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Abstract

Variants in the CTSB gene encoding the lysosomal hydrolase cathepsin B (catB) are associated
with increased risk of Parkinson’s disease (PD). However, neither the specific CTSB variants
driving these associations nor the functional pathways that link catB to PD pathogenesis have
been characterized. CatB activity contributes to lysosomal protein degradation and regulates
signaling processes involved in autophagy and lysosome biogenesis. Previousin vitro studies
have found that catB can cleave monomeric and fibrillar alpha-synuclein, akey protein involved
in the pathogenesis of PD that accumulates in the brains of PD patients. However, truncated
synuclein isoforms generated by catB cleavage have an increased propensity to aggregate. Thus,
catB activity could potentially contribute to lysosomal degradation and clearance of pathogenic
alpha synuclein from the cell, but also has the potential of enhancing synuclein pathology by
generating aggregation-prone truncations. Therefore, the mechanismslinking catB to PD
pathophysiology remain to be clarified. Here, we conducted genetic analyses of the association
between common and rare CTSB variants and risk of PD. We then used genetic and
pharmacological approaches to manipulate catB expression and function in cell lines and induced
pluripotent stem cell-derived dopaminergic neurons and assessed lysosomal activity and the
handling of aggregated synuclein fibrils. We find that catB inhibition impairs autophagy, reduces
glucocerebrosidase (encoded by GBAL) activity, and leads to an accumulation of lysosomal
content. In cell lines, reduction of CTSB gene expression impairs the degradation of pre-formed
alpha-synuclein fibrils, whereas CTSB gene activation enhances fibril clearance. In midbrain
organoids and dopaminergic neurons treated with alpha-synuclein fibrils, catB inhibition
potentiates the formation of inclusions which stain positively for phosphorylated alpha-
synuclein. These results indicate that the reduction of catB function negatively impacts
lysosomal pathways associated with PD pathogenesis, while conversely catB activation could
promote the clearance of pathogenic apha-synuclein.

Keywords: Parkinson’s disease, alpha-synuclein, lysosome, cathepsin B, GBA, iPSC

Abbreviations: a-syn = alpha-synuclein, CRISPRa = CRISPR-activation, CRISPRi = CRISPR-
inhibition, CTSB/catB = cathepsin B, CTSD = cathepsin D, CTSL = cathepsin L, DA =
dopaminergic, eQTL = expression quantitative trait loci, GBA1 = glucocerebrosidase, GWAS =
genome wide association study, iPSC = induced pluripotent stem cell, LAMP = lysososme
associated membrane protein, LD = linkage disequilibrium PD = Parkinson’s disease, PFF =
preformed alpha-synuclein fibril, Map2 = microtubule associated protein 2, NPC = neuronal
progenitor cell, TFEB = transcription factor EB, TH = tyrosine hydrozylase.
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I ntroduction

Parkinson’s disease (PD) is characterized by both the degeneration of dopaminergic neuronsin
the substantia nigra and by the accumulation of Lewy bodies; proteinaceous inclusions composed
in largely of misfolded and aggregated o-synuclein (o-syn) *. Mutations that increase protein
levels of a-syn or its propensity to aggregate contribute substantial genetic risk to PD 22,
supporting the predominant hypothesis that o-syn aggregation is akey step in the pathol ogical
cascade leading to neurodegeneration in PD. The lysosome serves as the principal site for
degradation of aggregated a-syn *°, and mutations in lysosomal genes also represent a
substantial genetic risk for PD *. Thus, thereis great interest in understanding the lysosomal
pathways that mediate o-syn clearance. Cathepsin B (catB, encoded by the CTSB gene) isa
proteolytic enzyme of the cysteine cathepsin family with endo- and exo-peptidase activity that is
normally localized to the lysosomal lumen 8. CatB has been implicated both in the lysosomal
degradation of o-syn and as agenetic risk factor for PD. In the present study we further elucidate
the relationship between CTSB variants and PD risk and demonstrate that catB modul ates
lysosome function and the clearance of o-syn aggregates in cell lines and human dopaminergic
neurons.

The importance of lysosomal functionin PD iswell established by both functional and genetic
studies ”. Recently, genome-wide association studies (GWAS) have identified significant
association between variantsin the CTSB genetic locus and the risk of PD generally ° and
specifically in carriers of pathogenic GBAL variants *°. In addition to genetic evidence linking
CTSB to PD, catB protein or activity levels are reduced in several cellular models of PD. For
example, pathological a-syn species have been shown to impair catB trafficking to the lysosome
1 while iPSC derived neurons harboring mutations in SNCA or GBA1 exhibited reduced catB
activity 3. Additionally, knockout of the PD risk gene TMEM175 impairs catB activity by
destabilizing lysosome pH **°, while mutations in LRRK?2, the most common cause of familial
PD, have been shown to suppress catB expression or activity in the lysosome ***’. Thus, several
lines of evidence suggest that disrupted catB function could play arolein PD pathogenesis.

One potential mechanism linking catB to PD isthrough its ability to cleave both monomeric and
aggregated forms of o-syn, which has been demonstrated in vitro **2°. However, while this could
argue for a protective role of catB against synucleinopathy, the a-syn truncations produced by in
vitro catB cleavage exhibit an increased propensity to aggregate #* and although lysosome
function is essential for degradation of fibrillar o-syn %, it has also been suggested that catB
activity contributes to a-syn toxicity in some cellular models . Moreover, catB has been linked
to the a-syn dependent activation of inflanmatory pathways 2* and is a key regulator of cell
death in many cellular contexts . Thus, there are compelling arguments to be made in favor of
both protective and potentially pathogenic actions of catB in the etiology of PD and its specific
role remains to be elucidated.

Here, we aim to both clarify the genetic evidence pertaining to how CTSB variants may
contribute to PD etiology, and to functionally characterize the role of catB in relation to
lysosome function and o.-syn clearance. We first provide genetic evidence that PD-associated
CTSB variants decrease expression levels of the enzyme. Second, by pharmacologically and
genetically modulating catB expression or activity in cell lines and human dopaminergic neurons
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we demonstrate that catB is required for lysosomal functionsincluding glucocerebrosidase
activity and contributes to clearance of fibrillar a-syn. These findings argue in favor of a
protective effect of catB in PD.

Materials and Methods

Fine mapping and eQTL analysisof CTSB variants

To identify the most likely variant driving the PD-association in the CTSB locus, we performed
analyses using the summary statistics from the most recent PD GWAS ° and multiple
bioinformatic tools. First, to examine whether there are multiple independent associations in this
locus, we used genome-wide complex trait conditional and joint analysis (GCTA-COJO) %,
using default parameters. For downstream analyses, we generated a linkage disequilibrium (LD)
matrix for the CTSB locus using PLINK 1.9 %, including all variants within + 2Mbp from the top
variant. Then, we performed fine-mapping of the CTSB locus to nominate the most likely driving
variants using FINEMAP %, with minor allele frequency (MAF) threshold > 0.01. Expression
quantitative trait locus (eQTL) analysis was performed using colocalization (COLOC) %, which
examines whether the same variants associated with the trait (PD) are also associated with gene
expression. QTLs were tested in atotal of 109 tissues and cells (Supplementary Table 1) To
further explore the link between genetic variants, QTLs and PD we used Summary-data-based
Mendelian Randomization (SMR), which uses Mendelian randomization to suggest potential
causality, followed by heterogeneity in dependent instruments (HEIDI) to distinguish between
pleiotropy (or causality) and LD .

