

1 **Title:** Definitions for Warning Signs and Signs of Severe Dengue According to The WHO 2009
2 Classification: Systematic Review of Literature

3 **Short Title:** Definition of warning and severe signs in dengue

4 **Authors:** Mostafa Ebraheem Morra^{1⊕}, Ahmed M.A. Altibi^{2⊕}, Somia Iqtadar^{3⊕}, Le Huu Nhat Minh^{4⊕}, Sameh Samir Elawady⁵,
5 Asma Hallab⁶, Abdelrahman Elshafay¹, Omer Abedlbagi Omer⁷, Ahmed Iraqi⁸, Purushottam Adhikari⁹, Jonair Hussein Labib¹⁰,
6 Khaled Mosaad Elhusseiny¹, Ahmed Elgebaly¹, Sophie Yacoub^{11,12}, Le Thi Minh Huong¹³, Kenji Hirayama¹⁴, and Nguyen Tien
7 Huy^{15,16,*}

8 **Affiliations:**

9 ¹*Faculty of Medicine, Alazhar University, Cairo, 11884, Egypt*

10 ²*Faculty of Medicine, University of Jordan, Amman, 11942, Jordan*

11 ³*Faculty of Medicine, King Edward Medical University, Lahore, Pakistan*

12 ⁴*University of Medicine and Pharmacy at Ho Chi Minh city, 700000, Vietnam*

13 ⁵*Faculty of Medicine, Tanta University, Tanta, 31527, Egypt*

14 ⁶*Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, 75005, France*

15 ⁷*Faculty of Medicine, University of Gezira, Wad Madani, Gezira, 11111, Sudan*

16 ⁸*Cairo University Hospital, Giza, 12613, Egypt*

17 ⁹*Gandaki Medical College, Pokhara, 33700, Nepal*

18 ¹⁰*Pediatric departments, Faculty of Medicine, Ain Shams University, Cairo, 11566, Egypt*

19 ¹¹*Oxford University Clinical Research Unit, 764 Vo Van Kiet Street, District 5,
20 Ho Chi Minh City, Vietnam*

21 ¹²*Department of Medicine, Imperial College London, UK*

22 ¹³*Department of Emergency Critical Care Medicine and Medical Toxicology, Tien Giang Hospital, My Tho, Vietnam*

1 ¹⁴*Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Leading Graduate School Program, and*

2 *Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan*

3 ¹⁵*Evidence Based Medicine Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City,*

4 *80000, Vietnam*

5 ¹⁶*Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), Leading Graduate School Program,*

6 *and Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan*

7

8 ^⑧*Authors equally contributed the work.*

9 ^{*}*Correspondence to: Nguyen Tien Huy, Evidence Based Medicine Research Group & Faculty of Applied Sciences, Ton Duc*

10 *Thang University, Ho Chi Minh City, Vietnam*

11 *(E-Mail: nguyentienhuy@tdt.edu.vn. Tel: +81-95-819-7805. Fax: +81-95-819-7821)*

12 Emails:

13 MEM: mostafamorra430@gmail.com (ORCID: 0000-0002-4910-3321)

14 AMAA: ahmed.mt@outlook.com

15 SI: somia.iqtadar@gmail.com

16 LHN: lehuunhatminh@gmail.com (ORCID: 0000-0002-7728-1539)

17 SSE: sameh.elawady1@gmail.com

18 AH: hallabasma@gmail.com

19 AE: abdelrahman.elshafay@gmail.com

20 OAO: omarabdulbagiyaseen@gmail.com

21 AI: dr.iraqi.ahmed@gmail.com

22 PA: puru.ad12@gmail.com

1 JHL: jonairhussein@med.asu.edu.eg

2 KME: khaledelhosiny8@gmail.com

3 AE: ahmedelgebaly94@gmail.com

4 SY: s.yacoub@imperial.ac.uk

5 LTMH: ltmhuong311@gmail.com (ORCID: 0000-0003-1655-799X)

6 KH: hiraken@nagasaki-u.ac.jp (ORCID: 0000-0001-9467-1777)

7 NTH: tienhuy@nagasaki-u.ac.jp (ORCID: 0000-0002-9543-9440)

8

9 **Summary**

10 Since warning signs and signs of severe dengue are defined differently between studies, we conducted a systematic
11 review on how researchers defined these signs. We conducted an electronic search in Scopus to identify relevant
12 articles, using key words including dengue, "warning signs", "severe dengue", and "classification". A total of 491
13 articles were identified through this search strategy and were subsequently screened by two independent reviewers
14 for definitions of any of the warning or severe signs in the 2009 WHO dengue classification. We included all original
15 articles published in English after 2009, classifying dengue by the 2009 WHO classification or providing the
16 additional definition or criterion of warning signs and severity (beside the information of 2009 WHO). Analysis of
17 the extracted data from 45 articles showed wide variations among definitions and cutoff values used by physicians to
18 classify patients diagnosed with dengue infection. The establishment of clear definitions for warning signs and
19 severity is essential to prevent unnecessary hospitalization and harmonizing the interpretation and comparability of
20 epidemiological studies dedicated to dengue infection.

21 **Keywords:** Dengue, warning signs, severe signs, classification.

22

1 **Introduction**

2 Dengue is the most prevalent mosquito-borne disease affecting people in tropical and sub-tropical regions
3 of the world. 390 million infections with this virus are estimated to occur annually, but only one-fourth
4 are clinically apparent(1), giving rise to around 20,000 deaths in developing countries(2). Historically,
5 dengue case classification was developed in 1975 by expert consensus based on studies on Thai children in
6 the 1950s and 60s, with modifications in 1986 and 1997(3). The WHO 1997 dengue classification faced a
7 lot of criticism, with many clinicians working in endemic areas finding it difficult to apply with increased
8 reports of severe cases not fitting the criteria for dengue hemorrhagic fever (DHF) in many patients. Thus,
9 this classification underwent a revision by the WHO in 2009 based on experts' opinions, reviews, and the
10 large multi-center study (4) conducted in South East Asia and Latin America.

11 The revised WHO (2009) guidelines [1] classify patients into three groups: dengue without warning signs
12 (WS), dengue with warning signs, and severe dengue. The WHO 2009 classification (Fig. 1) developed
13 warning signs which help health-care professionals in the clinical triage of more serious patients out of a
14 large pool of dengue patients in epidemic settings(4,5). Although the 2009 classification lists these
15 warning signs and the signs for severe disease, the precise parameters to define these signs clinically are
16 lacking in the guidelines. This leads to the heterogenous application of the guidelines by different
17 physicians for diagnosing and treating dengue patients. Understanding what criteria are currently being
18 used to define the WS is required to move forward and develop a standardized definition and further
19 refine the current WHO guidelines. This would further improve clinical management guidelines and
20 harmonize the interpretation of findings from epidemiological studies. We therefore conducted a
21 systematic review assessing how these warning signs were defined in different studies, with the eventual
22 aim of developing more concise definitions for future updates in the WHO guidelines.

