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ABSTRACT

Mexican native maize (Zea mays ssp. mays) is adapted to a wide range of climatic and
edaphic conditions. Here, we focus specifically on the potential role of root anatomical
variation in this adaptation. In light of the investment required to characterize root anatomy,
we present a machine learning approach using environmental descriptors to project trait
variation from a relatively small training panel onto a larger panel of genotyped and
georeferenced Mexican maize accessions. The resulting models defined potential biologically
relevant clines across a complex environment and were used subsequently in genotype-
environment association. We found evidence of systematic variation in maize root anatomy
across Mexico, notably a prevalence of trait combinations favoring a reduction in axial
conductance in cooler, drier highland areas. We discuss our results in the context of
previously described water-banking strategies and present candidate genes that are associated
with both root anatomical and environmental variation. Our strategy is a refinement of
standard environmental genome wide association analysis that is applicable whenever a

training set of georeferenced phenotypic data is available.

Keywords: GEA, Local adaptation, Root anatomy, Maize
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INTRODUCTION

Abiotic stress is a major driver of plant phenotypic diversity (Lowry 2012), acting to select
locally adapted varieties with specific morphological, physiological, and phenological traits
(Fumagalli et al. 2011; Stebbins 1952; Hereford 2009https://paperpile.com/c/jHvuxa/s6Ua).
Differences in such selective pressures over a continuously varying environment produce
clines of genetic and phenotypic variation, reflecting the shifting costs and benefits of diverse
biological strategies (Joswig et al. 2022). Although plants are plastic in the face of
environmental challenges (Des Marais et al. 2013; Lasky et al. 2014), locally adapted
specialists can constitutively express adaptive strategies, anticipating the need for the
induction of stress responses (Levins 1968; von Heckel et al. 2016; Aguilar-Rangel et al.
2017). As a consequence, genotypes sourced from diverse locations will typically still display
trait variation indicative of adaptation to their home environments when grown in a benign

common garden (Stinchcombe et al. 2004; Janzen et al. 2022; Shimono et al. 2009).

Mexican native maize (Zea mays ssp. mays) varieties (“landraces”) represent an
attractive system for the study of local adaptation. Mexico is the center of origin of maize,
and today hosts 59 described native varieties cultivated from sea level to an elevation of
3,400 m, in environments ranging from semi-arid to hot and humid (Ruiz Corral et al. 2008;
Arteaga et al. 2016; Perales and Golicher 2014). This diversity has been extensively sampled,
and large collections of georeferenced and genetically characterized material are available
(Arteaga et al. 2016; Romero Navarro et al. 2017; Mercer and Perales 2019; Janzen et al.
2022). Throughout maize domestication and diversification, farmers have consciously
selected for agronomically and culturally desirable traits, principally targeting the female
inflorescence (the ear) to produce a rich variety of form (Louette and Smale 2000; Bellon et
al. 2018). In parallel, unconscious selection has likely acted to adapt varieties to local

conditions (Romero Navarro et al. 2017; Mercer and Perales 2019; Janzen et al. 2022) and
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enhance tolerance to different environmental stressors after dispersal to new environments

(Magalhaes et al. 2007;Eagles and Lothrop 1994; Bayuelo-Jiménez et al. 2011).

In this study, we focus specifically on the potential role of root trait variation in the
adaptation of maize to different climatic and edaphic environments in Mexico. Although less
easily visible than aboveground traits, the maize root system has been substantially impacted
by domestication, diversification and modern breeding (Gaudin et al. 2014; Chen et al. 2022;
Lopez-Valdivia et al. 2022; Burton et al. 2013; Ren et al. 2022). Roots are fundamental to
plant water and nutrient acquisition, and play a key role in both wild and domesticated plants
in determining performance under resource limitation (Wahl and Ryser 2000; Markesteijn
and Poorter 2009; Ma et al. 2018). Within maize specifically, root trait variation among
inbred breeding lines has been linked to performance differences under both water (Jaramillo
et al. 2013; Bomfim et al. 2011; Schneider et al. 2020) and nutrient (Schneider, Postma, et al.
2017; Galindo-Castafieda et al. 2018) limitation. Extensive root trait variation has also been
reported among native maize varieties (Burton et al. 2013), although the associated functional
impact and possible adaptive roles remain to be fully characterized. Variation in the plant
root system can be considered from the anatomy of individual roots to overall root system
architecture (Jung and McCouch 2013; Lynch 2019), traits at all levels interact to determine
overall root system function in the context of a given environment (Klein et al. 2020). Here,

we limit ourselves to consideration of variation in root anatomy.

The maize root system consists of a variety of root classes that vary in function and
importance during development (Atkinson et al. 2014; Viana et al. 2022; Hochholdinger
2009). Within this range, root anatomy develops on a basic pattern of radially organized
tissue types: an external epidermis, the ground tissue, and an inner stele containing the
pericycle and vasculature (Lynch et al. 2021). The epidermis protects the inner layers from

physical damage and is in direct contact with the rhizosphere, playing a key role in water and
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99  nutrient exchange. The ground tissue is further differentiated into cortex and the endodermis
100 that encloses the stele. In the model plant Arabidopsis, the cortex is composed of only two
101 layers, a single layer of cortical parenchyma and the endodermis. In maize, however, the
102  cortex divides to form multiple cell layers, impacting the physical (Chimungu et al. 2015),
103  hydraulic (Heymans et al. 2020; Sidhu et al. 2023) and radial nutrient transport (Hu et al.

104  2014; Schneider et al. 2017) properties of the root, as well as accommodating beneficial

105 endomycorrhizal fungi (Sawers et al. 2008; Bennett and Groten 2022). Developmental and
106  environmental cues can trigger cells in the cortex to undergo programmed cell death and form
107  aerenchyma. The resulting cortical air-filled lacunae help maintain gas exchange and mitigate
108  hypoxia under flooding (Colmer 2003; Mano and Nakazono 2021). In addition, the reduction
109  in root metabolic cost following aerenchyma formation can be beneficial in resource limiting
110  conditions including drought and low availability of nitrogen or phosphorus (Jaramillo et al.
111 2013; Galindo-Castafieda et al. 2018). The cell walls of the endodermis are impregnated with
112  suberin to form the Casparian strip and, in later development, further reinforced with lignin to
113  act as a barrier that restricts apoplastic transport into the stele from the surrounding cortical
114 root tissue. The central stele contains the xylem and phloem vessels that axially transport

115  water and nutrients. The xylem is composed of small protoxylem vessels and larger

116  metaxylem vessels, the latter providing the majority of the transport capacity in mature root
117 tissues (Doussan et al. 1998). The size and number of metaxylem vessels and living cortical
118  area influence root radial and axial hydraulic properties (conductivity and conductance;

119  (Frensch and Steudle 1989; Schneider, Wojciechowski, et al. 2017), impacting water capture

120  and plant performance (Richards and Passioura 1989; Couvreur et al. 2012).

