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Abstract

Aging is a multifaceted and intricate physiological process characterized by
a gradual decline in functional capacity, leading to increased susceptibility to
diseases and mortality. While chronological age serves as a strong risk factor
for age-related health conditions, considerable heterogeneity exists in the aging
trajectories of individuals, suggesting that biological age may provide a more
nuanced understanding of the aging process. However, the concept of biological
age lacks a clear operationalization, leading to the development of various bio-
logical age predictors without a solid statistical foundation. This paper addresses
these limitations by proposing a comprehensive operationalization of biologi-
cal age, introducing the “AccelerAge” framework for predicting biological age,
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and introducing previously underutilized evaluation measures for assessing the
performance of biological age predictors. The AccelerAge framework, based on
Accelerated Failure Time (AFT) models, directly models the effect of candidate
predictors of aging on an individual’s survival time, aligning with the prevalent
metaphor of aging as a clock. We compare predictors based on the AccelerAge
framework to a predictor based on the GrimAge predictor, which is considered
one of the best-performing biological age predictors, using simulated data as well
as data from the UK Biobank and the Leiden Longevity Study. Our approach
seeks to establish a robust statistical foundation for biological age clocks, enabling
a more accurate and interpretable assessment of an individual’s aging status.

Keywords: biological age; Accelerated Failure Time models; aging; metabolomics

1 Introduction

Aging is a complex and multifaceted physiological process characterized by a gradual

functional decline, leading to an increased risk of disease and mortality [1]. Although

chronological age is a strong risk factor for aging-related diseases and mortality [2],

there is high variation in the timing of disease onset and death in older individuals:

some already experience a strong decline of their functional capability in their sixties

and die soon thereafter, others remain healthy until their late nineties [3, 4]. This

suggests that the rate at which we age varies between individuals and cannot be

captured by chronological age alone. As a consequence, it has been postulated that

the true underlying aging status of an individual can be captured by their ‘biological

age’. This biological age is meant to be a holistic measure of aging: its value should

not be driven by specific aging-related diseases, but should instead be a measure of

one’s overall position in their total lifespan [5].

Individual aging, which is what biological age aims to capture, is often described

using the metaphor of a clock: as if each of us possesses some latent clock that is

ticking slowly but surely towards death, with a rate that varies between individuals.

This clock paradigm is not new: Alex Comfort, widely accredited with being one of

the founding fathers of the biological age prediction field [6], already used the term
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‘age clock’ in 1969 [7]. Apparently, clocks are in line with the conceptual framework

that we use to think about aging. In many recent publications, the terms ‘(biological)

age predictors’ and ‘aging clocks’ are used interchangeably [8].

The quest for a reliable and valid biological age predictor is decades old [7, 9, 10].

Whereas the earliest attempts mainly used low-dimensional clinical variables as pre-

dictor variables, also known as ‘candidate markers’ (of aging), in the last decade the

attention has started to shift towards high-dimensional candidate markers. This shift

was initiated by the publication of Hannum’s and Horvath’s epigenetic age predic-

tors [11, 12], which used DNA methylation (DNAm) data as the predictor variables

and chronological age as the outcome. The difference between predicted age and true

chronological age was found to be associated with various age-related outcomes and

hence interpreted as a measure of biological aging [13]. Since then, various other

chronological age-trained biological age predictors have been developed using different

sources of omics [14–18].

As chronological age-trained approaches rely on a strong and untestable assump-

tion [19], a second generation of biological age clocks have been developed, which use

time-to-mortality as the outcome of interest. These mortality-trained predictors were

found to outperform first-generation chronological age-trained predictors in their asso-

ciation with time-to-mortality, a broad range of common health conditions, physical

and cognitive performance, age-related clinical phenotypes and frailty measures [20–

23]. Two well-known second-generation predictors, both developed using DNAm data

as candidate markers of aging, are PhenoAge [24] and GrimAge [25]. PhenoAge is

a DNAm-based predictor of one’s ‘phenotypic age’, a constructed composite of nine

clinical measures associated with time-to-mortality and chronological age. GrimAge

is constructed by regressing time-to-mortality on a set of twelve DNAm-based surro-

gate markers for plasma proteins and smoking pack-years. The linear predictor of this

model is linearly transformed such that the resulting predictions are on an age-scale.
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Even though these second-generation clocks are an improvement over first-

generation clocks, from a methodological point of view, both first- and second-

generation clocks lack statistical rigour. When deciding on a prediction approach, it

is important to first decide on the estimand. An estimand is the measure or quantity

of interest that a predictor should predict. The concept of an estimand is important

because it guides the choice of statistical methods and techniques to use. Clearly

defining what measurable variable should be predicted is particularly important in

the context of biological age prediction, as biological age is a latent concept, i.e. it is

not directly observable. If this concept is not precisely defined, different people can

therefore express different things with the term ‘biological age’. Therefore, the start-

ing point of any biological age prediction approach should be to operationalize this

latent concept into measurable variables or indicators: the estimands.

The currently existing biological age predictors, either age-trained or mortality-

trained, did not follow from a solid operationalization of the concept of biological age.

Hence, the estimand—the measurable quantity of interest that is to be predicted—is

not clear. All biological age predictors claim to capture (a facet of) biological age, but

if this concept is not properly operationalized it cannot be checked to what extent

these predictors indeed predict what they (cl)aim to predict. In essence, these predic-

tors are based on nothing more but a sequence of ad hoc computational steps. One

consequence of this ad hoc nature is that these predictors are constructed using sta-

tistical models that are not in line with the conceptual framework of aging-as-a-clock

that is so ubiquitous within the aging field. Another consequence of this missing oper-

ationalization is that biological age predictors cannot be properly evaluated: if it is

unclear what should be captured by a predictor, it is not possible to formally check

to what extent it is captured. At the moment, biological age predictors are generally

only evaluated and compared by investigating to what extent the chronological age-

independent part of the prediction (usually denoted by the symbol ∆ and defined as
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the residuals after regressing predicted biological age on chronological age) is associ-

ated with time-to-mortality and other aging-related outcomes such as common health

conditions, physical and cognitive performance, age-related clinical phenotypes and

frailty [20–23]. Although this is a necessary condition for a biological age predictor, it

is not a sufficient one: biological age predictions should not only be meaningful with

regards to some other variable (as is the case when only evaluating ∆), but these pre-

dictions themselves should also be directly interpretable. To be able to compare the

performance of biological age predictors on this characteristic, additional evaluation

measures need to be considered.