23

24 **Methods**

25 The study followed the recommendations of Preferred Reporting Items for Systematic Review and
26 Meta-analysis (PRISMA) statement(6), which is available in the supporting documents (Appendix A). The
27 protocol of the study was developed in July 2015 and registered in PROSPERO (ID: CRD42015024105).

28 **Search strategy**

1 Since we aimed to investigate only peer reviewed original articles and Scopus covers more peer review
2 journals than Web of Science and Pubmed, we conducted an electronic search in Scopus database to
3 identify relevant articles using the following keywords: “warning signs”, “severe dengue”, and
4 “classification” as shown in the appendix. Search results were limited to English and original articles.
5 Studies published before 2009 were not included.

6 **Selection criteria**

7 The inclusion criteria are: (1) Original articles indexed at Scopus database and published in English from
8 the year 2010. (2) Retrospective, prospective, or cross-sectional studies providing additional definitions
9 or criteria (beside the definitions/criteria provided by the WHO 2009 classification) of any of the warning
10 or severe signs of dengue infection. (3) The severity of dengue infection must be classified according to
11 the WHO 2009 classification.

12 The exclusion criteria are: (1) Reports with inadequate information. (2) Non-human, animal, or in vitro
13 studies. (3) Articles in languages other than English. (4) Case reports, review articles, thesis, and books.

14 **Data extraction**

15 Search results were imported into Endnote X7 (Thompson Reuter, CA, USA) for deletion of duplicates.
16 Three reviewers independently screened the references using predetermined eligibility criteria. The full
17 texts of included references were then retrieved through the Library of Nagasaki University, and full-text
18 screening was subsequently conducted to identify relevant references. The data-extraction form was
19 developed based on the WHO 2009 classification criteria of dengue. Next, included articles were
20 reviewed and data extraction was performed by three independent reviewers. Any disagreement in
21 screening and extraction steps was discussed between the reviewers to reach a consensus. Consultation
22 from supervisors (NTH, BW, and KH) was acquired when necessary.

23 **Results**

24 **(A) Search results and study characteristics**

25 Searching Scopus yielded 490 articles. A total of 448 articles was excluded for the causes mentioned in
26 the study flowchart (Fig. 2). Characteristics of the 45 included studies are described in (**Table 1**).

27 **(B) Definitions of warning signs**

28 **1. Persistent vomiting**

1 Six of the included studies provided a definition for ‘persistent vomiting’ as a warning sign of dengue
2 (Table 2), which were based on three parameters, including: frequency, duration, and impact. One study
3 required the presence of signs of dehydration on physical examination for vomiting to be considered a
4 “warning sign” of dengue(34). Mercado et al (10) also defined persistent vomiting as Grade 3 and above
5 referring to the Common Toxicity Criteria Manual (CTC Version 2.0)(50).

6 **2. Abdominal pain or tenderness**

7 Five out of the 45 studies provided a definition for abdominal pain. None of the studies reported on the
8 exact duration of pain or the numerical score of intensity required to fulfill the definition. Definitions of
9 abdominal pain in the five studies are summarized in Table 2.

10 **3. Lethargy/restlessness**

11 Five studies provided definition of “lethargy” as a warning sign of dengue (Table 2).

12 **3. Clinical fluid accumulation**

13 Clinical fluid accumulation was defined in seventeen studies, all of which describe pleural effusion and
14 ascites as criteria for clinical fluid accumulation (Table 3). However, the authors’ definitions varied
15 depending on the method of detection of fluid accumulation (radiography vs. physical examination). Six
16 studies added that fluid accumulation should be documented by radiography (ultrasound for ascites and
17 chest X-ray for pleural effusion), while another two studies stated that fluid accumulation can be
18 diagnosed either clinically or with imaging.

19 **5. Increase in hematocrit**

20 Twenty-two out of 45 studies gave definitions for ‘increase in hematocrit’ as a warning sign of dengue.
21 Nineteen studies defined it as an increase in hematocrit by more than 20% from the baseline
22 (9,10,12,17–20,23,27,28,33,35,38,39,43–45,47,48). Macedo et al (20) specified that the 20% increase
23 should be from the baseline value during the convalescent phase of the disease. Thai et al(31), however,
24 defined it as an increase in hematocrit by more than 15% from the baseline. Instead of the increase from
25 the baseline, four studies defined “increase in hematocrit” using a cutoff value for hematocrit that is
26 adjusted for gender(19,28,33,49). Moreover, Rodrigues et al (14) defined “increase in hematocrit” using a

1 non-adjusted cutoff value of hematocrit > 48%, with no discrimination between males and females. The
2 hematocrit cutoff values used to define “increase in hematocrit” are summarized in Table 4.

3 **6. Rapid decrease in platelet count**

4 The definition of rapid decrease in platelets was described nineteen times in twenty studies (Table 5).

5 **7. Liver enlargement**

6 Fourteen out of sixteen studies used the definition outlined in the WHO 2009 Dengue guidelines (3).

7 Romero-Vega (13) et al and Rathakrishnan et al (15) added “painful hepatomegaly” to the definition of
8 liver enlargement.

9 **8. Mucosal bleeding**

10 Mucosal bleeding, as a warning sign of dengue, is described in fifteen studies (Table 6). Its variable
11 definitions are summarized below (Table 6).

12 **(C) Definitions of severe signs**

13 **1. Severe plasma leakage**

14 Severe plasma leakage was variably defined in seven of the 45 studies.

15 **2. Shock**

16 Shock was defined in seventeen studies using different combinations of (1) narrow pulse pressure, (2)
17 hypotension, (3) tachycardia, (4) hypoperfusion, (5) plasma leakage, and (6) undetectable pulse or
18 unrecordable pressure as shown in the Table 7. While a systolic blood pressure less than 90 mm Hg was
19 commonly defined as hypotension (9,12,17,23,42,43,47), Macedo et al (20) used a definition that is
20 specified for age: “Decrease in arterial systolic pressure <5th percentile for age [<PAS5], calculated as age
21 [years] ×2+70”. Except for Weg et al. (25) and Macedo et al. (20), all other authors (n=14) considered
22 having narrow pulse pressure alone to be sufficient to label the patient as having “shock”. Weg et al
23 required the presence of hypotension, tachycardia, and signs of poor capillary perfusion in addition to
24 narrow pulse pressure. Macedo et al (20) did not consider having “narrow pulse pressure” alone to be
25 defining for shock; and that shock is diagnosed in the presence of at least two clinical signs of
26 hypoperfusion (e.g., slow capillary refill, cold skin, rapid and weak pulse) with or without an associated
27 narrow pulse pressure. Authors reported three signs of poor capillary perfusion: slow capillary refill, cold

1 extremities, and rapid pulse rate. (20,21,24,29,33,39,43). Slow capillary refill was defined in two studies
2 as having a capillary refill time greater than 3 seconds (33,43).

