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Abstract

Identifying transcriptional enhancers and their target genes is essential for understanding gene
regulation and the impact of human genetic variation on disease'. Here we create and evaluate
a resource of >13 million enhancer-gene regulatory interactions across 352 cell types and tissues,
by integrating predictive models, measurements of chromatin state and 3D contacts, and large-
scale genetic perturbations generated by the ENCODE Consortium’. We first create a systematic
benchmarking pipeline to compare predictive models, assembling a dataset of 10,411 element-
gene pairs measured in CRISPR perturbation experiments, >30,000 fine-mapped eQTLs, and
569 fine-mapped GWAS variants linked to a likely causal gene. Using this framework, we develop
a new predictive model, ENCODE-rE2G, that achieves state-of-the-art performance across
multiple prediction tasks, demonstrating a strategy involving iterative perturbations and
supervised machine learning to build increasingly accurate predictive models of enhancer
regulation. Using the ENCODE-rE2G model, we build an encyclopedia of enhancer-gene
regulatory interactions in the human genome, which reveals global properties of enhancer
networks, identifies differences in the functions of genes that have more or less complex
regulatory landscapes, and improves analyses to link noncoding variants to target genes and cell
types for common, complex diseases. By interpreting the model, we find evidence that, beyond
enhancer activity and 3D enhancer-promoter contacts, additional features guide enhancer-
promoter communication including promoter class and enhancer-enhancer synergy. Altogether,
these genome-wide maps of enhancer-gene regulatory interactions, benchmarking software,
predictive models, and insights about enhancer function provide a valuable resource for future
studies of gene regulation and human genetics.

Introduction

Noncoding DNA elements called enhancers have essential functions in controlling cell-type
specific gene regulation and cellular programs, and likely contain a majority of causal variants for
common, complex diseases*®. Yet, it remains an open challenge to accurately identify which
elements act as enhancers in a given cell type and link them to the nearby genes that they
regulate (hereafter, “enhancer-gene regulatory interactions”)'=>.

Toward this goal, the ENCODE Project has conducted thousands of experiments to identify
candidate cis-regulatory elements and annotate their chromatin state and 3D physical interactions
across hundreds of cell types and tissues’. Using these and other data, various predictive models
have been developed and applied to identify enhancer-gene regulatory interactions®'®. Despite
recent progress, key challenges remain.

Many previous efforts are missing information on the accuracy of predictions, have not been
systematically compared to others using a common set of benchmarks, and/or have known
limitations in prediction accuracy®®'2'%7_We need larger sets of genetic perturbation data and
a community framework to evaluate, compare, and develop improved predictive models of
enhancer-gene regulatory interactions.

Previous predictive models have identified certain features important for prediction accuracy,
including the strength of activating chromatin marks at an element (“enhancer activity”) and the
frequency at which an element physically contacts a nearby promoter (“3D contact”)’. However,
further analysis is needed to evaluate the utility of different experimental assays in estimating
these features, to compare the relative importance of these or other molecular features, and to
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explore how these features might inform molecular mechanisms of enhancer-promoter
communication.

Some predictive models are difficult to apply to new cell types because they require analysis of
many cell types simultaneously®'"'2 or a large number of experimental inputs in any given cell
type'®. As such, we are missing a resource of enhancer-gene regulatory interactions across the
hundreds of cell types and tissues profiled by the ENCODE Project that can inform fundamental
properties of gene regulation, link noncoding variants to genes, integrate with other ENCODE
analysis products, and expand to new cell types in the future.

Data collected in this final phase of the ENCODE Project include CRISPR perturbations of
candidate enhancers®'®?°, high-resolution Hi-C data®', and maps of DNase | hypersensitivity
across new cell types®> — providing an opportunity to build a common benchmarking framework,
build improved predictive models, and apply these models to construct a map of enhancer-gene
regulatory interactions in the human genome.

