

1                   **The greening-causing agent alters the behavioral and**  
2                   **electrophysiological responses of the Asian citrus psyllid to**  
3                   **a putative sex pheromone**

4

5                   **Haroldo X. L. Volpe<sup>1</sup>, Michele Carmo-Sousa<sup>1</sup>, Rejane A. G. Luvizotto<sup>1</sup>, Renato de**  
6                   **Freitas<sup>1</sup>, Victoria Esperança<sup>1</sup>, Josiane C. Darolt<sup>1</sup>, Abner A. L. Pegoraro<sup>1</sup>, Diego M.**  
7                   **Magalhães<sup>2</sup>, Arodi P. Favaris<sup>2</sup>, Nelson A. Wulff<sup>1</sup>, Marcelo P. Miranda<sup>1</sup>, José**  
8                   **Maurício S. Bento<sup>2</sup>, and Walter S. Leal<sup>3\*</sup>**

9

10                  <sup>1</sup>Research and Development Department, Fund for Citrus Protection (Fundecitrus), Vila  
11                  Melhado, 14807-040, Araraquara, São Paulo, Brazil

12                  <sup>2</sup>Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture,  
13                  University of São Paulo (USP), Piracicaba, São Paulo, 13418-900, Brazil

14                  <sup>3</sup>Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA  
15                  95616, USA

16

17                  \*Corresponding author

18                  e-mail: [wsleal@ucdavis.edu](mailto:wsleal@ucdavis.edu) (WSL)

19

20                  **Keywords:** *Diaphorina citri*, huanglongbing, *Candidatus Liberibacter asiaticus*,  
21                  *Wolbachia*, host manipulation

22

23

## 24 Abstract

25 The Asian Citrus Psyllid (ACP), *Diaphorina citri*, is a vector of the pathological bacterium  
26 *Candidatus Liberibacter asiaticus* (CLas), which causes the most devastating disease to  
27 the citrus industry worldwide, known as greening or huanglongbing (HLB). Earlier field  
28 tests with an acetic acid-based lure in greening-free, 'Valencia' citrus orange groves in  
29 California showed promising results. The same type of lures tested in São Paulo, Brazil,  
30 showed unsettling results. During the unsuccessful trials, we noticed a relatively large  
31 proportion of females in the field, ultimately leading us to test field-collected males and  
32 females for *Wolbachia* and CLas. The results showed high rates of *Wolbachia* and CLas  
33 infection in field populations. We then compared the olfactory responses of laboratory-  
34 raised, CLas-free, and CLas-infected males to acetic acid. As previously reported, CLas-  
35 uninfected males responded to acetic acid at 1  $\mu$ g. Surprisingly, CLas-infected males  
36 required 50x higher doses of the putative sex pheromone, thus explaining the failure to  
37 capture CLas-infected males in the field. CLas infection was also manifested in  
38 electrophysiological responses. Electroantennogram responses from CLas-infected ACP  
39 males were significantly higher than those obtained with uninfected males. To the best of  
40 our knowledge, this is the first report of a pathogen infection affecting a vector's response  
41 to a sex attractant.

42

43

## 44 Introduction

45 The Asian Citrus Psyllid (ACP), *Diaphorina citri* (Hemiptera: Psyllidae), is a vector of the  
46 bacterium *Candidatus Liberibacter asiaticus* (CLas), which causes the citrus disease  
47 known as greening or huanglongbing (HLB)<sup>1</sup>. This pathogen parasitizes the phloem and  
48 blocks nutrient circulation, thus causing citrus trees to become unproductive<sup>1</sup>. Citrus  
49 growers suffer severe losses manifested in reduced fruit quality and production and,  
50 ultimately, plant death.<sup>2</sup> It has been demonstrated that CLas induces infected plants to  
51 produce an ACP attractant, methyl salicylate<sup>3</sup>, leading to ACP's preference for CLas-  
52 infected over healthy plants. ACP feeds on infected plants, but due to diseased plants'  
53 low nutritional value, the psyllids move to healthy plants to complete feeding, thus  
54 vectoring the HLB-causing agent<sup>3</sup> from infected to healthy trees. Citrus growers eradicate  
55 infected trees to decrease the bacterium's spread and, consequently, sustain severe  
56 losses in production.

57 Florida used to be the largest citrus producer in the United States of America for many  
58 years, with more than 300 million boxes produced in 1997-1998 and continuous yearly  
59 production of more than 250 million boxes from 1992-1993 until 2003-2004<sup>4</sup>. After HLB  
60 detection in the state in 2005<sup>5</sup>, the Florida citrus industry has been declining precipitously  
61 from 169.25 million boxes in 2004-2005<sup>4</sup> to 15.85 million in 2022-2023, as of July 12,  
62 2023<sup>6</sup>, i.e., suffering a 90.6% reduction. As Florida's citrus industry is being decimated,  
63 California, with greening-free commercial orchards, became the nation's largest producer  
64 since 2016-2017. Last year, California and Florida contributed 61.8% and 36% of the  
65 nation's citrus production, respectively<sup>4</sup>. By contrast, Florida contributed 79.7% and  
66 California 17.4% of the nation's output in 2003-2004<sup>4</sup> before HLB infestation in Florida<sup>5</sup>.  
67 The vector and the bacterium have been detected in California, but strict quarantine  
68 measures have prevented the bacterium from reaching commercial citrus plants. More  
69 than 5,000 HLB-infected trees have been found and removed from residential areas<sup>7</sup>. At  
70 the time of this writing, there are reports of infected ACP nymphs being detected in  
71 commercial orchards<sup>7</sup>.

72 Brazil, the largest orange producer in the world<sup>8</sup>, has been sustaining severe losses since  
73 2004<sup>9</sup> when greening was discovered for the first time in the State of São Paulo<sup>10-12</sup>.

74 Because there are no cost-effective treatments for infected plants<sup>13</sup>, 61,585 ha have been  
75 eradicated from 2018 to 2021 to contain the spread of greening. Although eradication was  
76 alleviated with renewed and expanded areas, the productive acreage was reduced by  
77 3.56%<sup>9</sup>. In the last three years, orange growers had to eradicate 7.26, 7.65, and 6.68%  
78 of the planted areas<sup>14</sup>.

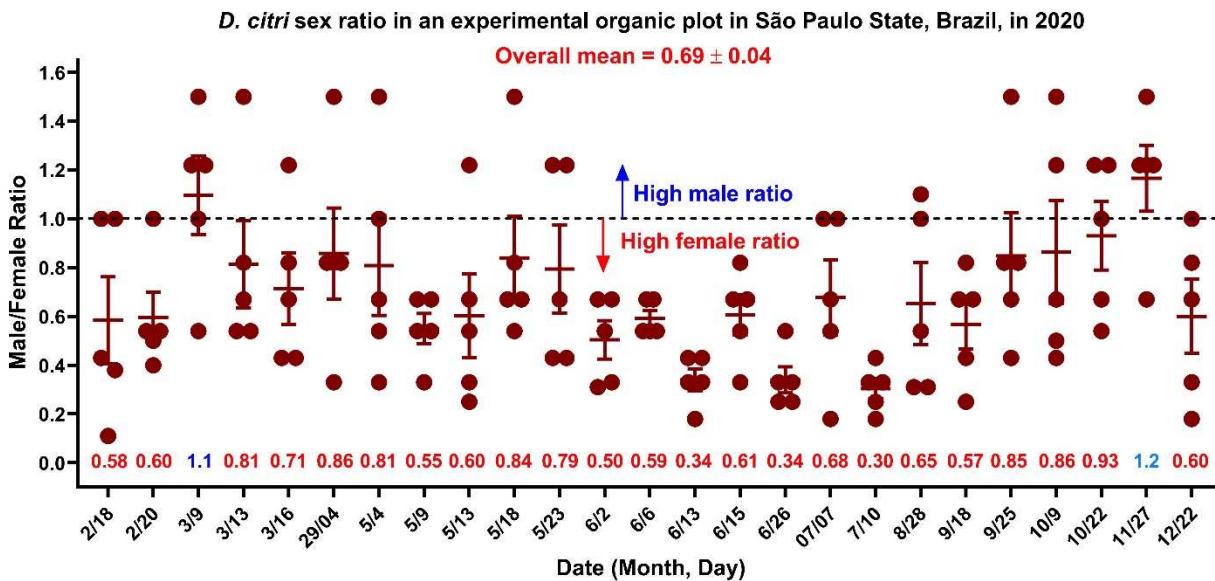
79 The most effective approach to slow the spread of the diseases is vector control combined  
80 with scouting and replacing infected trees with HLB-free trees produced in screened  
81 vector-free nurseries. Vector control relies on applications of insecticides, particularly  
82 those with active ingredients like biphenthrin, imidacloprid, and malathion<sup>15</sup>. However,  
83 alternative approaches are sorely needed, given the high cost of multiple insecticide  
84 applications, psyllid resistance, adverse effects on non-target species and beneficial  
85 insects, and impact on human health<sup>13</sup>. Chemical ecology-based approaches employing  
86 ACP attractants and/or repellents may contribute to the integrated management of this  
87 vector. Whereas repellents could be used in push-and-pull strategies<sup>16</sup>, pheromones, and  
88 other attractants may be employed for monitoring, surveillance, and possibly control  
89 strategies, such as attract-and-kill<sup>17</sup> and mating disruption<sup>18,19</sup>. Indeed, many chemical  
90 ecology-based efforts are currently being explored (review in <sup>13</sup>). Previously, we have  
91 identified acetic acid as a sex attractant<sup>20</sup>, which we labeled a "putative" sex pheromone,  
92 given the analytical challenge to determine unambiguously whether this semiochemical  
93 is released only by ACP females. Field tests in HLB-free groves in California suggested  
94 that acetic acid significantly increased trap captures at specific doses, thus suggesting its  
95 potential in monitoring ACP populations<sup>21</sup>. As reported here, subsequent field tests in  
96 Brazil were disappointing. Captures in traps baited with acetic acid did not significantly  
97 differ from those in control traps. We surveyed ACP populations in the test area and found  
98 that CLas infected more than 98% of males and females. We then raised CLas-free and  
99 CLas+ colonies and compared males' behavioral responses to acetic acid. We  
100 recapitulated the earlier findings with CLas-free males showing strong responses to acetic  
101 acid.<sup>20</sup> At the same dose, CLas+ males did not significantly prefer acetic acid. However,  
102 at 50x higher doses CLas+ males were attracted considerably to acetic acid. Interestingly,  
103 acetic acid elicited significantly higher electroantennographic responses from CLas+ than