3 **3. Respiratory distress**

4 Respiratory distress due to clinical fluid accumulation is defined with noticeable variation in four studies
5 (Table 8). Several parameters are used by authors to define respiratory distress, including: respiratory rate,
6 PaO₂:FiO₂ ratio, oxygen saturation level, oxygen therapy requirement, and respiratory acidosis. All the
7 four studies used respiratory rate as a parameter to define “respiratory distress”. However, the cut-off
8 values used were lacking in terms of congruency and consistency: ≥ 24 breaths/min, ≥ 30 breaths/min, ≥
9 40 breaths/min, ≥ 60 breaths/min.

10 **4. Cardiac involvement**

11 Cardiac involvement as a criterion for “severe dengue” is reported in twelve studies (Table 7). With the
12 majority of them, eight studies, describing it as « myocarditis » (17,18,21,23,24,32,43,46). Two studies
13 used « heart failure » to describe cardiac involvement (40,49), while one study required the presence of
14 both « myocarditis » and « heart failure » confirmed by echocardiography to fulfill the definition (20).
15 Hoffmeister et al (9), however, described the cardiac involvement as « cardiomyopathy ». Except for
16 Lovera et al (21) and Guerrero et al (32), none of the above mentioned studies reported on the diagnostic
17 criteria for heart failure, cardiomyopathy, or myocarditis.

18 **5. Central nervous system involvement**

19 Ten studies reported central nervous system (CNS) involvement as a criterion for “severe dengue” and
20 they used either encephalitis (9,18,20,21,32,43), encephalopathy (5,17,23) or both (43) to describe “CNS
21 involvement ” (Table 7). Lovera et al (21) gave a more precise definition: “impaired consciousness in the
22 absence of metabolic abnormalities or other apparent explanation, or in the presence of any of the
23 following: (1) cerebrospinal fluid pleocytosis (corrected white blood cell count >5/L), (2) focal
24 neurologic signs, and (3) convulsions other than simple febrile seizures.” Seizures are mentioned in three
25 studies as a feature of CNS involvement (9,21,27).

26 **6. Renal impairment**

27 Renal impairment is defined by six studies as an increased in serum creatinine ≥ 2 times the upper limit of
28 normal (Table 7). The calculated “normal” creatinine level was determined by two authors (23,47) based

1 on The Modification of Diet in Renal Disease (MDRD) equation for glomerular filtration rate (GFR) of
2 75 ml/min. Also, renal impairment is defined by five studies as an increase in serum creatinine \geq 2 times
3 the “baseline” creatinine level. Moreover, two studies used serum creatinine cut-off values, with or
4 without adjustment for gender, to define renal impairment: Hoffmeister et al (9) defined it as serum
5 creatinine $>$ 1.5 mg/dL in females or $>$ 1.8 mg/dL in females while Aung et al (34) defined it as serum
6 creatinine $>$ 1.2 mg/dL for both males and females.

7 **7. Liver involvement**

8 Eighteen of nineteen studies used the definition outlined in the WHO 2009 guidelines (Table 7) . Lovera
9 et al (21) added that the elevation in transaminases should not be attributed to other causes (e.g., hepatitis
10 A, B, C, or ingestions of potentially hepatotoxic drugs). Hoffmeister et al (9), however defined liver
11 involvement differently: “acute liver failure evidenced by jaundice, thromboplastin time $<$ 20% and
12 encephalopathy.”

13 **8. Severe bleeding**

14 Variable definitions of severe bleeding were reported in thirteen studies (Table 7). Nine studies considered
15 any bleeding that requires transfusion of blood or blood products to be “severe”; which is consistent with
16 Grade 3 bleeding on the WHO bleeding scale (53). One study (20) required the presence of unstable
17 hemodynamic status for bleeding to be considered “severe”, regardless of the hematocrit level or the need
18 for transfusion of blood products. Aung et al (34) considered any bleeding that needs acute management
19 to control active bleeding (e.g., nasal packing, dental splint) to be “severe”. WHO bleeding scale of grade
20 2 and above (53) was used in one study, Gan et al (47), to define severe bleeding.

21 **Discussion**

22 This review highlights the variability in applying the WHO 2009 classifications with regard to the
23 warning signs and signs of severe dengue infection. Before the WHO 2009 classification, dengue was
24 defined as dengue fever (DF), DHF, and dengue shock syndrome (DSS) according to the 1997
25 classification. This classification system showed numerous limitations, especially in the clinical
26 evaluation of severe patients (11). The revised 2009 classification has a higher sensitivity to detect the
27 severity of the disease (3,11,54,55). Its specificity, however, is much lower (73.0%) compared to the 1997

1 dengue classification (93.4%) (20). This lower specificity in part could be attributed to the lack of clear
2 defining criteria for warning signs and signs of severity. We found great variation among authors'
3 definitions of these signs. Of the sixteen warning and severe signs discussed in this review, the authors
4 have only agreed upon the definitions of 'liver enlargement' and 'liver involvement', which are both
5 predefined in the WHO 2009 classification. Definitions of the remaining warning and severity signs
6 lacked consensus. This can be partially attributed to the variation in clinical practice and the presence of
7 national guidelines in different regions in the world. A single clinical parameter or laboratory value may
8 have different defining criteria or cutoff values in different demographic and clinical settings and thus
9 cannot be generalized. For example, 'severe bleeding' was considered by many authors as any bleeding
10 that requires transfusion of blood or blood components. The need for blood transfusion, however, is a
11 clinical decision and may vary between adult and pediatric age-groups as well as between males and
12 females. The preexisting level of hemoglobin before bleeding is also one of the deciding factors that
13 influence the decision to transfuse. Given the large variation in bleeding sites and severity, and a lack of
14 specific guidance in the current WHO classification, bleeding as a sign of dengue severity will require
15 further detailed analysis and precise characterization for future classification updates. Since creatinine
16 level is suggested to be associated with factors other than age and gender such as body mass, this may
17 explain why some authors defined renal impairment as both definitions, serum creatinine \geq 2 times the
18 upper limit of normal and/or serum creatinine \geq baseline creatinine level, trying to not misclassify their
19 patients.

20 Several prospective observational studies have attempted to validate the current warning signs as
21 predictive markers for the development of severe disease (56). The largest study to date, which has
22 recently completed recruitment is a multi-centre prospective study by IDAMS (International Research
23 Consortium on Dengue Risk Assessment, Management and Surveillance) (57), which has enrolled >8000
24 dengue patients, is a trial to identify early (<72 hours fever) clinical and laboratory parameters associated
25 with progression to a more severe disease. The results from this study plus others provide a large cohort
26 of patients, which can be used to not only validate the warning signs but also to develop a more robust
27 clinical case definition for dengue and assist in refining the current definitions for the signs in the WHO
28 2009 Classification.

1 A consensus on defining these warning signs and severe signs may be built by holding consultative
2 meetings at national and international forums inviting experts from Dengue endemic areas using the
3 Delphi technique. These meetings may be held under the umbrella of WHO where different defining
4 criteria can be evaluated and validated in the light of evidence based data gathered from large multicenter
5 trials .This effort will help standardization of management protocols in dengue patients.