121 In this study, we aim to characterize heritable variation in root anatomical traits in
122  Mexican native maize and to associate patterns of phenotypic and genetic variation with the

123  source environment. The genetic basis of local adaptation can be characterized through
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124  associations between genotype and phenotypes involved in local adaptation or between

125  genotype and environment (Fournier-Level et al. 2011; Hoban et al. 2016). Approaches using
126  genotype-environment association (GEA) have the advantage of not requiring resource-costly
127  phenotypic characterization, although they must assume local adaptation to have occurred
128  over the tested environments and can be complicated by the confounding effects of

129  population structure (Lasky et al. 2023). One challenge of GEA is that it can be unclear

130  which aspect(s) of the environment might drive selection, such that it may be unclear what
131 associations to test. Here, we present an approach that first fits a trait relationship across the
132  multivariate environment using a training set of phenotypically characterized, georeferenced
133  varieties. This fitted model is then used to project trait values onto a larger set of available
134  genotyped and georeferenced varieties, and the predicted trait values then used in genome-
135  wide association (GWA) to find putative adaptive loci. We compare the results of our

136  approach with standard GEA and a previously published phenotypic GWA using modern

137  maize breeding lines. We present evidence for systematic variation in root anatomy driven by
138  differences across the Mexican environmental landscape, identifying candidate genetic

139  variants and linked genes associated with both phenotypic and genetic clines.

140

141 RESULTS

142  Root anatomy varies among Mexican native maize varieties

143  To characterize the relationship between root anatomy and environment in Mexican native
144 maize, we assigned georeference data to 39 Mexican accessions phenotypically characterized
145  in a previous root anatomy study (Burton et al., 2013; hereafter, the Burton panel) and

146  extracted associated climate and soil descriptors from publicly available databases (see

147  Materials and Methods). We supplemented published trait data with a re-analysis of the
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148  original cross-sectional images to generate a final phenotypic dataset of 16 anatomical traits
149  (Table 1). We performed a principal component (PC) analysis on the phenotypic data: PC1
150  was negatively correlated with root cross-sectional area (Fig. S1; Fig. 1B). PC2 and PC3

151 captured allometric relationships among traits (Fig. 1A, B): PC2 was associated with

152  variation in the relative contribution of the stele to the total area, with total metaxylem vessel
153  area and associated metaxylem traits loading antagonistically to fotal cortical area and root
154 cross-section area; PC3 captured an apparent trade-off between cortical cell file number and
155  cortical cell size along with variation in cortical aerenchyma area. In addition to grouping
156  traits by PC analysis, we used a modeling pipeline linking the GRANAR and MECHA

157  packages to simulate cross-sectional anatomy (Heymans et al. 2020) and predict radial

158  conductivity (k,) and radial and axial conductance (K, K.; Couvreur et al. 2018; Fig. S2).
159  Axial and radial hydraulic conductance were negatively correlated with PC1, indicating the
160  greater capacity of larger diameter roots for water transport (Fig. 1C). PC1 and PC2 were
161  both positively correlated with radial conductivity (Fig. 1D), reflecting the greater ease of
162  water transport across roots with less cortex (Heymans et al. 2020). Further associations

163  between anatomical trait PCs and derived hydraulic properties were not easily captured by

164  simple correlations (Fig. S2).

165 As a first attempt to identify clinal relationships between root anatomy and local
166  environment, we examined the correlation of root anatomy PCs to four basic environmental
167  descriptors (elevation, annual precipitation, mean temperature, and soil pH). After adjusting
168  p-values for multiple comparison testing, we did not find evidence for variation in root

169  anatomy (Fig. S3; S4) or derived hydraulic properties (Fig. S5) to have significant

170  associations to environmental descriptors of accessions’ point of origin. We did find mild

171 evidence for root anatomical variation summarized by PC1 to be related to elevation (Fig.
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172 S3). When dividing PC1 axes into terciles, individuals with the most positive PC1 loadings

173  were sourced from the highest elevations (Fig. 1E).

174

175  Combined environmental descriptors predict variation in root anatomy

176  Local adaptation is driven by varied aspects of the environment and their interactions. To
177  capture more complex trait-environment relationships, we used a feature-reduction method
178  (Boruta algorithm; Kursa and Rudnicki 2010) to select the most informative of a full set of
179 157 available environmental descriptors for each anatomical trait, and subsequently

180  combined the chosen descriptors into random forest (RF) models to relate environment and
181  trait (Fig. 2A; S6). Nine of the 16 tested root anatomical traits were associated with

182  environmental descriptors by the Boruta algorithm (Table S1). 39 different environmental
183  descriptors were used as input for RF models across the 9 modeled anatomical traits, with
184  individual models using from two (percent of cortex as aerenchyma) to 16 (total metaxylem
185  vessel area) environmental descriptors. We observed varying goodness-of-fit from RF

186  models and the R-squared for predicted vs observed trait values ranged from 0.32

187  (aerenchyma area) to 0.01 (total metaxylem vessel area) (Fig. S7).

188 We used the GRANAR-MECHA pipeline to combine predicted trait values and

189  compared observed and predicted anatomies, both graphically (Fig. 2C) and with respect to
190  hydraulic properties (Fig. 2D). Modeled conductivity and conductance values for predicted
191  anatomies correlated well with values from the observed data (radial conductivity, r = 0.69, p
192 < 0.01; radial conductance r = 0.28, p = 0.07; axial conductance r = 0.59, p < 0.01; Fig. S8),
193  indicating that our RF models successfully captured differences in anatomical traits that

194 impact root hydraulic properties.

195
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196  Random forest prediction of root anatomy across Mexican native maize

197  To estimate root anatomical diversity across a broader sampling of native Mexican maize, we
198  applied our Burton-trained RF models to a larger collection of 1791 genotyped and

199  georeferenced Mexican accessions (hereafter, the CIMMYyT panel; Romero Navarro et al.
200  2017; Fig. S9). We used the georeference data to link environmental descriptors to each

201  accession and passed these to the RF models, generating a complete phenotypic set of 9

202  estimated root anatomical traits for the 1791 accessions (Supplementary Information). To

203  summarize patterns among the predicted trait values, we used partition-against-medians

204  (PAM) clustering (Klein et al. 2020; Maechler et al. 2021) to group the accessions into seven
205  phenotypic clusters (Fig. S10, S11). The clusters 1 through 7 were composed of 308, 366,
206 370, 231, 158, 277 and 131 accessions, respectively. The structure defined by the clustering
207  was not strong (mean silhouette value = 0.25), reflecting the continuous nature of the

208 environmental descriptors driving the RF models, but did provide a context for subsequent
209  analyses. We also passed the median trait values of each cluster to the GRANAR-MECHA

210  pipeline to obtain average anatomies and hydraulic properties.

