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Summary

Excitatory and inhibitory neurons establish specialized identities early in life through cell
type-specific patterns of epigenetic regulation and gene expression. Although cell types
are largely stable throughout the lifespan, altered transcriptional and epigenetic
regulation may contribute to cognitive changes with advanced age. Using single-nucleus
multiomic DNA methylation and transcriptome sequencing (snmCT-seq) in frontal cortex
samples from young adult and aged donors, we found widespread age- and sex-related
variability in specific neuronal cell types. The proportion of GABAergic inhibitory cells,
including SST and VIP expressing cells, was reduced in aged donors. On the other hand,
excitatory neurons had more profound age-related changes in their gene expression and
DNA methylation compared with inhibitory cells. Hundreds of genes involved in synaptic
activity were downregulated, while genes located in subtelomeric regions were
upregulated with age and anti-correlated with telomere length. We further mapped sex
differences in autosomal gene expression and escape from X-inactivation in specific
neuron types. Multiomic single-nucleus epigenomes and transcriptomes provide new
insight into the effects of age and sex on human neurons.
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Introduction
Cell atlases have documented the diverse molecular identity and regulation of brain cell types1,
but the impact of inter-individual differences on epigenetic and transcriptomic regulation remains
unclear2. Epigenetic and transcriptomic signatures of neuronal identity are established
prenatally and refined through childhood and adolescence, and they regulate neural function
throughout the lifespan3–5. Altered gene expression in specific brain cell populations could
contribute to age-related changes in cognition or risk for neurodegenerative disease6,7. Whereas
single-cell transcriptome sequencing offers a snapshot of one moment in the life of a cell,
epigenetic modifications such as DNA methylation represent stable and persistent signatures of
brain cell regulation across cell types and individuals. Single-nucleus multi-omic sequencing of
neurons from donors across the adult lifespan provides a comprehensive view of stable and
age-variable cell regulation in the human brain.

Results

A multiomic atlas of human frontal cortex neurons across age and sex
We measured the transcriptome and DNA methylome8 in frontal cortex neurons of young (23-30
years old) and aged (70-74 years old) male and female donors (n=11, Fig. 1A). We focus on the
human dorsolateral prefrontal cortex (Brodmann area 46, BA46), a critical region involved in
cognitive control and executive function and implicated in neuropsychiatric disorders. We
obtained 55,447 high-quality nuclei with an average of >1.37 million DNA reads, which were
enriched for neurons (NeuN+). Most of these cells (39,830) passed stringent quality control
criteria for RNA-seq data, providing on average 213,000 RNA reads, and 6,800 genes detected
per cell (Fig. S1, Supplementary Table 1).

To assess donor variability, we annotated cells according to major neuron types rather
than fine-grained subtypes. We identified 11 glutamatergic excitatory and 10 GABAergic
inhibitory neuron types based on 100 kb bin non-CG methylation (mCH) features9, which we
labeled based on expression of canonical mRNA cell-type markers10 (Fig. 1B,C). We also
obtained a smaller number of glial cells, including astrocytes, oligodendrocytes and microglia,
from some samples. The pseudobulk gene expression profiles from each cell type were highly
consistent with reference cell types from scRNA-seq of multiple human cortical regions10 (mean
Spearman correlation = 0.84 ± 0.05 for 1000 highly variable genes between cell types, Fig. S2).
As expected, cell type marker gene expression correlated with low gene body DNA methylation
in both CG and non-CG contexts (Fig. 1C, D, F, Fig. S3B)8.

RNA expression and DNA methylation features were highly consistent between
independent tissue samples from the same donor. For example, samples of L2-4
intra-telencephalic (IT) cells from the same donor had Pearson correlation r = 0.98 ± 0.01 for
RNA, 0.99 ± 0.01 for mCG in gene bodies, and 0.98 ± 0.01 for mCH (Fig. 1E and Fig. S3C). By
contrast, the correlation of these signatures in different individuals is lower, especially between
donors with different age or sex (r = 0.90 ± 0.03 for RNA, 0.97 ± 0.01 for gene body mCG, 0.91
± 0.03 for gene body mCH, Fig. 1E and Fig. S3C). The correlation between signatures for
different cell types was far lower (r = 0.73 ± 0.08 for RNA, 0.80 ± 0.07 for mCG in gene bodies,
and 0.48 ± 0.15 for mCH, Fig. S3D).
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Fig 1. | Single nucleus multiomic analysis of inter-individual transcriptomic-epigenomic diversity in human
frontal cortex. (A) Study design. (B) UMAP embedding of nuclei assigned to 11 excitatory, 10 inhibitory and 3 glial
types using non-CG DNA methylation (mCH) in 100 kb bins. (C) Cell type marker RNA expression and gene body
mCH. (D) Correspondence of mRNA, mCG and mCH for the CGE interneuron marker, ADARB2. (E) Correlation of
mRNA expression between independent samples from the same donor, between different donors with the same
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age/sex and different age or sex. (F) Pseudobulk expression (mRNA) and DNA methylation (mCG) at ADARB2 and
NXPH4 (L6b excitatory neurons), averaged across subjects. (G) Separate tracks for young, aged, male and female
groups showing consistent epigenomic and transcriptomic cell type signatures.

These multi-omic data are displayed in a genome browser that compares base
resolution DNA methylation with gene expression for each demographic group
(brainome.ucsd.edu/HumanBrainAging). For example, the gene ADARB2 is highly expressed
across CGE-derived inhibitory neuron types (VIP, LAMP5) and shows corresponding patterns of
low mCG and mCH across the gene body, while NXPH4 labels a group of deep layer excitatory
neurons (L6 cortico-thalamic, CT; Fig. 1E). Stratifying the genomic data by donor age and sex
shows the high reproducibility of DNA methylation and RNA expression tracks for young, aged,
male and female donors (Fig. 1F). These integrated multi-omic, multi-donor data allowed us to
investigate age- and sex-related variability in brain cell transcriptomes and epigenomes.

SST and VIP expressing GABAergic cells are reduced in aged frontal cortex
Cortical glutamatergic excitatory and GABAergic inhibitory neurons are produced before birth,
and their finely balanced interaction throughout the lifespan regulates neural network activity to
enable cognitive information processing. Although new neurons are not produced in the adult
cortex, whether the ratio of excitatory to inhibitory neurons changes with age remains unclear.
We found a 68% lower proportion of inhibitory neurons in aged samples (mean 0.28 ± 0.06 s.d.)
compared with young samples (0.41 ± 0.06, p=0.01, Wilcoxon signed-rank test, Fig. 2A). These
differences were not explained by sample quality, as we found no difference in the fraction of
high-quality cells or in DNA methylation quality-control metrics in young vs. aged donors (Fig.
S1).

The age-associated decline of inhibitory neurons was driven by substantial loss of SST-
(2.90-fold, FDR<0.1) and VIP-expressing cells (1.71-fold) (Fig. 2B; Fig. S4A). There was also an
increase in the proportion of CGE-derived LAMP5 LHX6 neurons (1.67-fold), and a subtype of
L4-5 IT excitatory neurons (1.50-fold). Notably, an increased excitatory to inhibitory neuron ratio
and loss of SST or VIP neurons has been observed in the hippocampus of Alzheimer’s disease
patients11–14.