6 This systematic review raises the question as to what are the essential lab and clinical parameters that
7 must be present and at what time-point in the disease phases, to clearly define or rule out the warning and
8 severe signs in dengue infection. Althought the 2009 WHO classification provides useful guidance on
9 which patients may progress to severe disease using the current WS, a more precise description of these
10 parameters is now needed to allow correct application of these guidelines.

11 The economic burden of any additional tests and availability and easy access of these investigations
12 needed for defining severity criteria must be taken into consideration before recommending these as part
13 of management guidelines. Also certain criteria may need to be adapted for the differences in the
14 pathophysiology of dengue in paediatric and adult populations.

15 Standard definitions for the warning signs and signs of severe dengue allow for more effective
16 communication between clinicians, optimal triaging of patients, and identification of patients who require
17 hospitalization as opposed to those who can be treated as outpatients. This can help in preventing
18 unnecessary hospitalizations, which is particularly of paramount importance in the settings of dengue
19 outbreaks. Moreover, standardization helps in harmonizing the interpretation and comparability of dengue
20 epidemiological studies and clinical trials of vaccines.

21 Our review highlights the heterogeneity in applying the WHO 2009 classification of dengue infection.
22 Though we shed the light on some of the causes for these variations, further investigation is needed to
23 decide on the best approach to address them. In addition, as this review only targeted papers that
24 specifically set out to define the WHO warning signs, it may have missed other studies, where definition
25 of WS was not the main focus. Another limitation is that we restricted our articles to English language as
26 it would be difficult to extract precise definitions from non-English articles due to translation barriers.

27 **Conclusion**

28 There is currently large variation in the application of the WHO 2009 warning sign and severe dengue

1 classification. More precise definitions are required to create a more standardized approach to this
2 classification system. Future direction should focus on achieving a consensus guideline that is clear and
3 comprehensive but also acceptable, and applicable to clinicians and researchers in dengue endemic areas.

4 **Conflict of interest**

5 The authors declare that there is no conflict of interest.

6 **Author contributions**

7 NTH, MEM, KND contributed to study design and analysis. All authors worked on data collection, wrote
8 and approved the manuscript.

9 **Acknowledgments/Funding**

10 We thank "Bridget Wills" (*Centre for Tropical Medicine and Global Health, Nuffield Department of*
11 *Clinical Medicine, Oxford University, Oxford, UK*) for her contribution in manuscript amendment. This
12 work was supported in part by a "Grant-in-Aid for Scientific Research (B)" (16H05844, 2016–2019 for
13 Nguyen Tien Huy) from Ministry of Education, Culture, Sports, Science and Technology (MEXT) of
14 Japan and by the Japan Initiative for Global Research Network on Infectious Diseases (J-GRID) for Kenji
15 Hirayama. The funders had no role in the study design, data collection and analysis, decision to publish or
16 preparation of the manuscript.

17 **References**

- 18 1. Murray NEA, Quam MB, Wilder-Smith A. Epidemiology of dengue: past, present and future
19 prospects. *Clin Epidemiol*. 2013;5:299–309.
- 20 2. Gubler DJ, Meltzer M. Impact of dengue/dengue hemorrhagic fever on the developing world. *Adv
21 Virus Res*. 1999;53:35–70.
- 22 3. Horstick O, Jaenisch T, Martinez E, Kroeger A, See LLC, Farrar J, et al. Comparing the usefulness
23 of the 1997 and 2009 WHO dengue case classification: a systematic literature review. *Am J Trop
24 Med Hyg*. 2014 Sep;91(3):621–34.

1 4. Hadinegoro SRS. The revised WHO dengue case classification: does the system need to be
2 modified? *Paediatr Int Child Health*. 2012 May;32 Suppl 1:33–8.

3 5. Thein T-L, Gan VC, Lye DC, Yung C-F, Leo Y-S. Utilities and limitations of the World Health
4 Organization 2009 warning signs for adult dengue severity. *PLoS Negl Trop Dis*. 2013;7(1):e2023.

5 6. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JPA, et al. The PRISMA
6 statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare
7 interventions: explanation and elaboration. *BMJ*. 2009 Jul;339:b2700.

8 7. van de Weg CAM, van den Ham H-J, Bijl MA, Anfasa F, Zaaraoui-Boutahar F, Dewi BE, et al.
9 Time since onset of disease and individual clinical markers associate with transcriptional changes
10 in uncomplicated dengue. *PLoS Negl Trop Dis*. 2015 Mar;9(3):e0003522.

11 8. Taylor WR, Fox A, Pham KT, Le HNM, Tran NTH, Tran G Van, et al. Dengue in adults admitted to
12 a referral hospital in Hanoi, Vietnam. *Am J Trop Med Hyg*. 2015 Jun;92(6):1141–9.

13 9. Hoffmeister B, Suttorp N, Zoller T. The revised dengue fever classification in German travelers:
14 clinical manifestations and indicators for severe disease. *Infection*. 2015 Feb;43(1):21–8.

15 10. Mercado ES, Espino FE, Perez MLM, Bilar JM, Bajaro JDP, Huy NT, et al. HLA-A*33:01 as
16 Protective Allele for Severe Dengue in a Population of Filipino Children. Kimura A, editor. *PLoS
17 One* [Internet]. 2015 Feb 6;10(2):e0115619. Available from:
18 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4319754/>

19 11. Vieira Machado AA, Estevan AO, Sales A, Brabes KC da S, Croda J, Negrao FJ. Direct costs of
20 dengue hospitalization in Brazil: public and private health care systems and use of WHO
21 guidelines. *PLoS Negl Trop Dis*. 2014 Sep;8(9):e3104.

22 12. Rowe EK, Leo Y-S, Wong JGX, Thein T-L, Gan VC, Lee LK, et al. Challenges in dengue fever in
23 the elderly: atypical presentation and risk of severe dengue and hospital-acquired infection
24 [corrected]. *PLoS Negl Trop Dis*. 2014 Apr;8(4):e2777.

25 13. Romero-Vega L, Pacheco O, de la Hoz-Restrepo F, Díaz-Quijano FA. Evaluation of dengue fever
26 reports during an epidemic, Colombia. *Rev Saude Publica* [Internet]. 2014 Oct 14;48(6):899–905.
27 Available from: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4285822/>

28 14. Rodrigues RS, Brum ALG, Paes MV, Povoa TF, Basilio-de-Oliveira CA, Marchiori E, et al. Lung
29 in dengue: computed tomography findings. *PLoS One*. 2014;9(5):e96313.