RareVariant Analysis

Rare variant analysis was performed on 5,801 PD cases and 20,427 controls across six cohorts
(Supplementary Table 2). All patients were diagnosed by movement disorder specialists
according to the UK brain bank criteria ** or MDS diagnostic criteria *. From the AMP-PD and
UKBB cohorts we only included participants of European ancestry and excluded any first and
second-degree relatives from the analysis. Quality control procedures for AMP-PD and UKBB
were performed as previously described in detail **3*,

In addition, we conducted sequencing on four distinct cohorts at McGill University (McGill
cohort, Columbia cohort, Sheba Medical Center cohort and Pavlov and Human Brain Institutes
cohort). We performed sequencing of the CTSB gene, including exon-intron boundaries (£50bps)
andthe5 and 3’ untrandated regions (UTRS) using molecular inversion probes (MIPs) as
described previously **. The full protocol is available at https://github.com/gan-
orlab/MIP_protocol. Library sequencing was performed by the Genome Quebec Innovation
Centre on the Illumina NovaSeq 6000 SP PE100 platform. We used Genome Analysis Toolkit
(GATK, v3.8) for post-alignment quality checking and variant calling **. We applied standard
quality control procedures *’. In brief, only variants with minor allele frequency (MAF) of less
than 1% and a minimum quality score (GQ) of 30 wereincluded in the analysis. The average
coverage for CTSB in cohorts sequenced at McGill was >4000X with 95% nucleotides covered at
30x (Supplementary Table 3).

To analyze rare variants, we applied the optimized sequence Kernel association test (SKAT-O, R
package) * with further meta-analysis between the cohorts using metaSKAT package *. We


https://doi.org/10.1101/2023.11.11.566693
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.11.566693; this version posted November 15, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

performed separate analyses for the whole gene, non-synonymous and functional
(nonsynonymous, stop and frameshift variants) and variants with Combined Annotation
Dependent Depletion (CADD) scores of > 20 “°. We adjusted for sex, age and ethnicity in all
analyses. We also analyzed whether rare CTSB variants affected age at onset of PD.

Generation of CTSB-KO and SNCA-KO iPSC

The previously characterized AIW002-02 iPSC cell line * was used to generate CTSB and SNCA
knockout lines. CRISPR gRNASs were designed using Synthego and the sequences of reagents
used are depicted in Supplementary Table 4. The SNCA-KO line was created by using two
gRNAs to introduce a 122bp deletion into exon 1 of the gene. The gRNA sequences were cloned
into a Cas9/puromycin expression vector PX459 (Addgene, #48139) and transfected into iPSCs
using Lipofectamine ™ stem reagent (ThermoFisher Scientific). Transfected iPSCs were
selected in 0.3ug/mL puromycin for 72h and surviving colonies were manually picked and
expanded for PCR screening to confirm deletion of the target region. Colonies confirmed to be
knockout by PCR screening were further validated by sanger sequencing, and loss of protein was
confirmed by Western blot in differentiated neurons.

The CTSB-KO cell line was created by HDR using a single gRNA and ssDNA repair template to
introduce a stop tag in exon 4 of the gene. Cas9 nuclease, gRNA and a ssDNA repair template
for HDR were introduced by Lonza Nucleofection. Edited allel es were detected with ddPCR to
select edited clones and deletion was verified by PCR screening followed by sanger sequencing,
and finally loss of protein was determined by Western blot (Supplementary Fig 1).

All lines were subject to quality control as previously described ** and included verification of
pluripotency by immunofluorescent staining for pluripotency markers (Nanog, Tral-60, SSEA4
and OCT3/4), verification of normal karyotype and verification of normal profile on genome
stability test (Supplementary Fig 1).

iIPSC culture and dopaminer gic neur on differentiation

All cell culture reagents used, and media compositions are depicted in Supplemental Table 5.
Midbrain neuronal precursor cells (NPCs) and dopaminergic neurons were generated following
previously established protocols ***. Briefly, iPSCs were dissociated with Gentle Cell
dissociation reagent and transferred to uncoated flasks in NPC Induction Mediato allow for
embryoid bodies (EB’s) to form. EBswere cultured for 7 days and then transferred to
polyornithine/laminin coated flasks and grown for another 7 daysin NPC induction media. To
expand NPCs the EBs were then dissociated into small colonies by trituration in Gentle Cell
dissociation media and replated as amonolayer on polyornithine/laminin coated flasks. After
reaching confluence, NPCs were harvested and frozen in FBS with 10% DM SO and stored in
liquid nitrogen.

To differentiate neurons, NPCs were thawed in NPC Maintenance Mediawith Y-27632 (ROCK
inhibitor) and plated on polyornithine/laminin. NPCs were grown for 5-9 days until confluent.
For final differentiation into dopaminergic neurons, NPCs were dissociated using Accutase and
plated on polyornithine/laminin in Dopaminergic Differentiation Media. After 5 days, mediawas
supplemented with mitomycin C to remove proliferative cells. Dopaminergic neurons were
maintained by exchanging 1/3 of the culture volume for fresh dopaminergic differentiation media
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every 5-7 days. Neurons from every batch were assessed by immunofluorescence for expression
of Map2 and TH (Supplementary Fig 2A,B), and only batches achieving at least 50% Map2/TH
positivity after 4 weeks of differentiation were used for the experimentsincluded in this
manuscript.

For high-content imaging experiments neurons were plated on 96-well plates at a density of
15,000 cells per well. For protein and RNA isolation experiments neurons were plated on 6-well
plates at a density of 750,000 cells per well. For live-imaging experiments, neurons were plated
on 4-chamber imaging dishes at adensity of 100,000 cells per well.

Organoid culture, treatment, and imaging

The patient derived iPSCs with SNCA triplication mutation (3xSNCA) and corresponding
SNCA knockout (SNCA-KO) were previously described ** and provided by Dr. Tilo Kunath.
These cells were used to generate midbrain organoids following a protocol previously
established in our labs *“. Three months after organoid induction they were treated with either
DM SO (vehicle) or 1 uM CA074me and treatment was maintained for 60 days. All organoids
(12 per group) were fixed, cryo-sectioned, and prepared for immunofluorescence using
antibodies against Map2, TH, a-syn and pSyn-129 as previously described *°. Verification of
expression of TH and absence of a-synin SNCA-KO in the organoids used in this study is
depicted in Supplementary Figure 3. Images were acquired using the Leica TCS SP8 confocal
microscope and image analysis was performed with an in-house devel oped script for
guantification of immunofluorescent signal in organoids (https://github.com/neuroeddu/OrgQ).

a-synuclein preformed fibril (PFF) generation and characterization
PFFs were generated from recombinant o.-synuclein monomers as previously described 2, All
PFFs underwent quality control assessment by electron microscopy (Supplementary Fig. 2C,D).