Widespread age-related changes in cell type-specific gene expression and DNA
methylation
The deep epigenomic and transcriptomic profiles of our snmCT-seq data allowed us to further
examine age-related changes in gene regulation in specific neuron types. The low-dimensional
embedding of cells based on CG and non-CG DNA methylation throughout the genome showed
substantial differences between excitatory neurons from young and aged donors (Fig. 2C). By
contrast, inhibitory cells from all donors had very similar global methylation profiles and their
UMAP embeddings were largely overlapping. We did not analyze age-related changes in glial
cell types because the number of glial cells was not sufficiently balanced across donors.

The genome-wide average level of CG DNA methylation varies across neuron types15,16,
ranging from a low level of methylation in L2-4 IT neurons (mCG=0.82) to the highest levels in
SST inhibitory cells (mCG=0.86) (Fig. S4B). Non-CG methylation, particularly at CA
dinucleotides, varied by more than 2-fold across neuron types, with mCA ranging from 0.07 to
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0.15 (Fig. S4C, D). Genome-wide average methylation for each cell type was largely stable in
aging, with slight increases in mCG in some excitatory neurons (Fig. S4B, C, D). This shows
that any age-related global changes in mCG and mCH are small relative to the cell type-specific
patterns of DNA methylation that are established in early life and largely persist through the
adult lifespan.

We found 1,904 unique differentially expressed genes (age-DEGs) in young vs. aged
neurons (FDR<0.05 and fold-change >1.2 in at least one cell type, Fig. 2D, Table S3). Overall,
we found more age-DEGs in excitatory neurons (1,536 unique genes) compared with inhibitory
neurons (601). In particular, there were relatively few age-DEGs in SST- (7 age-DEGs) or
VIP-expression (109) inhibitory cells. This indicates that, despite their reduced population in
aged donor brains, the surviving SST and VIP cells maintain a similar gene expression profile
compared with young adults.

Despite the limited number of donors in our study, the aging changes were highly
consistent with mRNA measurements from bulk brain tissue in a large cohort of up to n=255
donors from the gene tissue expression project (GTEx) (r = 0.71, Fig. 2F; Fig. S4D)17. Whereas
the GTEx data identified just 28 DEGs, our single nucleus data identified more alterations to
brain gene expression.

Changes in gene expression during aging could be driven by alterations to epigenetic
modifications, including DNA methylation. Thousands of cytosines throughout the genome have
systematic changes in DNA methylation during childhood brain development3,4, and the DNA
methylome provides a clock-like signature of aging throughout the lifespan in multiple tissues
and species18,19. However, previous analyses of age-related changes in DNA methylation lacked
cell type-specific resolution, and did not assess the methylation status of all CG and non-CG
sites genome-wide. Focusing on mCG, we called differentially methylated regions (DMRs)
between aged and young donors in each neuron type, controlling for sex20,21. We found
age-DMRs in all cell types, with more regions gaining than losing methylation with age (Fig. 2D,
Table S4). For example, we found 19,715 age-DMRs in L4-5 IT-TSHZ2 neurons (covering 8.5
Mbp, ~0.3% of the genome), and 98% of these DMRs increase methylation in aged samples
(hypermethylated age-DMRs).

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2023. ; https://doi.org/10.1101/2023.11.11.566717doi: bioRxiv preprint 

https://paperpile.com/c/hrQNfT/OojK
https://paperpile.com/c/hrQNfT/g2cT+eUSg
https://paperpile.com/c/hrQNfT/kF41+l9dP
https://paperpile.com/c/hrQNfT/LOnC+yGoy
https://doi.org/10.1101/2023.11.11.566717
http://creativecommons.org/licenses/by-nc-nd/4.0/


Chien et al., Cell type-specific effects of age and sex on human cortical neurons

Fig 2. | Aging effects on inhibitory and excitatory neuron cell types. (A, B) Proportion of GABAergic inhibitory
neurons (A) and neuron subtypes (B) in young and aged donors (Wilcoxon rank-sum test; n=5 young, n=6 aged
donors). (C) Excitatory neurons separate by age in a UMAP embedding. Markers show centroids of cells by type from
young (x) and aged (circles) donors. (D) Number of age-differentially expressed genes (age-DEGs) and differentially
methylated regions (age-DMRs) in each cell type. (E) Number of age-DEGs and age-DMRs after sampling 100 nuclei
per cell type per sample. Error bars show the 25th and 75th quantile across random samples. (F) Correlation of age
effect on gene expression in our data with GTEx data from bulk frontal cortex17. (G) Fold change of significant
age-DEGs in at least one cell type (left), and mCG difference between aged and young neurons in age-DMRs (right).
(H) Biological pathways enriched for age-DEGs that are downregulated in aged neurons (FDR <1e-3).

To directly compare age-related changes in expression across cell types without bias
due to differences in cell abundance, we sampled 50 cells from each of the major neuron types
for each sample followed by DE gene analysis (Fig. 2E). We also applied Augur to prioritize cell
types that have the most age effect22 (Fig. S4E). Although the number of significant DEGs and
DMRs was greatest in excitatory IT neurons, the effect of aging was similar across neuron types
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for most age-DEGs even in cell types in which the effect did not reach statistical significance
(Fig. 2G). Among the 1,904 age-DEGs, only two protein-coding genes had opposite direction of
age-related change between excitatory and inhibitory neurons (ATP2B4: 3.3-fold increase in
L4-5IT TSHZ2 and 2.5-fold decrease in MGE PVALB; INPP4B: 3.8-fold increase in L6CT and
2.2-fold decrease in CGE ADAM33). By contrast, age-DMRs are more cell type specific and
more prominent in excitatory neurons, especially in L2-4 IT and L4-5 IT TSHZ2 (Fig. 2G).

Reduced expression and increased methylation of synaptic genes in the aging brain
Genes down-regulated with age are enriched in pathways related to synaptic signaling and cell
adhesion (Fig. 2H). These included neuroligin 1, NLGN1, which mediates the formation and
maintenance of excitatory synapses23; phosphatase and actin regulator 1, PHACTR1, encoding
a synaptic protein regulating excitatory synapses24; and the voltage-gated potassium channel
KCNH725 (Fig. S5D). The downregulation of synaptic and cell adhesion genes may be
associated with reduced synaptic plasticity26,27. By contrast, only a single ontology category,
histone H4 acetylation, was significantly enriched in up-regulated genes in inhibitory neurons
(FDR < 0.01, Fig. S5C) (see below).

Increased DNA methylation in aged neurons correlates with reduced gene expression
DNA methylation differences between cell types correlates with cell type-specific expression15,28,
but whether age-related changes to the epigenome correlate with transcriptomic age changes
has not been established. To address this, we calculated the Spearman correlation of the
fold-change (aged/young) for RNA vs. DNA methylation features at age-DE genes (Fig. 3A, Fig.
S6). Gene body mCH and mCG had a strong negative association with mRNA expression in
most neuron types (FDR < 0.01). For example, excitatory L4-5 IT RORB TSHZ2 had r = -0.53
(p<10-31, Fig. 3B). Gene body mCG had a similar correlation, but mCG and mCH at the
promoter region (transcription start site ± 1kb) was less strongly correlated (Fig3A, Fig. S6).
Correlating mRNA with mC features across all genes showed a similar pattern of negative
association (Fig. S6C). We conclude that changes in neuronal DNA methylation coincide with
age-related expression changes in the adult brain, consistent with a potential regulatory role.