30 15. Rathakrishnan A, Klekamp B, Wang SM, Komarasamy TV, Natkunam SK, Sathar J, et al. Clinical
31 and Immunological Markers of Dengue Progression in a Study Cohort from a Hyperendemic Area
32 in Malaysia. *PLoS One* [Internet]. 2014 Mar 19;9(3):e92021. Available from:
33 <https://doi.org/10.1371/journal.pone.0092021>

34 16. Pozo-Aguilar JO, Monroy-Martínez V, Díaz D, Barrios-Palacios J, Ramos C, Ulloa-García A, et al.
35 Evaluation of host and viral factors associated with severe dengue based on the 2009 WHO
36 classification. *Parasit Vectors* [Internet]. 2014;7(1):590. Available from:
37 <https://doi.org/10.1186/s13071-014-0590-7>

38 17. Pang J, Thein T-L, Leo Y-S, Lye DC. Early clinical and laboratory risk factors of intensive care
39 unit requirement during 2004–2008 dengue epidemics in Singapore: a matched case–control study.
40 *BMC Infect Dis* [Internet]. 2014 Dec 5;14:649. Available from:
41 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267742/>

42 18. Noecker CA, Amaya-Larios IY, Galeana-Hernandez M, Ramos-Castaneda J, Martinez-Vega RA.

1 Contrasting associations of polymorphisms in FcgammaRIIa and DC-SIGN with the clinical
2 presentation of dengue infection in a Mexican population. *Acta Trop.* 2014 Oct;138:15–22.

3 19. Michels M, Alisjahbana B, De Groot PG, Indrati AR, Fijnheer R, Puspita M, et al. Platelet function
4 alterations in dengue are associated with plasma leakage. *Thromb Haemost.* 2014
5 Aug;112(2):352–62.

6 20. Macedo GA, Gonin MLC, Pone SM, Cruz OG, Nobre FF, Brasil P. Sensitivity and specificity of
7 the World Health Organization dengue classification schemes for severe dengue assessment in
8 children in Rio de Janeiro. *PLoS One.* 2014;9(4):e96314.

9 21. Lovera D, Araya S, Mesquita MJ, Avalos C, Ledesma S, Arbo A. Prospective applicability study of
10 the new dengue classification system for clinical management in children. *Pediatr Infect Dis J.*
11 2014 Sep;33(9):933–5.

12 22. Limonta, Daniel Torrentes-Carvalho, Amanda Marinho CF, Azeredo, Elzinandes Leal de Souza LJ
13 de, Motta-Castro ARC, Cunha RV da, Kubelka CF, Nogueira RMR, et al. Apoptotic mediators in
14 patients with severe and non-severe dengue from Brazil. *J Med Virol.* 2013;86(8):1437–1447.

15 23. Carrasco LR, Leo YS, Cook AR, Lee VJ, Thein TL, Go CJ, et al. Predictive Tools for Severe
16 Dengue Conforming to World Health Organization 2009 Criteria. *PLoS Negl Trop Dis* [Internet].
17 2014 Jul 10;8(7):e2972. Available from: <https://doi.org/10.1371/journal.pntd.0002972>

18 24. Yadav DK, Choudhary S, Gupta PK, Beniwal MK, Agarwal S, Shukla U, et al. The Tei index and
19 asymptomatic myocarditis in children with severe dengue. *Pediatr Cardiol.* 2013
20 Aug;34(6):1307–13.

21 25. van de Weg CAM, Pannuti CS, de Araújo ESA, van den Ham H-J, Andeweg AC, Boas LS V., et al.
22 Microbial Translocation Is Associated with Extensive Immune Activation in Dengue Virus Infected
23 Patients with Severe Disease. *PLoS Negl Trop Dis* [Internet]. 2013;7(5):e2236. Available from:
24 <http://dx.plos.org/10.1371/journal.pntd.0002236>

25 26. Prasad D, Kumar C, Jain A, Kumar R. Accuracy and applicability of the revised WHO
26 classification (2009) of dengue in children seen at a tertiary healthcare facility in northern India.
27 *Infection.* 2013 Aug;41(4):775–82.

28 27. Natesirinikul R, Tantiworawit A, Charoenkwan P. Clinical course of dengue in patients with
29 thalassaemia. *Paediatr Int Child Health.* 2013 Feb;33(1):32–6.

30 28. Michels M, Sumardi U, de Mast Q, Jusuf H, Puspita M, Dewi IMW, et al. The Predictive
31 Diagnostic Value of Serial Daily Bedside Ultrasonography for Severe Dengue in Indonesian Adults.
32 *PLoS Negl Trop Dis* [Internet]. 2013 Jun 13;7(6):e2277. Available from:
33 <https://doi.org/10.1371/journal.pntd.0002277>

34 29. Malavige GN, Gomes L, Alles L, Chang T, Salimi M, Fernando S, et al. Serum IL-10 as a marker
35 of severe dengue infection. *BMC Infect Dis.* 2013 Jul;13:341.

36 30. Leo Y-S, Gan VC, Ng E-L, Hao Y, Ng L-C, Pok K-Y, et al. Utility of warning signs in guiding
37 admission and predicting severe disease in adult dengue. *BMC Infect Dis.* 2013 Oct;13:498.

38 31. Hanh Tien NT, Lam PK, Duyen HT Le, Ngoc T Van, Ha PTT, Kieu NTT, et al. Assessment of
39 Microalbuminuria for Early Diagnosis and Risk Prediction in Dengue Infections. Ooi EE, editor.
40 *PLoS One* [Internet]. 2013 Jan 22;8(1):e54538. Available from:
41 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3551767/>

42 32. Guerrero CD, Arrieta AF, Ramirez ND, Rodriguez L-S, Vega R, Bosch I, et al. High plasma levels

of soluble ST2 but not its ligand IL-33 is associated with severe forms of pediatric dengue. *Cytokine*. 2013 Mar;61(3):766–71.

33. Gandini M, Gras C, Azeredo EL, Pinto LM de O, Smith N, Despres P, et al. Dengue virus activates membrane TRAIL relocalization and IFN-alpha production by human plasmacytoid dendritic cells in vitro and in vivo. *PLoS Negl Trop Dis*. 2013;7(6):e2257.

34. Aung KLL, Thanachartwet V, Desakorn V, Chamnanchanunt S, Sahassananda D, Chierakul W, et al. Factors associated with severe clinical manifestation of dengue among adults in Thailand. *Southeast Asian J Trop Med Public Health*. 2013 Jul;44(4):602–12.

35. Wieten RW, Vlietstra W, Goorhuis A, van Vugt M, Hodiamont CJ, Leenstra T, et al. Dengue in travellers: Applicability of the 1975-1997 and the 2009 WHO classification system of dengue fever. *Trop Med Int Heal*. 2012;17(8):1023–30.

36. Van De Weg CAM, Van Gorp ECM, Supriatna M, Soemantri A, Osterhaus ADME, Martina BEE. Evaluation of the 2009 WHO dengue case classification in an Indonesian pediatric cohort. *Am J Trop Med Hyg*. 2012;86(1):166–70.

37. Malavige GN, Huang LC, Salimi M, Gomes L, Jayaratne SD, Ogg GS. Cellular and Cytokine Correlates of Severe Dengue Infection. *PLoS One*. 2012;7(11).

38. Lee LK, Gan VC, Lee VJ, Tan AS, Leo YS, Lye DC. Clinical relevance and discriminatory value of elevated liver aminotransferase levels for dengue severity. *PLoS Negl Trop Dis*. 2012;6(6):1–8.

