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Abstract 

Motivation:  

Single-cell RNA sequencing (scRNAseq) offers powerful insights, but the surge in sample sizes demands 

more computational power than local workstations can provide. Consequently, high-performance 

computing (HPC) systems have become imperative. Existing web apps designed to analyze scRNAseq data 

lack scalability and integration capabilities, while analysis packages demand coding expertise, hindering 

accessibility. 

Results: 

In response, we introduce scRNAbox, an innovative scRNAseq analysis pipeline meticulously crafted for 

HPC systems. This end-to-end solution, executed via the SLURM workload manager, efficiently processes 

raw data from standard and Hashtag samples. It incorporates quality control filtering, sample integration, 

clustering, cluster annotation tools, and facilitates cell type-specific differential gene expression analysis 

between two groups. 

Implementation: Open-source code and comprehensive usage instructions with examples are available at  

https://neurobioinfo.github.io/scrnabox/site/. 

Supplementary Information: Supplementary data are available at Bioinformatics online.  

Contact: sali.farhan@mcgill.ca and rhalena.thomas@mcgill.ca 
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Introduction 

In recent years, single-cell RNA sequencing (scRNAseq) technology has led to remarkable breakthroughs 

in our understanding of biology, enabling us to explore gene expression at the resolution of individual cells. 

With technological advancements, we have transitioned from analyzing a few cells to thousands and even 

hundreds of thousands of cells in a single experiment (1). While the potential of scRNAseq is immense, it 

has brought about complexities and computational demands that have yet to be comprehensively addressed. 

Many useful web-based applications and graphical user interfaces (GUI) have been developed to analyze 

scRNAseq; however, with the exception of Asc-Seurat, these tools require processing of each sample 

separately, therefore, inhibiting data integration or comparisons among experimental variables (2-6).  R and 

python packages with excellent user guides have been developed to process scRNAseq data; however, these 

require extensive programming knowledge (7-11). Additionally, given that users must manually adapt and 

implement the code, repeating the process for each sample, this process can be laborious, error-prone, and 

time-consuming. The need to execute the code locally further exacerbates these issues, limiting researchers 

to the capabilities of their own computational resources. The scale of modern scRNAseq datasets 

necessitates the use of high-performance computing (HPC) clusters. Yet, to our knowledge, a 

comprehensive scRNAseq workflow tailored to HPC environments hitherto has been unavailable.   

In response to these multifaceted challenges, we introduce scRNAbox, a novel and robust scRNAseq 

analysis pipeline meticulously designed for HPC systems. ScRNAbox not only standardizes and simplifies 

the scRNAseq analysis workflow for geneticists and biologists with any levels of computational expertise, 

but also diligently documents execution parameters, ensuring transparency and replicability. It has been 

assembled to be effortlessly scalable, catering to the evolving needs of researchers faced with large-scale 

datasets.  scRNAbox provides a unified and accessible resource for the growing community of scRNAseq 

researchers. 

Finally, we recognize the shortage of resources that provide best practices in scRNAseq analysis (12, 13). 

In this context, we deploy scRNAbox using publicly available data and outline the decisions 

bioinformaticians must make during analysis and investigate the biology. To  illustrate the utility of 
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scRNAbox, we analyze single-nuclei RNA sequencing (snRNAseq) data published by Smajic and 

colleagues of midbrain tissue from patients with Parkinson9s Disease (PD) and controls (14). We outline 

each step in the scRNAbox pipeline, providing the scientific rationale and the analytical decisions taken in 

processing the data.  

Materials and methods 

scRNAbox overview 

The scRNAbox pipeline consists of R scripts that are submitted to the SLURM workload manager (job 

scheduling system for Linux HPC clusters) using bash scripts from the command line. (15). Beginning with 

10X Genomics expression data from raw sequencing files, the pipeline facilitates standard steps in 

scRNAseq processing through to differential gene expression between two different conditions. The 

scRNAbox framework consists of three main components: (i) R scripts, (ii) job submission scripts, and (iii) 

parameter and configuration files.  The pipeline is separated into Steps, which correspond to analytical tasks 

in the scRNAseq analysis workflow (Figure 1). Users can tailor their analysis by manipulating the 

parameters in the step-specific parameter files. The pipeline can analyze scRNAseq experiments where 

each sample is captured separately (standard track) or multiplexed experiments where samples are tagged 

with sample-specific oligonucleotide tagged Hashtag antibodies (HTO), pooled, and sequenced together 

(HTO track) (16, 17). The results of each step are reported in intuitive tables, figures, and intermediate 

Seurat objects (7). Upon submitting the bash script for a step, <Jobs=, or resource requests are created based 

on the parameters defined in the configuration file, including CPUs, memory, and time. Jobs are submitted 

to the HPC system using the SLURM <Scheduler= to execute the R scripts. A complete user guide and the 

code used in this manuscript can be found at the scRNAbox GitHub site: 

https://neurobioinfo.github.io/scrnabox/site/.  
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Figure 1. ScRNAbox analysis workflow. The scRNAbox pipeline provides two analysis tracks: 1) 

standard sRNAseq and 2) HTO scRNAseq. A)  Standard scRNAseq data is prepared by sequencing each 

sample separately, resulting in distinct FASTQ files for each sample. B) HTO scRNAseq data is produced 

by tagging the cells from each sample with unique oligonucleotide <Hashtag= conjugated antibodies (HTO). 