RPE1 CRISPRa and CRISPRI Cédll Line Generation

Human retinal pigment epithelial-1 cells (RPE1) were grown in Dulbecco’s Modified Eagle
Medium (Wisent) supplemented with 10% fetal bovine serum (Wisent). To generate CRISPRa
and CRISPRI parental cell lines, lentivirus was used to stably transduced RPEL cells with either
pLX_311-KRAB-dCas9 * (Addgene #96918, henceforth referred to as CRISPRi) or EFla-
FLAG-dCas9-VPR * (Addgene #114195, henceforth referred to as CRISPRa) and single clones
were selected and characterized to generate monoclonal parental lines stably expressing the
CRISPRa and CRISPRIi machinery. The gRNA sequences targeting our genes of interest were
selected from previously published CRISPRa/i libraries > (Supplemental Table 6), synthesi zed
by IDT and cloned into pCRISPRi/a-v2 > (Addgene #84832). Lentivirus was used to stably
transduce parental CRISPRa and CRISPRI cell lines which then underwent puromycin selection
to generate polyclonal cell lines expressing the gRNA of interest. For each target, several gRNAS
were tested and the best performing sequences were selected by assessing target modulation by
RT-gPCR analysis of gene expression.

Drug and PFF treatments

CAO074me (Selleckchem) and PADK (Bachem) treatments were performed at the indicated final
concentrations with DM SO as vehicle. For PFF experiments in Figures 2 and 3, asingle drug
treatment was performed simultaneous with PFF administration, after which media was refreshed
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every 5-7 days. For lysosomal assays in Fig 3, drug was administered 5 days prior to the assay
unless otherwise specified.

For PFF treatments on RPE1 cells, 50,000 cells were plated on 12-well plates. After 24 hours,
PFF was added and cells were allowed to continue growing for 48 hours before cells were
washed with PBS and dissociated with trypsin to remove non-internalized PFFs before being
lysed in RIPA buffer.

For PFF high-content imaging assays with PFF, neurons were treated with PFF after 2 weeks of
differentiation in 96-well plates. After treatment, media was refreshed every 5-7 days normally.
At completion of treatment, cells were washed with PBS and fixed with 4% paraformal dehyde.

High-content imaging - immunofluor escence

Cdlls were permeabilized for 10 minutes with 0.3% saponin (lysosome immunostaining) or 0.2%
triton X-100 (pS129- a-syn assay and TFEB assay) in PBS and blocked with 1% BSA, 4% goat-
serum and 0.02% triton X-100 in PBS. Antibodies used are described in Supplemental Table 7.
High content imaging was performed on an Opera Phenix high-content confocal microscope
(Perkin EImer) and image analysis was performed using Columbus (Perkin EImer). Data
processing was then conducted using R studio as previously described %2, Briefly, nucle were
first identified by the Hoechst channel, and surrounding somawas identified as M ap2-positive
region. Relevant secondary stains were then quantified within this Map2-defined region. Single-
cell data were then processed using a custom script in R studio to filter objects based on nuclear
size, nuclear shape and Map2 staining intensity to identify only the neuronal cellsfor inclusionin
subsequent analysis.

High content imaging - live cell assays

PFB-FDGIu GCase activity assay: Cellsin 96-well plates were pre-loaded for 30 minutes with
lysotracker deep red (1:20,000, Invitrogen). Media was then exchanged for FluoroBrite imaging
media (Thermo) containing 25uM of PFB-FDGIlu (Invitrogen) and cells were then imaged on the
Opera Phenix every 15 minutes for 2 hours to monitor GCase activity. Using the Columbus
software, lysotracker signal was used to identify cells for quantification of GCase substrate
fluorescence, which is depicted as the mean fluorescence per cell.

DQ-BSA: Cdlswere pre-loaded with DQ-BSA (Invitrogen) for the indicated duration in
standard culture media. Cells were then stained with lysotracker deep red (1:20,000, Invitrogen)
for 30 minutes and media was exchanged for FluoroBrite and imaging was conducted on the
Opera Phenix. Using the Columbus software, lysotracker signal was used to identify cells and
DQ-BSA fluorescence intensity was measured.

Whole-cell proteomics mass spectrometry

For proteomics experiments on iPSC-derived DA neurons, 750,000 neurons were plated on 6-
well plates and differentiated for 3 weeks. After 3 weeks, neurons were treated with CA074me
and/or 300 nM of PFF and then maintained normally for 3 weeks. No additional drug or PFF
were added during the maintenance period. Sample processing, mass-spectrometry and data
analysis was performed by The Proteomics and Molecular Analysis Platform at the Research
Institute of the McGill University Health Centre (RI-MUHC). Samples were processed for TMT
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labelling according to the manufacturer recommendations (ThermoFisher TMT-16plex reagents).
Labelled peptides were fractionated using Pierce™ High pH Reversed-Phase Peptide
Fractionation Kit into 8 fractions. Each fraction was re-solubilized in 0.1% aqueous formic acid
and 2 micrograms of each was loaded onto a Thermo Acclaim Pepmap (Thermo, 75uM ID X
2cm C18 3uM beads) precolumn and then onto an Acclaim Pepmap Easyspray (Thermo, 75uM
X 15cm with 2uM C18 beads) analytical column separation using a Dionex Ultimate 3000
UHPLC at 250 nl/min with a gradient of 2-35% organic (0.1% formic acid in acetonitrile) over
three hours running the default settings for MS3-level SPS TMT quantitation > on an Orbitrap
Fusion instrument (ThermoFisher Scientific) operated in DDA-MS3 mode.

To trandate .raw filesinto protein identificationsand TMT reporter ion intensities, Proteome
Discoverer 2.2 (ThermoFisher Scientific) was used with the built-in TMT Reporter ion
quantification workflows. Default settings were applied, with Trypsin as enzyme specificity.
Spectra were matched against the human protein fasta database obtained from Uniprot(2022).
Dynamic modifications were set as Oxidation (M), and Acetylation on protein N-termini.
Cysteine carbamidomethyl was set as a static modification, together with the TMT tag on both
peptide N-termini and K residues. All results werefiltered to a 1% FDR.

Pathway analysis of differentially abundant proteins was conducted using STRING >,

Western Blot

Cultured cells were washed with PBS and collected in RIPA lysis buffer with protease inhibitors.
Protein concentration was determined using the Pierce™ BCA Protein Assay Kit (Thermo
Scientific™) and proteins were prepared at the desired concentration in 6X Laemmli buffer and
heated at 95°C for 5 minutes. 20 ug of protein were loaded on polyacrylamide gels, run with
SDS running buffer and transferred onto nitrocellulose membranes and blocked for 30 minsin
5% skim milk made in 1X PBS with 0.1% Tween. For alpha-synuclein blots membranes were
fixed using 4% PFA and 0.1% glutaraldehyde for 30 minutes before blocking. Blocked
membranes were incubated with primary antibody (Supplemental Table 7) at 4°C overnight
followed by HRP-conjugated secondary antibodies for 90 mins at room temperature. Protein
detection was performed by chemiluminescence using Clarity Western ECL Substrate (Biorad)
and Western blots were quantified using Imagel.

RNA Extraction and gRT-PCR

RNA isolation was performed using the RNeasy Mini Kit (Qiagen) and cDNA was generated by
RT-PCR using the MMLV Reverse Transcriptase kit (Thermo) with random hexamer primers.
Real-time quantitative PCR was performed using SSoAdvanced SYBR Green Master Mix
(Biorad). Primers for specified target genes were designed using NCBI PrimerBlast
(Supplemental Table 8).