104 CLas-free males. In summary, we report here that HLB infections alter ACP males'  
105 behavioral and electrophysiological response to a sex pheromone.

106

## 107 **Results and Discussion**

### 108 **Inconsistent Asian Citrus Psyllid captures in acetic acid baited traps**


109 Previously, we have tested a slow-release formulation (ChemTica-A) of the Asian Citrus  
110 Psyllid (ACP) putative sex pheromone, acetic acid<sup>20</sup>, in an unsprayed 'Valencia' citrus  
111 orange grove at the California State Polytechnic University at Pomona, CA, with  
112 promising results<sup>21</sup>. Although the ACP density at the time of the experiments was very  
113 low, traps baited with ChemTica-A captured significantly more ACP males than control  
114 traps (N = 24,  $1.87 \pm 0.34$  and  $0.50 \pm 0.10$  males per trap per day in treatment and control  
115 traps, respectively; P=0.0001, Mann-Whitney test<sup>21</sup>). We failed to recapitulate this trap  
116 performance in 2019 in an area with natural ACP infestation in Mogi Mirim, State of São  
117 Paulo, Brazil ( $22^{\circ} 25' 55''S$ ;  $46^{\circ} 57' 28''W$ ). Traps baited with ChemTica-A showed similar  
118 performance to control traps:  $0.38 \pm 0.06$  and  $0.42 \pm 0.06$  males per trap per day in  
119 treatment and control traps, respectively (N = 120, P = 0.6536, Mann-Whitney test).

120 To rule out possible formulation problems, we tested traps baited with a homemade  
121 formulation, which previously performed similarly to ChemTica-A in our field tests in  
122 Pomona<sup>21</sup>. This time, ACP captures in control and treated traps were not significantly  
123 different ( $0.96 \pm 0.10$  and  $0.90 \pm 0.10$  males per trap per day in the control and homemade  
124 traps, respectively; N = 120; P = 0.7617, Mann-Whitney test). During these experiments  
125 in the State of São Paulo, we observed more females than males in adults captured in  
126 acetic acid and control traps. These findings prompted us to investigate whether the sex  
127 ratio of the ACP population in the experimental plot reflects the female biases in control  
128 and treatment traps.

### 129 **ACP sex ratio in an experimental organic plot**

130 From February to December 2020, we collected 25 data points, each with 5 samples of  
131 20 adults (100 insects per data point). The adult psyllids were aspirated from different  
132 plants in the experimental area. Two samples, collected on March 9 and November 27,

133 showed a higher proportion of males, with male/female ratios of  $1.10 \pm 0.16$  and  $1.17 \pm$   
134  $0.14$ , respectively (Figure 1). Twenty-three samples showed a higher proportion of  
135 females than males, with male/female ratios ranging from as low as  $0.3$  to  $0.93$ . The  
136 overall mean of  $0.69 \pm 0.04$  suggests that throughout the 2020 flight season, on average,  
137 the field population comprised 43% more females than males (Figure 1).

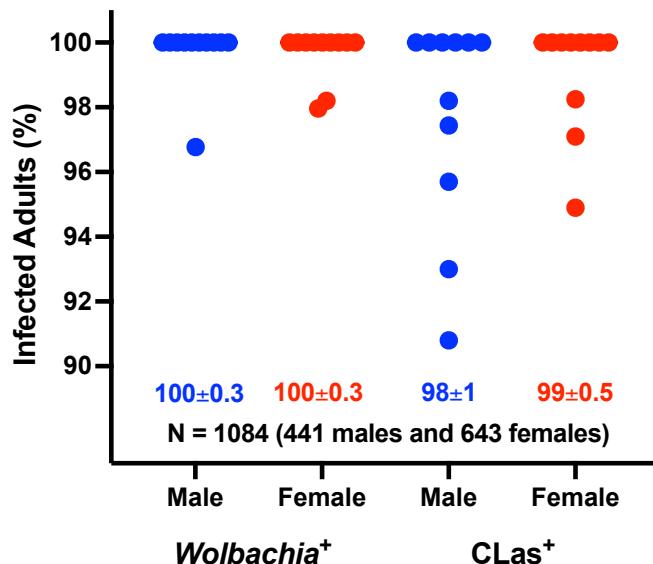


138

139 **Figure 1. ACP male to female ratio in an experimental organic plot in Mogi Mirim,**  
140 **São Paulo State, Brazil, in 2020.** Twenty-five data points were collected from February  
141 to December 2020 in Mogi Mirim. Twenty adults per plant were aspirated one by one from  
142 five plants sampled within the experimental area for each data point (of 100 adults). In  
143 the laboratory, adults were sexed, and the male/female ratios were recorded. The dotted  
144 line marks an equal number of males and females. Out of 125 samples (from a 25-day  
145 collection), only 20 showed a high male ratio (male/female ratio above 1). By contrast, 93  
146 data points are below the dotted line, thus indicating a high female proportion. The overall  
147 mean suggests that the sex ratio was biased throughout the season toward females.

## 148 *Wolbachia* infection rate in an experimental organic plot

Having observed a female bias in the ACP population in the experimental area in the State of São Paulo and the lack of response to the putative sex pheromone, we selected 1,100 out of the 2,500 collected adults to determine by the polymerase chain reaction


152 (PCR) the level of infection with *Wolbachia* spp.<sup>22</sup> and the *Candidatus Liberibacter*  
153 *asiaticus* (CLas)<sup>23</sup> in this population. Of 1,100 samples, 1,084 (from 643 females and 441  
154 males) were in good condition and analyzed by PCR. They represent 11 data points  
155 collected from February 18 to May 23, 2020 (Figure 2). All 410 males in samples collected  
156 in 10 data points were positive for *Wolbachia*. One of the 31 males collected on February  
157 18, 2020, was negative; overall, one out of 441 males (0.24%) tested negative for  
158 *Wolbachia*. All 538 females representing nine data points were positive, whereas one of  
159 the 49 and one of the 56 females collected on March 9 and May 23, 2020, tested negative  
160 for *Wolbachia*. In short, we tested 643 females, and only two (0.31%) tested negative for  
161 *Wolbachia*. Although our data pertains to an experimental organic plot, it is known that  
162 *Wolbachia* is already fixed in the populations of *D. citri* distributed in agricultural settings  
163 in several states in Brazil, especially São Paulo<sup>24</sup>. Likewise, our laboratory colony derived  
164 from psyllids collected in Santa Fé do Sul, São Paulo (20° 12' 43"S; 50° 55' 38"W) and  
165 kept on healthy plants for almost 14 years showed high levels of *Wolbachia* infection. One  
166 hundred and two psyllids out of 103 analyzed insects (99.03%) tested positive for  
167 *Wolbachia* with a mean cycle threshold (C<sub>t</sub>) of 16.6 ± 0.1. Therefore, measuring behavior  
168 (e.g., attraction to semiochemicals) with our laboratory colony is more likely to emulate  
169 behavioral responses with wild-type psyllids from citrus groves in the State of São Paulo.  
170 Many factors, including dispersal<sup>25</sup>, may contribute to psyllid sex ratios. It is conceivable  
171 that the skewed sex ratio observed in this experimental organic plot (Figure 1) was  
172 mediated, at least in part, by *Wolbachia* infection<sup>26</sup>.