39. Jayaratne S, Atukorale V, Gomes L, Chang T, Wijesinghe T, Fernando S, et al. Evaluation of the WHO revised criteria for classification of clinical disease severity in acute adult dengue infection. *BMC Res Notes* [Internet]. 2012;5(1):645. Available from: <http://bmcresnotes.biomedcentral.com/articles/10.1186/1756-0500-5-645>

40. Narvaez F, Gutierrez G, Perez MA, Elizondo D, Nunez A, Balmaseda A, et al. Evaluation of the traditional and revised WHO classifications of Dengue disease severity. *PLoS Negl Trop Dis*. 2011 Nov;5(11):e1397.

41. Malavige GN, Rostron T, Rohanachandra LT, Jayaratne SD, Fernando N, de Silva AD, et al. HLA class I and class II associations in Dengue viral infections in a Sri Lankan population. *PLoS One*. 2011;6(6):1–8.

42. Low JGH, Ong A, Tan LK, Chaterji S, Chow A, Lim WY, et al. The early clinical features of dengue in adults: Challenges for early clinical diagnosis. *PLoS Negl Trop Dis*. 2011;5(5).

43. Leo Y-S, Thein TL, Fisher DA, Low JG, Oh HM, Narayanan RL, et al. Confirmed adult dengue deaths in Singapore: 5-year multi-center retrospective study. *BMC Infect Dis* [Internet]. 2011;11(1):123. Available from: <http://bmcinfectdis.biomedcentral.com/articles/10.1186/1471-2334-11-123>

44. Kalayanarooj S. Dengue classification: current WHO vs. the newly suggested classification for better clinical application? *J Med Assoc Thai*. 2011;94 Suppl 3:74–84.

45. Jhamb R, Kumar A, Ranga GS, Rathi N. Unusual manifestations in Dengue outbreak 2009, Delhi, India. Vol. 42, *Journal of Communicable Diseases*. 2010. p. 255–61.

46. Basuki PS, Budiyanto, Puspitasari D, Husada D, Darmowandowo W, Ismoedijanto, et al. Application of revised dengue classification criteria as a severity marker of dengue viral infection in Indonesia. *Southeast Asian J Trop Med Public Health*. 2010;41(5):1088–94.

47. Gan VC, Lye DC, Thein TL, Dimatatac F, Tan AS, Leo Y-S. Implications of discordance in world

1 health organization 1997 and 2009 dengue classifications in adult dengue. PLoS One.
2 2013;8(4):e60946.

3 48. dos Remédios Freitas Carvalho Branco M, de Albuquerque Luna EJ, Júnior LLB, de Oliveira RVB,
4 Rios LTM, do Socorro da Silva M, et al. Risk factors associated with death in Brazilian children
5 with severe dengue: a case-control study. Clinics [Internet]. 2014 Jan 3;69(1):55–60. Available
6 from: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3870309/>

7 49. Zakaria Z, Zainordin NA, Sim BLH, Zaid M, Haridan US, Aziz ATA, et al. An evaluation of the
8 World Health Organization's 1997 and 2009 dengue classifications in hospitalized dengue patients
9 in Malaysia. J Infect Dev Ctries. 2014 Jul;8(7):869–75.

10 50. Arbuck S, Ivy S SA. The revised common toxicity criteria: Version 2.0. CTEP website: <http://ctep.info.nih.gov>. In 1999.

11 51. Rodrigues RS, Brum ALG, Paes MV, Póvoa TF, Basilio-de-Oliveira CA, Marchiori E, et al. Lung
12 in dengue: Computed tomography findings. PLoS One. 2014;9(5).

13 52. Xavier-Carvalho C, Gibson G, Brasil P, Ferreira RX, de Souza Santos R, Gonçalves Cruz O, et al.
14 Single nucleotide polymorphisms in candidate genes and dengue severity in children: A
15 case-control, functional and meta-analysis study. Infect Genet Evol [Internet].
16 2013;20(Supplement C):197–205. Available from:
17 <http://www.sciencedirect.com/science/article/pii/S1567134813003134>

18 53. Fogarty PF, Tarantino MD, Brainsky A, Signorovitch J, Grotzinger KM. Selective validation of the
19 WHO Bleeding Scale in patients with chronic immune thrombocytopenia. Curr Med Res Opin.
20 2012 Jan;28(1):79–87.

21 54. Cavalcanti LP de G, Mota LAM, Lustosa GP, Fortes MC, Mota DAM, Lima AAB, et al. Evaluation
22 of the WHO classification of dengue disease severity during an epidemic in 2011 in the state of
23 Ceara, Brazil. Mem Inst Oswaldo Cruz. 2014 Feb;109(1):93–8.

24 55. Khursheed M, Khan UR, Ejaz K, Fayyaz J, Qamar I, Razzak JA. A comparison of WHO guidelines
25 issued in 1997 and 2009 for dengue fever - single centre experience. J Pak Med Assoc. 2013
26 Jun;63(6):670–4.

27 56. Barniol J, Gaczkowski R, Barbato EV, da Cunha R V, Salgado D, Martínez E, et al. Usefulness and
28 applicability of the revised dengue case classification by disease: multi-centre study in 18 countries.
29 BMC Infect Dis [Internet]. 2011;11(1):106. Available from:
30 <https://doi.org/10.1186/1471-2334-11-106>

31 57. Jaenisch T, Tam DTH, Kieu NTT, Van Ngoc T, Nam NT, Van Kinh N, et al. Clinical evaluation of
32 dengue and identification of risk factors for severe disease: protocol for a multicentre study in 8
33 countries. BMC Infect Dis. 2016 Mar;16:120.

34

36 **Figure legends**

37 **Figure 1:** The 2009 revised dengue case classification.

38 **Figure 2:** PRISMA flow diagram of studies' screening and selection.