Tagged cells from each sample are then pooled and sequenced together to produce a single FASTQ file. 

Sample-specific HTOs are used to computationally demultiplex samples downstream. C) Steps of the 

scRNAbox pipeline workflow: steps are designed to run sequentially and are submitted using the provided 
bash scripts through the command line. scRNAbox takes FASTQ files as input into Step 1; however, the 

pipeline can be initiated at any step which takes the users processed data as input. 
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Installation 

ScRNAbox can be installed on any HPC Linux system via the scrnabox.slurm package, which contains the 

Bash and R scripts, parameter files, and configuration file. The HPC system must have CellRanger (10x 

Genomics) and R (v4.2 or higher) (18) installed and must use a SLURM scheduler. Users must also install 

several R libraries using the provided installation code.  

scRNAbox Steps 

Step 0: Initiation and configuration  

Following installation, users run Step 0 to initiate the pipeline and specify if they will use the standard or 

HTO analysis track. Step 0 creates the job submission configuration files and the step-specific parameter 

files. The configuration file contains the time and memory usage settings for each step and must be edited 

to match the user9s needs. After Step 0, each subsequent Step can be run individually through separate 

commands or all together in a single command.  

Step 1: FASTQ to gene expression matrix  

1.1: File structure and inputs  

Prior to running the CellRanger counts pipeline, a parent directory (<samples_info=) must be created in the 

working directory. The <samples_info= directory must contain a folder for each sample; the name of the 

sample-specific folders will eventually be used to name the samples in downstream steps. Each sample-

specific folder must contain a library.csv file, which defines the information of the FASTQ files for the 

specific sample. The HTO analysis track also requires a feature_ref.csv file, which specifies the 

oligonucleotide sequences of the Hashtags. Step 1 runs a script to automatically generate these files based 

on the user input in the parameter file. However, users can manually generate the required files and 

structure. 

1.2: Running CellRanger 

ScRNAbox deploys the CellRanger counts pipeline to perform alignment, filtering, barcode, and unique 

molecular identifier counting on the FASTQ files. Each sample is processed by the CellRanger counts 
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pipeline in parallel. Although CellRanger is processed with default parameters, all relevant parameters can 

be adjusted (10X Genomics).  

Step 2: Create Seurat object and remove ambient RNA 

2.1: Ambient RNA detection  

The R package SoupX is used to account for ambient RNA, providing users the option to correct the gene 

expression matrices for RNA contamination (19). SoupX quantifies the contamination fraction according 

to the expression profiles of empty droplets and cell clusters identified by the CellRanger counts pipeline. 

Marker genes used to estimate the contamination rate are automatically identified using the AutoEstCont 

function and the expression matrix is corrected per the estimated contamination rate using the adjustCounts 

function. 

2.2: Generation of the Seurat object and quality control metrics   

The Seurat function CreateSeuratObject is used to take in the CellRanger (if not removing ambient RNA) 

or SoupX (if removing ambient RNA) generated feature-barcode expression matrices, and create the list-

type Seurat object (7). The number of genes expressed per cell (number of unique RNA transcripts) and the 

total number of RNA transcripts are automatically computed. The proportion of RNA transcripts from 

mitochondrial DNA (gene symbols beginning with <MT=) and the proportion of ribosomal protein-related 

transcripts (gene symbols beginning with <RP=) are both calculated using the Seurat PercentageFeatureSet 

function. Following the Seurat workflow, the CellCycleScoring function with the Seurat S and G2/M cell 

cycle phase reference genes are used to calculate the cell cycle phase scores and generate a principal 

component analysis (PCA) plot (20).   

Step 3:  Quality control and generation of filtered data objects 

ScRNAbox allows users to filter low quality cells by defining upper- and lower-bound thresholds in the 

parameter files based on unique transcripts, total transcripts, percentage of mitochondrial-encoded 

transcripts, and percentage of ribosome gene transcripts. Users can also remove or regress a custom gene 

list from the dataset. The filtered counts matrix is then normalized, the top variably expressed genes are 

identified, and the data are scaled using Seurat functions. Linear dimensional reduction is performed via 
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PCA and an elbow plot is generated to visualize the dimensionality of the dataset and inform the number 

of principal components (PC) to be used for doublet detection in Step 4. 

Step 4: Demultiplexing and doublet removal  

4.1 Doublet detection and removal (Standard track) 

Barcodes that are composed of two or more cells are identified as doublets using DoubletFinder (21). 

Doublets are predicted based on the proximity of each cell9s gene expression profile to that of artificial 

doublets created by averaging the transcriptional profiles of randomly chosen cell pairs. The default value 

of 0.25 for the number of artificial doublets is used. The neighbourhood size corresponding to the maximum 

bimodality coefficient is selected and the proportion of homotypic doublets is computed using the 

modelHomotypic function. Users can define the number of PCs to use for doublet detection and the expected 

doublet rate for each sample. Users have the option to remove doublets from downstream analyses or just 

calculate the doublet rate.  