### 173 CLas infection rate in an experimental organic plot

174 CLas infection rate was also very high (Figure 2). Male samples from six data points were  
175 100% positive. Only 1, 3, 3, 2, and 2 males were negative from 39, 43, 34, 47, and 42  
176 males collected on March 16, April 29, May 12, 18, and 23, 2020, respectively. Female  
177 samples from eight data points were 100% positive for CLas. Female samples collected  
178 on March 13 (57 females), May 4 (59), and May 12 (65) had 1, 3, and 2 CLas-negative  
179 females, respectively. In summary, the level of CLas infection was surprisingly high in the  
180 experimental area. Although there are no data in the literature specific for Mogi Mirim (in  
181 the eastern part of São Paulo State), it has been reported that the percent of CLas-

182 infected ACPs was constant throughout the year in the southwestern region of São Paulo  
183 State and, in average, 65.3%<sup>27</sup>. Data from 2014-2017 ranged from 33% in the northern  
184 area of São Paulo State/Triângulo Mineiro from Minas Gerais State to 74.6% in the  
185 southwestern part of the state<sup>27</sup>.

**Percent infected *D. citri* captured in an experimental organic plot in São Paulo State, Brazil, in 2020**

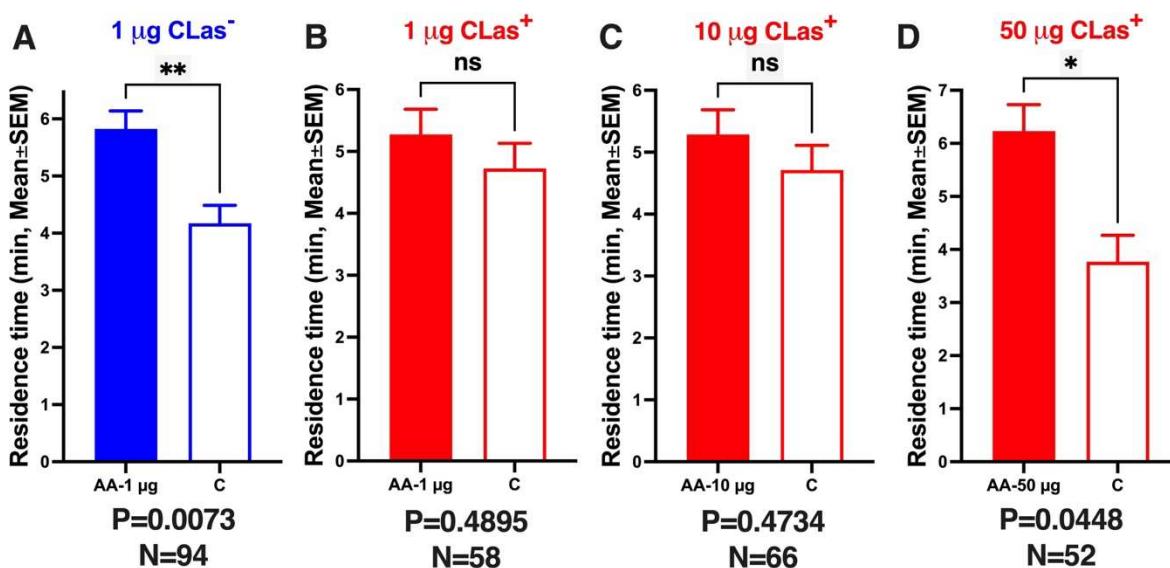


186

187 **Figure 2. Percent of male and female ACP naturally infected with *Wolbachia* and**  
188 **CLas.** Samples were collected for eleven days from February 18 to May 23, 2020, from  
189 an experimental organic plot in Mogi Mirim in the State of São Paulo, Brazil. Each point  
190 represents the percentage of adults infected with the tested bacteria. One thousand and  
191 one hundred psyllids were collected, but only 1,084 samples passed the quality test for  
192 PCR analysis.

193 It is well documented in the literature that pathogen infections may cause changes in a  
194 vector's behavior that ultimately lead to the enhanced transmission of the pathogen<sup>28,29</sup>,  
195 a phenomenon known as the host manipulation hypothesis<sup>30</sup>. For example, *Plasmodium*  
196 *falciparum* – a protozoan that causes malaria in humans – increases the frequency of  
197 multiple feeding in its vector *Anopheles gambiae*<sup>31</sup>. Likewise, the tomato yellow leaf curl  
198 virus (TYLCV)- vectored by *Bemisia tabaci* – enhances the insect vector feeding behavior  
199 by increasing contacts and longer durations of salivation into phloem sieve elements<sup>32</sup>.

200 The *Candidatus Liberibacter asiaticus* is no exception. *Ca Liberibacter* spp. infection  
201 causes a change in metabolism<sup>33-35</sup>, fitness<sup>36</sup>, feeding<sup>37</sup>, and dispersal behavior<sup>36</sup>. It is  
202 worth mentioning that CLas infection may also shorten ACP lifespan,<sup>38</sup> thus negatively  
203 affecting the transmission window. Here, we asked whether CLas infection could affect  
204 male responses to the putative female sex attractant<sup>20</sup>.


205 **Olfactory responses of CLas-free (CLas<sup>-</sup>) ACPs to acetic acid**

206 Using a multiple-choice olfactometer<sup>39</sup>, we first measured the responses of uninfected  
207 ACP males to acetic acid<sup>20,21</sup>. As reported above, our laboratory colony is naturally  
208 infected with *Wolbachia* (99.03%). Seven-day-old virgin males from a CLas-free  
209 laboratory colony, reared on orange jasmine, *Murraya paniculata*<sup>20</sup>, were tested under  
210 periodicity, luminosity, relative humidity, and temperature conditions to mimic the natural  
211 conditions in most citrus fields in Brazil<sup>20</sup>. Male responses were expressed as mean time  
212 spent in an odorant or control field. The arena had two control and two treatment fields.  
213 Psyllids were tested one at a time to allow accurate measurement of the time they spent  
214 on each of the two fields (one with acetic acid and the other with solvent control). Males  
215 who did not cross the odorant or control field lines within 5 min were recorded as "non-  
216 responders." Otherwise, psyllids were observed for 10 min.

217 One hundred and ten ACP males were tested for their responses to acetic acid at 1 µg  
218 (100 µl of 0.01 µg/µl solution in hexane; 100 µl of the solvent for control) loaded on a  
219 cotton swab. Sixteen males did not respond. The responding males (N = 94) showed a  
220 significant preference for the odorant field (1 µg acetic acid; residence times: treatment  
221  $5.8 \pm 0.3$  min, control  $4.2 \pm 0.3$  min; P = 0.0073, Wilcoxon matched-pairs signed rank test;  
222 hereafter referred to as Wilcoxon test) (Figure 3A). As a negative control, we tested 7-  
223 day-old virgin females. The female responders (N = 75, tested 90) showed no preference  
224 (residence time on the control field,  $5.1 \pm 0.4$  min; treatment,  $4.9 \pm 0.4$  min; P = 0.8510,  
225 Wilcoxon test).

226 Previously, we have demonstrated that acetic acid is attractive at 1 µg, but not at 0.1 or  
227 10 µg<sup>20,21</sup>. We recapitulated these findings by testing acetic acid at 10 µg. In agreement  
228 with our previous behavioral measurements,<sup>19,2</sup> there was no significant difference  
229 between male responses to acetic acid (10 µg source dose) or control. Specifically, 74 of

230 112 tested males responded and spent  $5.1 \pm 0.3$  min in the 10  $\mu\text{g}$  acetic acid treatment  
231 and  $4.9 \pm 0.3$  min in the control field of the arena ( $P = 0.9349$ , Wilcoxon test). Seven-day-  
232 old virgin females ( $N = 73$ ; tested, 92) tested as a control spent  $5.5 \pm 0.37$  min in the 10  
233  $\mu\text{g}$  acetic acid treatment field and  $4.5 \pm 0.37$  min in the control field ( $P = 0.2143$ , Wilcoxon  
234 test). In summary, CLas-uninfected male ACP showed a significant preference for acetic  
235 acid (1  $\mu\text{g}$  source dose) compared to the control (Figure 3A) but not for acetic acid at 10  
236  $\mu\text{g}$  source dose. At the higher dose (10  $\mu\text{g}$ ), we observed a significantly higher preference  
237 for the control field when the tested male psyllids made the first choice. They visited the  
238 control and treatment fields  $0.62 \pm 0.06$  and  $0.38 \pm 0.06$  times, respectively ( $P = 0.0474$ ,  
239 Wilcoxon test). By contrast, these tested males significantly preferred the treatment as  
240 the final choice (control,  $0.36 \pm 0.06$  visits; treatment,  $0.64 \pm 0.06$  visits;  $P = 0.0265$ ,  
241 Wilcoxon test). These observations suggest that this high dose (10  $\mu\text{g}$ ) may cause a  
242 repulsive behavior followed by attraction once the concentration declines during  
243 behavioral measurements. We then concluded that it was unnecessary to test higher  
244 doses.