211 Clusters were distinguished by the relative elaboration of cortex and stele and

212  associated hydraulic properties (Fig. 3). In Clusters 1 and 3, the stele (total stele area: root
213  cross-section area; total stele area: total cortical area) was relatively small, although

214  individual metaxylem vessels were large (individual metaxylem area, individual metaxylem
215  diameter) and, consequently, the total metaxylem vessel area and axial conductance were
216  relatively high. In contrast, Clusters 5, 2, and 6 were distinguished by a small stele and small
217  metaxylem vessels, associated with low axial conductance relative to other clusters. In

218  Cluster 5, the small size of the metaxylem vessels was further associated with a low number
219  of metaxylem vessels resulting in the lowest fotal metaxylem vessel area and the lowest axial

220  conductance of the clusters.
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221 We examined the clusters with respect to previous morphological-isozymatic

222  (Sanchez G. et al. 2000) and environmental (Ruiz Corral et al. 2008) classifications of

223  Mexican native maize (Table S2, S3; Fig. S11). Following trends reported for overall

224  Mexican maize diversity (Sanchez G. et al. 2000), our clusters were structured with respect to
225  elevation (Fig. 3). Clusters 2, 5 and 6 were enriched (Fisher test for variety count in or out of
226  the cluster, adj.p < 0.05) for varieties belonging to the previously defined highland group
227  (Sanchez G. et al. 2000; Fig. 3; Table S3). Cluster 5, containing the highest elevation

228  varieties, was centered on Mexico City, although it also contained accessions from the

229  highlands of Chihuahua in northern Mexico; Cluster 6 extended from north to south along the
230  Sierra Madre Occidental; Cluster 2 was again centered on Mexico City, although with greater
231  representation further west along the trans Mexican volcanic belt than Cluster 6 and included
232  several accessions from the Chiapas highlands on the southern border of Mexico. The mid-
233  elevation Clusters 4 and 7 were loosely sourced from the center-to-south and center-to-north
234  of Mexico, respectively. The Clusters 1 and 3 were enriched for varieties in the lowland

235  short-to-medium maturity and tropical dent groups (Sanchez G. et al. 2000; Table S2, S3),
236  with Cluster 1 from the Gulf Coast, the Yucatan and lowland Guatemala and Cluster 3 from
237  the Pacific Coast. Prior environmental classification was in line with the observed elevational
238  cline: Clusters 2, 5 and 6 were enriched for varieties previously assigned to “temperate to
239  semi-hot” environments; Clusters 1 and 3 were enriched for varieties assigned to the “very

240  hot” niche (Ruiz Corral et al. 2008; Fig. S12; Table S3).

241 Considering the average anatomies and mean values of environmental descriptors
242  associated with each cluster, we could discern a broad trend of a reduction in axial

243  conductance with increasing elevation (Fig. 3D). Our models associated the colder, drier
244  highland niche (>2,500 masl; Eagles and Lothrop 1994; Ruiz Corral et al. 2008) with both

245  fewer and smaller metaxylem vessel elements (Cluster 5). Conversely, the hot, wet lowlands
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246  (Eagles and Lothrop 1994; Ruiz Corral et al. 2008) were associated with a relatively larger
247  stele accommodating a greater number of larger metaxylem vessel elements (Clusters 1 and

248  3).

249

250  Novel phenotypic evaluation supports random forest predicted variation in axial

251 conductance

252  To empirically evaluate our RF models, we characterized eight maize accessions from across
253  Mexico that had not been used previously in the Burton study (Fig. 4A, B). We measured
254  root anatomical traits following the Burton protocol, and for each trait compared the observed
255  best linear unbiased predictor (BLUP) with the results of our environmental RF predictions
256  (Fig. S13). The correlation between observed BLUPs and RF predictions ranged from

257  relatively high for cortical traits (aerenchyma area, r = 0.71; percent of cortex as

258  aerenchyma, r = 0.65; percent of cortex as cortical cells, r = 0.52) to lower for metaxylem
259  vessel traits (number of metaxylem vessels, r = 0.30; total metaxylem vessel area, r = 0.27,
260  individual metaxylem vessel area, r = 0.11) and allometric traits (total stele area:root cross-
261 section area, r = 0.18; total stele area:total cortical area r = 0.06). Predictions of individual

262  metaxylem vessel diameter were not well supported by observed values (r =-0.24).

263 We assessed overall concordance between observed and predicted anatomy by using
264  the Procrustes transformation (Schénemann 1966) to minimize the distance between each set
265  of observed and predicted trait values across the eight accessions. Observations and

266  predictions were well matched for six of the eight accessions, with the Jala and Nal Tel

267  accessions being a poorer fit (Fig. 4D; Fig. S14). The difference in overall root anatomy in
268  material sourced from the highlands and lowlands was well supported by both observed and

269  predicted trait values (Fig. 4D, S15) and modeled hydraulic properties (Fig. 4E, F). Overall,
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270  although individual traits were not always well predicted for any given accession, our
271  methodology and training data were sufficient to capture broad stratification of anatomical

272  traits and hydraulic properties across the environment.

273

274  Genome wide association analysis using predicted trait values identifies novel candidate

275  genes

276  To look for genetic evidence linking root anatomy to the local environment in Mexican

277  maize, we ran a GWA analysis on the CIMMyT panel using the RF predicted trait values.
278  Given the nature of the RF models, this prediction GWA is, in effect, a development of a
279  standard environmental GWA analysis with modeled trait values capturing complex

280  combinations of the individual environmental descriptors used in RF model construction. For
281  comparison, we ran separate environmental GWA analyses for each of the 39 environmental
282  descriptors used in RF modeling, and also re-analyzed published phenotypic data for a panel
283  of 175 maize inbred lines (hereafter, the WIDP panel, Schneider et al. 2020). We extracted
284  phenotypic data for 8 of our 9 RF modeled traits (not including percent of living cortical
285  area), combining values obtained for well-watered and water-limited treatments into a single
286 GWA model (Runcie and Crawford 2019), estimating variant main (G) and variant x

287  treatment (GXE) effects. To facilitate comparison across panels genotyped using different
288  platforms, we used the MAGMA pipeline (de Leeuw et al. 2015) to combine signals across
289  single nucleotide polymorphisms (SNPs) to a single gene level value. Here, we assigned any
290  SNP +/- 2.5 kb from an annotated gene model to that gene. In the following discussion of
291  overlap between our different GWA analyses, we consider only genes captured in both

292  CIMMyT and WIDP markersets. In later identification of the genes of greatest interest from

293  the predicted GWA analysis, we do not take the WIDP markeset into account.
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294 To compare CIMMyT “predicted”, CIMMyT “environment”, WIDP “G” and WIDP
295 “GxE” GWA analyses, we selected the top 100 genes (determined by p-value) per trait for
296  each analysis and combined these into candidate gene lists, obtaining sets of 636 unique

297  “prediction” genes, 1,282 unique “environment” genes, 542 unique “G” genes and 576

298  unique “GxE” genes (Fig. 5; Supplementary Information). Only 19% of the prediction genes
299  were also present in the environment set (Fig. 5B), indicating that the two were not redundant
300 and that the prediction set was capturing patterns not revealed by separate analyses of the

301  individual environmental descriptors. For example, a region of the short arm of chromosome
302 10 was linked to mean metaxylem vessel diameter in the prediction analysis (Fig. S16). In this
303 case, the -logio(P) value of the most significant SNP for the predicted trait is approximately
304  double that of the best supported environmental descriptor (precipitation in October). The
305  Dbest supported SNP in this region fell within the gene Trichome birefringence-like 10 (Tbl10;
306 Zm00001d023378; Fig. S16). Natural variation in 7b/10 has previously been linked to

307  variation in flowering time (Chen et al. 2012; Kusmec et al. 2017), height (Wang et al. 2022),
308 and root diameter (Pace et al. 2015). As such, 7b110 illustrates a compelling candidate for

309 further follow-up that would not have been identified by standard environmental GWA.