Live cel confocal imaging and analysis

Neurons were plated on CELLview™ 4-chamber imaging dishes (Greiner) at 100k cells per
well. After 3 weeks of differentiation neurons were treated with alexa633 labelled PFF and/or
CAOQ074me. After 72 hours neurons were washed and incubated with 50nM of Lysotracker™
Green DND-26 (Invitrogen) for 30m at 37 °C in standard culture media. The dye solution was
exchanged for FluoroBrite™ DMEM (Gibco) and plates were immediately imaged. Images were
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acquired on a custom Andor spinning disc confocal microscope at 100X magnification. Single
frames were acquired for cell bodies (488nM Lysotracker, 647 PFF). For neuronal trafficking
movies, frames were acquired every 1. 5sfor atotal of 61 frames.

For the analysis of somatic lysotracker and PFF colocalization cell bodies were masked manually
using FIJI Imagel. For each image, Lysotracker and PFF signal were binarized using Otsu
automatic thresholding, and binarized co-cluster signal was obtained using the “Image
Calculation>>AND” function. Somatic slice densities of Lysotracker, PFF, or co-clusters were
calculated via“Analyze Particles’. Finally, percentage of PFF in lysosomes was obtained by
normalizing co-cluster particle density to Lysotracker density, and percentage of lysosomes
containing PFF was similarly obtained by normalizing co-cluster particle density to PFF particle
density.

Lysosomal motility was analyzed using the FIJI Imagel TrackMate plugin *>*°. The generated
tracks were then filtered by max track speed and then analyzed using Python.

Electron Microscopy

RPE1 cdlls grown in Lab-Tek chambers (Nunc) were rinsed in 0.1M Na Cacodylate buffer and
fixed with 2.5% glutaraldehyde in 0.1M Na Cacodylate for 24 hours at 4°C. Cells were then
post-fixed with 1% agueous osmium tetroxide (Mecalab) for 1 h at 4°C, and stained with 4%
uranyl acetate (EMS) in 70% ethanol for 45min at 4°C. After dehydrationsin ascending
alcohoals, cells were embedded in Epon resin (Mecalab), and cut at 75 nm thicknessin the ultra
microtome. Sections were collected in 200 Mesh cooper grids (EMS) and stained with 4% uranyl
acetate for 5min following by Reynold’ s lead citrate for 2 min. Sections were visualized using a
transmission electron microscope (Tecnai G2 Spirit Twin 120 kV Cryo-TEM) coupled to a
camera (Gatan Ultrascan 4000 4 k x 4 k CCD Camera model 895). The identification of cellular
elements was based on standard descriptions >’

Statistical Analysis

Statistical analysis was conducted in GraphPad Prism9 software. For experiments with iPSC-
derived neurons biological replicates were defined as experiments conducted at different times
from the same batch of banked NPCs, or as experiments conducted in parallel from different
batches of NPCs. A minimum of 3 distinct batches of NPCs were used for each experiment.
Statistical comparisons were performed using t-tests (only 2 conditions), Bonferroni-corrected t-
tests (more than 2 conditions compared). Significance levels are depicted in figure legends.

Results

Variantsin CTSB likely drivethe association with PD and are associated with CTSB
expression in multiple brain regions.

Variantsin the genetic locus containing CTSB are significantly associated with risk of PD ° yet
this locusincludes multiple other genesincluding FDFT1, NEIL2, GATA4 and it remains
uncertain whether CTSB itself drives the association. We examined all the variants that are IMB
upstream or downstream to the top GWAS variant in thislocus and usng GCTA-COJO, we
show that an intronic CTSB variant (rs1293298, p=3.41E-16, located in intron 1 of CTSB within
a potential enhancer region) isthe top variant associated with PD risk, without secondary
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associations. Fine mapping using FINEM AP gave this variant the highest posterior probability
(0.127) of being causal, of al nominated variants. Thisvariant isin LD with multiple variantsin
this locus (r>>0.8) that are associated with CTSB expression with H4 posterior probability >0.8in
multiple brain regions. The associ ations between genetic variants, PD and CTSB expression in
PD-relevant brain regions such as basal ganglia, cortex and nucleus accumbens are depicted in
Figure 1. In particular, the minor allele of the rs1293298 CTSB variant linked to PD in GWAS
exhibits a protective effect against PD and is associated with elevated expression levels of CTSB
in brain tissues relevant to the disease (Fig 1A-D). Analysis using SMIR and HEIDI suggests that
the QTLsin CTSB are potentially causally linked to PD with p HEIDI > 0.05 in multiple tissues
(i.e., we could not reject the null hypothesisthat there is a single causal variant affecting both
gene expression and risk for PD). All results from the GCTA-COLOC, FINEMAP, SMR and
HEIDI analyses are detailed in Supplementary Tables 9-11.

These common CTSB variants occur in hon-coding regions and likely exert their effects through
altering expression levels. However, given the evidence that protective CTSB variants are
associated with increased MRNA expression levels, we hypothesized that loss of function coding
variantsin CTSB would be likely to promote PD risk. We conducted rare variant analysisin
5,801 PD cases and 20,427 controls from six cohorts (Supplementary Table 2). We observed a
nominal association between al rare variants and variants with high CADD score and PD risk in
the Sheba cohort (p=0.03 and p=0.049, respectively). However, upon examining other cohorts
and conducting a meta-analysis we did not find any additional associations (Supplemental Table
12). Additionally, we studied the role of rare CTSB variants on the age of PD onset. We found
nominal association between functional variants and age at onset in McGill cohort (p=0.044) and
in the meta-analysis for functional and non-synonymous variants (p=0.048 and p=0.043,
respectively). All these results should be interpreted with caution as no p-values survived
multiple comparisons.

CatB inhibition promotes a-syn aggr egation in dopaminer gic neurons

To functionally interrogate the role of catB in the handling of o-syn fibrils we generated i PSC-
derived dopaminergic neurons “** and treated them with pre-formed a-syn fibrils (PFFs) and the
catB inhibitor CA074me (1 uM) . Exposure to PFFs promotes endogenous ai-Syn aggregation
which can recapitulate many features of Lewy pathology including the accumulation of S129-
phosphorylated a-syn (pSyn-S129) *°. We used high-content confocal imaging to quantify pSyn-
S129 in Map2-positive neurons following exposure to PFF and/or CAO74me (Fig 2A). After 2, 3
or 4 weeks, asingle treatment with CAO74me administered at the time of PFF exposure
increased the abundance of pSyn-S129 (Fig 2B). Similar effects were observed with PADK, a
distinct catB inhibitor (Fig $4A). CA074me did not affect total o-syn levels (Fig $4B) and no
significant loss of TH+ dopaminergic neurons was observed 4 weeks post-treatment (Fig S4C).
The induction of pSyn-S129 was abolished in neurons lacking endogenous o-syn (SNCA-KO)
(Fig $4D), indicating that o-syn seeding, rather than phosphorylation of PFFs themselves gave
rise to this pSyn-S129 signal.

We performed whole-cell proteomicswith TMT labelling to characterize the broader impact of
PFF or CAO74me treatment on human DA neurons (Supplementary Table 13). We found that 3
weeks after treatment CA074me had minimal residual effects, while PFF exposure significantly
altered the abundance of 60 proteins (Fig 1C — Venn diagrams). GO-term analysis with STRING
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> revealed that the predominant pathways impacted by PFF treatment were the downregulation
of proteinsinvolved in cellular adhesion and cytoskeletal organization (Fig 1C — bar graphs).
Combining CA074me with PFF resulted in >2x the number of differentially abundant proteins
than either treatment alone. GO-term enrichment revealed many similar pathways were
downregulated by either PFF or PFF+CAQ74me, but the combined treatment also upregulated
pathways not found to be altered by PFF alone.