4.2 Demultiplexing followed by doublet removal (HTO track) 

Pooled samples are demultiplexed, assigning an HTO label to each cell, using Multi-seq (17). The 

automatically detected inter-maxima quantile thresholds of the probability density functions for each 

barcode are used to classify cells. Cells surpassing one HTO threshold are classified as singlets; cells 

surpassing >1 thresholds are classified as doublets; the remaining cells are assigned as <negative=. The 

counts observed for each barcode are reported in a summary file and plots are generated to visualize the 

enrichment of barcode labels across sample assignments. Users have the option to remove doublets and 

negatives from downstream analyses. 

Step 5: Creation of a single Seurat object from all samples  

5.1: Integration or merging samples 

The individual Seurat objects are integrated to enable the joint analysis across sequencing runs or samples 

by deploying Seurat9s integration algorithm (22). The genes that are variable across all samples are detected 

by the SelectIntegrationFeatures function. Integration anchors (pairs of cells in a matched biological state 

across datasets) are selected by the FindIntegrationanchors function, and the IntegrateData function is used 
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to integrate the datasets by taking the integration anchors as input. Alternatively, users may simply merge 

the normalized counts matrices using Seurat9s merge function without performing integration.  

5.2: Linear dimensional reduction  

Seurat functions are used to normalize the count matrix, find the most variably expressed genes, and scale 

the data. Linear dimensional reduction is then performed via PCA using the top variably expressed genes 

as input. An elbow plot to visualize the variance contained within each PC and jackstraw plot to visualize 

<significant= PCs are produced. These plots inform the number of PCs that should be retained for clustering 

in Step 6. 

Step 6: Clustering 

Clustering is performed to define groups of cells with similar expression profiles using the Seurat 

implementation of the Louvain network detection with PCA dimensionality reduction as input (7). K-

nearest neighbours are calculated and used to construct the shared nearest neighbour graph. The Jaccard 

similarity metric is used to adjust edge weights between pairs of cells, and the Louvain algorithm is used 

to iteratively group cells together based on the modularity optimization. To assist users in selecting the 

optimal clustering conditions, we include an option to compute the Louvain clustering N times at each 

clustering resolution, while shuffling the order of the nodes in the graph for each iteration. The average and 

standard deviation of the Adjusted Rand Index (ARI) between clustering pairs at each clustering resolution 

is then calculated (23). A ClustTree plot (24) and uniform manifold approximation and projection (UMAP) 

plots are generated to visualize the effect of clustering parameters.   

 

Step 7: Cluster annotation 

Cluster annotation is performed to define the cell types comprising the clusters identified in Step 6.   

ScRNAbox provides three tools to identify cell types comprising the clusters. 

7.1: Tool 1: Cluster marker gene identification and gene set enrichment analysis  

ScRNAbox identifies genes that are significantly up regulated within each cluster by using the Seurat 

FindAllMarkers function, implementing the Wilcoxon rank-sum test (7), with log2 fold-change (L2FC) 
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threshold of 0.25.  Differentially expressed genes (DEGs) are calculated by comparing each cluster against 

all the other clusters, only upregulated genes are considered. A heatmap is generated to visualize the 

expression of the top marker genes for each cluster at the cell level. All significant DEGs are used as the 

input for gene set enrichment analysis (GSEA) across user-defined libraries that define cell types using the 

EnrichR tool (25). Cluster-specific tables are generated to report all enriched cell types and bar plots 

visualize the most enriched terms.  

7.2: Tool 2: Expression profiling of cell type markers and module scores 

ScRNAseq allows users to visualize the expression of individual genes and the aggregated expression of 

multiple genes from user-defined cell type marker gene lists. For each gene in a user-defined list, a UMAP 

plot visualizes its expression at the cell level, while violin and dot plots visualize its expression at the cluster 

level. Aggregated expression of user-defined cell type marker gene lists is calculated using the Seurat 

AddModuleScore function (20). The average expression of each cell for the gene set is subtracted from 

randomly selected control genes, resulting in cell-specific expression scores, with larger values indicating 

higher expression across the gene set.   

7.3. Tool 3: Cell type predictions based on reference data 

ScRNAbox utilizes the Seurat label transfer method: FindTransferAnchors and TransferData functions, to 

predict cell-type annotations from a reference Seurat object (22). Predicted annotations are directly 

integrated into the query object9s metadata and a UMAP plot is generated to visualize the query dataset, 

annotated according to the predictions obtained from the reference. 