310

311 The gene Vg29 is linked to variation in both metaxylem traits and source elevation

312  There was no evidence that the prediction set was enriched for WIDP root anatomy candidate
313  genes with respect to the environment set - both contained 2-3% WIDP G and GxE genes
314  (Fig. 5B). Nonetheless, we do consider the 29 genes identified in both prediction and WIDP
315 (G and/or GXE) GWA to be high confidence candidates for further characterization (Fig. 5B,
316  S17; Table S4). For example, the gene Vg29 (Zm00001d015397) on the short arm of

317  chromosome 5 was associated with number of metaxylem vessels and total metaxylem vessel


https://paperpile.com/c/jHvuxa/fpYd+ii9l
https://paperpile.com/c/jHvuxa/EfUp
https://paperpile.com/c/jHvuxa/rHBw
https://doi.org/10.1101/2023.11.14.567017
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.14.567017; this version posted November 14, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

318  area in the prediction GWA and with individual metaxylem vessel area and individual

319  metaxylem vessel diameter in the WIDP G analysis (Fig. 6A). The Vg29 gene is predicted to
320 encode a VQ domain transcription factor, part of a large family of proteins that interact with
321  members of the WRKY family under stress (Song et al. 2015), including in response to

322  hypoxia, ozone or nitric oxide (Ledn et al. 2020). The minor allele of the highest scoring SNP
323  (S5:88306863) was associated with greater number of metaxylem vessels and total metaxylem
324  vessel area and declined in frequency within our clusters with increasing predicted values of
325  these same traits (Fig. 6B). Based on gene expression atlas data (Walley et al. 2016), Vg29 is
326  most highly expressed in the roots, consistent with a role in metaxylem development (Fig.
327  6C). Geographically, the minor allele of S5:88306863 was most prevalent in the central

328  Mexican highlands (Fig. 6D), and the MAF increased with mean elevation across our

329  previously defined clusters (Fig. 6E). In summary, Vg29 nicely illustrates an example of a
330 candidate gene associated with phenotypic variation in root anatomy in the inbred WIDP

331  panel that also shows clinal genetic variation across the Mexican environment.

332

333  DISCUSSION

334  We have presented evidence that variation in root anatomy contributes to local adaptation in
335  Mexican native maize. We used predictive models to define biologically relevant clines over
336  which we identified both genotypic and phenotypic variation. Shared GWA candidates

337  between Mexican native maize and modern inbred lines indicated an element of common
338  genetic architecture, although we also identified novel candidates specific to the native

339  Mexican material. Phenotypic patterns suggested that local differences in precipitation and
340  temperature are associated with heritable variation in maize root anatomy. Root anatomical

341  variation broadly followed the established grouping of Mexican maize varieties, themselves
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342  strongly stratified by environment. Our observations are consistent with a role for root

343  anatomical variation in local adaptation. Our combination of environment-based models and
344  GWA allowed us to leverage a relatively small sample of phenotypically characterized

345  locally adapted varieties to identify novel associations between phenotype, genotype and

346  environment in the context of broader maize diversity.

347 Our analyses highlight a predominance of anatomies predicted to reduce axial

348  conductance in material sourced from arid subtropical or temperate environments. In both
349  observed and predicted phenotypic data, varieties from the cooler, drier highland regions

350  were associated with fewer and/or narrower metaxylem vessels and a reduction in the area of
351  the stele with respect to cortex. Comprehensive revision of data across taxa has previously
352  suggested that the capacity for axial water transport is typically greater in plants from wet
353 environments and reduced in plants adapted to xeric conditions (Feng et al. 2016; Lynch et al.
354  2021). Although somewhat counterintuitive, reducing water uptake under dry conditions may
355  Dbenefit plants by reducing root tip desiccation (Richards and Passioura 1989), preventing

356  cavitation (Nardini et al. 2013) and enabling the conservation of soil water resources across
357  the growing season (Richards and Passioura 1989; Leitner et al. 2014). Studies of

358 interspecific variation in crops support these hypotheses with both narrower metaxylem

359  vessels (Priatama et al. 2022; Allah et al. 2010; Purushothaman et al. 2013; Pena-Valdivia et
360 al. 2005) and fewer metaxylem vessels (Strock et al. 2021) being associated with enhanced
361  drought tolerance. Similarly, selection for reduced xylem vessel diameter in Australian wheat
362  has been reported to successfully increase yield under water limitation (Richards and

363  Passioura 1989). In the Mexican highlands, farmers traditionally plant prior to the beginning
364  of the annual rains to maximize the length of the growing season and ensure crops reach

365  maturity prior to the first frosts (Eagles and Lothrop 1994). As a consequence, seed is deep

366  planted to better access residual soil moisture, as well as to offer protection from low
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367  temperatures, a practice also employed in the southwestern US (Collins 1914). For wheat
368  varieties reliant on residual soil moisture during early growth, reduced root conductance has
369  Dbeen correlated with increased yield (Passioura 1972). Mexican highland maize may similarly
370  benefit from rationing water use early in the season (Fischer et al. 1983; Hayano-Kanashiro et

371 al. 2009) with reduced axial conductance contributing to this adaptive water saving strategy.

372 We observed variation in the formation of root cortical aerenchyma, with varieties
373  sourced from regions of higher precipitation generally being associated with greater

374  aerenchyma formation. Root cortical aerenchyma forms constitutively in wetland crops such
375 asrice and in maize wild relatives endemic to regions of high precipitation (Mano et al. 2007,
376  Mano and Nakazono 2021). Many cultivated maize genotypes lack constitutive aerenchyma;
377  however, aerenchyma formation can be induced by environmental stresses, such as hypoxia
378  (Yamauchi et al. 2016), drought (Zhu et al. 2010), heat (Hu et al. 2014) or nutrient starvation
379  (Saengwilai et al. 2014; Galindo-Castaieda et al. 2018). Although greenhouse evaluation was
380  conducted in benign condition, substantial aerenchyma production was observed (11% Jala,
381 this study; 16% PI586644 in Burton et al. 2013) of the total cortical area in individual

382  sections. In the field, aerenchyma plays a role in oxygenation of the root tissue under hypoxia
383  (Jackson et al. 1985; Colmer 2003), while, in resource-limited conditions, the reduction in
384  root metabolic cost resulting from aerenchyma formation may enhance the efficiency of

385  foraging in terms of carbon invested (Klein et al. 2020; Lynch et al. 2021). On the other hand,
386  with fewer living cortical cells a plant may be less able to accommodate mutualistic

387  arbuscular mycorrhizal fungi, although the relationships between root anatomy, microbial
388 interactions, environment and cortical burden remain to be fully understood (Saengwilai et al.
389  2014; Galindo-Castafieda et al. 2018; Strock et al. 2019). In our predictive analysis high

390  aerenchyma area was associated with the varieties from the Gulf coast, the Yucatan

391  (exemplified by Nal Tel in our greenhouse evaluation) and the region around the southern
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392  Mexican border extending into Guatemala. This last region covers the native range of the
393 flooding tolerant teosinte Zea mays ssp. huehuetenangensis (Mano et al. 2005) and suggests

394  flooding may have also exerted a selective pressure on the endemic maize.