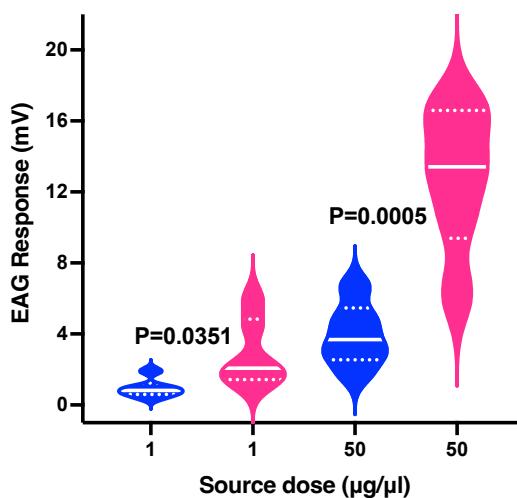
245

246 **Figure 3. Behavioral responses from non-infected and CLas-infected ACP males to**  
247 **acetic acid.** (A) CLas-free ACP males were tested at 1  $\mu\text{g}$  (source dose). (B), (C) and  
248 (D) CLas+ ACP males at 1, 10, and 50  $\mu\text{g}$  doses, respectively. Bars represent mean  
249 residence times in each odorant field  $\pm$  SEM. N represents the number of male

250 responders. qPCR analyses were used to select only CLas+ males for analysis groups  
251 (B, C, and D). We used untransformed data for normality and significant tests.  $P < 0.05$   
252 denotes a significant difference in the control and treatment odor fields (Wilcoxon test).

253

254 **Olfactory responses of CLas-infected (CLas<sup>+</sup>) ACPs to acetic acid**


255 Having confirmed that 1  $\mu$ g is the optimal dose for male attraction in our multiple-choice  
256 olfactometer, we tested CLas-infected psyllids. Unlike CLas-uninfected males, CLas+  
257 ACP males did not prefer acetic acid at 1  $\mu$ g (Figure 3B). It is worth mentioning that both  
258 CLas+ and CLas- ACPs were *Wolbachia* positive. CLas+ males spend, on average,  $5.3 \pm 0.41$  min in the treatment field and  $4.7 \pm 0.41$  min in the control field ( $N = 58$ ,  $P = 0.4895$ ,  
259 Wilcoxon test). After each experiment, we analyzed each behavioral responder by qPCR  
260 to ascertain that tested ACPs were CLas+. The behavioral data used in the analysis are  
261 from 58 confirmed CLas+ responders. CLas+ females were tested at the same dose as  
262 a negative control from a behavioral perspective. These CLas+ females showed no field  
263 preference (treatment,  $5.1 \pm 0.38$  min; control,  $4.9 \pm 0.38$  min;  $N = 77$ ,  $P = 0.7015$ ,  
264 Wilcoxon test).

266 Next, we measured the behavioral responses of CLas+ males to a higher dose of acetic  
267 acid (10  $\mu$ g). We observed no significant difference in the residence times in the treatment  
268 and control fields (Figure 3C). CLas+ males ( $N = 66$ ) spent  $5.3 \pm 0.40$  min in the treatment  
269 field and  $4.7 \pm 0.40$  min in the control field ( $P = 0.4734$ , Wilcoxon test). Likewise,  
270 responses from CLas+ females ( $N = 53$ ) were not significantly different ( $P = 0.7838$ ,  
271 Wilcoxon test; control,  $5.1 \pm 0.47$  min; treatment,  $4.9 \pm 0.47$  min). It did not escape our  
272 attention that CLas+ males significantly preferred the arena's 10  $\mu$ g acetic acid treatment  
273 field in their first choice (treatment  $0.64 \pm 0.06$  visits; control  $0.36 \pm 0.06$  visits;  $P = 0.0356$ ,  
274 Wilcoxon test). We surmised that this dose was not high enough to retain activity  
275 throughout the entire duration of the experiment, thus leading to no significant difference  
276 in the overall residence times ( $P = 0.4734$ , Wilcoxon test; see above). This observation  
277 prompted us to test a higher dose (100  $\mu$ g). CLas+ male mean residence times in the  
278 control and 100  $\mu$ g of acetic acid fields were not significantly different ( $N = 47$ , control  $4.7 \pm 0.52$  visits; treatment,  $5.3 \pm 0.52$  visits;  $P = 0.5777$ , Wilcoxon test). Additionally, the first

280 choice preference for the treatment field was not retained at this higher dose (treatment  
281  $0.49 \pm 0.07$  visits; control  $0.51 \pm 0.07$  visits;  $N=47$ ,  $P=0.9999$ ). We concluded that this  
282 dose (100  $\mu$ g of acetic acid) was too high, while the lower dose (10  $\mu$ g) was too low, and  
283 speculated that an intermediate dose might attract CLas+ males. We measured CLas+  
284 male responses to 50  $\mu$ g of acetic acid to test this assumption. CLas+ males showed a  
285 significant preference for the treatment field of the olfactometer (Figure 3D;  $N = 52$ ,  
286 treatment,  $6.2 \pm 0.5$  min; control,  $3.8 \pm 0.5$ ;  $P = 0.0448$ , Wilcoxon test). In summary, CLas-  
287 infection affected male responses to the putative sex pheromone. Specifically, CLas-  
288 infected males required a 50x higher dose to respond to acetic acid in an olfactometer.

289 **Electrophysiological responses of CLas- and CLas+ to acetic acid**

290 Lastly, we compared the electrophysiological responses of uninfected and CLas+ ACP  
291 males to acetic acid. We tested 7-day-old virgin males for consistency and compared their  
292 responses at two different source doses, reflecting the 50:1 ratio observed in behavioral  
293 experiments. We used freshly prepared samples in paraffin oil. The responses to acetic  
294 acid were corrected by subtracting the background responses to paraffin oil recorded from  
295 the same preparation. On average, puffing only paraffin oil recorded a response of  $0.33 \pm 0.28$  mV ( $N = 12$ ).



297

298 **Figure 4. The violin plot represents the electroantennographic (EAG) responses**  
299 **from uninfected and CLas-infected ACP males.** Statistical analyses were performed  
300 with the raw data after subtracting the background responses in each preparation to

301 paraffin oil. The mean responses elicited by acetic acid in CLas+ males differed  
302 significantly ( $P<0.005$ , t-test) from the corresponding mean responses recorded from  
303 uninfected males at the same dose. The solid and dotted lines represent the median and  
304 quartiles in each plot. Blue plot: responses recorded with uninfected ACP males; pink  
305 plot: EAG responses elicited by CLas-infected ACP males.

306 Uninfected males generated  $0.93 \pm 0.22$  and  $3.90 \pm 0.72$  mV ( $N = 6$ ) when challenged  
307 with acetic acid (source dose in paraffin oil, 1 and 50  $\mu\text{g}/\text{ul}$ , respectively). By contrast,  
308 CLas+ males gave more robust responses:  $2.90 \pm 0.77$  and  $12.81 \pm 1.6$  mV ( $N = 6$ ) when  
309 stimulated with acetic acid at the source dose of 1 and 50  $\mu\text{g}/\text{ul}$ , respectively (Figure 4).  
310 As the dataset passed the Shapiro-Wilk normality test, they were analyzed by unpaired,  
311 two-tailed t-test. The EAG responses elicited by uninfected and CLas+ ACP males were  
312 significantly different when compared for each dose: 1  $\mu\text{g}/\text{ul}$  ( $P = 0.0351$ , t-test) and 50  
313  $\mu\text{g}/\text{ul}$  ( $P = 0.0043$ , t-test) (Figure 4). In summary, CLas-infected males responded  
314 significantly more to acetic acid than uninfected males.