Given the gaps and limitations of current biological age predictors, namely that

they are not based on a proper operationalization of biological age, are not in line with

the aging-as-a-clock paradigm and are difficult to properly evaluate, the aim of this

paper is threefold. Firstly, we propose an operationalization of biological age. Secondly,

we present the AccelerAge framework: an new approach to predict biological age that

follows directly from the proposed operationalization of biological age. This provides

AccelerAge with a solid statistical foundation and makes it more than just a sequence

of computational steps. The AccelerAge framework is based on Accelerated Failure

Time (AFT) models [26]. Unlike current second-generation prediction approaches,

which rely on Proportional Hazard (PH) models [27], AFT models model the effect of

candidate markers of aging on one’s survival time directly. As we will illustrate, this

assumed accelerating or decelerating effect of candidate markers on survival is directly

in line with the clock metaphor that is so ubiquitous in aging research. The appeal—

but underuse—of AFT models in the context of aging research has been noted before

[28], but not in the context of biological age prediction. Thirdly, we introduce two

new evaluation measures for biological age predictions. These evaluation measures

consider the association between the age-independent part of biological age predictions

and mortality and directly evaluate the biological age predictions themselves. Finally,
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for illustration purposes we will build predictors based on our AccelerAge framework

and compare these to a predictor built by taking a similar approach as was taken

to build GrimAge, which is currently considered the best-performing biological age

predictor. The performance of the predictors based on the AccelerAge framework and

on GrimAge are evaluated and compared using simulated data as well as data from

the UK Biobank and the Leiden Longevity Study. With this we hope to contribute to

a solid statistical foundation underpinning biological age clocks.

2 Biological age operationalization

Biological age should be a measure of one’s position in their total life or health span

[5]. One of the earliest papers discussing biological age, from Benjamin [9], already

defined biological age as such: “Biologic age may be defined once more through an

example: A man (white, American, of upper cultural level) who has lived seventy years

has a life expectancy of about nine years. He has, therefore, a chance to celebrate

his seventy-ninth birthday. These are statistical figures based on national mortality

reports of many thousands of cases. The individual is not considered except as part of

the population. The examination of this man shows that he has a favorable heredity,

sound organs, and that he functions like a much younger man. The age estimation

(to be described later on) makes him 15 years younger, that is to say, his condition

corresponds to that of a man of 55, which would be his approximate biologic age.”

This idea to define biological age through life expectancy and a comparison with

some reference population is intuitively appealing. However, a formal operationaliza-

tion is required, such that a proper prediction approach can be decided upon, resulting

in a predictor that predicts this operationalized concept. Our proposal for a formal

mathematical definition of biological age is given below.

Denote by B biological age, by C chronological age, by X a (set of) true marker(s)

of biological age (defined as markers that, conditional on C, are associated with B) and
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by T age-at-death. Under our proposed operationalization, B is defined through some

function of residual life. We consider mean residual life (mrl): define mean residual

life at age t as mrl(t) = E(T − t|T > t). Now we can define biological age as follows:

individual i, with chronological age C = ci and marker value X = xi, has B = bi if

E(T − ci|T > ci, X = xi) = E(T − bi|T > bi). (1)

This can also be written as: B = bi if

mrl(ci|xi) = mrl(bi). (2)

Hence, we assume that biological age is closely related to expected residual life, and

is defined with respect to some reference population: given a prediction of mrl(ci|xi)

and a population lifetable of some reference population, biological age is determined

by checking which chronological age within the population corresponds to a mean

residual life value of mrl(ci|xi). For example, a heavy smoker aged 50 might have

a life expectancy of 20 years given his marker values Xi, while in the general male

population a life expectancy of 20 years corresponds with an age of 57. Then the heavy

smoker’s biological age is defined as 57. This is visualized in Figure 1.

This operationalization hence suggests a two-step approach for prediction of B: the

first step is to obtain m̂rl(ci|xi) by regression-based estimation of mrl(t|X); the second

step is to obtain b̂i using mrl(t), which is generally taken from some external source.

Under this operationalization, someone’s biological age is per definition determined

with respect to some reference population. This allows for a meaningful and direct

interpretation of predictions: a biological age of 50 means that someone has “the same

life expectancy as the average person with chronological age 50 within the reference

population”. If the reference population changes, someone’s mean residual life pre-

diction will not change, but the resulting biological age prediction will. A possible

disadvantage of this is the flip side of the same coin: choosing a reference population
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Fig. 1 Illustration of step 2 of our biological age operationalization: going from a mean residual life
prediction to a biological age prediction. The black line denotes mean residual life at chronological
age t within some reference population. Someone with an estimated mean residual life of 20 years has
a corresponding biological age of 57.

might not always be straightforward and/or the appropriate lifetable might not always

be available. However, this can be circumvented by using the training data set itself

as a reference population, if it is large enough and covers a wide enough chronological

age range.

For convenience’ sake we have considered mean residual life (mrl) here, but one

could also use some other function of residual life, e.g. median residual life (medrl),

without loss of generality. When considering time-to-mortality as the outcome of inter-

est, we have found the differences between mrl and medrl to be negligible. The choice

for a particular function of residual life can be based on practical arguments: e.g. avail-

ability of a corresponding lifetable (most lifetables provide mrl) and computational

speed (medrl is faster to compute).
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There exist several statistical models that can be used to obtain conditional resid-

ual life estimates (e.g. m̂rl(t|X) or m̂edrl(t|X)) using time-to-event data. In this paper

we will do so using Accelerated Failure Time models, using chronological age as the

timescale t, which we believe to be a natural fit to the ‘aging as a clock’ paradigm.