395 The functional impact of root anatomical variation is contingent on root system

396 architecture and, indeed, overall plant phenology (Lynch 2019). Differences in growth angle
397  and branching determine the deployment of roots across the soil profile and will interact,

398  synergistically or antagonistically, with root anatomy to impact overall root function. For
399 example, the water-banking effect of reduced axial conductance discussed above has been
400 shown to be enhanced in the context of a shallow root system architecture, enhancing the

401  performance of inbred maize under drought (Strock et al. 2021). While there is a scarcity of
402 information concerning root system architecture in Mexican maize, the limited data reveal
403 remarkable structural diversity, indicating strong spatio-temporal variation in soil exploration
404  (Heymans 2022). It has been noted that native maize root systems tend to be generally

405  shallower compared to those of inbred lines (Burton et al. 2013; Ren et al. 2022).

406  Interestingly, the highland varieties we found associated with reduced axial conductance have
407  previously been described to have a high tendency to lodge (fall over) due to “poorly

408  developed” root systems (Wellhausen et al. 1952). In practice, traditional management

409 involves pilling of earth around the growing plant, freeing the root system from the need to
410  provide mechanical support and perhaps allowing an overall reduction in root system

411 development that contributes to water-banking.

412 In summary, our analyses indicate that reported variation in Mexican native maize
413  root anatomy is distributed systematically over the environment, consistent with a role in
414  local adaptation. We propose that predictive models based on a set of “signpost” accessions
415  can define biologically relevant clines though complex environments, providing the

416  appropriate axes against which to identify both phenotypic and genetic trends. Significantly,
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417  we obtained candidate genes from our predicted trait GWA that were not identified in one-
418  by-one analyses of environmental descriptors, including candidates whose functional role in
419  root anatomy is supported by previous studies of inbred maize (Fig. 5; Klein et al. 2020;
420  Schneider et al. 2020). The combined use of field evaluation and in silico modeling has

421  allowed great progress to be made in defining the functional impact of root anatomical

422  variation (Heymans et al. 2020; Lynch et al. 2021; Sidhu et al. 2023). The further study of
423 locally adapted native varieties has the potential to complement these other approaches. The
424  history of native crop diversity is a natural experiment that has run for thousands of years,
425  selection imposed by environmental conditions being integrated over many generations. As
426  such, subtle signals that can be hard to detect in experimental evaluation may be amplified

427  and detected as patterns of GEA.

428

429 MATERIALS AND METHODS

430  Phenotyped Burton panel

431  Phenotypic data from previous characterizations of greenhouse-grown native Mexican maize
432  were obtained from Burton et al. 2013. After filtering for accessions of Mexican origin,

433  subsequent analyses were completed with data from 39 georeferenced individuals. Additional
434  root anatomical features including fotal metaxylem vessel area (MV A), individual metaxylem
435  diameter (MD), individual metaxylem area (MA), number metaxylem vessels (NMV), and
436  cortical cell size (CCS) were measured from the original Burton et al. cross-section images
437  generated using RootScan v2.4, an imaging software designed to measure anatomical features

438  of root cross-sections from digital images (Burton et al. 2012).

439

440  Genotyped CIMMyYT FOAM panel
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441  Genotypes from a collection of 1791 native Mexican maize accessions from the CIMMyT
442  Maize Germplasm Bank (CIMMyT panel) were obtained from (Navarro et al. 2017; Gates et
443  al. 2019). In brief, sequences were generated using an [llumina HiSeq, and genotypes were
444  called in TASSEL. Missing SNPs were imputed using BEAGLE4, and SNPs were further
445  filtered for minor allele frequency >1%. The genotype data was uplifted to coordinates on the

446  B73 v4 reference genome using Crossmap.

447

448  Environmental Data
449
450 We compiled climatic and soil data for each representative of the long-term averages

451  experienced by an accession’s point of origin for both the Burton and CIMMyT panel. All
452  data used was sourced from publicly available sources with global coverage. Climate data
453  was extracted using R/raster::extract (Hijmans 2023) following the methods described in

454  (Lasky et al. 2015). Briefly, the first set of climate variables come from WorldClim and

455  include information on monthly minimum, maximum, and mean temperatures; mean monthly
456  precipitation; and other derived parameters of biological importance that take into account
457  temperature and precipitation dynamics (Hijmans et al. 2005). Monthly and annual average
458  potential evapotranspiration (PET), and a measure of aridity (mean annual precipitation

459  divided by mean annual PET) that is calculated from WorldClim data were collected from the
460 CGIAR-CSI Globality-Arbitdty database (Zomer et al. 2008). Information on inter-annual
461  variability in precipitation, which may representative of areas where drought acclimation is
462 important (Lasky et al. 2012) were calculated with data from the NCEP/NCAR Reanalysis

463  project (https://psl.noaa.gov/data/reanalysis/reanalysis.shtml; Kalnay et al. 1996). Inter-

464  annual variability in precipitation was obtained by calculating each calendar month’s
465  coefficient of variation (CV) across years for each month’s surface precipitation rate.

466  Information on estimated photosynthetically active radiation (PAR) for each quarter were
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467  averaged for data collected from NASA SRB (https://asdc.larc.nasa.gov/project/SRB).

468  Dynamics of evaporative demand on individuals in the form of vapor pressure deficit (VPD),
469  or the difference between partial pressure of water vapor and maximum potential pressure
470  was collected from the Climate Research Unit (New et al. 2002). In addition to climate data,
471  we also included edaphic chemical and physical properties representative of the long term
472  averages experienced by accessions. The soil data was collected from two sources, SoilGrids
473  (Hengl et al. 2017) and the Global Soil Dataset (GSD; Shangguan et al. 2014). Data from
474  GSD includes soil features of the topsoil and 1 meter below the surface. We found high

475  concordance of values for topsoil and 1 meter below the surface and excluded the topsoil data
476  from our dataset. All soil variables were cleaned by removing outliers and imputed missing
477  values using the MICE package (van Buuren and Groothuis-Oudshoorn 2011; Fox et al.

478  2017).