To illustrate the age-related changes in gene expression and DNA methylation, we
highlight the rho GTPase activating protein 10, ARHGAP10 (Fig. 3C). mRNA for ARHGAP10 is
highly expressed in upper layer excitatory neurons (L2-4 IT) in young donors (>435 transcripts
per million mapped reads, TPM), and subsequently reduced 3.2-fold in older donors. Consistent
with this downregulation, we found several DMRs around the ARHGAP10 locus where DNA
methylation increases with age in L2-4 IT neurons. DMRs occurred in the upstream intergenic
region, marking putative cis-regulatory elements, as well as within the promoter and gene body.
Gene body mC also had a strong negative correlation with ARHGAP10 mRNA expression
across donors (r = –0.68 for mCG, –0.82 for mCH, Fig. 3F). Similarly, the highly expressed
potassium voltage-gated channel subfamily H member 7, KCNH7, was reduced 1.9-fold in aged
donors and showed a corresponding increase of CG methylation (Fig. 3D, G).
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Fig 3. | Correlated transcriptome and DNA methylome changes in the aged human brain. (A) Spearman
correlation coefficient between the age change of gene body DNA methylation (aged - young) and the fold-change in
gene expression in age-DEGs.* FDR <0.01. (B) Example scatter plots showing significant age-DEGs (colored points)
correlated with the age change in gene body mCH. Gray points show all age-DEGs in at least one cell type. (C,D)
Browser view of the ARHGAP10 (C) and KCNH7 (D) loci, showing reduced gene expression and increased mCG at
age-DMRs throughout the gene body. (E) Browser view of the FKBP5 loci, showing reduced mCG at age-DMRs and
increased gene expression. (F,G,H) Scatter plots of mRNA expression and CG, non-CG methylation for each donor in
ARHGAP10 (F), KCNH7 (G) and FKBP5 (H). (I) Motif enrichment of hypermethylated age-DMRs. Only motifs
significantly enriched (FDR<0.001) in more than two cell types are shown. (J) Gene expression of EGR1 gene. (K)
The relation between maximum methylation difference in age and the methylation difference between cell types for all
1kb bins. Bottom row is the histogram of the bins with age methylation difference. (L) mCG age difference in genomic
compartments. Polycomb and heterochromatin regions are called by chromHMM whole brain tissue annotation. DNA
methylation valleys are called by methylSeekR from our data.
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In total, age-DMRs covered 32.4 Mbp, mainly at non-exonic sequences (94%). The
majority of the age-DMRs were in introns (69%) or intergenic regions (25%). To further
characterize the DMRs, we analyzed their enrichment in functional genomic compartments
defined by multiple histone modification ChIP-seq datasets from human prefrontal cortex using
chromHMM29 (Fig. S5F). DMRs that increase methylation in aged neurons were enriched in
enhancers, and in states associated with Polycomb repressive complex 2 (PRC2). DMRs that
lose methylation in aged neurons were only enriched in active states.

To explore the significance of DNA methylation changes we used sequence motif
enrichment analysis to identify transcription factors that may bind at age-DMRs30. Motifs of early
growth response (EGR) family factors, including WT1 and EGR1, were enriched in excitatory
neuron age-DMRs that increase methylation with age (FDR<0.001, Fig. 3I). Up to 12.5% of
hypermethylated (aged > young) age-DMRs overlapped EGR1 motifs (Fig. S5G). EGR1
expression was also strongly reduced with age (4-30 fold) in both excitatory and inhibitory
neurons (Fig. 3J), although there was no significant difference in gene body methylation. EGR1
is an immediate early gene encoding a zinc finger transcription factor that is important for
long-term memory consolidation31,32. Our findings in the human frontal cortex extend previous
observations of reduced EGR1 expression and increased promoter mCG in the hippocampus of
aged mice33. By contrast, regions that lost mCG in aged neurons were enriched in transcription
factor binding motifs of the AP-1 family of immediate early genes, Fos and Jun, and the
transcription elongation factor GRE (Fig. S5H).

DNA methylation plays a fundamental role in development, establishing unique sets of
hypomethylated DMRs that mark each mature cell type9,16. These regions have large differences
in mCG across adult neuron types. We hypothesized that age-related changes in DNA
methylation may specifically affect these developmentally programmed sites of cell type
regulation. Consistent with this, we found that regions with the greatest difference in mCG or
mCH between aged and young cells in any cell type also had large differences in mean
methylation between cell types in young adults (Fig. 3K).

Low methylated regions gain mCG with age
Studies of the DNA methylation clock have identified systematic changes in mCG throughout
the lifespan, particularly at sites with low mCG34. Consistent with this, we found increased mCG
with age in DNA methylation valleys (DMVs), defined as extended regions (≥5 kb) with low
average mCG (<15%)35 (Fig. 3L). DNA methylation also increased at regions associated with
Polycomb repressive complex 2 (PRC2) in prefrontal cortex29, although the PRC2 annotation
was not cell type-specific. By contrast, there was no effect of age on mCG at heterochromatin
regions marked by the repressive histone modification H3K9me3 (Fig. 3L). The lack of
increased mCG in heterochromatin regions is notable given the observation of increased
chromatin accessibility and reduced H3K9me3 at these sites in excitatory neurons in aged
mice36.

Increased expression of subtelomeric genes in aged brain cells
We observed notable examples of genes with strongly increased expression in aged neurons.
FKBP5, a gene involved in immunoregulation and glucocorticoid receptor signaling, increased
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expression 5.2-fold in aged neurons and harbored hypomethylated (young > aged) age-DMRs
in its gene body (Fig. 3E). Aging and stress have been associated with increased FKBP5
expression and decreased methylation at two CG sites in blood in multiple large human cohorts
(n>3000), and this was mechanistically linked to NF-k-B driven inflammation37,38. Another
example of an age-increased gene in L2-4 IT neurons was the mu opioid receptor, OPRM1
(FDR<0.05, >2-fold increase). Altered opioid receptor signaling has been reported in aged
rodents39.

Fig 4. | Increased expression of subtelomeric genes in aged neurons. (A) Average DNA methylation around the
promoter of age-DEGs whose expression increases (red) or decreases (blue) with age. Age-decreasing genes have
higher gene body mCG, while age-increasing genes have lower mCH both in the gene body and in the surrounding
region. (B) Density of differentially methylated regions (DMRs) around age-DEGs. Hypermethylated age-DMRs are
enriched in age-decreasing genes. Hypomethylated age-DMRs are rare, but they are enriched in the promoters of
age-increasing genes. (C-F) Distribution of DEGs (C), DMRs (D), normalized DNA methylation (E), genes and
genomic GC content (F) as a function of distance to the nearest chromosome end. Error bars are the standard error
across chromosomes. (G) Normalized density of age-, sex- and cell type-DMRs as a function of distance to the
nearest chromosome end. (H) Enrichment of age-increasing DEGs in subtelomeres (≤5 Mb from chromosome end)
(FDR <0.05, Fisher exact test). Enrichment calculated as (observed/expected) subtelomeric A>Y genes, where
expected = (# A>Y genes)(# subtelomeric DEGs) / (# DEGs). (I) Median telomere length in L2-4IT neurons for each
donor, estimated by TelomereHunter40. (J) Pearson correlation of pseudobulk mRNA expression with donor telomere
length for DE and non-DE genes in subtelomeric or non-telomeric regions in L2-4IT neurons. (K) Map of the density
of age DMRs across the genome.
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Despite these examples, we did not identify a clear functional association for
age-increased genes as a group, in contrast with the significant enrichment of synaptic function
for age-decreased genes (Fig. 2H). Moreover, whereas age-decreased genes fit an expected
pattern with increased methylation and enriched hypermethylated age-DMRs in their gene body,
age-increased genes were not enriched in gene-body mCG (Fig. 4A, B). Instead, genomic
regions that surround age-increased genes had less age-related accumulation of mCH
compared with regions around age-decreased genes (Fig. 4A). mCG hypo-DMRs (aged <
young) were slightly enriched at the promoters of age-increased genes (Fig. 4B).