1 **Tables captions**

2 **Table 1: characteristics of included studies**

3 Table 2: Reported definitions of warning signs in dengue infection

4 Table 3: Reported definitions of clinical fluid accumulation.

5 Table 4: Cutoff values used to define “rise in hematocrit”.

6 Table 5: Definition of “rapid decrease in platelet count”.

7 Table 6: Definitions of mucosal bleeding in dengue infection.

8 Table 7: Signs of severe dengue infection.

9 Table 8: Definitions of respiratory distress.

10

11

12 **Table 1: characteristics of included studies**

Author, Year	Study design	Country	Year	N of patients	Mean (median) Age
Weg et al. 2015 (7)	Cohort	Indonesia	2010	157	(20)
Taylor et al. 2015 (8)	Prospective Cohort	Vietnam	2008	143	(23.5)
Hoffmeister et al. 2015 (9)	Retrospective case control	Germany	1996 to 2010	56	(35)
Mercado et al. 2015 (10)	Case-control	Philippines	2008	250	9.8
Machado et al. 2014 (11)	Cross sectional	Brazil	2010	288	4.3
Rowe et al. 2014 (12)	Retrospective Study	Singapore	2005	295	ND
Vega et al. 2014 (13)	Cross-sectional study	Colombia	2013	4359	18
Rodrigues et al. 2014 (14)	Retrospective cohort	Brazil	2007	29	56.8
Rathakrishnan et al. 2014 (15)	Cross sectional	Malaysia	2010	504	29.5
Pozo-aguilar et al. 2014 (16)	Cross-sectional	Mexico	2009	489	25
Pang, et al. 2014 (17)	Case-control	Singapore	2004 to 2008	135	(44)
Noecker et al. 2014 (18)	Cohort	Indonesia	2011	248	23
Michels et al. 2014 (19)	Cohort	Indonesia	2011 to 2012	77	23
Macedo et al. 2014 (20)	Retrospective cohort	Brazil	2007 to 2008 and 2010 to 2011	450	(8)
Lovera et al. 2014 (21)	Prospective cohort	Paraguay	2011	123	11
Limonta et al. 2014 (22)	Case-control	Brazil	2010	107	40
Carrasco et al. 2014 (23)	Retrospective cohort	Singapore	2006-2008	596	(37)
Yadav et al. 2013 (24)	Prospective cohort	India	2010	67	10.4
Weg et al. 2013 (25)	Cohort	Brazil	2010	99	30
Thein et al. 2013 (5)	Retrospective cohort	Singapore	2004, 2007, 2008	1507	34
Prasad et al. 2013 (26)	Cohort	India	2011 to 2012	56	2.9
Natesirinilkul et al. 2013	Cohort	Thailand	2005 to 2010	20	13.6

(27)					
Michels et al. 2013 (28)	Prospective cohort	Indonesia	2012	71	22
Malavige et al. 2013 (29)	Cohort	Sri Lanka	2011	259	26.8
Leo et al. 2013 (30)	Prospective cohort	Singapore	2010-2012	499	34
HanhTien. 2013 (31)	Cohort	Vietnam	2005-2008	1165	10
Guerrero et al. 2013 (32)	Cohort	Colombia	ND	66	69
Gandini et al. 2013 (33)	Cohort	Brazil	ND	43	43
Gan et al. 2013 (33)	Retrospective cohort	Singapore	2004 and 2007	1278	(33)
Aung et al. 2013 (34)	Retrospective cohort	Thailand	2006-2010	323	24
Wieten et al. 2012 (35)	Retrospective cohort	Netherlands	2006 to 2011	581	36
Weg et al. 2012 (36)	Prospective Cohort	Indonesia	2001-2003	173	7
Malavige et al. 2012 (37)	Prospective Cohort	Sri Lanka	2012	112	29.07
Lee et al. 2012 (38)	Retrospective case study	Singapore	2006	690	(35)
Jayaratne et al. 2012 (39)	Prospective cohort	Sri Lanka	2011	184	27.18
Narvaez et al. 2011 (40)	Cross-sectional	Nicaragua	2005-2010	544	(8.5)
Malavige et al. 2011 (41)	Case-control	Sri Lanka		110	30
Low et al. 2011 (42)	Prospective cohort	Singapore	2005-2010	250	(39)
Leo et al. 2011 (43)	Retrospective case control	Singapore	2004-2008	28	(59)
Kalayanarooj et al. 2011 (44)	Prospective	Thailand	2009	274	9.3
Jhambet al. 2010 (45)	Retrospective case control	India	2009	76	28
Basuki et al. 2010 (46)	Prospective cohort	Indonesia	2008	145	ND
Gan et al. 2013(47)	Rereospective cohort	Singapore	2004 and 2007	1278	(32) and (35)
Branco et al. 2014(48)	Case-control	Brazil	2006-2007	95	4.06
Zakaria et al. 2014(49)	Retrospective cohort	Malaysia	2008-2012	281	ND

1 ND: not detected

2

3

4

5

6

7 **Table 2: Reported definitions of warning signs in dengue infection**

Author, year	Definition
Persistent vomiting	
Mercado et al. 2014(10)	≥ 6 episodes of vomiting in 24 hours, or Grade 3 and above in the Common Toxicity Criteria Manual
Malavige et al. 2011(41)	≥ 3 episodes of vomiting in 12 hours, and Preventing adequate oral hydration

Carrasco et al. 2014(23)	Vomiting for ≥ 2 consecutive days
Gan et al. 2013(47)	
Leo et al. 2011(43)	
Aung et al. 2013(34)	Vomiting with signs of dehydration on physical examination
Abdominal pain	
Mercado et al. 2014(10)	Abdominal tenderness or continuous pain or diffuse pain
Narvaez et al (40)	
Vega et al. 2014(13)	Intense and continuous abdominal pain
Macedo et al. 2014(20)	Continuous (not intermittent) abdominal pain
Hoffmeister et al. 2015(9)	Increasing or intense abdominal pain
Lethargy	
Wieten et al. 2012(35)	Alteration of consciousness and/or Glasgow score < 15 , or A Blantyre score less than 5
Pozo-aguilar et al. 2014(16)	Alteration of consciousness and/or Glasgow score < 15
Macedo et al. 2014(20)	
Low et al. 2011(42)	Drowsiness and/or irritability
Romero-Vega et al. 2014(13)	

1

2 **Table 3: Reported definitions of clinical fluid accumulation.**

Definition	Number of studies	References	3
Pleural effusion	17	(5,7–10,14,15,19,20,25,28,40,43,45,46,48,49)	
Ascites	17	(5,7–10,14,15,19,20,25,28,40,43,45,46,48,49) ⁴	
Gall bladder thickening	5	(10,20,28,40,48)	
Edema (face & extremities)	1	(8)	⁵
Free fluids around urinary bladder	1	(28)	
Total	17		8

9 **Table 4: Cutoff values used to define “rise in hematocrit”.**

Reference	Males	Females	Country
Zakaria et al. 2009 (49)	> 46%	> 40%	Malaysia
Michels et al. 2014 (19)	> 50%	> 44%	Indonesia
Michels et al. 2013 (28)	> 50%	> 44%	Indonesia

Gandini et al. 2013 (33)	> 45%	> 41%	Brazil	1
Rodrigues et al. 2014 (14)	> 48%	> 48%	Brazil	2

3

4

5

6 **Table 5: Definition of “rapid decrease in platelet count”.**

Platelet count	Frequency	Percent	Cumulative %	References
<20,000	2	10.5	9.0	[2, 3]
<50,000	10	52.6	54.5	(12,17,18,20,23,31,33,38,43,47)
<100,000	8	42.1	91.0	(10,13,21,26,39,40,44,45)
<150,000	1	5.3	95.5	(14)
Others*	1	5.3	100.0	(40)
Total	19	100.0		

7 * Drop in platelet count by 10,000/mm³ in 24-hours with respect to the previous measurement (Narvaez et al.[4]).