7.4 Adding annotations 

ScRNAbox uses the Seurat AddMetaData function and a user-defined list of cell types in the parameter file 

to add cluster annotations. The cluster annotations from each iteration of the step will be retained, allowing 

users to define broad cell types and subtypes. UMAP plots with the annotation labels are generated to 

visualize the clustering annotations at the cell level, allowing users to check the accuracy of their 

annotations.  
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Step 8: Differential gene expression analysis (DGE) 

Metadata defining the groups to be compared are added to the Seurat object by submitting a .csv file 

containing sample information with phenotypic or experimental data. The additional metadata is used to 

define the variables to compare for the DGE. ScRNAbox allows DGE to be calculated between conditions 

using all cells or cell type groups using two different data preparations: cell-based or sample-based DGE.  

8.1: Cell-based DGE 

Cells are used as replicates and DGE is computed using the Seurat FindMarkers function to compare user-

defined contrasts for a given variable (7). While FindMarkers supports several statistical frameworks to 

compute DGE, we set the default method in our implementation to MAST, which is tailored for scRNAseq 

data (26). MAST models both the discrete expression rate of all genes across cells and the conditional 

continuous expression level, which is dependent on the gene being expressed in the cell, by a two-part 

generalized linear model (26). Regardless of the method used, P values are corrected for multiple hypothesis 

testing using the Bonferroni method. Users can perform their own p-value adjustments using the DEG files 

output from the pipeline. 

8.2: Sample-based DGE 

To calculate DGE using samples or subjects as replicates, scRNAbox applies a pseudo-bulk analysis. First, 

the Seurat AggregateExpression function is used to compute the sum of RNA counts for each gene across 

all cells from a sample (27). These values are then input into the DESeq2 framework, which uses gene 

dispersal to calculate DGE (28). P values are corrected for multiple hypothesis testing using the Bonferroni 

method, which can be recalculated from the pipeline output. 

8.3: Analysis of differentially expressed genes 

Step 8 produces data tables of the DEGs for each of the defined contrasts. These outputs can be used for 

gene enrichment pathway analysis using web-apps or though application program interfaces with reference 

libraries using a programming language, in our case, R. Further analysis of the results is experiment-

dependent and must be completely tailored to the research questions. We used the ClusterProfiler R package 

to identify significantly enriched Gene Ontology (GO) terms with the gseGO function (29). We utilized the 
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'org.Hs.eg.db' Bioconductor annotation package to access human (Homo sapiens) gene annotations for our 

analysis. The ggplot2 R package was used for data visualization (30).  

Code and data availability 

The scRNAbox.slurm package is available at https://github.com/neurobioinfo/scrnabox. All code is open 

source and licenced under the MIT license, allowing for reuse, alteration, and sharing with credit given. 

Bash submission scripts, R scripts, configuration files, parameter files, and R scripts used for DGE analysis 

and to generate all the plots in the figures are available. We analyzed publicly available data summarized 

in Table 1.  

Table 1: Description of datasets 

Data type Source Reference 

SnRNAseq post-mortem human 

midbrain 

GEO: GSE157783 Smajic et al. (14). 

ScRNAseq human PBMC with Hashtags GEO: GSE108313. Stoeckius et al. (16). 

SnRNAseq from the post-mortem human 

midbrain 

https://singlecell.broadinstitute.org Kamath et al  (31). 

Abbreviations: GEO, Gene Expression Omnibus; PBMC, peripheral blood mononuclear cell; scRNAseq, 

single-cell RNA sequencing; snRNAseq, single-nucleus RNA sequencing. 

 

Results 

To demonstrate the functionality of the scRNAbox pipeline we analyzed a publicly available snRNAseq 

dataset from the post-mortem midbrains of five patients with Parkinson9s disease (PD) and six controls 

prepared by Smajic et al. (14). To demonstrate scRNAbox9s ability to process multiplexed scRNAseq data, 

we analyzed a scRNAseq dataset of peripheral blood mononuclear cells (PBMCs) from eight human donors 

prepared by Stoeckius et al. (16). 

ScRNAbox efficiently processes raw sequencing data and provides quality control measures 

We initiated our scRNAbox analysis of the midbrain dataset by running Step 0 and selecting the standard 

track. This created the job configuration file and step-specific parameter files. In Step 1, we used the 

automatic library preparation function to generate the sample-specific library.csv files and ran CellRanger 

(v5.0.1) counts on all 11 subjects.  
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In Step 2, the pipeline generates a Seurat object for each sample and computes multiple quality control 

metrics that inform decisions for filtering in Step 3. At this stage, we had the option to remove ambient 

RNA, transcripts from an external source captured with a true cell. These aberrant transcripts originate from 

many possible sources including cells that ruptured or died during dissociation and released their RNA, 

mRNA-containing exosomes, or mRNA that leaked out when cell processes were cleaved during 

dissociation. Large amounts of ambient RNA confound the data, making cells appear to have similar 

transcriptional profiles when they are truly distinct. Leveraging SoupX to detect ambient RNA revealed 

low contamination rates across all samples (mean = 2.46%) (Figure 2A; Table 2). Cell cycle stage is 

another quality control metric to consider during scRNAseq data processing as it can affect cell type 

annotations in downstream analyses. ScRNAbox computes the cell cycle stage for each cell and generates 

a PCA plot to visualize the effect of cell cycle stage in the data. The cell cycle stage showed little effect on 

cell distributions in PCA space (Figure 2B; Supplementary Figure S1).  