CatB inhibition induces lysosome dysfunction in dopaminer gic neurons

Extracellular o-syn aggregates are taken into neurons by a variety of mechanisms and are rapidly
trafficked to lysosomes ®*®*, To determine whether CAO74me treatment altered the trafficking of
PFFsinto lysosomes or their persistence there, we performed live cell confocal imaging of DA
neurons exposed to alexa-633 tagged PFFs (PFF-633) for 72 hours and stained with lysotracker
(Fig 3A). CAO74me increased the overall lysosome content (Fig 3B) and the density of PFF-633
fluorescent puncta per cell (Fig 3C) but colocalization of PFF-633 with lysosomes was
unchanged (Fig 3D). We interpret these observations as indicating that although the abundance
of both lysosomes and PFF-633 within each cell is dightly elevated in CAO74me treated
neurons, the proportion of PFF-633 trafficked to lysosomes is unaffected.

Given the observed increase in lysotracker density, we next sought to further characterize how
catB inhibition affected lysosome abundance and function in human DA neurons. Similar to
lysotracker, the abundance of the lysosomal membrane protein LAMP1 was increased after
CAOQO74me treatment, independent of concurrent PFF exposure (Fig 3E, F). However, the
degradative capacity of lysosomes (measured using the fluorogenic probe DQ-BSA) was reduced
(Fig 3G). The speed of lysosomal trafficking in neuritic projections was also reduced following
CAOQ074me (Fig 3H). Lastly, given the genetic interaction between variantsin CTSB and GBAl in
PD risk '° and that catB has been found to regulate glucocerebrosidase (GCase) activity in

HEK 293 cells ® we assessed the impact of catB inhibition on lysosomal GCase activity in DA
neurons using the fluorogenic probe PFB-FDGIu (Fig 3I-K). CatB inhibition with either
CAO074me or PADK impaired lysosomal GCase activity (Fig 3J, K). These observations indicate
that despite increasing lysosome abundance, catB inhibition impairs several aspects of lysosome
function in DA neurons, including degradative capacity, trafficking and GCase activity.

To determine whether altered |ysosome function could be related to accumulation of o-syn
aggregates, (which has been found to impact lysosomal hydrolase trafficking ***%) we
differentiated 3xSNCA and SNCA-KO iPSCs * and treated them with CA074me for 3 weeks.
We observed that while total levels of a-syn were unchanged by CAO74me (Fig 3L), LAMP1
was increased in both 3xSNCA and SNCA-KO neurons (Fig 3M) indicating the increase in
lysosome content is independent of o-syn. We additionally stained with antibodies that
preferentially detect aggregated species of a-syn (Syn303) and found thisto beincreased in
CAO74me-treated SNCA-triplication neurons (Fig 3N), although almost no S129-pSyn signal
above background was detected in these cells (Fig 30).

CTSB levelsregulate PFF clearancein RPEL cells
While CAO74meis selective for catB, it has been reported to inhibit other cathepsins, albeit at
concentrations greater than those used in this study ***. RNA sequencing of our iPSC-derived
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DA neurons indicated that 12 cathepsin family members were expressed at the RNA level (data
not shown), including CTSD and CTSL which were previously found to cleave o-syn in vitro **
2 To determine how individual cathepsin species contribute to fibrillar o-syn clearancein a
cellular context we used CRISPR-interference (CRISPRI) to generate RPE1L cell linesin which
CTSB, CTSD, CTSL or a-syn (SNCA) were stably repressed (denoted CTSBi, CTSDi, CTSLi and
SY Ni respectively) as well CRISPR-activation (CRISPRa) to upregulate CTSB (CTSBa) (Fig

4A ,B). Endogenous a-syn protein was undetectable in SNCAI cells and modestly elevated in
CTSBi cdls (Fig 4C, D). In contrast, CTSBa had no effect on endogenous a-syn protein (Fig 4E,
F). Strikingly, 48 hours after exposure to PFFs, CTSBi cells (but not CTSDi or CTSLi) exhibited
significantly greater accumulation of o-syn aggregates compared to control cells (Fig 4G,H)
while CTSBa had the opposite effect, modestly reducing the levels of aggregated o-syn (Fig 41,
J). This effect was recapitulated by treatment of control or SNCAI cells with CA074me (Fig
S5A,B) indicating that this accumulation reflects either increased cellular uptake or failed
clearance of the PFFs, rather than new aggregate seeding.

To determine whether the uptake or clearance of PFFs was affected, we used Alexa-633
fluorescently labelled PFFs and conducted a pul se-chase experiment to monitor the uptake and
subsequent clearance of PFFs (Fig 4K, L). During a 3h exposure, or 3-hour exposure with short
washout (3h chase), the PFF-633 levels per cell were similar across cell lines. However, when
washout was extended to 21-hours CTSBi cells retained more PFF-633 (Fig 4L), suggesting
impaired clearance. CTSDi and CTSLi also appeared to impair PFF clearance in this assay but to
alesser extent than CTSBI. Similar to what we observed by Western blot, when we exposed
CTSBa cellsto PFF-633 for 48 hours, we observed a reduced accumulation of the tagged PFF
(Fig 4M). Taken together, these findings indicate that CatB regulates the clearance of
internalized o-syn aggregates in lysosomes.

CTSB repression impair sautophagy and lysosomal function in RPE1 cells

We next used our CTSBi cell lineto further interrogate the role of CTSB in regulating lysosome
abundance and overall lysosome function. Given the accumulation of lysosomal structuresin DA
neurons we hypothesized that |oss of catB caused a state of lysosomal dysfunction that resulted
in the accumulation of hypo-functional lysosomes. However, a previous study found that |oss of
catB also triggered lysosome biogenesis, and in select circumstances had a net effect of
enhancing clearance of lysosomal cargo ®. CTSBi cells had significant accumulation of
lysosomes, as indicated by an increase in LAMP1 and LAM P2 immunofluorescent signal (Fig
5A-C), anincreasein LAMP1 and GCase protein levels (Fig 5D-F) and increased number and
size of electron dense lysosome-like structures (including lysosomes and multivesicular bodies)
observed by electron microscopy (Fig 5G). However, despite having increased |ysosome content
and increased GCase protein levels, the activity of lysosomal GCase per cell was significantly
reduced in CTSBi cells (Fig 5H, ).

To determine whether impairment in autophagic flux could contribute to the accumulation of
lysosomes, we measured the abundance of p62 puncta under fed and starved conditions, and in
the presence of bafilomycin (to inhibit lysosomal clearance of autophagosomes). CTSBi resulted
in increased abundance of p62 puncta under fed and serum-starved conditions, but not in the
presence of bafilomycin (Fig 5J, K) suggesting an impairment in the clearance of
autophagosomes. Similarly, we observed accumulation of the autophagy-associated proteins
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LC3B and p62 by western blot in CTSBi cells (but not CTSDi or CTSLi), in the absence of
serum starvation (Fig S6A,B).