479

480  GRANAR representations and MECHA estimation of emergent hydraulic properties

481 Generator of Root Anatomy in R (GRANAR; https://granar.github.io), and the model of

482  explicit cross-section hydraulic architecture (MECHA; https://mecharoot.github.io) are open-

483  sourced computational tools. The first tool uses anatomical parameters as inputs to generate
484  digital root anatomies. Once constructed, GRANAR root anatomies can be used for digital
485  visualizations of anatomical parameters, and the anatomical network can be written as a XML
486 file with the same format as CellSet output (Pound et al. 2012). The second tool uses the

487  anatomical networks, such as the one generated by GRANAR to estimate emergent hydraulic
488  properties. We used GRANAR to reconstruct virtual anatomies for all observed accessions of
489  the Burton panel, our predictions of the Burton panel Mexican lines, predicted CIMMyT

490  clusters, and predicted and observed novel germplasm grown in this study. For all

491 aforementioned individuals, we estimated the root hydraulic conductance (K, and K) and
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492  conductivity (k,) with MECHA. The subcellular hydraulic parameters are the same as in
493  (Heymans et al. 2020), and the chosen hydraulic scenario accounts for the hydrophobic
494  structures of an endodermal Casparian strip. The script used is available on a GitHub

495  repository HydraulicViper/RootDiversity (doi: 10.5281/zenodo.10104521) under a GPL-3

496  license.

497

498  As not all anatomical features required for the GRANAR-MECHA pipeline were predictable
499  with our RF models, a few transformations were required for predicted anatomical data to be
500 input into GRANAR. With the exception of traits where RF predictions could directly be
501  used as inputs (number of metaxylem vessels, metaxylem vessel area, aerenchyma area), we
502  used constant values of the mean Burton panel (root cross-section area) or extrapolated

503  values from RF predictions (fotal stele area calculated from RF predicted fotal stele

504  area:root cross-section area using the Burton panel root cross-section area mean).

505

506  Principal component analysis/initial trait/env association

507  We used principal component analysis (PCA) to initially explore internal anatomical

508 variation captured in the greenhouse grown Burton panel. Phenotypes were constrained to
509  only include “pure” traits, excluding proportional and percentage traits which are likely

510 redundant and may be representative of more emergent properties. Principal components
511  were built with R/ade4::dudi.pca and visualized with R/factoextra. We first compared

512  phenotypic PC axes to calculated hydraulic properties to explore the combinations of

513  anatomical traits that are related to variation in hydraulic properties. As an initial attempt to
514  identify relationships between root anatomical traits and environmental variation, we

515  compared the first three phenotypic PCs loadings and calculated hydraulic properties to core

516  environmental features of the accessions’ point of origin (elevation, annual precipitation,
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517  annual mean temperature, soil pH). For all environmental, hydraulic, and phenotypic PC

518 correlations, p-values were adjusted for multiple testing using the Holm method with

519  R/stats::p.adjust (a = 0.05). As correlation between both root anatomical traits and derived
520  hydraulic properties and environment of origin were weak, we then considered if combined
521  environmental features were more able to describe variation in root anatomical traits and

522  hydraulic properties.

523

524  Feature Selection

525  We sought to determine if aspects of accessions’ home environment predict variation in root
526  anatomical traits using a machine learning approach. Importantly, not all variables in the

527  environmental dataset are related to root anatomical variation and not all tested root anatomy
528 traits are significantly associated with variation in environmental features. Feature selection
529  was employed to identify the anatomical traits that had relationships with environmental

530 features (“‘environmentally related traits” from here on) and the environmental descriptors
531  that described variation in those traits through eliminating unimportant variables. We used
532 the function R/Boruta::boruta to obtain all important and tentatively important environmental
533  features for each trait in our dataset (Kursa and Rudnicki 2010). Root anatomical traits which
534  had significant variation described by at least two environmental features were considered
535 environmentally related and retained for further analysis.

536

537  Random Forest Models
538
539 We employed random forest (RF) to determine if variation in response variables (observed

540  anatomical traits of the Burton panel) could be described by several explanatory variables
541  (feature-selected environmental descriptors). For each environmentally related trait, we built

542  a RF model that summarized how trait values are predicted to change across feature-selected
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543  environmental space. RF is a non-parametric classification method that constructs decision
544  trees using subsets of input data to select the predictor variables that limit variance for the
545  response variable predictive model (Breiman 2001). RF models have been found to have high
546  predictive performance when tested data include a large number of predictor variables with
547  little to no relationship to response variables (Fox et al. 2017); however, best practice is to
548  limit the number of predictor variables to avoid model overfitting. As such, we limited

549  response variables for each environmentally related trait model to be the specific

550 environmental features identified in the Boruta feature selection step. As the environmental
551  variables used in this study were continuous, RF models were built as regression trees. RF
552  models were built using R/randomForest::randomForest, 5000 trees were built per model and
553  one third the number of explanatory variables were tried at each split (Liaw and Wiener

554  2002). We increased our number of trees from the default value (500), to account for models
555  with a large number of predictors and for increased stability of variable importance. Model
556  success was evaluated with the percent variance explained output extracted from the

557  randomForest package and the correlation coefficient between observed and RF predicted
558 trait values. To determine the contribution of each boruta-identified environmental descriptor
559  for constructed RF models, we calculated SHapley Additive exPlanations (SHAP) values
560  (Lundberg and Lee 2017).

561

562  Predicting traits using environmental relationships
563
564  Using the constructed RF models, unknown phenotypes of 1791 georeferenced, genotyped

565 CIMMyT accessions (CIMMyT panel) were predicted from environmental descriptors of
566  accession point of origin. Using R/caret::predict (Kuhn 2021), values for all nine
567  environmentally associated traits were predicted for the 1791 CIMMyT panel. For each

568 trained RF model, the full environmental dataset summarizing the source environment of the
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569 CIMMyT panel was constrained to include the environmental descriptors used to train each
570  RF model. These constrained environmental descriptors were used as inputs in each trained
571  RF model to calculate environmentally related traits for all individuals of the genotyped
572  panel.

573

574  Clustering analysis

575 CIMMyT FOAM accessions were clustered by predicted root anatomical traits using

576  Partitioning Around Medoids (PAM) as previously described (Klein et al. 2020). Briefly,
577  anatomical trait values were centered and scaled using R/caret (Kuhn 2021) and outlying
578  values ( > 3 standard deviations from the mean) removed. Within cluster sums of squares
579  (WSS) were visualized as a function of cluster number using R/factoextra::fviz_nbclust
580 (Kassambara and Mundt 2020). From inspection of the resulting curve, the accessions were
581  grouped into seven clusters using R/cluster::pam (Maechler et al. 2021) under default

582  settings. Primary variety (landrace) designations were assigned using data available from

583 CIMMyT (www.mgb.cimmyt.org; 1454 accessions assigned), and these matched to existing

584  morphological-isozymatic (Sanchez G. et al. 2000) and environmental (Ruiz Corral et al.
585  2008) classifications. Testing for enrichment of a given variety in a given cluster was

586  performed using Fisher tests with R/stats::fisher.test, under a contingency table formed by
587  partitioning the 1454 accessions by membership of the cluster and assignment to the variety.
588  Results were adjusted using the Holm method with R/stats::p.adjust (o = 0.05).

589

590  Greenhouse evaluation of root anatomy in selected accessions

591  We selected eight novel native Mexican maize accessions, representative of environmental
592  diversity within the CIMMyT panel for phenotypic validation of RF anatomical predictions.