In contrast, for the GrimAge predictor the more frequently used semi-parametric

Cox Proportional Hazards model is used, using time-on-study as the timescale t. We

describe both models in more detail in the next section.

3 Proportional Hazards and Accelerated Failure

Time

When working with survival data, two commonly encountered regression models are

Proportional Hazards (PH) and Accelerated Failure Time (AFT) models. They differ

in the assumption on how predictor variables act on one’s survival. In this section we

describe both models in detail.

Proportional Hazard (PH) models, due to Cox [27], are the most commonly used

models for survival analysis. In this model, survival is modeled through the hazard

function h(t), also known as the instantaneous failure rate. PH-based models assume

that the exponent of the linear predictors has a multiplicative effect on the hazard:

h(t|X) = h0(t)× exp(βTX), (3)

where h0(t) denotes the baseline hazard. This implies the effect of the linear predictors

on the survival curve S(t) is given by:

S(t|X) = S0(t)
[exp(βTX)], (4)

where S0(t) denotes the baseline survival. The semi-parametric Cox PH model is the

most frequently encountered PH model; it is semi-parametric because it does not make
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assumptions about the specific form of the baseline hazard function, only about the

effect of covariates on this hazard.

AFT models provide an alternative to PH models for the modelling of survival

data [26]. In contrast to PH models, the AFT approach models survival times directly.

AFT models assume that the effect of covariates on the baseline survival curve is to

shrink or stretch this curve, i.e. accelerate or decelerate it by a factor exp(βTX):

S(t|X) = S0(t× exp(βTX)). (5)

In contrast to PH models, which are often semiparametric (i.e. no parametric dis-

tribution is assumed for the baseline hazard h0(t)), it is common to fit parametric AFT

models, which assume that the survival times T follow a known parametric distribu-

tion. In principle parametric models are more restrictive than semi-parametric models.

However, for models where the event of interest is known to follow a certain distri-

bution, it can be an advantage. For adult mortality this is the case: it has long been

known that adult mortality (of many different species, amongst which humankind)

is accurately described by the Gompertz distribution [29], with baseline hazard func-

tion h0(t) = a exp(bt). A lack of fit has been reported for the extreme old, known

as ‘late-life mortality deceleration’—this phenomenon was in fact already reported by

Gompertz himself [30]—but others have found this deceleration to be negligible until

over 100 years of age [31]. A more recent study concluded that this mortality decel-

eration is notoriously difficult to prove [32]. Although it is sometimes stated that the

Gompertz distribution can only be parameterized as a PH model, this is not correct:

it can also be parameterized as an AFT model [33]. This is illustrated in section 1 of

the Supplementary Information.

When modelling survival data, a choice has to be made about the appropriate

timescale t. If subjects are followed from some well-defined event, e.g. randomization

in a clinical trial, the relevant timescale is time-on-study and all subjects enter at time
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tstart = 0. In the context of cohort studies, however, it has long been argued that

chronological age is the preferred timescale [34, 35]. Nevertheless, the PH model used

in the construction of the GrimAge predictor uses time-on-study at the timescale t

(we refer section 2 of the Supplementary Information for more details).

The appeal of AFT models in the context of biological age prediction is that the

factor exp(βTX) in Equation (5) can be directly interpreted as an individual aging

rate. If exp(βTX) is greater than 1, a subject experiences accelerated aging: time

t is multiplied by exp(βTX). If exp(βTX) is smaller than 1, a subject experiences

decelerated aging. AFT models therefore tie in nicely with the clock paradigm, as they

provide an intuitive measure of accelerated aging (a faster ticking clock) or decelerated

aging (a slower ticking clock).

In Figure 2 we visualize the effect of covariates on the hazard rate and the survival

curve for both AFT and PH models. In the top row, the black line represents the base-

line survival curve. In the bottom row, the black shade represents the corresponding

baseline hazard. The artificial plateau in midlife (where no one dies, i.e. the hazard is

zero and hence the survival curve remains constant) was added to more clearly illus-

trate the difference between AFT and PH models. The topleft panel shows the effect

on the survival curve for someone with ‘beneficial’ covariates under the PH model: i.e.

exp(βTX) is negative. At every point in time, this person experiences a lower hazard,

because the baseline hazard is multiplied by a factor exp(βTX), in line with Equation

(3). Hence, at every given age baseline survival is shifted upwards, because it is raised

to the power − exp(βTX): it is as if this person is protected by some shield. The loca-

tion of the plateau in midlife, however, does not change. The topright panel shows the

effect on survival for someone with beneficial covariates under the AFT model. Now

the survival curve is stretched out in the horizontal direction, in line with Equation

(5): the biological age clock of this person is ticking a factor exp(βTX) slower than the
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Fig. 2 Illustration of the effect of markers on baseline hazard and survival under the assumption of
Proportional Hazards (left panels) and Accelerated Failure Time (right panels).

clock of the baseline population. As a result this person also experiences the hazard-

free period in midlife at a later chronological age. The AFT model is hence a more

natural fit to the aging-as-a-clock concept than the PH model.

4 The AccelerAge framework

In this section we introduce our new statistical framework for biological age prediction,

using an Accelerate Failure Time model with chronological age as the timescale t.

This framework is in line with our suggested operationalization for biological age as

given in section Biological age operationalization: i.e. biological age is based on (mean)
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residual life and determined relative to some reference population. This suggests a

two-step approach for prediction of B:

1. Get m̂rl(ci|xi) by regression-based estimation of mrl(t|X);

2. Obtain b̂i using mrl(t) (generally available from some external source) so that

mrl(b̂i) = m̂rl(ci|xi).