Given the reduced mCH around age-increased genes, we reasoned that these genes
may be clustered in genomic regions with a distinct chromatin organization. We found that
age-increased genes, but not age-decreased genes, were enriched ~1.5-fold within the
subtelomeric regions, i.e. <5 Mb from the ends of chromosomes (Fig. 4C). We found a similar
pattern of enrichment for age DMRs, including both hypo- and hyper-mCG age-DMRs (Fig. 4D).
The subtelomeric regions have lower average mCG (~5% lower than the genome average) and
mCH (~20% lower, Fig. 4E). Subtelomeres also have higher gene density and higher GC
content than the rest of the genome (Fig. 4F).

Telomere attrition and telomere DNA damage response in aging have been reported in
both dividing and post-mitotic cells41,42. We reasoned that the enrichment of age-increasing
DEGs in subtelomere regions might be related to the disruption of the chromatin structure at
chromosome ends due to telomere damage. We applied TelomereHunter40 to estimate telomere
length for each donor, using information from snmCT-seq reads that mapped to unique genomic
locations as well as unmappable reads. Estimated telomere length was significantly shorter in
L2-4 IT neurons from aged vs. young donors (Fig. 4I, p<0.05, Wilcoxon rank-sum test).
Furthermore, shorter telomere length correlated with increased expression of age-DEGs located
in the subtelomere regions, consistent with a telomere position effect43 (Fig. 4J).

We found age DMRs enriched at the ends of many, but not all, chromosomes (Fig. 4K).
By contrast, there was no enrichment at centromeres. The enrichment of DMRs was not unique
to age-related mC, but was also observed for sex DMRs and cell-type DMRs (Fig. 4J). This
enrichment was also not unique to a particular cell type but was observed across multiple
excitatory and inhibitory neuron types (Fig. 4H, FDR<0.05).

These findings are notable given the observation of age-increased expression of genes
in subtelomeric regions in multiple tissues across a large cohort (GTEx)17. In that study, six
tissues had significant enrichment of age-increased genes within the subtelomeres, including
whole blood, skeletal muscle, thyroid, and sigmoid colon, all of which have been shown to
progressively lose telomere length with advanced age. The GTEx data showed no enrichment
of age-increased genes in the subtelomeres for any of the 14 brain tissues tested, including
frontal cortex17. Despite the lower number of donors in our study, our single-cell data identified a
larger number of age-DEGs and recapitulated the enrichment of age-increased DEGs observed
in other tissues. These data indicate that post-mitotic neurons experience age-related
alterations of gene expression, including cell type specific age-increased expression, in the
subtelomeric compartment.
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Fig 5. | Sex differences in DNA methylation
and gene expression in human neurons.
(A) Number of autosomal and X-linked sex
differentially expressed genes (sex-DEGs) and
differentially methylated regions (sex-DMRs) in
each cell type. (B) Comparison of the
female/male expression for autosomal
sex-DEGs in neural cell types with GTEx data
from bulk frontal cortex44 (colors correspond to
cell types shown in Fig. 3A). (C) Fold-change
of autosomal sex-DEGs that are significant in
multiple cell types. (D, E) Sex-specific RNA
expression of PDIA2, and RNA and gene body
DNA methylation of LINC011115. (F) CG DNA
methylation in the promoter and 5’ intronic
region of LINC011115, with female hypo-mCG
age-DMRs. (G) Gene body non-CG
methylation ratio (female/male) in 41 putative
chrX escape genes with female mCH > 0.02
and female/male mCH >1.5 in at least one cell
type. (H) Scatter plots of gene body mCH in
male and female neurons for X-linked genes
(gray dots) and putative escape genes (black).
Cell type-specific X-inactivation escape genes
are labeled.
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Transcriptome and DNA methylome differences between male and female neurons
In contrast with the effect of age, sex differences in cell type proportion and global CG or CH
DNA methylation were not significant (Fig. S4A,S7A,B, FDR>0.1)2. We detected a total of 160
autosomal and 6 X-linked differentially expressed genes (sex-DEGs) across all cell types;
Y-linked genes were excluded from this analysis (Fig. 5A, Table S5). We also identified 11,702
unique autosomal sex-DMRs (merged across cell types), covering 3.1 Mb (Table S6). As
previously reported, sex-DMRs also occured throughout chrX, covering 108 Mb (69% of the
whole chromosome)45,46.

Sex-specific differential expression in our dataset was consistent with analysis of
whole-tissue RNA-seq in two studies using GTEx data from bulk brain tissue samples (Fig. S7C,
D)44,47. The ratio of gene expression in female vs. male cells for autosomal sex-DEGs correlated
with GTEx frontal cortex (Brodmann area 9)44. The strongest correlation was with L2-4 IT
neurons (Spearman r=0.22, p<10-10), which represent the largest subpopulation of neurons in
the frontal cortex (Fig. 5B, S7D). A notable example of an autosomal gene with strong
sex-biased expression in our data was protein disulfide isomerase family A member 2, PDIA2
(Fig. 5C,D). PDIA2, which is reported to modulate estradiol activity through direct binding48, is
expressed 3.4-4.4 fold more in male than female neurons.

Among the thousands of autosomal sex-DMRs, there was a similar number of regions
with increased methylation in males and in females. As an example, the long non-coding RNA,
LINC01115, had a prominent pattern of mCG DMRs (female < male) at the promoter and 5’
intronic region in both excitatory and inhibitory neurons (Fig. 5F). The gene also had
significantly lower gene body mCH in females than males. Consistent with this female
hypo-methylation, LINC01115 was expressed more strongly in females than males (Fig. 5E).
LINC01115 was recently reported to have a striking increase in the active chromatin mark
H3K4me3 in the prefrontal cortex of schizophrenic patients compared to controls49.

Cell type-specific X-inactivation escape genes
X chromosome inactivation balances gene expression on chrX in females and males. This
process prevents accumulation of mCH across the majority of the female inactive X
chromosome45. A subset of X-linked genes escapes X inactivation and accumulates high levels
of mCH in the gene body in female neurons3,45,46. Previous studies using bulk tissue samples
could not identify cell type-specific X-inactivation escape features. Using our single cell data, we
identified 41 chrX genes with female-to-male gene body mCH ratio greater than 1.5 in at least
one cell type, which we defined as putative escapee genes (Fig. 5F,G). Previously identified
escapees3,50 such as UBA1 and KDM5C had consistent escape signatures across all cell types.
However, some genes previously identified as escapees exhibited cell type-specific non-CG
methylation differences between males and females. For instance, GEMIN8 had higher gene
body non-CG methylation in females compared to males in excitatory neurons and CGE-derived
inhibitory neurons, but not in MGE-derived inhibitory neurons. IQSEC2 lacks escape signatures
in VIP and SST neurons. Moreover, genes previously considered to be subject to inactivation
exhibited cell type-specific escape signatures in our data. For example, BCAP31 and ATP2B3
had elevated female non-CG methylation in excitatory neurons but not in inhibitory neurons. By
contrast, USP11 had strong escape signatures in inhibitory neurons but not in excitatory
neurons.
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Discussion
No two humans are alike, and inter-individual differences in brain cell regulation are critical to
understanding the basis of human cognitive diversity. Our study adds the dimensions of age-
and sex-related variation to our knowledge of the transcriptomic and epigenomic diversity of
human neuron types.