An encyclopedia of enhancer-gene regulatory interactions

Here we present the ENCODE resource of enhancer-gene regulatory interactions (Fig. 1), which
includes three components:

1. A new set of predictive models, collectively termed “ENCODE-rE2G”. We developed
new supervised classifiers that integrate molecular features of chromatin state and 3D
physical interactions to predict enhancer-gene regulatory interactions in a given cell type.
ENCODE-rE2G involves supervised training directly on CRISPR perturbation data, and
enables predicting which enhancers regulate which genes in a given cell type based on
various combinations of cell-type specific experimental data (minimally, DNase-seq
combined with a reference ENCODE Hi-C map averaged across many tissues).

2. A new benchmarking framework to evaluate predictive models. We collected and
harmonized genetic perturbation data relevant to enhancer-gene regulatory interactions,
including CRISPR perturbation experiments, expression quantitative trait loci (eQTLs),
and variants from genome-wide association studies (GWAS). We developed a pipeline to
quantify and annotate the accuracy of predictive models, and applied this to benchmark
ENCODE-rE2G and hundreds of alternative models at key prediction tasks. An important
difference between this and some previous benchmarking analyses is that we use as gold
standards only data describing regulatory interactions, derived from genetic perturbations,
as opposed to physical interactions, such as those measured by Hi-C or ChIA-PET. These
perturbations datasets, analysis pipelines, and benchmarking results will facilitate studies
to develop improved models of enhancer-gene regulatory interactions.

3. An encyclopedia of enhancer-gene regulatory interactions in the human genome.
We applied the most general of the ENCODE-rE2G models across 352 ENCODE cell
types, tissues, and contexts (collectively, “biosamples”), and identified 13,455,443
regulatory interactions between distal elements and target genes. This atlas includes an
average of 23,846 unique regulatory elements and 62,509 element-gene regulatory
interactions per biosample, and in total annotates 0.76% of the approximately 3 billion
basepairs in the human genome. This resource enables looking up a gene to find
predicted enhancers, looking up an element to find predicted target genes, and identifying
predicted cell types and target genes for noncoding variants.


https://doi.org/10.1101/2023.11.09.563812
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.09.563812; this version posted November 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Below we describe the creation, validation, and application of this resource to chart global
properties of enhancer-gene regulatory interactions, annotate variants associated with complex
traits, and identify new molecular features that tune enhancer-promoter communication.
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Figure 1. The ENCODE resource of enhancer-gene regulatory interactions

a, Project overview: Using CRISPR data in K562 in combination with molecular features for enhancer
activity, 3D physical interaction and genomic landscape, we trained new semi-supervised predictive models
on the CRISPRIi data, called ENCODE-rE2G, to predict enhancer-gene regulatory connections from
molecular data. We benchmarked their performance using systematic benchmarking against ground truth
datasets from CRISPRI, eQTL and GWAS data and compared ENCODE-rE2G’s performance against other
published models. Using the ENCODE-rE2G model we built genome-wide maps of E-G regulatory
connections across 352 ENCODE biosamples.

b, Enhancer-gene regulatory connections for the PRKARZ2B locus, showing detailed data and predictions
in K562, DNase-seq and ENCODE-rE2G enhancer-gene connections in three related cell types, and
ENCODE-rE2G scores for predicted PRKAR2B enhancers in 92 biosamples with at least three enhancers.
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Supervised classification of enhancer-gene regulatory interactions

Previous predictive models of enhancer-gene regulatory interactions have largely involved
unsupervised approaches based on enhancer-promoter correlations'?>'*, molecular rules®'®, or
supervised learning on proxies such as 3D loops or gene expression®'%'"'5 We reasoned that,
by combining epigenomic data with recent large-scale enhancer-targeting CRISPR perturbation
datasets, we could build an improved model by training a supervised classifier directly on CRISPR
data in a single cell type, and then apply the trained model across the genome and to new cell
types. A similar approach was pioneered in previous work®, but using a much smaller CRISPR
perturbation dataset.