To further visualize the data and determine thresholds for filtering, scRNAbox computes the unique RNA 

transcripts and total counts of RNA for each cell (Figure 2C). Cells with too few unique RNA transcripts 

are only ambient RNA, membrane fragments, or damaged/dying cells, and these barcodes should be 

removed. The range of unique transcripts varies across species, tissue types, and sample preparations. The 

distribution of unique RNA transcripts and total RNA varied across the 11 samples; however, the lowest 

quartile (1st quartile) value was above 1000 in both measures for all samples, indicating that a stringent 

threshold for good quality cells will retain a large sample size (Table 2). Finally, the percentage of 

mitochondrial and ribosomal RNA transcripts are calculated (Figure 2D). A high proportion of 

mitochondrial-encoded RNA indicates that the mitochondria are damaged within that cell, indicating that 

the cell is likely dying. In most cases, researchers will remove these cells. Ribosomal RNA genes encode 

proteins for ribosomal machinery and indicates a high level of translational activity in the cell. Like cell 

cycle state, elevated levels of ribosomal proteins could later impact clustering results; however, both may 

also represent biologically relevant signals that researchers may wish to retain and further explore. As 
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expected from nuclear sequencing, the percentage of mitochondrial-encoded genes was low across all 

samples (Table 2). 

 

 

 

Figure 2. scRNAbox calculates and visualizes quality control metrics. A) Line plot of the ambient RNA 

contamination rate (rho) estimated by SoupX (19). Estimates of the RNA contamination rate using various 

estimators are visualized via a frequency distribution; the true contamination rate is assigned as the most 

frequent estimate. The ambient RNA rate for snRNAseq midbrain sample Control 1 is indicated by the red 

line (5.1 %). B) Scatter plot of PCA analysis of Control 1 coloured by cell-cycle scores calculated using 

the Seurat S and G2/M reference genes (20). C) Violin plots showing the distribution of RNA transcript 

quality control metrics, individual cells are shown. D) Violin plots showing the proportion of 

mitochondrial-encoded RNA (left) and ribosomal RNA (right), individual cells are shown.  
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Table 2: Selected quality control measurements across all samples 

 Control Parkinson9s Disease 

Sample 1 2 3 4 5 6 1 2 3 4 5 

Ambient RNA 

rate (%) 

5.1 1.9 2.0 2.2 4.3 1.6 2.2 2.3 2.5 1.0 2.0 

Minimum 

Total RNA 

transcripts 

501 500 506 500 501 501 500 504 503 501 501 

1st Quartile 

total RNA 

transcripts 

2781 2913 2278 3375 2572 3351 2582 3092 2025 2668 3654 

Minimum 

Unique RNA 

transcripts 

112 68 199 132 50 154 184 66 261 32 196 

1st Quartile 

Unique RNA 

transcripts 

1478 1587 1346 1766 1490 1725 1448 1711 1276 2520 1896 

Median % 

Mitochondrial 

RNA 

3.04 1.30 0.62 0.44 1.20 1.02 1.12 1.80 0.55 2.14 0.92 

3rd Quartile % 

Mitochondrial 

RNA 

6.19 3.22 1.24 0.89 2.34 2.30 2.31 3.42 1.14 4.49 1.69 

Median % 

Ribosomal 

RNA 

0.42 0.72 0.64 0.67 0.61 0.76 0.45 0.66 0.79 0.85 0.63 

3rd Quartile % 

Ribosomal 

RNA 

0.65 1.16 0.88 1.00 0.87 1.22 0.73 1.14 1.25 1.31 1.13 

 

ScRNAbox applies quality control filters and integrates samples 

In step 3, we applied the filtering criteria used by Samjic et al. (14); we did not adjust for ambient RNA 

contamination or regress cell cycle genes. We removed unwanted barcodes as described above, applying 

filters for minimum unique RNA transcripts (>1000), minimum total RNA transcripts (>1500), and 

maximum percent mitochondria and ribosomal RNA (<10) (Figure 3A). Additionally, we removed 

mitochondrial-encoded and ribosomal genes. After applying these filters, we retained between 2,442 and 

6,153 cells per sample (Table 3). In Step 4, we leveraged DoubletFinder to predict doublets using default 

parameters and 25 PCs and defined the expected doublet rate for each sample based on the number of 

recovered cells from the CellRanger pipeline (Figures 3B and 3C; Table 3). The DoubletFinder algorithm 
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requires that UMAP dimensional reduction is performed prior to analysis. We performed dimensional 

reduction using 25 PCs and 65 nearest neighbours. After removing predicted doublets, 44,538 cells 

remained across all samples. In total, 9,460 cells (17.52%) were filtered from the dataset (Table 3). 

Finally, after processing each individual sample, we combined all samples into one data object to facilitate 

integrated analysis. In Step 5, users have the option to either merge (Figure 3D) or integrate (Figure 3E) 

the data. We proceeded with downstream analyses of the midbrain dataset using the integrated data object, 

which facilitates the identification of cell types that are consistent across samples (22). 