Studies of the so-called DNA methylation clock have shown that changes in methylation
at several dozen sites throughout the genome constitute a broadly shared predictive signature
of age with similar features across human tissues and mammalian species18,34,51. Our data using
whole-genome sequencing of the DNA methylome and transcriptome in the adult human cortex
reveal cell type specific age-related changes in each of the specialized excitatory and inhibitory
neuron types.

We found that intratelencephalic-projecting (IT) excitatory neurons in layers 2-4 and 4-5
were most affected by aging in terms of both gene expression and DNA methylation.
Age-related changes in DNA methylation were strongly correlated with changes in gene
expression. Increased DNA methylation at both CG and non-CG sites accompanied decreased
gene expression, particularly for genes implicated in synaptic structure and function26 such as
Egr133, Nlgn123, PHACTR124, and Kcnh725. Moreover, distal enhancers with age-increased CG
methylation (age-DMRs) were enriched in the DNA sequence motif associated with Egr1
transcription factor binding sites. These data extend the known role of DNA methylation in pre-
and post-natal brain development, when cell type specific patterns of CG and non-CG
methylation are established as neurons acquire and consolidate their mature identity3. Our
findings show that parallel changes in the DNA methylome and transcriptome of neurons
throughout the lifespan contribute to age-related alterations in neural function, with the greatest
impact on upper-layer excitatory neurons.

Whereas age-decreasing genes had a clear synaptic function, we found that
age-increasing genes were instead characterized by a distinctive genomic distribution. These
genes were enriched in the subtelomeric regions near the ends of chromosomes, consistent
with observations in other tissues in which telomeres shorten with age17. Moreover, we found
evidence for shorter telomeres in neurons from aged compared to young donors, although
telomere length estimates from our snmCT-seq data are difficult to validate40. These
observations suggests that up-regulation of gene expression in subtelomeres of post-mitotic
neurons may not be related to cell division. Instead, telomere shortening could potentially be
related to DNA damage repair in neurons52,53. Although there was no pattern of enrichment for
specific functional annotations with subtelomeric age-increased genes, these genes included
some with notable roles such as the glucocorticoid receptor co-chaperone Fkbp537,38.

In contrast with excitatory neurons, GABAergic inhibitory cells had highly similar gene
expression and DNA methylation patterns in young adult and aged humans. Recent studies
have noted the relative conservation of inhibitory compared to excitatory neuron gene
expression across brain regions, mammalian species, and inidividual human donors10,54,55.
Instead of altered regulation, we observed a strong reduction in the proportion of two
GABAergic neuron subtypes, SST and VIP expressing cells, in aged compared with young adult
donors. One of these subtypes, the SST neurons, were reportedly reduce in AD patients7,11–14.
This observation could partly reflect differences in the efficiency for sampling nuclei from distinct
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neuron types using our snmCT-seq procedure, which relies on FANS sorting. More direct cell
counting using microscopy and/or spatial transcriptome data are needed to further validate this
observation.

Our study has several limitations. First, we performed deep sequencing of >5,000 cells
from each of 11 donors, a design that enables analysis of specific brain cell types at the
expense of a broader representation of variability across more donors. The consistency of our
age- and sex-DEGs and of the pattern of subtelomeric enrichment of age-increasing genes with
GTEx data from hundreds of donors17,44,47 validates the reliability of our sample. As noted above,
our observation of the depletion of SST and VIP cells in aged donors could be impacted by
artifacts due to nuclei sorting. Finally, our study focuses on neurons, which neglects the
important role of glia in aging and age-related disease56.

Single-cell sequencing has revolutionized biological studies by revealing the distinct
regulation of individual cells. Our study shows that multiomics can extend this powerful
approach to assess the dimensions of inter-individual diversity, including age and sex.
Differences in brain cell regulation between individuals are an important aspect of human brain
function and must be addressed as we seek a comprehensive understanding of brain cell
diversity1.

Data availability
Data from this study are available from GEO at accessions GSE193274, GSE193296,
GSE193299, GSE193313, GSE193339, GSE193372, GSE193458, GSE193499, GSE201248,
GSE201830, GSE201910, GSE201933, GSE202033, GSE202062, GSE202125, GSE202162.
The data may be interactively explored using a custom genome browser
(https://brainome.ucsd.edu/HumanBrainAging) and a single cell browser
(https://cellxgene.cziscience.com/collections/91c8e321-566f-4f9d-b89e-3a164be654d5).
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Figure legends

Fig 1. | Single nucleus multiomic analysis of inter-individual transcriptomic-epigenomic
diversity in human frontal cortex. (A) Study design. (B) UMAP embedding of nuclei assigned
to 11 excitatory, 10 inhibitory and 3 glial types using non-CG DNA methylation (mCH) in 100 kb
bins. (C) Cell type marker RNA expression and gene body mCH. (D) Correspondence of mRNA,
mCG and mCH for the CGE interneuron marker, ADARB2. (E) Correlation of mRNA expression
between independent samples from the same donor, between different donors with the same
age/sex and different age or sex. (F) Pseudobulk expression (mRNA) and DNA methylation
(mCG) at ADARB2 and NXPH4 (L6b excitatory neurons), averaged across subjects. (G)
Separate tracks for young, aged, male and female groups showing consistent epigenomic and
transcriptomic cell type signatures.

Fig 2. | Aging effects on inhibitory and excitatory neuron cell types. (A, B) Proportion of
GABAergic inhibitory neurons (A) and neuron subtypes (B) in young and aged donors (Wilcoxon
rank-sum test; n=5 young, n=6 aged donors). (C) Excitatory neurons separate by age in a
UMAP embedding. Markers show centroids of cells by type from young (x) and aged (circles)
donors. (D) Number of age-differentially expressed genes (age-DEGs) and differentially
methylated regions (age-DMRs) in each cell type. (E) Number of age-DEGs and age-DMRs
after sampling 100 nuclei per cell type per sample. Error bars show the 25th and 75th quantile
across random samples. (F) Correlation of age effect on gene expression in our data with GTEx
data from bulk frontal cortex17. (G) Fold change of significant age-DEGs in at least one cell type
(left), and mCG difference between aged and young neurons in age-DMRs (right). (H) Biological
pathways enriched for age-DEGs that are downregulated in aged neurons (FDR <1e-3).

Fig 3. | Correlated transcriptome and DNA methylome changes in the aged human brain.
(A) Spearman correlation coefficient between the age change of gene body DNA methylation
(aged - young) and the fold-change in gene expression in age-DEGs.* FDR <0.01. (B) Example
scatter plots showing significant age-DEGs (colored points) correlated with the age change in
gene body mCH. Gray points show all age-DEGs in at least one cell type. (C,D) Browser view of
the ARHGAP10 (C) and KCNH7 (D) loci, showing reduced gene expression and increased
mCG at age-DMRs throughout the gene body. (E) Browser view of the FKBP5 loci, showing
reduced mCG at age-DMRs and increased gene expression. (F,G,H) Scatter plots of mRNA
expression and CG, non-CG methylation for each donor in ARHGAP10 (F), KCNH7 (G) and
FKBP5 (H). (I) Motif enrichment of hypermethylated age-DMRs. Only motifs significantly
enriched (FDR<0.001) in more than two cell types are shown. (J) Gene expression of EGR1
gene. (K) The relation between maximum methylation difference in age and the methylation
difference between cell types for all 1kb bins. Bottom row is the histogram of the bins with age
methylation difference. (L) mCG age difference in genomic compartments. Polycomb and
heterochromatin regions are called by chromHMM whole brain tissue annotation. DNA
methylation valleys are called by methylSeekR from our data.