The first step in arriving at a prediction for biological age is to define a model for

mean residual life mrl(t|X), given that a subject has survived until time t. Here, X

denotes a (set of) true marker(s) of aging. We choose an approach via the survival

function. In terms of the survival function S(t), mrl(t|X) can be expressed as:

mrl(t|X) =

∫
∞

t

S(u|X)

S(t|X)
du. (6)

How exactly X affects S(t|X) depends on the underlying model. Since we assume

the AFT assumption to hold, this relationship is given by Equation (5).

For step 2, one must have access to the population lifetable of some reference

population, in order to translate the mean residual life prediction to a biological age

prediction. We suggest to use the lifetables as provided by the national statistics office

of the country where the data was gathered. Alternatively, in some cases the data set

used to fit the model in step 1 could also be used to construct a life table.

We call this approach the AccelerAge framework, to emphasize its close link with

Accelerated Failure Time models. We chose the term ‘framework’–in the sense of

a conceptual structure–to emphasize the fact that ‘AccelerAge’ refers both to the

operationalization of biological age as well as to the modelling approach that is followed

to construct a predictor. Hence, we distinguish between a framework (the structure

used to define biological age), a prediction approach (all modelling steps required to

arrive at a prediction) and a predictor (a fitted version of a particular framework,

fitted on a particular dataset, following all steps of the modelling approach).
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In this paper we deliberately present a framework instead of a predictor: our

AccelerAge framework can be applied to any type of time-to-event data using any

kind of predictor variables. The AccelerAge framework is based on a proper oper-

ationalization of biological age, is in line with the ‘aging as a clock’ paradigm and

its predictions are directly interpretable on an age-scale. The names ‘GrimAge’ and

‘PhenoAge’ are generally considered to refer to predictors: these names refer to a spe-

cific fitted model, which can be applied to a specific set of predictor variables (DNA

methylation data) to arrive at a prediction. Nevertheless, in principle the modelling

approaches that were followed to construct GrimAge and PhenoAge can also be used

in different settings (e.g. with different predictor variables) to produce ‘GrimAge-type’

and ‘PhenoAge-type’ predictors.

5 Evaluation measures

The standard approach in the evaluation of biological age clocks is to check whether

the chronological age-independent part of a biological age prediction ∆̂ (also known as

the ‘age acceleration’ and obtained by regressing B̂ on C) is associated with mortality

and other aging-related outcomes, such as frailty or cardiovascular disease. However,

the biological age prediction B̂ should not only be meaningful in relation to some other

time, which is what is done when evaluating ∆̂: B̂ itself should also be meaningful.

In this section we therefore introduce two new evaluation measures of biological age

predictions which evaluate this: discrimination and calibration. Both are routinely

evaluated aspects of (clinical) prediction models based on survival data [36].

To check to what extent individuals with a higher predicted biological age indeed

die sooner—in other words, to what extent the predictor is able to discriminate—we

propose to consider the concordance (also called C-index) of a predictor. The concor-

dance can be interpreted as the fraction of pairs in the data where the observation
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with the higher observed residual life also has the lower biological age. We use Uno’s

C-index, which does not depend on the study-specific censoring distribution [37].

To check to which extent the biological age predictions are on the proper scale—

in other words, to what extent the predictor is well-calibrated—we propose to use

calibration plots. For any biological age prediction, it is possible to obtain the cor-

responding X-year mortality probability for this age using the population lifetable.

Individuals can then be grouped based on their predicted X-year mortality probabil-

ity in N equally sized groups. Per group, the mean predicted mortality probability can

be compared with the true observed mortality rate within this group. If the predictor

is well-calibrated, these correspond closely.

6 Simulation study set-up

We conducted a simulation study to check the predictive performance of predictors

fitted using the AccelerAge framework and compared it to a predictor fitted using the

same approach as was used to construct GrimAge. GrimAge is currently considered

the best-performing biological age predictor, as the age-independent part of GrimAge

predictions has been found to be associated with more aging-related outcomes than

the age-independent part of PhenoAge-predictons [20, 22].

We generated data under a similar study design as that of real data sets used

to train longitudinal biological age clocks, namely prospective cohort studies: people

enter the study at a random chronological age C and are then followed-up over time.

For each individual in our simulated data set we generate their marker values X,

their age-of-death T (the distribution of which depends on the chosen baseline) and

the chronological age C at which we would include them in our study. By excluding

individuals for which T < C, we mimic the selection process that also takes place in

real prospective cohort studies: people who have already died cannot be observed.
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Data was generated assuming two true markers X1 and X2, constant over each

person’s lifetime and following a standard normal distribution at birth. Although the

assumption that markers are constant over one’s lifetime is not a realistic one (most

omics-based markers change over the course of a lifetime), it is in line with the original

approach followed to construct the GrimAge predictor, in which the the composite

markers are age-adjusted before inclusion in the PH model.

We considered three data-generating mechanisms: one in which the baseline hazard

h0(t) follows a Gompertz distribution and the PH assumption holds (referred to as

Gompertz-PH), one in which h0(t) follows a Gompertz distribution and the AFT

assumption holds (referred to as Gompertz-AFT) and one in which h0(t) follows a

Weibull distribution (referred to as Weibull), which per definition can be parameterized

as both an AFT and a PH model at the same time. We included the Gompertz

scenarios because the Gompertz distribution is known to accurately describe (human)

lifespan. We included the Weibull scenario to illustrate the effect of a misspecified

baseline when fitting a parametric AFT model.

We independently generated observations of markers X1 and X2 and chronological

age C as follows:

• X1 ∼ N(0, σ2
1) — biomarker, constant over one’s lifetime;

• X2 ∼ N(0, σ2
2) — biomarker, constant over one’s lifetime;

• C ∼ U(cmin, cmax) — chronological age at which individual would enter the study.

We used the following parameter values: σ1 = σ2 = 1, cmin = 20 and cmin = 80.