 

Figure 3: scRNAbox produces visualizations of filter application, doublet detection and data 

integration. A) Violin plots visualizing the distribution of quality control metrics after filtering according 

to user-defined thresholds, for snRNAseq midbrain sample Control 1. B) Results of doublet detection with 

DoubletFinder (21). Left: violin plot displaying the distribution of the proportion of artificial nearest 

neighbours (pANN) across singlets and doublets for Control 1. Right: a bar plot of the number of predicted 

singlets and doublets for Control 1. C) Uniform Manifold Approximation Projection (UMAP) plots 

coloured by droplet assignments (singlet or doublet) for Control 1. D) UMAP of merged snRNAseq 
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midbrain samples (six Control and five PD) coloured by sample identity. E) UMAP of the same data after 

integration using Seurat label transfer, coloured by sample identity.  

 

Table 3: Unique barcode counts at different stages of data processing 

Sample Number of 

Unique 

Barcodes 

Cell count after 

filtering 

Expected doublet 

rate (%) 

Number of 

doublets 

detected 

Cell count after 

doublet 

removal 

Control 1 5513 4176 4.2 175 4001 

Control 2 5508 4553 4.2 191 4362 

Control 3 2856 2490 2.3 57 2433 

Control 4 5347 4952 4.0 198 4754 

Control 5 3564 3196 2.7 86 3110 

Control 6 7174 6153 5.3 326 5827 

PD 1 2899 2442 2.3 56 2386 

PD 2 7169 6388 5.3 339 6049 

PD 3 4560 3784 3.4 129 3655 

PD 4 2820 2307 2.3 53 2254 

PD 5 6588 6007 5.0 300 5707 

Total 53998 46448 NA 1910 44538 

Abbreviations: PD, Parkinson9s disease. 

ScRNAbox provides tools to optimize clustering and facilitate annotation 

In Step 6, we performed clustering on the integrated dataset to eventually identify distinct cell types. We 

clustered the cells using the 4000 most variably expressed features and 25 PCs, maintaining the parameters 

used by Smajic et al. (14). We used 30 neighbours to construct the shared nearest neighbour graph input 

into the Louvain network detection algorithm and performed clustering on a range of clustering resolutions 

(Supplementary Figure S2A). To evaluate the reproducibility of clusters identified at each resolution, we 

calculated the ARI between clustering pairs at each resolution across 25 replications (23). The ARI at a 

clustering resolution of 0.05 and 0.2 were both 1.00 and the ClusTree plot suggested high stability 

(Supplementary Figures S2B and S2C). Thus, we used a clustering resolution of 0.2, which identified 14 

clusters, to annotate the major cell types (Figure 4A).  

In Step 7, we applied the three cluster annotation tools within the scRNAbox pipeline to identify the cell 

types. Using Tool 1, we identified the top markers for each cluster (Figure 4B) and subjected these to genes 

GSEA using the EnrichR R package. As an example, the Descartes Cell Types and Tissues 2021 library 
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GSEA suggested that cluster 5 are microglia (Figure 4C). For Tool 2, we profiled the expression of known 

marker genes, using the marker genes identified by Samjic et al. to annotate their clusters: oligodendrocytes: 

MOBP; oligodendrocyte precursor cells (OPC): VCAN; astrocytes: AQP4; ependymal cells: FOXJ1; 

microglia: CD74; endothelial cells: CLDN5; pericytes: GFRB; excitatory neurons: SLC1746; inhibitory 

neurons: GAD2; GABAergic neurons: GAD2 and GRIK1; dopaminergic neurons (DaN): TH. Except for 

clusters 11 and 13, we found that each cluster showed elevated expression for at least one marker gene 

(Figure 4D). ScRNAbox also allows expression profiling of known marker genes through a violin plot. For 

instance, we explored the expression of CD74 across clusters and found that cluster 5 showed elevated 

expression of this gene, further suggesting that this cluster consists of microglia (Figure 4E). Next, we 

computed the module scores for custom gene marker lists (Supplementary Table S1). The module score 

for the microglia gene set was highest in cluster 5 (Figure 4F). Using Tool 3, we predicted cell types using 

a labelled Seurat object generated from snRNAseq midbrain data published by Kamath et al. (31) (Figure 

4G).  

Performing cluster annotations at a clustering resolution of 0.2 allowed us to identify the major cell types 

expected in the human midbrain. However, to further classify the neurons into subtypes, we repeated Step 

7 at a clustering resolution of 1.5, as used by Smajic and colleagues (14). We subjected the 33 clusters 

identified to marker GSEA and profiled the expression of known marker genes and cell type marker gene 

lists (Supplementary Figures S3-6). We identified each of the expected neuronal subtypes, including a 

cluster of CADPS2high DaNs identified by Smajic et al., resulting in 12 cell types for our final annotation 

(Figure 4H; Supplementary Figure S6D). 
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Figure 4. scRNAbox performs clustering to identify cells type groups and provides tools for cluster 

annotation. A) Uniform Manifold Approximation Projection (UMAP) plots showing clusters identified by 