593  Ten biological replicates of each accession were grown in a greenhouse in State College, PA
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594  (40.8028708, -77.8640406) from April to May of 2022. Plants were grown in 2.83 L pots (4
595 in x 4 in x 14 in, Greenhouse Megastore). The growth media was a mix of silica sand (50%),
596 turface (30%), and field soil (20%) sourced from Rock Springs, PA. Pots were watered to
597  field capacity the night before planting and watered every day after sowing until germination.
598  Once germinated, plants were watered every other day. One week after germination, plants
599  were fertigated with Peters Excel 15 - 5 - 15 Cal Mag Special with Black Iron 200 ppm N
600 recipe and supplemented with an extra 5 ppm Fe (Sprint 330), fed at 1:100 dilution, two times
601  per week until harvest. Greenhouse settings were set at 16 hour days, with a minimum

602 temperature of 21 degrees C and a maximum temperature of 28 degrees C.

603  Following methods from Burton et al. 2013, 28 days after planting, plants were destructively
604  harvested. Two representative axial roots from nodes two and three were collected. From

605 each axial root, a 4-cm root sample was excised five to nine cm from the most basal portion
606  of the sample. Root samples were stored in 75% ethanol until sectioned by laser ablation

607  tomography (LAT; Strock et al. 2022). In LAT, a sample is moved via an automatic stage
608  towards a 355-nm Avia 7000 pulsed laser and ablated in the focal plane of a camera. A

609  Canon T3i camera with a 53micro lens (MP-E 65 mm) was used to capture images of the root
610  cross-section. Two representative images for each root sample sectioned 1 to 3 cm apart were
611  saved for later image analysis with RootScan. Anatomical phenotypes were averaged for each
612  nodal root of a plant, where each value is an average of two roots from each node and two

613  LAT image sections of each root.

614

615  Estimation of genotypic effects on anatomical traits
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616  To estimate the effect of landrace genotype (race designation) on each measured trait across
617  growth stages (nodes), we used linear mixed models to calculate the best linear unbiased

618  predictions (BLUPs) with the equation:

620  Where for each modeled trait, Trait..., fois the overall intercept, Ry, is the random effect of
621  plant race, No, is the random effect of node, Ty, is the random effect of the tray the plant was
622  grown in, and & is the error term. BLUPs were calculated for each measured anatomical

623 trait of a given landrace and extracted using R/Ime4::ranef.
624
625  Validation of multivariate fit of trait predictions and observations

626  We used procrustes analysis to determine concordance between all predicted RF anatomical
627  traits and observed BLUPs. The procrustes analysis relates the overall shape of two sets of
628  multivariate matrices by minimizing the total distance between the two distributions and
629  quantifying how much the relationship between variables in the matrices differ after this
630 alignment (Goodall 1991). The algorithm was implemented using the function

631  R/vegan::procrustes (Oksanen et al. 2022).

632

633  Genome-Wide Association in the Wisconsin Diversity Panel

634  We used genetic and phenotypic data for 175 inbred maize lines from the expanded

635  Wisconsin Diversity Panel (Schneider et al. 2020). We filtered published SNP data for minor
636 allele frequency >5%, resulting in a total of 370,991 SNPs. Thirteen root anatomical traits
637  were extracted from the published study: MA, MD, MVA, NMV, RXSA, TCA,TSA, AA,

638 X.A, CCFN, CCS, TSA.RXSA, TSA.TCA. The full design and experimental protocol are
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639  described in (Schneider et al. 2020). Briefly, maize genotypes were grown in two replicates
640  under well-watered and water-stressed conditions in a randomized complete block design.
641  Plots were irrigated with a center pivot system, and water stress was applied 4 weeks after
642  planting. At anthesis, one representative plant from each plot was excavated from the soil
643  using a standard shovel. Root crowns were soaked and washed to remove soil particles. A
644  representative fourth node root (5-8 cm from the base of the root) was excised and imaged
645  and phenotyped for root anatomical traits using LAT and RootScan software. We fitted a
646  linear mixed effect model using R/Ime4 (Bates et al. 2007) for the well-watered and water-
647  stressed condition with overall mean as the fixed effect and genotype and block as random
648  effects and extracted BLUPs for genotypes with the R/Ime4::ranef function. Broad sense

649 heritability for each root trait was estimated as the genotype variance divided by the sum of
650  genotype variance and error variance from linear mixed effect models. Root trait BLUPs

651  were used to fit linear mixed models using R/GridLMM, a package for fitting linear mixed
652  models with multiple random effects (Runcie & Crawford 2018). We used the function

653 R/GridLMM::GridLMM_GWAS to run the GWA study and set the environmental vector to -
654 1 or 1 in the model to represent the water-stressed and well-watered treatments. The p-values
655  for the genotype main effect and the genotype by environment interaction effect were

656  calculated using Wald tests. The SNP level P-values were combined into the gene level

657  associations using Multi-marker Analysis of GenoMic Annotation (MAGMA) (de Leeuw et
658 al. 2015). MAGMA uses a multiple regression model to aggregate all SNP information into a
659  gene while accounting for linkage disequilibrium (LD). SNPs were annotated to genes using

660 a 2.5 kilobase window around each gene, resulting in 24,099 genes.

661

662  Environmental GWA
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663  We performed MAGMA to measure the gene-level associations between CIMMyT genotypes
664  and selected environmental variables of their native locations. The first five eigenvectors of
665 the genetic relationship matrix were included in the model to control for population structure.
666  SNPs were annotated to genes using a 2.5 kilobase window around each gene. The final

667  dataset contained 1656 genotypes and 28898 genes for CIMMyT panel accessions.

668

669  Common genes shared between WIDP and CIMMyT

670  After gene annotation, we obtained 21883 genes that are shared by the WIDP panel and the
671  CIMMyT panel. To evaluate if genes that are highly associated with root anatomical traits
672  also showed associations with our predicted root traits and environmental variables, we

673  extracted and pooled candidate genes from the top 100 genes for all WIDP root traits,

674  predicted root traits, and related environmental variables identified by MAGMA. The final
675  gene list contains WIDP root anatomical genes (576 genotype main effect genes and 542
676  WIDP genotype x treatment interaction genes), 636 RF predicted anatomical genes, and 1282
677  environmental genes.

678

679  Minor allele frequency

680  To understand the relationship between allele variation, environment, and root traits, we

681  extracted the genotypic information of top SNPs of the target genes. We divided maize

682  landraces into PAM clusters, and calculated the mean elevation, the minor allele frequencies
683 (MATF) of the target SNPs, and the mean predicted root traits for each cluster. Pearson

684  correlation was conducted to test the correlations between MAF and elevation, and between
685 MAF and predicted root traits.

686
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1029  Table 1 Description of root anatomical traits used in this study.

Abbreviation | Trait description

RXSA Root Cross-Section Area
(mm?)

TCA Total Cortical Area (mm?)

TSA Total Stele Area (mm?)