Fig 4. | Increased expression of subtelomeric genes in aged neurons. (A) Average DNA
methylation around the promoter of age-DEGs whose expression increases (red) or decreases
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(blue) with age. Age-decreasing genes have higher gene body mCG, while age-increasing
genes have lower mCH both in the gene body and in the surrounding region. (B) Density of
differentially methylated regions (DMRs) around age-DEGs. Hypermethylated age-DMRs are
enriched in age-decreasing genes. Hypomethylated age-DMRs are rare, but they are enriched
in the promoters of age-increasing genes. (C-F) Distribution of DEGs (C), DMRs (D), normalized
DNA methylation (E), genes and genomic GC content (F) as a function of distance to the
nearest chromosome end. Error bars are the standard error across chromosomes. (G)
Normalized density of age-, sex- and cell type-DMRs as a function of distance to the nearest
chromosome end. (H) Enrichment of age-increasing DEGs in subtelomeres (≤5 Mb from
chromosome end) (FDR <0.05, Fisher exact test). Enrichment calculated as
(observed/expected) subtelomeric A>Y genes, where expected = (# A>Y genes)(# subtelomeric
DEGs) / (# DEGs). (I) Median telomere length in L2-4IT neurons for each donor, estimated by
TelomereHunter40. (J) Pearson correlation of pseudobulk mRNA expression with donor telomere
length for DE and non-DE genes in subtelomeric or non-telomeric regions in L2-4IT neurons. (K)
Map of the density of age DMRs across the genome.

Fig 5. | Sex differences in DNA methylation and gene expression in human neurons. (A)
Number of autosomal and X-linked sex differentially expressed genes (sex-DEGs) and
differentially methylated regions (sex-DMRs) in each cell type. (B) Comparison of the
female/male expression for autosomal sex-DEGs in neural cell types with GTEx data from bulk
frontal cortex44 (colors correspond to cell types shown in Fig. 3A). (C) Fold-change of autosomal
sex-DEGs that are significant in multiple cell types. (D, E) Sex-specific RNA expression of
PDIA2, and RNA and gene body DNA methylation of LINC011115. (F) CG DNA methylation in
the promoter and 5’ intronic region of LINC011115, with female hypo-mCG age-DMRs. (G) Gene
body non-CG methylation ratio (female/male) in 41 putative chrX escape genes with female
mCH > 0.02 and female/male mCH >1.5 in at least one cell type. (H) Scatter plots of gene body
mCH in male and female neurons for X-linked genes (gray dots) and putative escape genes
(black). Cell type-specific X-inactivation escape genes are labeled.
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Supplemental figures

Fig S1 | Quality control (QC) metrics for snmCT-seq data.
(A) QC for DNA. Number of DNA reads, mapping rate, genome-wide mCG, mCH, mCCC level for all nuclei grouped
by samples. The last column shows the number of total nuclei (open) and the number of nuclei passing DNA QC for
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each donor (filled, DNA unique mapped read count > 300,000, mapping rate > 0.5, mCG > 0.5, mCH level < 0.2, and
mCCC < 0.05). (B) QC for RNA. Number of RNA reads, number of detected genes, percentage of reads mapped to
the mitochondrial genome, and doublet score for all nuclei grouped by samples. The last column shows the total
number of nuclei (open) and the number of nuclei passing RNA QC for each donor (filled, number of detected genes
> 500, percent of mitochondria reads < 10%, and doublet score < 0.3). (C) Number of nuclei per cell type per donor.
(D) Proportion of nuclei. (E) UMAP embedding of nuclei colored by donor, donor age, donor sex. Markers show
centroids of cells by type from young (x) and aged (circles) or male (square) and female (plus) donors. (F) UMAP
embedding of nuclei colored by genome-wide mCG, mCH.
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Fig S2 | Comparison of RNA expression from snmCT-seq data (this study) with published snRNA-seq data10.
Heatmap shows Spearman correlation between pseudobulk RNA expression (log2(CPM+1)) in our data and
pseudobulk RNA expression (log2(CPM+1)) from AIBS multi-cortex data for excitatory (A) and inhibitory neurons or
non-neurons (B). The correlation is calculated using the top 500 most variable autosomal protein-coding gene.
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Fig S3 | Correlation between samples, cell types and relation between DNA methylation and RNA expression.
(A) Spearman correlation between RNA expression and gene body non-CG methylation, stratified by gene length
(left) or gene expression (right). (B) The relation between gene body mCH and mRNA expression for each cell
colored by cell types. (C) Pearson correlation of mRNA expression (left), gene body CG (middle) and non-CG (right)
methylation between samples in L2-4IT neurons. The correlation was calculated by the top 10,000 variation features.
(D) Pearson correlation of mRNA expression (left), gene body CG (middle) and non-CG (right) methylation between
cell types in one donor. The correlation was calculated by the top 10,000 variation features.
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Fig S4 | Cell type proportions and global DNA methylation changes in aging.
(A) Proportion of all neuron subtypes in young and aged donors. Significant differences between aged and young
donor groups are labeled (FDR < 0.1 from Wilcoxon rank-sum test and Benjamini–Hochberg correction, N=5 for
young donors, N=6 for aged donors). (B, C, D) Genome wide CG (B), CH (C) and CA (D) methylation in young and
aged donors. Significant differences between aged and young donor groups are labeled (FDR < 0.2 from Wilcoxon
rank-sum test and Benjamini–Hochberg correction, N=5 for young donors, N=6 for aged donors). (E) Number of
age-DEGs in our study overlapping with age-DEGs from GTEx17. (F) Cell type prioritization in aging using Augur22.
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Fig S5 | Functional enrichment of
age-related transcriptome and
DNA methylome change.
(A,B) Gene ontology (biological
process) enriched (FDR< 0.001) in
all down-regulated age-DEGs in (A)
excitatory neurons and in (B)
inhibitory neurons. (C) Gene
ontology (biological process)
enriched (FDR< 0.01) all
up-regulated age-DEGs in inhibitory
neurons. (D) Expression of top 4
genes has significant age effects in
most number of cell types in aged
and young donors. * significantly
age-DEGs (FDR< 0.05 and |
fold-change | > 1.2). (E) Log2
fold-change of RNA expression in
immediate early genes. *FDR<0.1,
**FDR<0.05 (F) Enrichment of
age-DMRs in ChromHMM
annotated regions. The number of
overlapping base pairs was
calculated for the set of age-DMRs
with each annotation. A baseline
was calculated by shuffling the
age-DMRs across the genome and
overlapping the shuffled DMRs and
the annotated regions. The
shuffling process was repeated
1,000 times. A normal distribution
was fitted for the shuffled results
and then compared with the data to
get the z-score and p-value. Only
significant enrichment/depletion
(FDR<0.01) are shown. (G) EGR1
motif enrichment in
hypermethylated age-DMRs for all
cell types.(*q-value<0.05) (H) Motif
enrichment of hypomethylated
age-DMRs. Only motifs significantly
enriched (q-value<0.001) in more
than 1 cell type are shown.
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Fig S6 | Negative correlation between the change of mRNA expression and DNA methylation in aging.
(A) Relationship between age-related change in gene expression (x-axis) and age-related change in gene body mCH
(y-axis) for each cell type. Spearman correlation, r. (B-D) Spearman correlation coefficient between the age change of
DNA methylation (aged - young) and the fold-change in gene expression in (B) all age-DEGs, (C) significant
age-DEGs in that cell type, and (D) all genes. Asterisk marks a significant correlation (FDR <0.01,
Benjamini–Hochberg).
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Fig S7 | Sex differences in snmCT-seq data (this study) are consistent with published snRNA-seq and WGBS
data. (A,B) Genome-wide CG (A) and non-CG (B) methylation in male and female donors. No significant differences
between male and female donor groups. (FDR > 0.2 from Wilcoxon rank-sum test and Benjamini–Hochberg
correction, N=5 for young donors, N=6 for aged donors). (C) Comparison of the regulation of X-linked RNA
expression between females and males in our data and significant age-DEGs in GTEx data 44. * significantly
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age-DEGs in our data (FDR<0.05, |fold-change| > 1.2). (B) Comparison of the regulation of autosomal RNA
expression between females and male in our data (y-axis) and significant age-DEGs in GTEx (x-axis). Gray dots:
significant age-DEGs in GTEx data. Red dots: Genes with FDR<0.1 and | fold-change | > 1.2 in our data. (E, F)
Scatter plots of X-linked gene body mCH (C) or promoter mCG (D) in male and female (gray dots). Black dots are the
41 genes shown in (Fig. 5F). Putative cell type-specific X-inactivation escape genes are labeled.