Louvain network detection with a resolution of 0.2, coloured by cluster index. The UMAP was generated 

from the 11 integrated snRNAseq midbrain samples.  B) Heatmap of the top 3 upregulated marker genes 

for each cluster in A.  C) Bar chart showing the top 15 cell types in the Descartes Cell Types and Tissue 

library identified by GSEA of the marker genes for cluster 5.  D) Dot plot showing expression of cell type 

markers defined by Smajic et al. for each cluster at resolution 0.2. The cell type markers are as follows: 

oligodendrocytes: MOBP; oligodendrocyte precursor cells (OPC): VCAN; astrocytes: AQP4; ependymal 

cells: FOXJ1; microglia: CD74; endothelial cells: CLDN5; pericytes: GFRB; excitatory neurons: SLC1746; 

inhibitory neurons: GAD2; GABAergic neurons: GAD2 and GRIK1; dopaminergic neurons (DaN): TH. PD 

specific DaN subgroup; CADPS2. E) Violin plot showing expression levels in each cluster across individual 

cells for the microglia marker CD74. F) UMAP showing the module score for the microglia gene marker 

list. The module score is an aggregated expression of known marker genes (20). G) Left: UMAP of 

clustered and annotated reference Seurat object; snRNAseq of midbrain tissue produced by Kamath et al. 

(31), coloured by cell type.  Using the Seurat label transfer approach, the reference data was used to predict 

cell types in the query data (11 snRNAseq midbrain samples from Smajic et al. (14)). Right: UMAP of the 

label transfer predictions for each cell, coloured by predicted cell type. H) UMAP of the 11 integrated 

samples with the applied final cell type annotation, coloured by cell type.  
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ScRNAseq efficiently calculates differential gene expression and facilitates pathway analysis 

In Step 8, scRNAbox calculates DGE by two different methods, cell-based using MAST (26) and sample-

based using DESeq2 (28). We first added metadata to the Seurat object and classified each sample as either 

<Control= or <PD=, allowing us to define our desired contrasts. Next, we computed DGE between PD and 

controls for all cells together and for each cell type individually. Cell-based DGE results in fewer DEGs 

with L2FC greater than 1.0 but more genes significant after p-value adjustment for multiple comparisons 

(Figure 5A and 5B; Supplementary Figure S8 and S9; Supplementary Table S2 and S3). For example, 

cell-based-DGE identified 13 DEGs (p-value < 0.05; L2FC > 1) between PD and controls for microglia, 

while pseudo-bulk with DESeq2 identified 1,030 DEGs at the same significance threshold and for the same 

cell type (Figure 5A and 5B). Indeed, the sample-based-DGE identified a higher number of DEGs across 

all cell types compared to MAST, except for DaNs (sample-based = 82 DEGs; cell-based = 111 DEGs) 

(Figure 5C and 5D). Another benefit of using multiple statistical frameworks for computing DGE is the 

ability to identify consensus signals. Particularly, the DEGs that maintain significance after correction for 

multiple hypothesis testing by multiple statistical frameworks may be of highest interest to investigators 

(Figure 5E). Finally, the DGE data tables produced by the scRNAbox pipeline can be used to perform gene 

enrichment pathway analysis and explore the contribution of different cell types to perturbed pathways. As 

an example, we performed GO analysis for biological processes using significant DEGs (p-value < 0.05 

and L2FC > 1) identified by sample-based DGE (1,366 genes) and cell-based DGE (7 genes), comparing 

all cells between PD and control subjects using the ClusterProfiler R package (29). We then selected the 

top 5 most significantly enriched pathways for each method and looked at the gene contribution and 

pathway significance for each GO term across cell types (Figure 5F and 5G). Interestingly, both DGE 

methods suggested perturbed pathways related developmental and neuro-anatomical changes in the PD 

midbrain.  
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Figure 5. scRNA calculates differential gene expression (DGE) using multiple statistical frameworks. 

ScRNAbox computes DGE using two distinct data preparations: 1) using cells as replicated and the MAST 

statistical framework (26) and 2) using samples as replicates (pseudo-bulk) and the DESeq2 statistical 

framework (28). A) Volcano plot showing cell-based DGE results identified by MAST, between 

Parkinson9s disease (PD) and control subjects for microglia. B) Volcano plot showing sample-based DGE 

identified by DESeq2 between PD and control subjects for microglia. C, D) Bar chart showing the number 

of DEGs identified with a log 2 fold-change (L2FC) (- 1 < and > 1) and p-values < 0.05. Bonferroni adjusted 

p-values < 0.05 are indicated by the darker shade. C) Cell-based DGE using MAST.  D) Sample-based 

DGE using DESeq2 E) Number of differentially expressed genes (DEG) identified by cell-based DGE-

MAST, sample-based DGE-DESeq2, or both frameworks across all cell types. Only DEGs with L2FC (- 1 