315 **Concluding remarks**

316 Consistent with chemical ecology terminology, we ascribed the function of acetic acid in  
317 ACP chemical communication as a “putative” sex pheromone<sup>20</sup>. Analytical tools did not  
318 allow us to demonstrate unequivocally that acetic acid is emitted only by ACP females.  
319 Our solvent-free, solid-phase micro-extraction (SPME) data (Figure S8 in<sup>20</sup>) showed that  
320 the titers of acetic acid in males and females did not differ in samples collected during no  
321 sex activity. By contrast, the titer of acetic acid in SPME samples collected from ACP  
322 females was higher than similar samples obtained from males at the same mating  
323 activity<sup>20</sup>. Behavioral measurements demonstrated that acetic acid is a sexual attractant,  
324 but there is no unequivocal evidence showing that this semiochemical is emitted only by  
325 ACP females. Such experimental evidence is challenging because of this  
326 semiochemical's low molecular weight and almost ubiquitous nature. Luo and  
327 collaborators<sup>40</sup> recently revisited ACP chemical communication by identifying the  
328 components of *D. citri* sex pheromones extracted by SPME and organic solvents. They  
329 concluded that acetic acid was detected only in female n-hexane extracts. This conclusion  
330 is intriguing because acetic acid is usually occluded in a gas chromatography solvent

331 front, thus preventing identification. In their publication, a table summarizing the  
332 chemicals collected by SPME indicates the absence of acetic acid in male samples.  
333 However, they also found other intriguing “female-specific” compounds like toluene. In  
334 the nonexistence of data showing that acetic acid is emitted by ACP females while calling  
335 (and not by males), it is prudent to refer to this semiochemical in the context of ACP  
336 chemical communication as a “putative” sex pheromone or a sex attractant.

337 To the best of our knowledge, this is the first report of a pathogen infection affecting a  
338 vector’s response to a sex attractant. Recently, a volatile sex attractant has been  
339 identified from the tsetse fly, *Glossina morsitans*<sup>41,42</sup>. Although it was also demonstrated  
340 that infection with trypanosomes alters the sexual behavior of tsetse flies, no direct  
341 evidence showed that infection modifies the response to the sex attractant.

342 While this paper was under review, an interesting grove-level analysis of titer and  
343 prevalence of CLas and *Wolbachia* was reported from Florida, where all citrus groves are  
344 infected with greening.<sup>3</sup> The authors concluded that CLas-free ACPs tend to have higher  
345 *Wolbachia* titers than CLas-infected psyllids. These exciting findings are beyond the  
346 scope of our research. Additionally, it would be challenging, if at all possible, to test this  
347 hypothesis on the ACP population from the experimental organic plot in Mogi Mirim,  
348 where nearly 100% of the psyllids were CLas+.

349 Microorganisms may alter insect behaviors by affecting the peripheral olfactory and/or the  
350 central nervous systems.<sup>43</sup> For example, bacteria and viruses infections may lead to  
351 increased transcript levels of the odorant receptor coreceptor,<sup>44,45</sup> Orco, or an odorant  
352 receptor,<sup>46</sup> thus enhancing the sensitivity of the peripheral olfactory system. It is  
353 conceivable that a similar mechanism led to the significantly higher EAG responses  
354 recorded from CLas+ ACPs (Figure 4). Testing this hypothesis must wait for the  
355 identification of the acetic acid-detecting ionotropic or odorant receptors. Microorganisms  
356 infections may also negatively affect insect behavior through the central nervous system,  
357 as reported for the West Nile virus manipulating *Culex* mosquito host-seeking behavior.<sup>47</sup>  
358 As CLas infects multiple ACP tissues,<sup>48</sup> it is plausible that this bacterium may positively  
359 affect the peripheral nervous system by increasing transcript levels of acetic acid-

360 detecting receptors while negatively affecting behavioral responses to acetic acid by  
361 infections to the central nervous system.

362 From the perspective of vector biology, discovering the altered behavior opened new  
363 research avenues to address if/how reducing the sensitivity to a putative sex pheromone  
364 may benefit the bacterium. From the monitoring perspective, CLas infection's effect on  
365 ACP behavior is a significant setback. It would be challenging to industrialize non-generic  
366 pheromone lures. As HLB-infected and healthy insects respond differently to acetic acid,  
367 acetic acid-based lures must be tailored for monitoring the ACP populations in infected  
368 and non-infected areas. The altered sensitivity to acetic acid would probably not be a  
369 problem in mating disruption. After all, the foundation of mating disruption is to permeate  
370 the air with pheromone concentrations above those produced by the target insect<sup>19</sup>. Thus,  
371 in principle, a high dose of acetic acid may lead to mating disruption of healthy and HLB-  
372 infected psyllids.

373 In contrast to chemical treatments (which target a weak link common to all insect species,  
374 such as blocking a sodium channel inhibiting acetylcholinesterase), chemical ecology is  
375 generally species-specific. This specificity is priceless from an environmental perspective  
376 but costly for practical applications as it requires in-depth fundamental research. The  
377 present study suggests that we still need to gain an in-depth knowledge of ACP biology  
378 to provide chemical ecology-based alternative means to monitor and control populations  
379 of the vector of this devastating disease.

380

## 381 **Materials and Methods**

### 382 **Field tests**

383 Two experiments were carried out simultaneously in an organic experimental 'Tahiti' lime  
384 (*Citrus × latifolia*) orchard located in Mogi Mirim, São Paulo, Brazil, with a spacing of  
385 7.5 × 3.5 m (row and plants spacing, respectively) from October 25 to November 1, 2019.  
386 Yellow sticky cards (30 cm in length × 10 cm in width) with a central hole (2 cm in  
387 diameter) were used to assess the attractiveness of the lures.

388 In a plot, we compared traps loaded with acetic acid in homemade slow-release devices  
389 (ethylene-propylene side-by-side fibers-ES lures, Chiso Co. Ltd, Japan) with yellow sticky  
390 cards (without attractive compound; control traps). One hundred microliters of an acetic  
391 acid solution in hexane (0.01 $\mu$ g/ $\mu$ L) were loaded into each ES fiber once a day.

392 In a second plot, we compared captures in traps with a long-lasting, slow-releasing  
393 formulation and those in control traps (without attractive compounds). The long-lasting  
394 formulation consisted of a brown polyethylene bag of 5.5 cm width x 3.5 cm length  
395 manufactured by ChemTica International S. A. (Santo Domingo, Costa Rica). For each  
396 plot, we used 15 control and 15 treatment traps arranged in two rows (15 m apart) with  
397 an intertrap distance of 10.5 m (in the same row). ACP male captures were recorded daily  
398 for eight days. The number of males per trap per day was used to perform the analyses.  
399 Field tests with double comparisons (Control  $\times$  ES lures – plot 1 and control  $\times$  ChemTica-  
400 A – plot 2) were analyzed by Mann-Whitney test ( $P<0.05$ ) with Prism 8 (GrapPad, La  
401 Jolla, CA).

#### 402 Insect preparations, CLas-negative ACP rearing

403 The Asian Citrus Psyllid used in this study derived from a colony kept at Fundecitrus,  
404 reared on healthy CLas-negative orange jasmine plants (common Brazilian name  
405 "murta"), *Murraya paniculata* (L.) Jack (Sapindales: Rutaceae)<sup>49</sup>. Briefly, orange jasmine  
406 plants were pruned to 25-30 cm tall. Soon after new shoots appeared, approximately 7 to  
407 12 days later, eight plants were caged in 60 x 60 x 60 cm mesh boxes and placed in a  
408 greenhouse. Each cage housed 400 adult psyllids (20-day-old mated males and females)  
409 for seven days to allow oviposition. Adults were removed, and cages (housing seedlings  
410 with eggs) were maintained in the same greenhouse until nymphs reached the fifth instar.  
411 At that point, cages were transferred to a climate-controlled room at  $25 \pm 2$  °C, 65+10 %  
412 relative humidity (RH), under a photo regime of light/dark, 14:10 hours, and luminosity of  
413 3,000 lux. Newly emerged adults (until 24 h-old) were collected daily from the rearing  
414 cages, sexed, and confined in new orange jasmine plants (two separated groups of plants  
415 – for male and female) to guarantee age control and virgin status condition. Seven-day-  
416 old virgins, males and females, were used in indoor behavioral assays.

#### 417 CLas-positive ACP rearing

418 CLas-infected psyllids were raised in a separate climate-controlled room following the  
419 same rearing protocol, temperature, RH, photoregime and light intensity described above.  
420 A group of CLas-infected 'Valencia' sweet orange plants (*Citrus x sinensis* (L.) Osbeck)  
421 grafted onto 'Rangpur' lime rootstock (*Citrus limonia* (L.) Osbeck), all growing in a  
422 greenhouse on 2.5 L citrus pot filled with a substrate containing a sterilized mixture  
423 composed of 80% *Pinus* sp. bark, 15% vermiculite, and 5% charcoal (Multiplant Citrus;  
424 Terra do Paraíso, Holambra, SP, Brazil) and regularly irrigated with water and weekly  
425 fertigated with a solution of minerals were used as host plants. The original budstick  
426 source of CLas for the inoculation of the plants came from the Brazilian strain 9PA<sup>50</sup>.  
427 Before use for ACP rearing, sweet orange plants (1.5 years after bud inoculation) were  
428 tested by qPCR for CLas titer. Plants with more than 5.19 bacterial cells per gram of  
429 tissue<sup>51</sup> were used. CLas citrus plants were transferred to a climate-controlled room (room  
430 conditions described above) and pruned to 50 cm in height to stimulate the production of  
431 young shoots. Eight citrus plants with V2 flush stage<sup>52</sup> were caged in 60 x 60 x 60 cm  
432 mesh boxes and infested with healthy CLas-negative mated females (3 females per citrus  
433 flush) for 7 days to allow oviposition. Adults were removed, and cages (housing seedlings  
434 with eggs) were maintained in the same climate-controlled room until adult emergence.  
435 Daily, newly emerged adults (until 24 h-old) – hereafter referred to as adults F0 were  
436 collected from the rearing cages, sexed, and confined in orange jasmine plants  
437 (separated group of plants – for male and female) to guarantee age control and virgin  
438 status condition. Seven-day-old virgins, males and females, were used in indoor  
439 behavioral assays.