Supplementary tables

Table S1: Donor metadata. Age, sex, tissue source, and total nuclei passing QC metrics.

Table S2: Cell type composition. Number of cells per donor and cell type.

Table S3: Age differentially expressed genes (age-DEGs). List of age-DEGs and their
statistics analyzed by Dream.

Table S4: Age differentially methylated regions (age-DMRs). DMRs called using DSS.

Table S5: Sex differentially expressed genes (age-DEGs). List of sex-DEGs and their
statistics analyzed by Dream.

Table S6: Sex differentially methylated regions (sex-DMRs). DMRs called using DSS.

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2023. ; https://doi.org/10.1101/2023.11.11.566717doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.11.566717
http://creativecommons.org/licenses/by-nc-nd/4.0/


Chien et al., Cell type-specific effects of age and sex on human cortical neurons

METHODS

Human samples

Human post-mortem brain tissue samples from dorsolateral prefontal cortex (Brodmann area
BA46) were acquired via the NIH Neurobiobank and included samples provided by the Brain
Tissue Donation Program at the University of Pittsburgh (IRB Protocol Number:
REN14120157/IRB981146), University of Miami Brain Endowment Bank (IRB Protocol Number:
19920358 (CR0001775)), and The Human Brain and Spinal Fluid Resource Center (managed
by Sepulveda Research Corporation) (IRB Protocol Number: PCC#: 2015-060672, VA Project #:
0002). All donors had no clinical brain diagnosis. For each donor, two independent samples
(biological replicates) were obtained either by using separate tissue punches, or in cases where
only a single tissue punch was available by separately dissecting cells from opposite sides of a
single piece of tissue. RNA integrity (RIN) values were independently tested using an Agilent
TapeStation RIN screentape. RNA for the test was isolated from tissue samples using
TRIzol-chloroform extraction and eluted on Qiagen RNeasy silica membrane spin columns after
DNase I digestion.

Nuclei isolation, FANS sorting and snmCT sequencing

Nuclei isolation and FANS sorting was performed as previously described 8,57, with added
protease inhibitors to the homogenization buffer. A detailed protocol can be found at
https://www.protocols.io/view/snmcat-v2-x54v9jby1g3e/v2. snmCT-seq library preparation and
sequencing was performed as described in 8,9,58 and protocol is listed at
https://www.protocols.io/view/methyl-c-sequencing-of-single-cell-nuclei-snmc-seq-pjvdkn6

Briefly, postmortem brain chunks were ground in liquid nitrogen and stored at - 80 ℃.
The ground tissue was then lysed and fractionated to collect nuclei. The purified single-nuclei
were stained with nuclei stain Hoechst 33342 and anti-NeuN antibody AlexaFluor 488 followed
by fluorescence-activated nuclei (FANS) sorting into 384-well plates, where cDNA was reverse
transcribed and amplified. The samples were bisulfite converted in each well. Finally, the
libraries were sequenced by the Illumina NovaSeq 6000 instrument with S4 flowcells and
150-bp paired-end mode.

Mapping snmCT-seq data

We pre-processed snmCT-seq data as previously described8,16 using pipeline
(http://cemba-data.readthedocs.io/). The snmCT-seq library contains both DNA- and
RNA-derived (cDNA) fragments. To separate these reads from each modality, we mapped reads
in both DNA mode and RNA mode and then separated them by the total methylation level in
each read. The main steps were: (1) trimming adapters, (2) DNA mapping, (3) call methylation
level and extract DNA reads, (4) RNA mapping, (5) call methylation level per read and extract
RNA reads, and (6) RNA expression quantification.
(1) Trimming: Cutadapt (v4.1) in pair-end mode was used to trim reads with R1 adapter

(AGATCGGAAGAGCACACGTCTGAAC), R2 adapter (AGATCGGAAGAGCGTCGTGTAGGGA),
template switching oligo (TSO) (AAGCAGTGGTATCAACGCAGAGTGAATGG), N6
(AAGCAGTGGTATCAACGCAGAGTAC), ISPCR(AAGCAGTGGTATCAACGCAGAGT), poly T and
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polyA. 10 bps from both the 3’ and 5’ end are further trimmed. Reads shorter than 30 bps
were discarded.

(2) DNA mapping: Reads were mapped to the human genome assembly GRCh38 (hg38) using
Hisat-3n (v2.2.1-3n-0.0.3) with parameters: --base-change C,T;
--no-spliced-alignment; --no-temp-splicesite;
--directional-mapping-reverse. Unmapped reads (MAPQ=0) were discarded while
unique-mapped reads (MAPQ=60) and multi-mapped reads (MAPQ=1) were kept separately.
PCR duplicated reads were removed using Picard MarkDuplicates (v2.27.4).

(3) Call methylation level and extract DNA reads: Reads with global non-CG methylation level
less than 0.5 were collected as DNA reads.

(4) RNA mapping: Reads were mapped to hg38 using Hisat2 (v2.2.1) using default parameters.
Multi-mapped reads were removed.

(5) Call methylation level and extract RNA reads: Reads with global non-CG methylation level
greater than 0.9 were collected as RNA reads.

(6) RNA expression quantification: featureCounts (v2.0.1) was used to assign reads to gencode
v37 genes including both exon and introns (-t gene) with fraction setting (--fraction) to
evenly distributed reads mapped to overlapped features.

Personalized genome sequencing and mapping
The genomic DNA was extracted from ground frozen postmortem brain tissue. The library
preparation and sequencing were performed as described in 57.