TSA.RXSA Total Stele Area:Root Cross-
Section Area

TSA.TCA Total Stele Area:Total
Cortical Area

AA Aerenchyma Area (mm?)
X.A Percent of Cortex as
Aerenchyma
CCA Cortical Cell Area (mm?)
CCS Cortical Cell Size (mm?)
X.CCA Percent Living Cortical Area
MA Individual Metaxylem
Vessel Area (mm?)
MD Individual Metaxylem
Vessel Diameter (mm )
MVA Total Metaxylem Vessel
Area (mm?)
NMV Number of Metaxylem
Vessels
CCN Number of Cortical Cells
CCFN Cortical Cell File Number
1030
1031

1032
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1034  Figure 1. Root anatomy varies in Mexican native maize. A) PC2 and PC3 loadings for
1035  root anatomical traits of accessions from Burton et al. 2013. Trait description and codes as
1036  Table 1. B) Representative cross sections of extreme high- and low- loading individuals for
1037  PCs 1-3 rendered using GRANAR, scaled to the measured root cross-section area. Trait
1038  codes indicate broad trends seen in trait loading on the PCs. Boxed numbers adjacent to the
1039  central stele show modeled axial conductance (Ky). Boxed numbers on the outer epidermis
1040  show modeled radial conductance (K;). Accession numbers are given at the base of the
1041 images. C) Correlation between modeled K and anatomical PC1. D) Correlation between
1042  modeled radial conductivity (k,) and anatomical PC2. E) Accession source labeled by

1043  loadings on PCl1, divided into terciles as low, medium (med) or high. Base map shaded by
1044  elevation. Inset box plots show the median and quartile elevation for the low, med and high
1045  PC loading groups. Whiskers extend to the most extreme points within 1.5x box length;
1046  outlying values beyond this range are shown as points. Stated p-value refers to an ANOVA

1047  for differences in elevation among the PC1 tercile groups.
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Figure 2. Home environment predicts root anatomy in Mexican native maize. A)
Random forest (RF) modeling for the ratio of total stele area:total cortical area (TSA:TCA).
Accession point of origin colored by observed TSA:TCA from Burton 2013. Individuals
colored pink and green denote the accessions with the lowest (AMES19907) and highest
(P1629263) observed TSA:TCA, respectively. Trait-specific significant environmental
descriptors identified by the Boruta method used for RF model construction, displayed as
SHapley Additive exPlanations (SHAP) contributions. Smoothed RF predicted TSA:TCA for
native Mexican maize. B) RF predicted vs observed TSA:TCA values for all individuals used
in model training and validation. C) Composite GRANAR representation of observed (obs)
and predicted (pred) GRANAR sections for the accessions with the lowest (low, pink) and
highest (high, green) observed TSA:TCA. Predicted GRANAR cross-sections use predictions

for all traits for which RF models were constructed and are rendered at the same size. D)
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Predicted vs observed radial conductivity (k) for all individuals used in model training and
validation. Predicted k, was calculated using RF anatomical predictions and observed k. was
calculated using observed anatomical values from Burton et al. 2013. The individuals with
the lowest and highest observed TSA:TCA are colored pink and green, respectively. Dashed

line is the coefficient of determination for all plotted points.
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Figure 3. Groups defined by shared root anatomical characteristics originate from
distinct environments. 1791 maize accessions forming the CIMMyT panel were grouped
into seven clusters based on eight RF predicted root anatomical traits. A) Geographical
distribution of the clusters. Inset shows elevation, with darker shading corresponding to
higher values. B) Centered and scaled Number of metaxylem vessels (NMV) and C) Total
metaxylem vessel area (MVA) in the seven clusters. Inset shows composite GRANAR
representation generated from the median trait values of highest (left) and lowest (right)
scoring clusters. D) Variation in mean cluster predicted axial conductance across elevation.
Black points indicate the mean axial conductance calculated using RF predicted anatomy vs

the mean elevation at the point of collection for each of the seven clusters. For clusters 2 and
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1078 6, root-cross section renderings are plotted off the regression line for easier view of digitized
1079  anatomy. Root cross-section images are GRANAR representations generated using the
1080 median trait values for each cluster, all rendered at the same size. Native varieties

1081  overrepresented in each cluster are listed adjacent to the GRANAR images.

1082
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Figure 4. Novel phenotypic data is consistent with model predictions. A) Source of eight
selected native maize varieties: 1) Gordo, 2) Jala, 3) Mushito, 4) Nal Tel, 5) Palomero
Toluqueiio, 6) Reventador, 7) Tabloncillo, 8) Zapalote Chico. B) Elevation (Ele), annual
mean temperature (Tmp), and annual precipitation (Ppt) at source locality for the eight native
varieties. Bars on the line plots represent the 5%, 50%, and 95% quantiles for each
environmental descriptor across all CIMMyT panel individuals included in this study (1791).
Points color-coded as A. C) GRANAR renderings of observed anatomical BLUPs across
node two and three roots (colored) and photographs of representative cross-sections of third-
node roots, scaled to the mean measured root cross-section area. D) Procrustes analysis
comparing distribution of RF-predicted (circles) and observed (triangles) anatomical traits.
For each variety, predicted and observed projections are linked with a dotted line. An
arbitrary ellipse was added around three varieties sourced from high elevation. E)
Comparison of standardized observed (obs) and predicted (pre) values of modeled radial
conductance (K;). Values for each variety are connected to illustrate the level of consistency

in ranking. F) as E, showing modeled axial conductance (Kx).
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1104  Figure 5. Evidence for a shared genetic basis of root anatomical variation between
1105 inbred breeding lines and Mexican native maize. A) Distribution of top 100 genes from
1106 GWA analyses of WIDP and CIMMyT accessions across the genome. The shaded area
1107  represents the density of top genes overlapped with window regions (1 x 107 bp). Sector
1108  names represent the number of chromosomes. B) The number of pairwise overlapping genes
1109  among the GWA gene sets. The darker the color of the squares indicates a higher number of

1110  genes. Totals in parentheses show the percentage of the row set in the other sets.
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1113  Figure 6. The gene V¢29 is linked to variation in root anatomy and source environment.
1114  A) Miami plot showing GWA support (-logioP) for association with root anatomy for genes
1115  on aregion of chromosome 5. Points above the x-axis show support for predicted phenotypes
1116  in the CIMMyT panel; points below the x-axis show support for observed phenotypes for the
1117  WIDP panel. The gene Vg29 is associated with total metaxylem vessel area (MVA), number
1118  of metaxylem vessels (NMV), individual metaxylem vessel area (MA) and individual

1119 metaxylem vessel diameter (MD) across the two analyses. Image below the Miami plot shows
1120  the Vg29 gene model (CDS as filled box), SNP position (filled circles) and pairwise linkage
1121 disequilibrium (LD). The position of the focal SNP S5:88306863 is highlighted. B)

1122  Correlation between frequency of the minor allele at S5:88306863 in the previously defined
1123  CIMMyT clusters and mean predicted NMV. C) Expression of Vg29 in four named tissues
1124  from publicly available expression data. Points show different subsamples. The root cortex,
1125  corresponding to the highest expression, is highlighted. D) Geographic allele-distribution of
1126 S5:88306863 in the CIMMyT panel. E) Correlation between frequency of the minor allele at

1127  S5:88306863 and mean elevation at source in the CIMMYyT clusters.
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