#### 440 ACP samples for Wolbachia or CLas detection

441 Insects collected in the field and tested indoor behavioral assays were stored individually  
442 in 1.5-mL microtubes and kept at -20°C until DNA extraction within two months.

#### 443 Extraction of total DNA from ACPs

444 The total DNA was extracted from the entire body (head + thorax + abdomen) of a single  
445 ACP sample. Firstly, the frozen ACPs were disrupted on *TissueLyzer* equipment (Qiagen)  
446 by a metallic bead (2 mm in diameter). The total DNA was extracted using the CTAB

447 method (cetyltrimethylammonium bromide buffer) following a previously published  
448 protocol<sup>53</sup>. After disruption, each sample received 1 mL of CTAB buffer (added 0.2% of  
449  $\beta$ -mercaptoethanol) and kept in a water bath for 30 min at 65°C, then added 0.5 mL of  
450 chloroform: isoamyl alcohol 24:1 (v:v) and centrifuged (12.000 rpm, 5 min, 24°C), 0.3 mL  
451 of supernatant were recovered and transferred to a new 1.5-mL microtube containing  
452 0.18 mL of isopropanol alcohol. After 30 min storage at -20°C, the samples were  
453 centrifuged (12.000 rpm, 20 min, -4°C), and the pellet was washed twice with 70%  
454 ethanol, followed by centrifuging (12.000 rpm, 10 min, -4°C). Finally, DNAs were eluted  
455 in 30  $\mu$ L of Milli-Q filtered water and stored at -20°C until subsequent analysis.

456 Quantitative polymerase chain reaction (qPCR) procedure

457 All qPCR reactions were performed in a StepOne Plus thermocycler (Applied  
458 Biosystems), with primers and probes from Macrogen, Seul, South Korea. CLas detection  
459 in ACPs was done individually using a hydrolysis probe-based qPCR system (Path-ID  
460 master mix), detecting 16S rDNA region using the following probe-primers combination<sup>54</sup>:  
461 probe HLBp FAM), 5' FAM-AGACGGGTGAGTAACGCG-3'BHQ-1; forward primer  
462 HLBas, 5'-TCGAGCGCGTATGCAA-TACG-3', and reverse primer HLBr, 5'-  
463 CTACCTTTCTACGGGATAACGC-3'. An additional primer-probe set based on the *D.*  
464 *citri* wingless gene<sup>55</sup> was used as a positive internal control to determine the quality of the  
465 extracted DNA samples. This set contained the probe DCP 5'HEX-  
466 TGTGGCGAGGCTACAGAAC-3'BHQ-1; forward primer DCF, 5'-  
467 TGGTGAAGATGGTTGTGATCTGATGTG-3' and reverse primer DCR, 5'-  
468 AGTGGCAGCACCTTGCCA-3'. The reaction Mix (final volume:12  $\mu$ L) had 0.5  $\mu$ M of each  
469 16S rDNA forward and reverse primer, 0.2  $\mu$ M of DCP primers and DCp probe (0.35  $\mu$ M),  
470 6.0  $\mu$ L of TaqMan qPCR Master Mix (Ambion/ThermoFisher Scientific), and 3.0  $\mu$ L of total  
471 DNA. For 16S rDNA and *D. citri*, wingless gene cycling parameters were 50°C for 2 min,  
472 95°C for 10 min, followed by 45 cycles of 95°C for 15 s and 58°C for 45 s. *Wolbachia*  
473 presence was detected by a qPCR test using the primer-pair<sup>56</sup> ftsZ-F 5'-  
474 AGCAGCCAGAGAAGCAAGAG-3' and ftsZ-R 5'- TACGTCGCACACCTTCAAAA-3'  
475 using 1  $\mu$ L of DNA and the following cycling conditions 50°C for 2 min, 95°C for 10 min,  
476 followed by 45 cycles of 95°C for 15 s and 58°C for 30 s, followed by a melting curve from

477 60 to 95 °C using SYBR Green PCR Master Mix. Non-template controls were used for  
478 each run.

479 **Electroantennogram (EAG) recording**

480 The EAG protocol was similar to a previously described method<sup>20,21</sup>. Specifically, an ACP  
481 virgin male (7-day old) was inserted into a disposable pipette tip to immobilize the body  
482 under a stereoscopic microscope (SZT, BEL Engineering, MB, Italy), except for the head  
483 that protruded from the tip. A cotton plug was inserted into the pipette's posterior end to  
484 prevent it from crawling backward. Electric contact was achieved by using 0.39 mm gold  
485 wires (Sigmund Cohn Corp, Mt. Vernon, NY) inserted into glass capillaries filled with  
486 Ringer's solution (saline solution 3.7 g NaCl, 0.175 g KCl, 0.17 g CaCl<sub>2</sub> in 500 mL of  
487 distilled water). The reference electrode was inserted into the head, and the recording  
488 electrode was in contact with the antennal tip. The stimulus delivery system employed  
489 was loaded on a filter paper stripe (1 × 1 cm<sup>2</sup>) in a disposable glass Pasteur pipette  
490 cartridge. The stimuli were delivered over the preparation in a constant 1 L/min airstream  
491 (CS-55 Stimulus Controller, Syntech) and applied (2 s duration) every 30 s interval. A 10-  
492 µl aliquot of acetic acid solution (1 µg/µL or 50 µg/µL diluted in paraffin oil – Sigma Aldrich,  
493 Milwaukee, WI) was applied to strips of filter paper and placed into the cartridge. Tested  
494 doses were alternated with paraffin oil controls to allow for the decline in the EAG  
495 response of the preparations with time. Each dose and control were tested only once for  
496 an antenna (repetition). The recorded signal was amplified using a pre-amplification probe  
497 (Universal AC/DC probe, Syntech, Germany), which was connected to an EAG high-  
498 impedance amplifier (IDAC-2, Syntech, Germany). The digitized signals were processed  
499 with EAG-Pro (version 2.0, Syntech, Germany) and were computed as the difference  
500 between the baseline and the maximum amplitude reached during odor stimulation.  
501 Antennae from six CLas-infected and six healthy ACP males were tested. The CLas-  
502 infected ACP males were subsequently analyzed by qPCR to confirm they were indeed  
503 CLas+. For each AA concentration repetition (10 µg and 500 µg), the relative EAG  
504 response was calculated by subtracting the EAG response (mV) value of the paraffin oil  
505 (control) from the EAG response value for the AA doses related to the same antennae.

506 **Indoor bioassays**

507 All behavioral assays were done in a climate-controlled room at  $25 \pm 2$  °C,  $65 \pm 10\%$   
508 relative humidity, 14 h light/10 h dark photo regime, and 3,000 lux luminosity. Responses  
509 to acetic acid were measured with a previously described multi-choice olfactometer<sup>20,39</sup>.  
510 In brief, we used an acrylic 4-arm olfactometer (30.0 × 30.0 × 2.5 cm; length × width ×  
511 height, respectively) with a transparent acrylic lid and modified by adding a yellow  
512 background below the bottom of the device<sup>39</sup>. Compressed air (charcoal filtered and  
513 humidified) was connected to a stainless-steel line and split into four individual 0.635-cm-  
514 diameter polytetrafluoroethylene (PTFE) tubes (Sigma-Aldrich, Bellefonte, PA, USA)  
515 connected in four flowmeters [0.1–1 LPM, Brooks Instruments, Hatfield, PA, USA],  
516 adjusted to 0.1 LPM airflow/flowmeter. Each PTFE tube was connected to one horizontal  
517 glass chamber (20 cm length × 6 cm internal diameter) containing an odor source (two  
518 sources of acetic acid, treatment and 2 of hexane, control; both loaded on cotton swabs),  
519 and each airflow converged through PTFE tubes to one of the four device arms.

520 **Statement for guidelines and permission**

521 The FUNDECITRUS (Fund for Citrus Protection) is a non-profit association maintained  
522 by citrus growers and juice manufacturers from the State of São Paulo to foster the  
523 sustainable development of the citrus industry. The FUNDECITRUS's research activities  
524 focus mainly on managing citrus pests and diseases using citrus growers' financial  
525 support. As part of this agreement, the growers allow the FUNDECITRUS free access to  
526 their citrus orchards to develop research that benefits the management of citrus pests  
527 and diseases. Therefore, all fieldwork in São Paulo is appropriately authorized and  
528 conforms to institutional guidelines. Additionally, the FUNDECITRUS uses its own facility  
529 to grow infected and non-infected plant varieties and raises insects for research.