While this impaired autophagosome clearance likely contributes to the accumulation of
lysosomes in CTSBi célls, catB has previousl g/ been reported to regulate lysosome biogenesis via
activation of the transcription factor TFEB ®°. Given that mRNA levels of CTSD and CTSL
were already noted to beincreased in CTSBI cells (Fig 4A) we suspected arole for increased
TFEB activity. Indeed, we found that in CTSBi cells, nuclear localization of TFEB was
increased in non-starved cells (Fig 5L, M) and mRNA levels of several lysosomal genes
(including LAMP1, GBA and MCOLNL1) were transcriptionally upregulated (Fig 5N). These
results taken together indicate that a combination of impaired lysosome turnover and upregulated
lysosome biogenesis contribute to the increased abundance of dysfunctional lysosomesin RPEL
cellslacking CTSB.

Knockout of CTSB in human dopaminer gic neuronsleadsto lysosomal dysfunction

To further confirm the lysosomal phenotypes that we previously observed in neurons treated
with CA074me, we generated CTSB knockout iPSCs (CTSB-KO) and differentiated them into
dopaminergic neurons (Fig 6A, B). Similar to CAO74me treatment, in CTSB-KO neurons
lysosome abundance measured either by LAMP1 immunofluorescence (Fig 6C) or lysotracker
(Fig 6D) were increased, while degradative capacity (Fig 6E) and neuritic trafficking velocity
(Fig 6F) were reduced. Lysosomal GCase activity was likewise reduced by approximately 20%
in CTSB-KO neurons (Fig 6G, H) although GCase protein levels were unaffected (Fig 61, J).
Unlike CTSB-knockdown RPEL cells, CTSB-KO neurons did not exhibit detectable activation of
TFEB (Fig S7A) or transcriptional upregulation of lysosomal genes (Fig S7B) arguing that catB
may regulate TFEB activity and lysosome biogenesis in a cell-type or context-dependent
manner.

CTSB deficiency promotes synuclein pathology in human dopaminergic neurons and
midbrain organoids

CTSB-KO DA neurons were found to have modestly elevated levels of endogenous a-syn (Fig
7A,B). When treated with PFFs for 72 hours CTSB-KO neurons did not exhibit higher levels of
total a-syn (Fig 7A, C). However, 3 and 4 weeks after PFF treatment CTSB-KO neurons
accumulated significantly more pSyn-S129, and this was evident when measuring either the
average pSyn-S129 intensity within Map2-positive neurons, or the percentage of pSyn-positive
cell bodies (Fig 7D-F). The efficiency of PFF uptake (measured by alexa-488 tagged PFF
internalization) was unaffected in CTSB-KO neurons (Fig 7G,H) but as expected LAMPL was
elevated (Fig 7G,1). Using live-cell confocal microscopy, we observed a modest increase in total
PFF-633 levelsin CTSB-KO neurons 72 hours after treatment (Fig SBA, B), however there was
no difference in the trafficking of alexa-633 tagged PFFs to lysosomes as measured by PFF-633
and lysotracker colocalization (Fig S8C).

To determine whether the loss of catB function could promote o-syn aggregation independent of
PFF exposure we generated midbrain organoids from patient-derived iPSCs harboring an SNCA
triplication mutation (Fig S3). We have previously found that these organoids spontaneously
develop pSyn-S129-positive a-syn aggregates after sustained culture . We treated 3x-SNCA or
isogenic SNCA-KO organoids for 60 days with DM SO (vehicle) or 1 uM CA074me and
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observed an increase in the abundance of pSyn-S129 (measured as the area positive for pSyn-
S129 relative to total organoid areq) (Fig 8A-C), while treatment had no effect on total neuron
content (Map2-positive area) (Fig 8D). These findings further indicate that catB contributes to
lysosomal clearance of both endogenous o-syn and exogenously applied a-syn PFFs.

Discussion

Cathepsin B has previously been suggested to contribute to the degradation of o-syn and genetic
variantsin the CTSB locus are significantly associated with PD, suggesting that this lysosomal
protease may play an important rolein the disease. Here we provide genetic and functional
evidence supporting the crucial involvement of CTSB in PD, specifically relating to the function
of lysosomes and degradation of o-syn aggregates in dopaminergic neurons.

Firstly, our genetic analysis provides compelling evidence for a causal relationship between
common non-coding variantsin the CTSB gene and both brain expression levels of CTSB and PD
risk. This genetic analysis indicates that of the variants and genesin the CTSB GWAS locus, the
association is most likely driven by CTSB variants that affect its expression in different brain
regions. In particular, the minor allele of the rs1293298 CTSB variant, linked to PD in GWAS,
exhibits a protective effect against PD and is associated with elevated expression levels of CTSB
in several brain tissues. Thisfinding is aso supported by recent work in which we have used
machine learning to nominate the most likely causative genes in each known PD locus, in which
CTSB was also found to be the top nominated gene ©’.

One potential mechanism by which CTSB variants may influence PD risk is through the ability
of catB to cleave and degrade o-syn *%°. However, while several cathepsins appear capable of
cleaving a-syn in vitro, CTSB alone stand out as a genetic risk factor for PD. By using genetic
tools to modulate the expression levels of CTSB, CTSD and CTSL in RPEL cells, we show that in
acelular context, CTSB is particularly critical for the maintenance of lysosome function and
clearance of fibrillar a-syn. Thisis supported by recent the finding that while many cathepsins
exhibit redundancy, the sites within a-syn cleaved by CTSB are relatively unique, and unlikely to
be compensated for by other cathepsins . This lack of redundancy may explain why CTSB
stands out as a genetic risk factor and an essential mediator of o-syn clearance.

In addition to a potential direct role of catB in degrading o-syn aggregates, we have also
observed that catB impairment leads to lysosome accumulation and broad impairment of
lysosome functions, including impaired GCase activity. Variants in CTSB and GBA interact to
mediate genetic risk for PD *° and given the established importance of GCase in mediating risk
of synucleinopathy (reviewed in %) this raises the question of whether theimpaired o-syn
clearance observed following catB impairment is partially mediated by secondary GCase
impairment. This loss of GCase activity occurs despite an increase in overall lysosome content,
and in the case of RPE1 cells, an increase in GCase protein levels. One potential mechanism
linking catB to GCase activity is via the ability of catB to cleave pro-saposin into saposin C
which acts as a co-activator of GCase *. Future studies will be required to determine the
importance of GCase as amediator of catB -dependent o-syn clearance, aswell asthe
mechanism of interaction between these lysosomal proteins.


https://doi.org/10.1101/2023.11.11.566693
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.11.566693; this version posted November 15, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

In the present work we have demonstrated using several cellular models that loss of CTSB
impairs GCase activity and promotes the accumulation or aggregation of o-syn after exposure to
preformed o-syn fibrils. These findings complement genetic evidence that CTSB variants
associated with increased expression levels are protective against the disease and provides
potential mechanistic support for the genetic interaction between CTSB and GBA. Beyond the
direct genetic association, impaired catB expression or activity have also been reported in
cellular or animal models associated with PD-risk factors like oi-syn/SNCA, GBA, TMEM175 and
LRRK2 1% Together this evidence highlights CTSB as an important player in the etiology of
synucleinopathies such as Parkinson’ s disease, and further study of its biology may help to
uncover novel therapeutic approaches to this disease.
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Supplemental Figure 1.