< and > 1) are included. F, G) Bar chart showing the top 5 GO terms for GO-Biological Processes calculated 

for all cell types together.  DEGs with p-values < 0.05 and L2FC (- 1 < and > 1) were used as the input for 

gene set enrichment analysis (GSEA). The gene ratio, gene count, and p-value of the five terms in each cell 

type are shown. F) GO analysis of DEGs identified by cell-based DGE across all cell types.  The missing 

cell types did not have enough DEGs for GSEA analysis to return results and were not plotted. G) GO 

analysis of DEGs identified by sample-based DGE across all cell types.  
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ScRNAbox effectively demultiplexes cells with Hashtag feature labels  

In addition to standard scRNAseq data, scRNAbox can be used to analyze multiplexed samples, whereby 

each subject is tagged with a unique HTO, pooled, and then captured and sequenced together. Cell 

hashtagging can reduce the cost of scRNAseq by a factor of the number of samples multiplexed; however, 

additional steps are required to bioinformatically assign each cell back to its sample of origin. In Step 4, 

scRNAbox provides the option for users to demultiplex cells based on the expression of sample specific 

HTOs. To demonstrate, we analyzed a scRNAseq dataset of PBMCs from 8 subjects collected by Stoeckius 

et al. (16). In Step 0, we selected to run the <HTO= analysis track and proceeded to run Steps 1-3 using the 

same analytical parameters that Stoeckius et al. used to process their data. At Step 4, instead of running 

doublet detection with DoubletFinder, scRNAbox uses the Seurat MULTIseqDemux function to assign cells 

back to their sample-of-origin based on HTO expression (17). ScRNAbox produces multiple figures to 

visualize the enrichment of HTOs across samples. Upon examining the expression levels of each HTO label 

across samples, we observed that cells with a distinct expression for a given HTO are assigned to the 

matching sample (Figures 6A-C). Barcodes with multiple HTO labels are detected as doublets, as these 

likely represent two cells that were sequenced together. Negative cells have too low of a level of any HTO 

tag to be accurately assigned. The doublet group has about twice as many RNA transcripts per cell compared 

to the cells that were assigned to an individual sample, suggesting that the predicted doublets are likely true 

doublets (Figure 6D). We conclude that scRNAbox pipeline can accurately demultiplex samples with HTO 

tags.  
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Figure 6. scRNAseq effectively demultiplexes HTO samples and detects doublets. The expression 

matrices of sample-specific oligonucleotide conjugated antibodies (HTO) are used to demultiplex samples 

and identify doublets (17). The enrichment of barcode labels across sample assignments are visualized at 

the cellular and sample level. A) Ridge plots (stacked density plots) showing the expression each HTO tag 

(X-total-seq) expression in each assigned sample. B) Dot plot showing the expression level (colour 

intensity) and proportion of cells (dot size) expressing each HTO in each assigned sample.  C) Heatmap 

showing expression levels of each HTO tag in each assigned sample. D) Violin plot showing the distribution 

of total RNA transcripts across sample assignments.   

 

Conclusions 

Here, we introduce ScRNAbox, a comprehensive end-to-end pipeline designed to streamline the processing 

and analysis of single-cell transcriptomic data. ScRNAbox responds to the pressing demand for a user-

friendly, HPC solution, bridging the gap between the growing computational demands of scRNAseq 

analysis and the coding expertise required to meet them. ScRNAbox empowers researchers, regardless of 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2023. ; https://doi.org/10.1101/2023.11.13.566851doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.13.566851
http://creativecommons.org/licenses/by/4.0/


   

 

   

 

23 

coding experience, to unlock the full potential of HPC clusters. By automating and optimizing the entire 

scRNAseq analysis workflow, it facilitates the processing of numerous samples while seamlessly scaling 

to meet user needs. The stepwise execution of ScRNAbox provides researchers with fine-grained control 

over parameters and manual cell annotations, ensuring reproducibility and customizability at every stage. 

The pipeline contains a rich array of functionalities, enabling cell type annotation, differential gene 

expression analysis, and efficient cell demultiplexing using Hashtag feature labels. 

While ScRNAbox offers an efficient solution for scRNAseq data analysis, it does come with certain 

limitations. Primarily tailored for sequencing alignment from 10X data and focused on differential gene 

expression analysis, ScRNAbox does not encompass trajectory analysis, cell-to-cell networks, or other 

downstream analytical methods. Nonetheless, it equips users with final and intermediate data objects that 

seamlessly integrate into external packages for advanced analyses. 

Using ScRNAbox, we conducted a comprehensive analysis of snRNAseq data from PD and control 

midbrains, provided by Smajic et al. We elucidate each analysis step and demonstrate the remarkable 

alignment of our annotations with the original cell types and proportions. Additionally, we perform a 

comparative analysis of two DGE methods, shedding light on overlapping genes between the two 

approaches. 

Our open-source, modular code provides a versatile foundation for users to customize and expand. We 

encourage researchers to harness the flexibility of ScRNAbox, introducing alterations, additional options, 

or their preferred downstream analyses. With ScRNAbox, we aspire to simplify the intricacies of scRNAseq 

analysis, inviting an extended community of researchers to embark on novel and thoughtful explorations of 

single-cell transcriptomics. 
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