We constructed two logistic regression classifiers to predict CRISPR-validated element-gene
pairs using different combinations of molecular features (Tables S1, S3). In the “ENCODE-rE2G”
model, we used 13 features that could be computed using only cell-type specific DNase-seq data,
thereby facilitating analyses across many hundreds of ENCODE biosamples. Specifically, we
included features related to (i) chromatin state (quantitative DNase-seq signals at the element
and promoter), (ii) 3D contact frequency (averaged from ENCODE Hi-C in 35 diploid biosamples
to capture cell-type-invariant features of genome organization); (iii) the Activity-by-Contact (ABC)
model®, which multiplies enhancer activity and 3D contact frequency; (iv) genomic position (e.g.,
distance from element to promoter); (v) promoter class (e.g., whether the gene is uniformly and
ubiquitously expressed across cell types (i.e., a “housekeeping” gene)); and (vi) information about
nearby enhancers (e.g., the activity of all other elements within 5 kb of the perturbed element)
(Table S3). In the ENCODE-rE2GH*"*¢ model, we sought to evaluate the utility of additional
assays available in Tier 1 ENCODE cell types, and expanded to include a total of 47 features
derived from DNase-seq, histone ChlIP-seq, cell-type specific ENCODE Hi-C, and ChIA-PET
experiments, as well as features from additional predictive models such as EpiMap® and
GraphReg' that jointly analyze many datasets (Table S3).

To train and evaluate models, we aggregated a gold-standard dataset of 10,411 element-gene
pairs tested with CRISPR in K562 erythroleukemia cells, an ENCODE Tier 1 cell line. We re-
analyzed and harmonized data from previous studies that used genetic perturbations (mostly
CRISPR interference (CRISPRI)) to inhibit candidate enhancers and measure effects on gene
expression®'9%-% (see Note S1). Importantly, we developed approaches to compute statistical
power for every tested element-gene pair, identifying 472 “positive” unique element-gene pairs
where CRISPR perturbation of the element led to a significant decrease in gene expression (-1
to —-93% effects, Fig. 1c, Fig. S1.1f) and 9,938 “negative” element-gene pairs where no significant
reduction in expression was observed despite the experiment having good power to detect >15-
25% effects on gene expression (Note S1). We trained logistic regression classifiers to distinguish
positives from negatives using hold-one-chromosome-out cross-validation. Then, we applied the
trained model to all pairs of element-gene pairs across the genome and to new cell types.

Each element-gene pair is annotated with a score, corresponding to the probability of a regulatory
effect from the logistic regression classifier. To binarize the predictions, we selected a threshold
on the score that achieved 70% recall in the CRISPR training dataset, as in previous studies®. At
this threshold, ENCODE-rE2G identified an average of 38,225 E-G regulatory interactions per
biosample (36,822 for ENCODE-rE2GFe"%4) " 23 847 predicted “enhancers” (distal elements
predicted to regulate at least one gene; 21,325 for ENCODE-rE2GE")  and included well-
studied enhancers such at the HBE1, GATA1 and MYC loci (Fig. S10).
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Systematic benchmarking of ENCODE-rE2G

To quantify the accuracy of enhancer-gene regulatory interaction predictions, we developed a
systematic benchmarking pipeline by aggregating genetic perturbation data from CRISPR
enhancer perturbations and fine-mapped eQTL and GWAS variants (Fig 2a). We used this
pipeline to evaluate ENCODE-rE2G and 574 other models (Table S1), including (i) the ABC
model, which we re-computed here natively in hg38 using various combinations of ENCODE
assays to estimate enhancer activity and enhancer-promoter 3D contact; (ii) previous machine
learning models that infer enhancer-gene regulation, including EpiMap®, GraphReg'®, CIA'®,
Enformer'", and EPIraction®; and (iii) simple baselines such as linking elements to the closest
expressed transcription start site (TSS) or gene, linking elements to genes solely on the basis of
loops or domains from 3D contact measurements, or correlating distal element and promoter
accessibility across cell types.