530 **Acknowledgments.**

531 We thank Jean M. Martins and Deividson F. Rodrigues (FUNDECITRUS) for DNA  
532 extractions and Daniela A. B. Coletti (FUNDECITRUS) for performing qPCR reactions,  
533 Drs. Rodrigo Facchini Magnani (FUNDECITRUS) and Francisco Gonzales (ChemTica  
534 International) for critically reading an earlier manuscript draft, and ChemTica International  
535 for providing experimental acetic acid-based lures. This work was supported partially by

536 the Fund for Citrus Protection (FUNDECITRUS) under a research agreement with the  
537 University of California-Davis (#201600147) and the National Institute of Science and  
538 Technology of Semiochemicals in Agriculture (INCT) [grants FAPESP #2014/50871-0  
539 and CNPq #465511/2014-7].

540

541 **Competing Interest Statement:**

542 The following authors work for FUNDECITRUS, a non-profit association that partially  
543 funded this research: H.X.L.V., M. C.S., R.A.G.L., R.F., V.E., J.C.D., A.A.L.P., N.A.W.,  
544 and M.P.M

545 **Author contributions.**

546 W.S.L. and H.X.L.V. designed research. H.X.L.V., M.C.S., R.A.G.L., R.F., V. E., J.C.D.,  
547 A.A.L.P., D.M.M., A.P.F. performed research. N.A.W., M.P.M., and J.M.S.B. provided  
548 reagents, tools, and ideas. W.S.L. wrote the manuscript. All authors reviewed and  
549 approved the final version of the manuscript.

550 **Additional Information.**

551 A dataset with raw data used to generate figures accompanies this paper at xxxx

552 **Data Availability.** All data generated during this study are included in the manuscript  
553 and supporting files.

554

555 **References**

556

557 1 Bove, J. M. Huanglongbing: A destructive, newly-emerging, century-old disease  
558 of citrus. *J Plant Pathol* **88**, 7-37 (2006).

559 2 Cifuentes-Arenas, J. C. *et al.* Impacts of huanglongbing on fruit yield and quality  
560 and on flushing dynamics of Sicilian lemon trees. *Frontiers in Plant Science* **13**,  
561 doi:10.3389/fpls.2022.1005557 (2022).

562 3 Mann, R. S. *et al.* Induced release of a plant-defense volatile 'deceptively'  
563 attracts insect vectors to plants infected with a bacterial pathogen. *PLoS Pathog*  
564 **8**, e1002610, doi:10.1371/journal.ppat.1002610 (2012).

565 4 USDA. Florida Citrus Statistics 2021-2022. (USDA, National Agricultural  
566 Statistics Service, 2023).

567 5 Halbert, S. E. in *Second International Citrus Canker and Huanglongbing*  
568 *Research Workshop*. (eds T. R. Gottwald, W. N. Dixon, J. H. Graham, & P.  
569 Berger) (2005).

570 6 USDA. Citrus July Forecast. (2023).

571 7 Fitchette, T. *HLB bacterium found in Calif. commercial groves*, 2023).

572 8 WorldAtlas. Vol. 2023 (2023).

573 9 FUNDECITRUS. Estimativa da safra de laranja 2021/22 do cinturão citrícola de  
574 São Paulo e Triângulo/Sudoeste Mineiro: cenário em maio/2021 Report No.  
575 2446-7715 27 (Faculdade de Ciências Agrárias e Veterinárias, Unesp,  
576 Araraquara, SP, 2023).

577 10 Texeira, D. C. *et al.* First Report of a Huanglongbing-Like Disease of Citrus in  
578 São Paulo State, Brazil and Association of a New *Liberibacter* Species,  
579 "Candidatus *Liberibacter americanus*", with the Disease. *Plant Dis* **89**, 107,  
580 doi:10.1094/PD-89-0107A (2005).

581 11 do Carmo Teixeira, D. *et al.* Citrus huanglongbing in São Paulo State, Brazil:  
582 PCR detection of the 'Candidatus' *Liberibacter* species associated with the  
583 disease. *Mol Cell Probes* **19**, 173-179, doi:10.1016/j.mcp.2004.11.002 (2005).

584 12 Coletta-Filho, H. D. *et al.* First Report of the Causal Agent of Huanglongbing  
585 ("Candidatus *Liberibacter asiaticus*") in Brazil. *Plant Dis* **88**, 1382,  
586 doi:10.1094/PDIS.2004.88.12.1382C (2004).

587 13 Santos Silva, M. *et al.* Asian citrus psyllid, *Diaphorina citri* (Hemiptera: Liviidae)  
588 responses to plant-associated volatile organic compounds: A mini-review. *Crop  
589 Protection* **169**, 106242, doi:<https://doi.org/10.1016/j.cropro.2023.106242> (2023).

590 14 FUNDECITRUS. Inventário de árvores do cinturão citrícola de São Paulo e  
591 Triângulo/Sudoeste Mineiro: retrato dos pomares em março de 2023. Report No.  
592 2446-7715 27 (Faculdade de Ciências Agrárias e Veterinárias, Unesp,  
593 Araraquara, SP, 2023).

594 15 Belasque Jr., J. *et al.* Controle do huanglongbing no estado de São Paulo, Brasil.  
595 *Citrus Res Technol* **31**, 53–64 (2010).

596 16 Cook, S. M., Khan, Z. R. & Pickett, J. A. The Use of Push-Pull Strategies in  
597 Integrated Pest Management. *Annual Review of Entomology* **52**, 375-400,  
598 doi:10.1146/annurev.ento.52.110405.091407 (2007).

599 17 Gregg, P. C., Socorro, A. P. D. & Landolt, P. J. Advances in Attract-and-Kill for  
600 Agricultural Pests: Beyond Pheromones. *Annual Review of Entomology* **63**, 453-  
601 470, doi:10.1146/annurev-ento-031616-035040 (2018).

602 18 Cardé, R. T. & Minks, A. K. Control of Moth Pests by Mating Disruption:  
603 Successes and Constraints. *Annual Review of Entomology* **40**, 559-585,  
604 doi:10.1146/annurev.en.40.010195.003015 (1995).

605 19 Miller, J. R. & Gut, L. J. Mating Disruption for the 21st Century: Matching  
606 Technology With Mechanism. *Environmental Entomology* **44**, 427-453,  
607 doi:10.1093/ee/nvv052 (2015).

608 20 Zanardi, O. Z. *et al.* Putative sex pheromone of the Asian citrus psyllid,  
609 *Diaphorina citri*, breaks down into an attractant. *Sci Rep* **8**, 455,  
610 doi:10.1038/s41598-017-18986-4 (2018).

611 21 Zanardi, O. Z. *et al.* Laboratory and field evaluation of acetic acid-based lures for  
612 male Asian citrus psyllid, *Diaphorina citri*. *Sci Rep* **9**, 12920, doi:10.1038/s41598-  
613 019-49469-3 (2019).

614 22 Subandiyah, S., Nikoh, N., Tsuyumu, S., Somowiyarjo, S. & Fukatsu, T. Complex  
615 Endosymbiotic Microbiota of the Citrus Psyllid *Diaphorina citri* (Homoptera:  
616 Psylloidea). *Zoological Science* **17**, 983-989, 987 (2000).

617 23 Jagoueix, S., Bove, J.-M. & Garnier, M. The Phloem-Limited Bacterium of  
618 Greening Disease of Citrus Is a Member of the  $\alpha$  Subdivision of the  
619 Proteobacteria. *International Journal of Systematic and Evolutionary*  
620 *Microbiology* **44**, 379-386, doi:<https://doi.org/10.1099/00207713-44-3-379> (1994).

621 24 Guidolin, A. S. & Consoli, F. L. Molecular characterization of Wolbachia strains  
622 associated with the invasive Asian citrus psyllid *Diaphorina citri* in Brazil. *Microb*  
623 *Ecol* **65**, 475-486, doi:10.1007/s00248-012-0150-7 (2013).

624 25 Hodgkinson, I. D. Life cycle variation and adaptation in jumping plant lice (Insecta:  
625 Hemiptera: Psylloidea): a global synthesis. *Journal of Natural History* **43**, 65-179,  
626 doi:10.1080/00222930802354167 (2009).

627 26 Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: master manipulators of  
628 invertebrate biology. *Nat Rev Microbiol* **6**, 741-751, doi:10.1038/nrmicro1969  
629 (2008).

630 27 Wulff, N. A. *et al.* Incidence of *Diaphorina citri* Carrying *Candidatus Liberibacter*  
631 *asiaticus* in Brazil's Citrus Belt. *Insects* **11**, doi:10.3390/insects11100672 (2020).

