order 793

conservation between human and opossum). (e) The fraction of disease genes with male-specific reproductive disease phenotypes within each stratum 794
or subregion, as illustrated in (d), is presented. The gene coordinates have been updated based on the hg38 reference with liftover tool. “A”, “X”, and “Y” 795

indicate autosomes, X and Y chromosomes, respectively. 796
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Supplementary Figure 1. The pairwise Ka/Ks ratios from Ensembl database based on the Maximum Likelihood estimation for “one to one” orthologs

between human and bonobo (a) and between human and macaque (b). Only genes under purifying selection are visualized (Ka/Ks < 1). Note: the signif-

icance levels are based on the Wilcoxon rank sum test comparing disease genes and non-disease genes (one tail test). ™7, "**”, “***” indicate p < 0.05, <

0.01, < 0.001, respectively.
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Supplementary Figure 3. The distribution for the numbers of tissues with RNASEQ expression (HPA normal tissues). (a) The distribution of counts of 814
normal tissues with low levels of gene expression (HPA annotation). (b) The distribution of counts of normal tissues with medium levels of gene expres- 815

sion (HPA annotation). (c¢) The distribution of counts of normal tissues with high levels of gene expression (HPA annotation). (d) The distribution percent- 816
ages of genes expressed in multiple tissues (>3) compared to those expressed in a limited number of tissues (<=3) across different evolutionary ages 817

(normal tissue with high gene expression estimated from HPA). 818
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