Next we generated age-at-death T under each of the three data-generating mech-

anisms. For a given individual i, under the PH-assumption, age-at-death ti given Xi

(where Xi here denotes a vector of xi1 and xi2) can be drawn as follows:

ti = H−1
0

[
− log(U)

exp(βTXi)

]
, (7)
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where U follows a uniform distribution on the interval from 0 to 1. Under the AFT-

assumption, ti given Xi can be generated as follows:

ti =
H−1

0 [− log(U)]

exp(βTXi)
. (8)

We provide the derivation of Equations (7) and (8) in section 3 of the Supplementary

Information. The expression for H−1
0 (t) depends on the chosen baseline distribution:

Gompertz for the first two scenarios, Weibull for the third. We chose the parameters

of these distributions such that the resulting event times approximately resembled

human lifespan: for Gompertz, a = exp(−9) and b = 0.085 (where the baseline hazard

is given by h0(t) = a exp(bt)), for Weibull, λ = 34−10 and ν = 8 (using the opera-

tionalization as given in Bender et al. [38], where h0(t) = λνtν−1). For Gompertz-PH,

β = (0.3, 0.3), for Gompertz-AFT, β = (0.05, 0.05) and for Weibull, β = (0.35, 0.35).

These coefficients cannot be directly compared between the three scenarios, since on

a PH-scale the interpretation of an effect size is different than on an AFT-scale, but

they were chosen such that the resulting age-of-death distribution was comparable

between the three scenarios, as can be seen in Figure 3

If for a given individual age-at-death ti was smaller than chronological age ci, this

individual is not observed, since he or she has already died at the age that we otherwise

would have observed them. Those cases were removed. For the remaining individuals,

we determined their survival curve Si(t) via Equations (4) or (5).

We consider median residual life (medrl) instead of mean residual life (mrl) because

medrl is considerably faster to compute than mrl, since there is no integration involved.

A pilot simulation was conducted considering both mrl and medrl: results were very

similar under the settings considered in this simulation. For each individual in the data

set we determined m̂edrl(t = ci|Xi) as follows. First, determine the time t = ti,med
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Fig. 3 Histogram of the ages-of-death (generated at birth) for different quantiles of the linear pre-
dictor for each of the three data-generating mechanisms considered.

at which survival is half the current value Si(t = ci). Next, subtract ci from ti,med to

obtain expected median residual life medrl(ci|Xi).

The final step in simulating biological age B involves a population lifetable for

median residual life, medrl(t). The lifetables were constructed using the true parameter

values of the three different data-generating mechanisms. Finally, for each subject i,

we determined their biological age by checking in the population lifetable for which t

the median residual life prediction of a particular individual i, m̂edrl(ci|Xi), is equal

to the population’s medrl(t).
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We assumed individuals were followed-up for a period of 20 years. So if (ti − ci) >

20, the age-of-death of this individual is censored and he/she is observed until age

ci + 20. If (ti − ci) < 20, this individual is observed until their age-of-death ti. Figure

4 contains plots of chronological age against biological age for a realization of each of

the three data-generating mechanisms described.

We generated training data sets of sizes nobs = 500, 2500, 5000, 7500 and 10,000

under each of the three data-generating mechanisms (Gompertz-AFT, Gompert-PH

and Weibull) and generated test sets of size ntest = 5000.

Three different prediction approaches were used to fit three different biological age

predictors on the simulated training datasets: 1) a predictor based on the AccelerAge

framework with a Gompertz baseline (AccelerAge-Gompertz), 2) a predictor that, like

the AccelerAge framework, works via residual life and lifetables but assumes propor-

tional hazards (PH-semipar) and 3) a predictor constructed following the approach

that was used to construct the original GrimAge predictor (GrimAge-type). An elab-

orate description of the approach we took to fit this predictor can be found in section

2 of the Supplementary Information. Note that of these three prediction approaches,

GrimAge-type is the only one that uses time-on-study as timescale t and relies on an

ad hoc transformation to an age scale.

AccelerAge-Gompertz is correctly specified for the Gompertz-AFT data-generation

mechanism. PH-semipar is correctly specified for the Gompertz-PH data-generating

mechanism. Since PH-semipar is semiparametric, it is also correctly specified for the

Weibull data-generation mechanism. GrimAge-type is not based on an underlying

definition or operationalization of biological age, so it is not clear under which data-

generation mechanism it would be correctly specified. But since it uses a Cox PH

regression, it is to be expected that it will do better under the Gompertz-PH and

Weibull data-generating mechanisms than under the Gompertz-AFT data-generating

mechanism.
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Fig. 4 Plots of chronological age against (true) biological age for a simulated dataset of size nobs =
5000 for each of the three data-generating mechanisms considered.
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We use root-mean-square error (RMSE) as the performance measure: RMSE =√
1

nobs

Σnobs

i=1

(
b̂i − bi

)2

, where for individual i b̂i denotes predicted biological age and

bi denotes true biological age. The simulation study sample size is nsim = 200 (i.e.

200 simulated data sets of size 500, 2500, 5000, 7500 and 10,000 for the three different

data-generation mechanisms is 200 × 4 × 3 = 2400 simulated training data sets in

total). In a few cases the Gompertz AFT model could not be fitted on the simulated

data set, as it is a numerically delicate model to fit: an error was thrown that the

Hessian was singular or that the model did not converge. This was the case for 9 of

the 2400 simulated training data sets. We left those data sets out. For each data-

generation mechanism and for each nobs-size we report the average RMSE over the

nsim repetitions.

All analyses were performed using R version 4.1.0. The parametric AFT models

were fitted using the eha package version 2.10.3 [39].

7 Simulation study results

The results for the Gompertz-PH, Gompertz-AFT and Weibull data-generating

mechanisms are presented in Figures 5, 6 and 7, respectively.