632 28 Fereres, A. & Moreno, A. Behavioural aspects influencing plant virus  
633 transmission by homopteran insects. *Virus Res* **141**, 158-168,  
634 doi:10.1016/j.virusres.2008.10.020 (2009).

635 29 Mauck, K. E., De Moraes, C. M. & Mescher, M. C. Effects of pathogens on  
636 sensory-mediated interactions between plants and insect vectors. *Curr Opin*  
637 *Plant Biol* **32**, 53-61, doi:10.1016/j.pbi.2016.06.012 (2016).

638 30 Holmes, J. C. & Bethel, W. M. in *Behavioral Aspects of Parasite Transmission*  
639 (eds E. U. Canning & C. A. Wright) 128-149. (Academic Press, 1972).

640 31 Koella, J. C., Sorensen, F. L. & Anderson, R. A. The malaria parasite,  
641 Plasmodium falciparum, increases the frequency of multiple feeding of its  
642 mosquito vector, *Anopheles gambiae*. *Proc Biol Sci* **265**, 763-768,  
643 doi:10.1098/rspb.1998.0358 (1998).

644 32 Moreno-Delafuente, A., Garzo, E., Moreno, A. & Fereres, A. A plant virus  
645 manipulates the behavior of its whitefly vector to enhance its transmission  
646 efficiency and spread. *PLoS One* **8**, e61543, doi:10.1371/journal.pone.0061543  
647 (2013).

648 33 Molki, B. *et al.* Physiochemical changes mediated by "Candidatus Liberibacter  
649 asiaticus" in Asian citrus psyllids. *Sci Rep* **9**, 16375, doi:10.1038/s41598-019-  
650 52692-7 (2019).

651 34 Kruse, A. *et al.* *Candidatus Liberibacter asiaticus* Minimally Alters Expression of  
652 Immunity and Metabolism Proteins in Hemolymph of *Diaphorina citri*, the Insect  
653 Vector of Huanglongbing. *J Proteome Res* **17**, 2995-3011,  
654 doi:10.1021/acs.jproteome.8b00183 (2018).

655 35 Killiny, N., Hijaz, F., Ebert, T. A. & Rogers, M. E. A Plant Bacterial Pathogen  
656 Manipulates Its Insect Vector's Energy Metabolism. *Appl Environ Microbiol* **83**,  
657 doi:10.1128/AEM.03005-16 (2017).

658 36 Martini, X., Hoffmann, M., Coy, M. R., Stelinski, L. L. & Pelz-Stelinski, K. S.  
659 Infection of an Insect Vector with a Bacterial Plant Pathogen Increases Its  
660 Propensity for Dispersal. *PLoS One* **10**, e0129373,  
661 doi:10.1371/journal.pone.0129373 (2015).

662 37 Antolinez, C. A., Moreno, A., Appezato-da-Gloria, B. & Fereres, A.  
663 Characterization of the electrical penetration graphs of the psyllid *Bactericera*  
664 *trigonica* on carrots. *Entomol Exp Appl* **163**, 127-139,  
665 doi:<https://doi.org/10.1111/eea.12565> (2017).

666 38 Nehela, Y. & Killiny, N. Infection with phytopathogenic bacterium inhibits  
667 melatonin biosynthesis, decreases longevity of its vector, and suppresses the  
668 free radical-defense. *Journal of Pineal Research* **65**, e12511,  
669 doi:<https://doi.org/10.1111/jpi.12511> (2018).

670 39 Volpe, H. X. L. *et al.* Behavioral responses of *Diaphorina citri* to host plant  
671 volatiles in multiple-choice olfactometers are affected in interpretable ways by  
672 effects of background colors and airflows. *PLoS One* **15**, e0235630,  
673 doi:10.1371/journal.pone.0235630 (2020).

674 40 Luo, H., Tang, X. a., Deng, Y., Deng, Z. & Liu, M. The extraction and  
675 identification of active components of the sex pheromones of Asian citrus psyllid,  
676 *Diaphorina citri*. *Pesticide Biochemistry and Physiology* **192**, 105421,  
677 doi:<https://doi.org/10.1016/j.pestbp.2023.105421> (2023).

678 41 Syed, Z. Chemical notes of tsetse fly mating. *Science* **379**, 638-639,  
679 doi:doi:10.1126/science.adg2817 (2023).

680 42 Ebrahim, S. A. M., Dweck, H. K. M., Weiss, B. L. & Carlson, J. R. A volatile sex  
681 attractant of tsetse flies. *Science* **379**, eade1877, doi:10.1126/science.adc1877  
682 (2023).

683 43 Ai, S. *et al.* Insect-Microorganism Interaction Has Implications on Insect Olfactory  
684 Systems. *Insects* **13**, 1094 (2022).

685 44 Peng, Y. & Wang, Y. Infection of Wolbachia may improve the olfactory response  
686 of *Drosophila*. *Chinese Science Bulletin* **54**, 1369-1375, doi:10.1007/s11434-009-  
687 0183-6 (2009).

688 45 Li, S., Zhou, C. & Zhou, Y. Olfactory co-receptor Orco stimulated by Rice stripe  
689 virus is essential for host seeking behavior in small brown planthopper. *Pest  
690 Management Science* **75**, 187-194, doi:<https://doi.org/10.1002/ps.5086> (2019).

691 46 Llopis-Giménez, A., Caballero-Vidal, G., Jacquin-Joly, E., Crava, C. M. &  
692 Herrero, S. Baculovirus infection affects caterpillar chemoperception. *Insect*

693        *Biochemistry and Molecular Biology* **138**, 103648,  
694        doi:<https://doi.org/10.1016/j.ibmb.2021.103648> (2021).

695    47    Vogels, C. B. F. *et al.* Virus interferes with host-seeking behaviour of mosquito. *J  
696        Exp Biol* **220**, 3598-3603, doi:10.1242/jeb.164186 (2017).

697    48    Chen, Q. *et al.* Infection and distribution of *Candidatus Liberibacter asiaticus* in  
698        citrus plants and psyllid vectors at the cellular level. *Microb Biotechnol* **15**, 1221-  
699        1234, doi:10.1111/1751-7915.13914 (2022).

700    49    Nava, D. E., Torres, M. L. G., Rodrigues, M. D. L., Bento, J. M. S. & Parra, J. R.  
701        P. Biology of *Diaphorina citri* (Hem., Psyllidae) on different hosts and at different  
702        temperatures. *J Appl Entomol* **131**, 709-715, doi:10.1111/j.1439-  
703        0418.2007.01230.x (2007).

704    50    Silva, P. A. *et al.* Genome Sequence Resource of 'Candidatus Liberibacter  
705        asiaticus' strain 9PA From Brazil. *Plant Dis* **105**, 199-201, doi:10.1094/PDIS-05-  
706        20-1018-A (2021).

707    51    Lopes, S. A. *et al.* 'Candidatus Liberibacter asiaticus' Titers in Citrus and  
708        Acquisition Rates by *Diaphorina citri* Are Decreased by Higher Temperature.  
709        *Plant Dis* **97**, 1563-1570, doi:10.1094/PDIS-11-12-1031-RE (2013).

710    52    Cifuentes-Arenas, J. C., de Goes, A., de Miranda, M. P., Beattie, G. A. C. &  
711        Lopes, S. A. Citrus flush shoot ontogeny modulates biotic potential of *Diaphorina  
712        citri*. *PLoS One* **13**, e0190563, doi:10.1371/journal.pone.0190563 (2018).

713    53    Murray, M. G. & Thompson, W. F. Rapid isolation of high molecular weight plant  
714        DNA. *Nucleic Acids Res* **8**, 4321-4325, doi:10.1093/nar/8.19.4321 (1980).

715    54    Li, W., Hartung, J. S. & Levy, L. Quantitative real-time PCR for detection and  
716        identification of *Candidatus Liberibacter* species associated with citrus  
717        huanglongbing. *J Microbiol Methods* **66**, 104-115,  
718        doi:10.1016/j.mimet.2005.10.018 (2006).

719 55 Manjunath, K. L., Halbert, S. E., Ramadugu, C., Webb, S. & Lee, R. F. Detection  
720 of 'Candidatus Liberibacter asiaticus' in *Diaphorina citri* and its importance in the  
721 management of citrus huanglongbing in Florida. *Phytopathology* **98**, 387-396,  
722 doi:10.1094/PHYTO-98-4-0387 (2008).

723 56 Dossi, F. C., da Silva, E. P. & Consoli, F. L. Population dynamics and growth  
724 rates of endosymbionts during *Diaphorina citri* (Hemiptera, Liviidae) ontogeny.  
725 *Microb Ecol* **68**, 881-889, doi:10.1007/s00248-014-0463-9 (2014).

726