8

9 **Table 6: Definitions of mucosal bleeding in dengue infection.**

Definition	Signs and Symptoms	Frequency	Percent (%)	References
Nose bleeding	Epistaxis	15	100	(5,7–10,15,16,23,30,33,34,39,40,45,49)
Gingival bleeding	Gingival bleeding	13	86.7	(7–10,15,16,23,30,33,34,40,45,49)
Gastrointestinal bleeding	Hematemesis, Melena	10	66.7	(7,9,10,15,16,20,39,40,45,49)
Vaginal bleeding	Menorrhagia, metrorrhagia, vaginal bleeding	11	73.3	(8–10,15,20,23,30,33,39,40,49)
Respiratory tract	Hemoptysis	6	40	(10,30,33,40,48,49)
Urinary tract bleeding	Hematuria	5	33.3	(9,10,30,40,49)
Skin bleeding	Petechia, purpura, ecchymoses, bruises	4	26.7	(16,39,48,49)
Eye bleeding	Conjunctival, subconjunctival, retinal	4	26.7	(8,10,15,40)
Ear bleeding		1	6.7	(49)
Total		15	100%	

10

11 **Table 7: Signs of severe dengue infection.**

12

Definition	Frequency	Percent (%)	References
Shock			
Narrow pulse pressure (<20 mmHg)*	15	88.2	(9,10,12,17,21,23,25,28,29,33,37,39,41,43,47)

Hypotension (< 90 mmHg)	12	70.6	(9,12,17,20,21,23,25,36,42,43,47)
Tachycardia (pulse > 100/min) **	11	64.7	(9,12,17,21,23,25,33,36,42,43,47)
Signs of poor capillary perfusion***	7	41.2	(20,21,24,29,33,39,43)
Total	17	100.00	
Poor capillary perfusion			
Slow capillary refill****	7	100.00	(20,21,24,29,33,39,43)
Cold extremities	7	100.00	(20,21,24,29,33,39,43)
Rapid pulse rate	5	71.43	(20,21,24,29,39)

* Specified by all authors, except for Gandini et al., as pulse pressure <20 mmHg,

** Defined by all authors, except Gandini et al., as pulse rate >100/min

*** Signs of poor capillary refill: Slow capillary filling, cold clammy skin, and rapid and weak pulses

Parameters used to define shock

1	3	13.04	(10,37,41)
5 and one of 1,2 ,3	1	4.35	(13)
5	2	8.70	(16,48)
1 or 2 or 3	2	8.70	(17,23)
2 and 5	1	4.35	(18)
4 and 1 or 2	1	4.35	(20)
1 and 4	2	8.70	(21,24)
1or 2 or 3 or 5	1	4.35	(9)
1, 2, 3, and 4	1	4.35	(25)
2	1	4.35	(5)
1 and 2	1	4.35	(28)
1 or 4	1	4.35	(29)
1, 2, 3, 4 or 6	1	4.35	(33)
1 or 2 or 3 and 5	1	4.35	(47)
1 or 2	1	4.35	(36)
1 or 4	1	4.35	(38)
1, 2, and 5	1	4.35	(42)
1 or 2 or (3 and 4) or 6	1	4.35	(43)
Total	23	100.00	

1 = Narrow pulse pressure, 2 = Hypotension, 3 = Tachycardia, 4 = Hypoperfusion, 5 = Plasma leakage evident as change in hematocrit >20%, 6 = Undetectable pulse or unrecordable pressure.

Renal Impairment

Serum creatinine level \times 2 times the upper limit of normal	6	75	(14,17,20,23,43,48)
Serum creatinine level \times 2 times the baseline creatinine level	5	62.5	(14,17,20,23,48)
Serum creatinine level > 1.2 mg/dL	1	12.5	(34)
Serum creatinine level > 1.5 mg/dL in	1	12.5	

females and >1.8 mg/dL in males			(9)
Total	8	100	
Severe Bleeding			
GIT bleeding (melena, hematochezia, hematemesis, bleeding per rectum)*	12	92	(9,12,17,18,20,23,27,34,39,43,44,47)
Need for blood transfusion	9	69	(9,12,17,20,23,34,43,44,47)
Vaginal bleeding; menorrhagia or metrorrhagia	7	54	(12,17,18,23,34,43,47)
Severe/ persistent bleeding in the presence of hemodynamic instability	1	8	(20)
Need for acute management to control active bleeding (e.g., nasal packing, dental splint)	1	8	(34)
Total	13	100.00	

* One study, Natesirinilkul et al.[5], specified that GI bleeding should be massive. Another study, Kalayanaroop et al.[6], specified that GI bleeding should be massive and needs blood transfusion.

Liver Involvement			
AST or ALT > 1000 IU/L	18	94.7	(8,11–14,16–18,20,21,27,34,38–40,43,44,46)
ALF (jaundice, PTT <20%, encephalopathy)	1	5.0	(9)
Total	19	100.00	

Central Nervous System Involvement			
Encephalitis	6	60	(9,18,20,21,32,43)
Encephalopathy*	5	50	(5,9,17,23,43)
Convulsions**	3	30	(9,21,27)
Coma	1	10	(9)
Total	10	100.00	

* Specified as “hepatic encephalopathy” by one study [5]

** Specified as seizures from “posterior reversible encephalopathy syndrome” by one study [5].

Heart Involvement			
Myocarditis	8	66.67	(17,18,21,23,24,32,43,46)
Heart failure	2	16.67	(40,49)
Myocarditis and heart failure (confirmed by echocardiography)	1	8.33	(20)
Cardiomyopathy	1	8.33	(9)
Total	12	100.00	

Detailed Definitions

Lovera et al. 2014[7]: Myocarditis (elevation of biomarkers: Troponin I or CK-MB) and compatible changes in the electrocardiogram (such as sinus tachycardia with nonspecific ST-segment and T-wave abnormalities). Guerrero et al. 2013[8]: "Myocarditis defined as poor response to therapy with intravenous fluids; alteration in cardiac rhythm (bradycardia or tachycardia) and/or the need for inotropic support added at least one of the following test findings: abnormal thorax X-ray, electrocardiogram alteration (tachyarrhythmia and disorders of ST segment or T wave), pathological echocardiography (systolic or diastolic dysfunction) and biochemical elevation of CKMB isoform."

1

2 **Table 8: Definitions of respiratory distress.**

Author, Year	Definition	Median (range) Age
Aung et al. 2013 (34)	<ul style="list-style-type: none">▪ Respiratory rate > 60 breaths/minute▪ Respiratory discomfort, dyspnea, respiratory failure	≥15
Macedo et al. 2014 (20)	<ul style="list-style-type: none">▪ Respiratory rate > 60 breaths/minute▪ Respiratory discomfort, dyspnea, respiratory failure	(0 – 18)
Weg et al. 2012 (36)	<ul style="list-style-type: none">▪ Respiratory rate > 40 breaths/minute▪ Signs of respiratory distress (dyspnea and tachypnea)▪ Signs of respiratory acidosis▪ (PaO₂:FiO₂) < 200 mmHg	(2 - 14)
Leo et al. 2011 (43)	<ul style="list-style-type: none">▪ Respiratory rate > 30 breaths/minute▪ Oxygen saturation ≤92% on room air, or▪ Mechanical ventilation	59 (21 – 86)

3

4

5

6