Figure 5 shows that under the Gompertz-PH data-generating mechanism,

GrimAge-type does best if the training data sample size is small (nobs = 500): the

RMSE is lowest. This is likely due to the fact that GrimAge-type uses a Cox PH model

to estimate the effect of candidate markers on mortality, which matches the used data-

generating mechanism here. GrimAge-type does not need to estimate the population

baseline survival S0(t) to arrive at biological age predictions due to its ad hoc transfor-

mation of the linear predictors. The other predictors do: 500 observations in a training

data set (of which a substantial number censored) apparently do not suffice to properly

estimate baseline survival. This is advantageous to GrimAge-type. However, whereas

the RMSE of the other predictors keep decreasing with increasing training dataset size,
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GrimAge-type’s performance stops improving. AccelerAge-Gompertz and PH-semipar

perform similarly and outperform GrimAge-type when the size of the training data

is larger than approximately 1,500 samples. Although PH-semipar is correctly speci-

fied under this data-generating mechanism, this predictor also needs enough events to

properly estimate S0(t). And indeed, as nobs increases, PH-semipar eventually outper-

forms AccelerAge-Gompertz. Even though AccelerAge-Gompertz is misspecified under

this data-generating mechanism, its performance is still quite good. This can likely be

attributed to the fact that it assumes the correct underlying baseline distribution and

the effect sizes β are relatively small.

In Figure 6 it can be seen that under the Gompertz-AFT data-generating mecha-

nism, the corresponding correctly specified predictor (AccelerAge-Gompertz) performs

best from the start. GrimAge-type again does okay for smaller training data sets but

here its performance also quickly stops increasing.

Figure 7 shows that under the Weibull data-generating mechanism, GrimAge-type

performs worst of all predictors with a large margin. This is likely due to the fact that

the Cox PH regression in GrimAge’s second step uses time-on-study as the timescale

instead of chronological age. This affects its performance. This mismodeling was less

of an issue for the Gompertz-PH and Gompertz-AFT scenarios in Figures 5 and 6,

because the Gompertz distribution belongs to the so-called ‘exponential family’. For

this family mismodeling of time in a Cox PH model does not matter (for an elaborate

discussion, see Thiébaut and Bénichou [35]). The performance of the AccelerAge pre-

dictor and PH-semipar is in line with expectations: for larger data sets, the correctly

specified PH-semipar performs best, closely followed by AccelerAge-Gompertz.

8 Real data illustration

In this section we evaluate and compare the performance of a predictor fitted using

our newly proposed AccelerAge framework and a predictor fitted using the GrimAge
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Fig. 5 Performance of the three different biological age predictors in terms of the root-mean-square
error under the Gompertz-PH data-generating mechanism. Results are reported for data sets of
varying sizes (nobs = 500, 2500, 5000, 7500 and 10,000) as the average root-mean-square error over
a simulation sample size of nsim = 200.

framework on real data. We use data from the UK Biobank (UKB). The UKB is a large

population-based prospective cohort study. Between 2006 and 2010, more than 500,000

participants aged 37–73 were recruited from different sites across the United Kingdom.

Participants’ health is being followed long-term. The study contains extensive pheno-

typic and genotypic detail about its participants, including biological measurements

and biomarker values, and longitudinal follow-up for a wide range of health-related

outcomes, provided through a linkage with medical and health records[40].

We use blood-based metabolic biomarkers as predictor variables. The metabolic

biomarkers were quantified using the high-throughput nuclear magnetic resonance

(NMR) targeted metabolomics platform of Nightingale Health Ltd. (Helsinki, Fin-

land), known for its high repeatability over time and absence of batch effects [41, 42]

Per EDTA plasma sample, 249 metabolic measures are provided (of which 168 in
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Fig. 6 Performance of the three different biological age predictors in terms of the root-mean-square
error under the Gompertz-AFT data-generating mechanism. Results are reported for data sets of
varying sizes (nobs = 500, 2500, 5000, 7500 and 10,000) as the average root-mean-square error over
a simulation sample size of nsim = 200.

absolute concentration units and 81 ratios). The majority of these biomarkers relate

to lipoprotein metabolism. In the UKB the first tranche of NMR-metabolomics data

became available in March 2021, for more than 120,000 samples (from approximately

118,000 participants at baseline and 4,000 at repeat assessment, of which 1,500 at

both) [43]. We only included those subjects with measurements at baseline. Metabolic

variables for which measurements were missing for more than 1 percent of all sam-

ples were excluded (excluding 7 of 249). Subjects with missing measurements in the

remaining 242 metabolic variables were also excluded (excluding 1,648 of 104,312).

This left a sample of size N = 102,664, of which 47,300 men and 55,364 women. Mean

age at recruitment was 56.3 years (sd = 8.1).

The absolute concentrations of the metabolic variables measured at baseline are

known to be 5-10% diluted in the UKB data [44]. To still allow for validation of our
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Fig. 7 Performance of the three different biological age predictors in terms of the root-mean-square
error under the Weibull data-generating mechanism. Results are reported for data sets of varying sizes
(nobs = 500, 2500, 5000, 7500 and 10,000) as the average root-mean-square error over a simulation
sample size of nsim = 200.

fitted biological age predictors in an external dataset, we decided to scale and center

each metabolic variable prior to analysis.

Prospective mortality (i.e. time-to-mortality) is the outcome of interest. Follow-

up data until November 2021 was available. Median follow-up time was 13.3 years

(IQR: 12.5–14.0). During follow-up 7,629 participants died. No participant was fol-

lowed for more than 16.9 years. Since at inclusion no participant was older than 69,

the population survival curve of the participants is only defined from age 40 to age 85.

That the population survival curve is not well-defined at its right tail has significant

negative consequences for the semiparametric PH-semipar predictor considered in the

simulation study. As there is no information in the data on how the right tail of the sur-

vival function looks like in reality, these predictors cannot properly estimate baseline
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survival S0(t). We therefore decided to exclude PH-semipar from this real data illustra-

tion. This leaves two predictors: one based on our our AccelerAge Gompertz framework

fitted on the metabolic biomarkers (referred to as metabo-Accelerage-Gompertz) and

one based on the GrimAge approach, as described in the previous section, but now

fitted on the metabolic biomarkers (referred to as metabo-GrimAge).