Reads from personalized genome sequencing were mapped to human genome
assembly GRCh38 (hg38) as follows. Reads were first trimmed with Illumina adaptor
sequencing using trim_galore (v0.6.7). 10 bp from the 3' end from read1 and read2 were also
removed. The trimmed reads were mapped by bwa mem (v0.7.17), deduplicated by Picard
MarkDuplicates (v2.27.4), and SNPs were called using the Genome Analysis Toolkit (GATK,
v4.2.6.1) as instructed in the GATK tutorial 59. For each donor, cytosines and adjacent
downstream(3’) sites which overlap homozygous SNPs called from any donor, were removed for
the downstream methylation analysis.

Cell filtering
The criteria for a cell to pass DNA methylome quality control were: (1) DNA unique mapped
read count > 300,000, (2) mapping rate > 0.5, (3) global mCG level > 0.5, (4) global mCH level
< 0.2,and (5) global mCCC level < 0.05. The criteria for a cell to pass RNA quality control were:
(1) number of genes detected > 500, (2) percent of mitochondria reads < 10%, and (3) doublet
score (called by scrublet60) < 0.3.

Feature filtering

100kb methylation bin features were filtered by coverage and blacklist regions. Bins with mean
number of covered cytosine <500 or >2000, or overlapped with ENCODE blacklist61 regions
were removed for the clustering. Genes expressed in fewer than 100 cells were removed for
further analysis.
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Clustering and cell type annotation
Clustering was performed using non-CG DNA methylation features in 100kb bins throughout the
genome, as previously described8,9. The top 20,000 most variable principle components of the
100kb bins were used to construct the KNN graph using scanpy.pp.neighbors with k=25. Next,
the KNN graph was used to perform clustering using the Leiden community detection
algorithm62 with leiden resolution 1. Consensus clustering was performed by repeating the
cluster analysis 500 times with the same resolution (0.7) and different random seed. Clusters
were then merged using a balanced random forest classifier
(imblearn.ensemble.BalancedRandomForestClassifier63) trained using 50% of cells per cluster,
while limiting the maximum number of cells to 500 in each cluster to avoid large clusters
dominating the training dataset. The merging process stops when it reaches the target accuracy
(0.96). Overall, the clustering process is done by ConsensusClustering function in ALLCools
(https://lhqing.github.io/ALLCools). Clusters with a high duplication ratio or containing less than
300 cells were excluded from the downstream analysis. Clusters were then annotated based on
cell type marker gene expression and gene body methylation features.

Differential expression and gene ontology analysis
We merged nuclei from each sample for each cell type to get peudobulk counts. Protein coding
and lncRNA genes from chromosomes 1-22 and X with counts per million (CPM) >5 in at least 2
samples are defined as “expressed genes”. Differential expression testing was performed
separately for each cell type and each comparison (aged vs, young or female vs. male) using
Dream64 (variancePartition v1.28.9, edgeR v3.40.2). Specifically, calcNormFactors was used
to control for the raw library size from the raw counts. Then, voomWithDreamWeights and
dream were used to prepare for the linear mixed model fit from the normalized count and
design matrix. The model included fixed effects of age and sex, and a random intercept by
donor: . Finally, after testing the generalized linear𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ~ 𝑎𝑔𝑒 + 𝑠𝑒𝑥 +  (1| 𝑑𝑜𝑛𝑜𝑟)
mixed model for each gene, genes with absolute fold-change greater than 1.2 and adjusted
p-value < 0.05 are defined as differentially expressed genes (DEGs) in our analysis.

To control for the number of nuclei for each cell type from each condition, we also
applied the differential expression test after randomly selecting 50 cells from each sample for
each major cell type. The subsampling and DEG testing was repeated five times. The median,
25th and 75th quantile of the number of differentially expressed genes are shown.

Functional gene ontology (GO) enrichment analysis was performed using clusterProfiler
(v 3.14.3). All expressed genes in each cell type were included as the background gene list.
Gene ontology with gene size between 25 and 500 were included in the enrichment test. The
Benjamini-Hochberg method was used to control the false discovery rate.

Differential methylation analysis
We created pseudobulk counts for nuclei from each donor for each cell type and tested each
CpG site between each condition comparison (aged vs. young or female vs. male) to detect
differentially methylated regions (DMRs) using DSS20,21 (DSS v2.34.0, bsseq v1.22.0).
DMLfit.multiFactor was applied with model formula: , with smoothing𝑚𝐶𝐺~𝑎𝑔𝑒 + 𝑠𝑒𝑥
window size 500 bp. Next, DMLtest.multiFactor was used to call differentially methylated
loci. Finally, callDMR was used to merge significantly differentially methylated loci (p<0.05) with
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a distance smaller than 50 bp. Merged regions with a length greater than 50 bp and containing
at least 3 CpG sites are called differentially methylated regions (DMRs).

To control for the number of nuclei for each cell type from each condition, we also apply
the differential methylation test after randomly subsampling 100 cells from each donor for major
cell types. The subsampling was done five times. The median, 25th and 75th quantile of the
number of differentially methylated regions are shown.

Differentially methylated region (DMR) enrichment test

We utilized the chromHMM annotations of 15 chromatin states derived from human frontal
cortex tissue29. For each chromatin state, we computed the overlap in base pairs (Ntrue)
between the DMRs and the designated state regions. Subsequently, this process was repeated
1,000 times, each time with the DMRs randomly shuffled across the genome. The number of
base pairs overlapping between shuffled DMRs and the chromatin state region are fitted using a
normal distribution. Finally, Ntrue was used to compare with the distribution to derive both the
z-score and the associated p-value. The Benjamini-Hochberg method was used to control false
discovery rate.

DNA methylation valleys (DMVs)
To cell DNA methylation valleys (DMVs), we first identified undermethylated regions (UMRs) and
low methylated regions (LMRs) using MethylSeekR65. We used methylation cutoff m=0.5,
minimum number of CpG, n=10, and FDR < 0.05 as parameters for detecting UMRs and LMRs.
DMVs were defined as UMRs with length ≥5 kb and mean methylation level ≤15%. We detected
645-1546 DMVs in each cell type and 35%-63% of them overlapped with the DMVs detected in
human embryonic stem cell-derived neural progenitor cells35.

Estimation of telomere content from snmCT-seq
We estimated telomere content as a proxy of telomere length from snmCT-seq dataset using
TelomereHunter (v1.1.0) 40. In short, TelomereHunter first searched for reads with telomeric
repeats from pre-aligned BAM files, and then classified the selected reads into four categories:
intratelomeric, junction spanning, subtelomeric and intrachromosomal, using their alignment
information.

We first generated per-cell BAM files that contained unmapped reads by re-running
Hisat-3n, followed by de-duplication using Picard MarkDuplicates. Next, RNA reads identified
from our previous steps described in the “Mapping snmCT-seq data” section were excluded.
The resulting BAM files were used as the input of Telomerehunter to search for t-type
(TTAGGG) telomeric repeats as well as c-type (TCAGGG), g-type (TGAGGG) and j-type
(TTGGGG) telomeric variant repeats. Reads were considered as telomeric reads if they
contained at least 6 repeats per 100 bp read length. Given the number of reads of comparable
GC content (48-52%) was low per cell, we used the number of uniquely mapped DNA reads in
each snmCT-seq library as the normalization factor. The telomere content for each cell was
computed as the number of intratelomeric reads divided by the number of uniquely mapped
DNA reads, and multiplied by 106.
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