A) Immunofluorescent staining of parental (A1W002-02) and SNCA-KO iPSCs for pluripotency
markers. B) Karyotype analysis of SNCA-KO iPSCs. C) Genome stability analysis of SNCA-KO
iPSCs. D) Protein levels of alpha-synuclein in control versus SNCA-KO iPSCs after
differentiation into dopaminergic neurons. E) Pluripotency marker expression in CTSB-KO
IPSCs. F) Karyotype analysis of CTSB-KO iPSCs. G) Genome stability analysis of CTSB-KO
iIPSCs. H) Protein levels of cathepsin B in control versus CTSB-KO iPSCs after differentiation

into dopaminergic neurons.
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Supplemental Figure 2:
A) Differentiation of AIWQ002-2 iPSCs into dopaminergic neurons labelled for Map2 and

tyrosine hydroxylase (TH). B) Percentage of TH-positive neurons at 2 , 4, 6 and 8 weeks of
differentiation. C) Representative electron microscopy imaging of o-syn PFFs. D) Measurement
of a-syn PFF fibril size.
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Supplementary Figure 3
A)

3X SNCA

Supplementary Figure 3:

Immunofluorescent characterization of 5-month old midbrain organoids generated from SNCA
triplication or SNCA-KO iPSCs. A, C) Representative immunofluorescent images depicting the
entire organoid structure. B, D) Magnified images depicting individual cells. Nuclei are indicated
in blue (Hoechst), total neuronal content indicated in yellow (Map2), dopaminergic neurons are
stained in red (TH —tyrosine hydroxylase), and o.-syn is shown in green.
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Figure 1. Genetic dissection of the CTSB locusin Parkinson’s disease risk.

L ocus zoom plots depicting the CTSB locus (500 kb) in Parkinson's disease GWAS with brain
eQTLs. Thetop PD-associated variant (rs1293298) is highlighted in purple, and variantsin
strong LD (r>>0.8) are in red. Each panel includes three plots: The l&ft plot in each panel
compares the p values from the PD GWAS and expression data for each variant. Variants that
arein thetop right corner of this plot are therefore associated with both risk of PD and CTSB
expression. The top right plots depict the PD GWAS association in thislocus and isidentical in
al four panels. On the bottom right of each panedl, the plot depicts the association between
variantsin this locus and CTSB RNA expression in the relevant tissue. (A) PD GWAS plotted
together with Basal ganglia (Caudate) eQTL. (B) PD GWAS plotted together with Cortex eQTL.
(C) PD GWAS plotted together with Nucleus accumbens eQTL. (D) PD GWAS plotted together
with Basal ganglia (Putamen) eQTL.
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Figure 2: Cathepsin B inhibitor s potentiate the effect of a-syn PFFson dopaminergic

neur ons:

A) Representative immunofluorescent images from high-content confocal imaging of DA
neurons treated with CA074me (1 uM) and/or a-syn PFFs (300 nM) and stained for Map2 and
pSyn-S129. B) Quantification of pSyn-S129 in Map2-positive cells 2, 3, or 4 weeks after PFF
and/or CAO74me treatment. C) Number of differentially abundant proteins (Log2-fold change >
0.25, adjusted p value < 0.05, N = 3 replicates) and GO-term analysis of whole-cell proteomics
conducted on DA neurons treated for 3-weeks with PFF and/or CAO74me. Bonferroni-corrected
t-tests, ** p<0.01, *** p<0.001, **** p < 0.0001.
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Supplemental Figure4:

A) Quantification of pSyn-S129 in Map2-positive cells 4-weeks after exposure to PFF and/or
PADK. B) Immunofluorescent quantification of total o-syn levels by high-content microscopy
using the SYN1 antibody. C) Percentage of TH-positive cellsin DA neuron cultures treated with
CAOQ074me (1 uM) and/or a-syn PFFs (300 nM). D) Quantification of pSyn-S129 in Map2-
positive cells 3-weeks after PFF and/or CAO74me treatment in either Control (AIW002-2) DA

neurons or isogenic neurons lacking endogenous o-syn (A1W002-2 SNCA-KO). Bonferroni-
corrected t-tests, ** p < 0.01, **** p < 0.0001.
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Figure 3. Cathepsin B inhibition increases lysosome abundance but impairsfunction in
dopaminergic neurons

A) Representative live-cell confocal images of neuronal cell bodies stained with lysotracker-
green 72-hours after exposure to alexa-633 labelled a-syn PFFs (80 nM). B) Lysosome density
per cell body, measured as the percentage of |ysotracker-positive area per cell soma. C) PFF
density per cell body, measured as the percentage of PFF-633-positive area per cell soma. D)
Colocalization of lysotracker and PFF-633 measured using Pearson’s coefficient per cell soma.


https://doi.org/10.1101/2023.11.11.566693
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.11.566693; this version posted November 15, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

E) Representative immunofluorescent images from high-content confocal imaging of DA
neurons treated with CA074me (1 uM) and/or a-syn PFFs (300 nM) for 3 weeks and stained for
Map2 and LAMPL. F) Quantification of LAMPL in Map2-positive cells. G) Lysosomal
degradative capacity measured by fluorescence intensity of DQ-BSA fluorogenic probe 24-hours
after dye loading. H) Quantification of lysosome velocity in neurites measured by live-cell
confocal imaging and quantified using TrackMate. Points represent individual quantified image
fields derived from 6 independent experiments. I) Representative images of neurons stained with
lysotracker deep-red and PFB-FDGIu fluorescent signal at baseline and 1- or 2-hours after dye-
loading. J) Quantification of PFB-FDGIu fluorescence per cell in DA neurons pre-treated for 24-
hours with CAO074me or PADK. K) Quantification of the slope of PFB-FDGIu fluorescence
versus time. L-O) Immunofluorescent quantificationsin o-syn triplication DA neurons versus
SNCA-KO control of L) total o-syn levels with SYN1 antibody, M) LAMPL, N) o-syn
aggregates with SYN303 antibody, or O) pSyn-S129. T-test or Bonferroni-corrected t-tests, * p <
0.05, ** p<0.01, **** p < 0.0001.
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Figure4: CTSB but not CTSD or CTSL repression impairs PFF clearancein RPE1 cells
A) Validation of target knockdown in CRISPRI RPEL cdlls. CTSB, CTSD and CTSL mRNA
levels were measured by gPCR in control (CRISPRiI Ctl), CTSB-knockdown (CTSBi), CTSD-
knockdown (CTSDi) and CTSL-knockdown (CTSLi) cell lines. B) Western blots depicting
protein levels of cathepsin B (catB) in CRISPRI control, CRISPRa control, CTSB knockdown
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(CTSBI) and CTSB upregulation (CTSBa) RPEL cdll lines. C) Representative western blot
depicting protein levels of a-syn (SY N1 antibody) and actin. D) Western blot quantification
depicting protein levels of o-syn relative to actin expressed as percentage of CRISPRI control. E)
Representative western blot depicting protein levels of o-syn and actin. F) Western blot
guantification depicting protein levels of a-syn relative to actin expressed as percentage of
CRISPRa control. G) Representative western blot depicting protein levels of o-syn (SYN1
antibody) and actin 48-hours after treatment of RPE1 cell lines with 300nM of o-syn PFFs. H)
Western blot quantifications depicting levels of o-syn (SYN1 antibody — quantification of whole
lane) relative to actin in PFF treated RPEL cells. 1) Representative western blot depicting protein
levels of a-syn (SY N1 antibody) and actin 48-hours after treatment of RPEL cell lines with
300nM of a-syn PFFs. J) Western blot quantifications depicting levels of a-syn (SYN1 antibody
— quantification of whole lane) relative to actin in PFF treated RPEL cells. K) Representative
image of CRISPRI control RPE1 cells 48-hours after treatment with alexa-633 tagged o-syn
PFFs (80 nM). L,M) Quantification of PFF-633 fluorescent intensity per cell in RPEL cell lines.
T-test or Bonferroni-corrected t-tests, * p < 0.05, ** p<0.01, *** p<0.001, **** p < 0.0001.
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Supplemental Figure5:

A) Representative western blot depicting protein levels of a-syn (SYN1 antibody) and actin 48-
hours after treatment of RPE1 cell lines with 300nM of a-syn PFFs and/or CAO74me. B)
Western blot quantifications depicting levels of o-syn (SYN1 antibody — quantification of whole
lane) relative to actin in PFF and/or CAO74me treated RPEL cells. T-test or Bonferroni-corrected
t-tests, * p < 0.05.
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Figure 5: CTSB repression increases lysosome abundance but impairsfunction in RPE1

cells

A-C) Representative images and quantifications of LAMP1 and LAM P2 immunofluorescence in
CRISPRI control and CTSBi RPEL cells. D-F) Representative western blots and quantifications
depicting protein levels of LAMP1 and GCase/ GBA relative to actin. G) Electron microscopy
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images of CRISPRI and CTSBi RPE1 cells. Electron-dense multivesicular bodies-like structures
areindicated by red asterisk, lysosomes by orange asterisk, secondary |ysosomes by green
asterisk, whereas mitochondria are indicated by blue asterisk. H) GCase activity measured as
PFB-FDGIu fluorescence intensity over time. 1) Quantification of the slope of the PFB-FDGlu
fluorescence versustime curves. J, K) Representative immunofluorescent images and
quantification of p62 area per cell in RPE1 cdll lines (CRISPRI control — grey bars, and CTSBi —
blue bars) under fed, 16-hour starvation and 16-hour starvation with bafilomycin conditions. L,
M) Representative images of TFEB immunofluorescence and quantification of nuclear TFEB
(overlapping with Hoechst nuclear stain) relative to cytoplasmic TFEB per cell under fed and
starved conditions. N) RNA expression levels of the indicated genesin RPEL cdll lines measured
by RT-gPCR expressed relative to CRISPRI Control. Bonferroni-corrected t-tests, * p < 0.05,
*** p < 0.001. T-test or Bonferroni-corrected t-tests, * p < 0.05, ** p <0.01, **** p < 0.0001.
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Supplemental Figure6:

A) Representative western blots and quantification of western blots of LC3B and actin in RPEL
cell lines. B) Representative western blots and quantification of western blots of p62 and actinin
RPEL céll lines. Bonferroni-corrected t-tests, * p < 0.05, ** p<0.01, *** p<0.001, **** p<
0.0001.
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Figure 6: CT SB knockout impair s lysosome function in dopaminer gic neurons.

A) Representative immunofluorescent images from high-content confocal imaging of DA
neurons differentiated from control or CTSB-KO iPSCs and stained for Map2, tyrosine
hydroxylase (TH) and o-syn. B) Quantification of the percentage of TH and Map2-positive cells
in matched batches of iPSC-derived neurons. C) High-content imaging-based quantification of
LAMP1 immunofluorescence per cell in Map2-positive iPSC-derived DA neurons. D)
Quantification of lysotracker fluorescence in iPSC-derived DA neurons. E) Lysosomal
degradative capacity measured by fluorescence intensity of DQ-BSA fluorogenic probe 24-hours
after dye loading. F) Quantification of lysosome velocity in neurites measured by live-cell
confocal imaging and quantified using TrackMate. Points represent individual quantified image
fields derived from 6 independent experiments. G) Quantification of PFB-FDGIu fluorescence
per cell in iIPSC-derived DA neurons H) Quantification of the slope of PFB-FDGlu fluorescence
versustime. |, J) Representative western blot and quantification of GCase and actin in iPSC-
derived DA neurons. T-tests, ** p< 0.01, *** p<0.001, **** p < 0.0001.
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Supplementary Figure7:
A) High-content confocal imaged-based quantification of the ratio of nuclear to cytoplasmic
TFEB in iPSC-derived DA neurons based on immunofluorescence using Map2 to define the cell
body area and Hoechst to define the nuclear area. B) Relative expression level of the indicated
genes measured by RT-gPCR in iPSC-derived DA neurons.
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Figure7: CTSB knockout enhancesthe effect of a-syn PFFs on dopaminer gic neurons

A) Representative western blot showing levels of a-syn (SY N1 antibody) in untreated control or
CTSB-KO DA neurons as well as PFF treated DA neurons. B, C) Western blot quantifications
depicting protein levels of a-syn relative to actin for endogenous o-syn (B) or PFF (C),
normalized to the respective Control. D) Representative immunofluorescent images from high-
content confocal imaging of Control or CTSB-KO DA neurons treated with o-syn PFFs (300
nM) and stained for Map2 and pSyn-S129. E, F) Quantification of pSyn-S129 in Map2-positive
cells 3-weeks (E) and 4-weeks (F) after PFF treatment. Left graphs depict pSyn-S129
fluorescence intensity within Map2-positive cells, and right graphs depict the percentage of
Map2-positive cell bodies positive for pSyn-S129 aggregates. G) Representative
immunofluorescent images from high-content confocal imaging of DA neurons treated with
alexa-488 tagged PFFs (PFF-488, 80 nM) for 24 h and stained for LAMP1 and Map2. H)
Quantification of PFF-488 fluorescence per Map2-positive cdll. I) Quantification of LAMP1
fluorescence per Map2-positive cell. T-tests or Bonferroni-corrected t-tests, ** p < 0.01, **** p
< 0.0001.


https://doi.org/10.1101/2023.11.11.566693
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.11.566693; this version posted November 15, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Supplemental Figure 8

A) Lysosome Density B) Q)
e Control PFF Density PFF-Lyso Coloc
e CTSB-KO .
80 1.0
= * -
2 c i
‘E E 60 - ) .g 0.8
- § : % -
: 2 - :
:’z g : £ 0.4-
< ¢
o 204
LS S 0.2+
o .
o-— 0 T T 0.0 T T
o™ X
Vehicle PFF &&" Q,*o .6.‘50 ‘:l‘o
00 c‘,‘?" (JO 6\9@

Supplemental Figure 8:

A) Quantification of lysosome density per cell body from live-cell confocal images of DA
neuron cell bodies stained with lysotracker-green 72-hours after exposure to alexa-633 labelled
o-syn PFFs (80 nM) and measured as the percentage of lysotracker-positive area per cell soma.
B) PFF density per cell body, measured as the percentage of PFF-633-positive area per cell
soma. C) Colocalization of lysotracker and PFF-633 measured using Pearson’ s coefficient per
cell soma. T-test, * p<0.05, ** p< 0.01.
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Figure 8: CTSB inhibition promotes pSyn-S129 accumulation in patient-derived midbrain
organoids
A, B) Representative immunofluorescent images of Map2 and pSyn-S129 in 5-month old
SNCA-triplication (A) and isogenic SNCA-knockout (B) midbrain organoids treated with
vehicle (DM SO) or 1 uM CAQ074me for 60 days. Large images depict representative whole-
organoids and high-magnification images depict individual Map2-positive cells. C)
Quantification of the pSyn-S129 positive area of the organoid relative to the total organoid size.
D) Quantification of the Map2-positive area relative to organoid size. Bonferroni-corrected t-
tests, * p<0.05.
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