To construct population lifetables, necessary for the residual-life based biological

age prediction approaches, we used data from the United Kingdom’s Office for National

Statistics [45]. When comparing survival in the UKB population with that of the

general population, it becomes apparent that the UKB participants on average live

longer. This is shown in Figure 8, using the most recent period lifetables (2018-2020),

stratified by sex, from the Office for National Statistics as a comparison. We scaled

these curves such that it only starts decreasing from age 40 onward, to avoid an unfair

comparison due to the immortal time bias present in the UKB data, as no participant

was included before age 40. This figure also illustrates the limited age range of the UKB

participants’ survival curves. The fact that UKB participants are not representative

of the general population, but seem to belong to a healthier subset, has been noted

before; see e.g. Fry et al. [46].

The fact that we use sex-stratified population survival curves means that a man

and a woman who have the same predicted mean residual life, will have a different

predicted biological age: women live longer, so the woman’s biological age will be

higher.

Given the large sample size available, we randomly selected 60,000 individuals to

serve as the training data set and the remaining 42,664 individuals to serve as the test

data set. As the metabolic variables are often strongly correlated, we fit our predictors

on the training data using as predictor variables the first 22 principal components of

the metabolic variables (together explaining at least 95 percent of the variance) and

sex. Time-to-all-cause-mortality is the outcome.
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Fig. 8 Comparison of survival curves of the included UKB participants, stratified by sex, and of the
UK general population (the period lifetable of 2018-2020), stratified by sex, as provided by the Office
for National Statistics.

We evaluated the biological age clocks using both standard and new evaluation

measures, as introduced in section Evaluation measures. To calculate the concor-

dance, we translated predicted biological age back to predicted mean residual life

for metabo-AccelerAge-Gompertz, via the sex-specific baseline survival curves. For

metabo-GrimAge it is unclear whether predictions can be directly translated to a pre-

dicted mean/median residual life value. We did try this, but it resulted in a lower

concordance than when using the predicted GrimAges directly. We hence went for the

option most beneficial to metabo-GrimAge. To make the calibration plots, we con-

sidered 5-year mortality and placed participants in five equally sized groups based on

their predicted 5-year mortality.

The results for the ‘traditional’ evaluation of biological age clocks, i.e. to what

extent ∆ is associated with all-cause mortality in a Cox PH model that also includes

chronological age and sex, can be found in Table 1. It can be seen that the ∆ of both
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metabo-AccelerAge-Gompertz and metabo-GrimAge is strongly associated with time

to all-cause mortality.

Table 2 contains the results for one of our new proposed evaluation measures,

the concordance. Both biological age predictors have a higher concordance than

chronological age.

Calibration plots for metabo-AccelerAge-Gompertz and metabo-GrimAge can be

found in Figure 9. AccelerAge-Gompertz is better calibrated: predicted all-cause mor-

tality risk is closer to observed all-cause mortality risk. This result can be understood

when plotting chronological age against predicted biological age, as done in Figures 10

and 11. The metabo-GrimAge predictions are—by design—centered around the line

C = B. For this particular data set that does not make sense, since we know that

the UKB population lives longer than the average UK population (Figure 8), so their

biological ages should on average be somewhat lower than the line C = B. The pre-

dicted biological ages of our metabo-AccelerAge-Gompertz predictor are on average

also lower than the chronological ages.

We validated our findings that metabo-AccelerAge-Gompertz and metabo-

GrimAge perform equally well on discrimination but that metabo-AccelerAge-

Gompertz is better calibrated in an external data set, the Leiden Longevity Study

(LLS). The LLS tracks long-lived Dutch siblings of Caucasian origin, their offspring

and the partners of the offspring. Participants were recruited between March 2002

and May 2006. Registry-based follow-up data until November 2021 was available. We

used data on the offspring and the partners (N = 2312). Participants who dropped

out (N = 10) or had missing values on the 242 included metabolic variables (N = 46)

were excluded, resulting in 1007 men and 1249 women with a mean age of 59.2 years

(sd 6.7) at inclusion. Median follow-up time was 16.3 years (IQR: 15.3–17.1) and 313

deaths were observed.
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Table 1 Hazard ratios for all-cause mortality associated with a
standard unit increase in ∆ in a Cox PH model adjusted for
chronological age and sex, evaluated on the test set of the UKB
data.

HR (95% CI) p-value
∆: metabo-GrimAge 1.61 (1.56–1.65) < 2e-16
∆: metabo-AccelerAge-Gompertz 1.56 (1.52–1.60) < 2e-16

Table 2 Concordance (Uno’s C) of the biological age predictions
evaluated on the test set of the UKB data.

Uno’c C (s.e.)
Chronological age 0.703 (0.007)
Biological age: metabo-GrimAge 0.739 (0.009)
Biological age: metabo-AccelerAge-Gompertz 0.739 (0.009)

Table 3 Hazard ratios for all-cause mortality associated with a
standard unit increase in ∆ in a Cox PH model adjusted for
chronological age and sex, evaluated on the LLS data.

HR (95% CI) p-value
∆: metabo-GrimAge 1.39 (1.23–1.57) 1.58e-7
∆: metabo-AccelerAge-Gompertz 1.35 (1.21–1.52) 1.82e-7

Table 3 shows to what extent age acceleration ∆ is associated with all-cause mor-

tality in a Cox PH model that also includes chronological age and sex on the LLS data.

The ∆-values of both biological age predictors are still significantly associated with

mortality beyond chronological age. Nevertheless, the hazard ratios are much lower.

Table 4 contains the concordance of the biological age predictors on the LLS data.

The two predictors still both discriminate slightly better than chronological age, but

the difference is smaller.

Figure 12 contains the calibration plots for the two predictors on the LLS data.

The metabo-AccelerAge-Gompertz predictor is still better calibrated than metabo-

GrimAge, although the difference is smaller. In this case the biological age predictions

of metabo-AccelerAge-Gompertz are slightly too low, especially for the group with the

highest predicted mortality probability: the true event rates are slightly higher than

the predicted probabilities.
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Fig. 9 Calibration metabo-GrimAge and metabo-AccelerAge-Gompertz based on 5-year survival in
the test set of the UKB data.

Table 4 Concordance (Uno’s C) of the biological age predictions
evaluated on the LLS data.

Uno’c C (s.e.)
Chronological age 0.723 (0.016)
Biological age: metabo-GrimAge 0.739 (0.014)
Biological age: metabo-AccelerAge-Gompertz 0.740 (0.014)

9 Discussion

In this paper we presented a new statistical framework for biological age predic-

tion, AccelerAge, based on Accelerated Failure Time models. We proposed this new

framework because current biological age predictors are not based on a formal oper-

ationalization of biological age, are not in line with the aging-as-a-clock idea and

are difficult to properly evaluate. To ensure the AccelerAge framework is not just

another ad hoc approach, we started by formally defining the concept of biological

age via residual life, and subsequently basing AccelerAge on this operationalization.
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Fig. 10 Chronological age plotted against predicted biological age in the test set of the UKB data
for metabo-AccelerAge-Gompertz. The orange line has slope 1: it denotes where chronological age is
equal to predicted biological age.

The discussion on what (biological) aging exactly entails is vivid and ongoing, but our

proposed definition can serve as a starting point for further discussion. We explained

why biological age predictors based on AFT models are in line with the ubiquitous

clock metaphor in the aging field, while predictors based on Proportional Hazards

models are not. Besides the more natural interpretation of biological age predictors

based on AFT models, another advantage of AFT models is that they are robust to

covariate omission: neglecting true covariates might lead to a distribution outside the

parametric family considered, but it does not affect the regression-part of the model.

This is not true for the PH model [33]. Another appealing aspect of the AccelerAge

framework is that the AFT-model is fitted using chronological age as the timescale t

instead of time-on-study. This is the preferred timescale in the context of cohort stud-

ies [34, 35]. Finally, in this paper we introduced two new evaluation measures into the
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Fig. 11 Chronological age plotted against predicted biological age in the test set of the UKB data
for metabo-GrimAge. The orange line has slope 1: it denotes where chronological age is equal to
predicted biological age.

context of biological age clocks, namely concordance and discrimination. This allows

for a broader evaluation and validation of biological age predictors. AccelerAge pre-

dictions are directly interpretable on an age-scale, which means that the biological age

prediction itself is meaningful, not just the age-independent part ∆.

Our UK Biobank application illustrates that metabo-AccelerAge-Gompertz is a

worthy competitor to our GrimAge-implementation, metabo-GrimAge. Using the

often-used evaluation measure of checking whether the age-independent part of a bio-

logical age prediction (∆) is significantly associated with prospective mortality, the

hazard ratio for metabo-AccelerAge-Gompertz was slightly lower than that for our

GrimAge-implementation, but metabo-AccelerAge-Gompertz was better calibrated

in both the UKB data and the LLS data, used as the external validation set. On

concordance the two predictors scored similarly.
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Fig. 12 Calibration metabo-GrimAge and metabo-AccelerAge-Gompertz based on 5-year survival
in the LLS data.

The real data application highlights the need for having more than one evalua-

tion measure in biological age prediction. A true biological age predictor should be

directly interpretable on an age-scale. Calibration plots can be used to assess the

ability of a predictor to do so; checking whether ∆ is significantly associated with

time-to-mortality cannot. In addition, only relying on the association of ∆ with age-

related outcomes might paint a too optimistic picture of the (clinical) usefulness of a

biological age predictor. Although we found that both metabolite-based biological age

clocks performed better than chronological age on discrimination, the differences with

chronological age were small. One potential reason for this is that we only considered

the metabolic variables as measured by the Nightingale NMR platform as predictor

variables. Using more of the human metabolome, or using other sources of omics,

might capture more of the aging process and hence further improve the discriminative

ability of a predictor.
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Our AccelerAge framework can be applied to any kind of time-to-event outcome

and any type of predictor variables. Naturally, the conclusions resulting from the com-

parison with a GrimAge-based predictor might change if different predictor variables

or outcomes are considered. We plan to extend the framework to also allow for regular-

ization. Incorporating multiple predictor types, e.g. multiple omics, would be possible

with a group-wise penalty term.

There are several limitations to our work. Our proposed operationalization is only

based on lifespan, not healthspan. This can be considered a (too) narrow view of what

it means to age. In addition, our operationalization requires that one has access to a

lifetable of the reference population of interest. This might not always be the case, in

particular not for outcomes other than mortality. In certain cases it might be feasible

to simply construct a lifetable based on the training data set itself, but then the ability

to detect whether the reference population differs from the sample is lost.

We illustrated the AccelerAge framework using a fully parametric AFT model,

based on the Gompertz distribution. As it has long been known that the Gompertz

distribution describes adult mortality well, this parametric approach sufficed for our

real data application, in which time-to-mortality was our only outcome of interest.

AFT models can also be fit using a semiparametric [47–50] or flexible parametric [51]

approach. We initially included these approaches in our simulation study as well, but

found that especially the fitting of flexible parametric AFT models can be inconsistent

and suffer from convergence issues. Results for our simulation study where we also

included a semiparametric and flexible parametric AccelerAge approach can be found

in section 4 of the Supplementary Information. However, as developing robust flexible

parametric AFT models is an area of active research [52], we believe the flexible

parametric AccelerAge approach will soon become an appealing alternative to our fully

parametric approach. It should however be noted that, in order to fit any AccelerAge

model that is not fully parametric, the data must cover the whole of human lifespan
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to properly estimate the baseline survival curve or hazard function (which must be

fully specified, because it needs to be integrated over). In the UK Biobank data, the

oldest included participant was 85. Semiparametric prediction approaches therefore

would have no data to estimate baseline survival or hazard at ages after 85.

In conclusion, our work represents a substantial advancement in the field of biolog-

ical age research. By introducing AccelerAge, a new AFT-based statistical framework

to predict biological age based on a solid operationalization of biological age, and

incorporating previously underutilized evaluation measures, namely discrimination

and concordance, we have laid a robust statistical foundation for the development and

validation of biological age clocks.
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