We found that ENCODE-rE2G and ENCODE-rE2G5"%d gchieved state-of-the-art performance
across a variety of prediction tasks (Fig. 2b-f):

In the CRISPR enhancer perturbation dataset used to train ENCODE-rE2G, we compared
predictors to the experimental results by means of precision-recall plots (Fig. 2b), computing area
under the precision-recall curve (AUPRC) (Fig. 2c), precision at a fixed recall of 70% (Fig. S8c),
and the correlation between the predictive scores and the measured quantitative effect on
expression (Extended Data Fig. 2f, Fig. S$9), using hold-one-chromosome-out cross-validation
for supervised models. Between the two models that used cell-type specific DNase only
(ENCODE-rE2G and ABCA=PNase. C=Average H-C) 'ENCODE-rE2G performed significantly better by all
measures (AUPRC = 0.63 vs 0.55, Pyootsirap = 0.0001; precision at 70% recall = 54% vs 46%,
Prootstrap = 0.0001; and Pearson’s R = -0.44 vs -0.37, P =7.16 x 10 Fig. 2b, Fig. S8c, Extended
Data Fig. 2f), including at different distance thresholds (Fig. 2¢). Similarly, among the 7 models
that use an expanded feature set, ENCODE-rE2G5""%? gutperformed all others, including the
second-best model, ABCAcViy=DHSH3K27ac, Contact=ENCODE H-C (AUPRC = 0.76 vs 0.61, Poootstrap =
0.0001; precision at 70% recall = 70% vs 54%, Phootstrap = 0.0001; and Pearson’s R = -0.49 vs -
0.43, P = 5.58 x 10%; Fig 2b,c, 2b, Fig. S8c, Extended Data Fig. 2f). Other commonly used
baseline methods — such as assigning each element to the closest expressed gene, correlating
DNase-seq signal at elements and nearby promoters across cell types, or assigning elements to
target genes solely based on features of 3D contacts — performed less well, as did other
predictive models (Fig. 2b,c). We describe detailed evaluations of these other predictors and
baseline methods in Note S2, Note S3, Note S5, and Note S7.

We next assessed the ability of ENCODE-rE2G models to transfer to new cell types to identify
eQTL variants and their target genes. We first compared predictions in GM12878 to fine-mapped
eQTLs from lymphoblastoid cell lines in GTEx?’, focusing on distal noncoding eQTL variants with
fine-mapping posterior probability of inclusion (PIP) > 50% (n=273). We computed the recall at
identifying eQTL variant-gene links (fraction of eQTL variants that are contained in an element
and predicted to regulate the correct eQTL gene) as well as enrichment of eQTL variants in
predicted enhancers (with respect to all distal noncoding variants) at different thresholds on the
predictor score. ENCODE-rE2GE*"? and ENCODE-rE2G perform comparably to other well-
performing models (both with enrichment = 28 at a recall of 15%) (Fig. 2d, Table $15). We also
examined fine-mapped eQTL variant-gene links from 11 other GTEx tissues that were
represented in ENCODE biosamples (Table S$14). Using the score threshold corresponding to
70% in the K562 CRISPR dataset, ENCODE-rE2G achieved an average enrichment of 6.5 across
tissues (range: 3.5-11.4), similar than other predictive and baseline models, while achieving a
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stronger recall, identifying an average of 16% (range: 10-22%) of fine-mapped eQTL variants
and linking them to the correct eGene (Extended Data Fig. 3c,d).

Finally, we tested the ability of ENCODE-rE2G and the other predictive models to identify GWAS
variants and link them to known genes, using 29.2K distal non-coding variants for 94 traits from
the UK Biobank previously fine-mapped using SuSIE?® (PIP > 0.1). We first examined whether
predicted enhancers from the K562 erythroid and GM12878 lymphoblastoid cell lines were
enriched for the 5,834 fine-mapped GWAS variants for traits related to red blood cells (red blood
cell count, mean corpuscular volume, hemoglobin traits) or lymphocytes (lymphocyte count and
All Autoimmune Disease), respectively. ENCODE-rE2G showed the highest significant
enrichment (10.6-fold; p-value = 1 x 10*); GraphReg showed the highest recall (38% higher than
ENCODE-rE2G) but 65% lower enrichment compared to ENCODE-rE2G (Fig. 2e). We next
examined the noncoding credible sets for all 11 blood-related traits in which a nearby gene had
strong independent evidence of association to the trait via analysis of common coding variation®®
(197 out of 3529 non-coding credible sets). The ENCODE-rE2G model achieved the highest
precision in predicting the correct target gene (61%), significantly higher than the second-best
method, ABCA=PNase. C=Avg. ENCODE H-C (5904 - n-value of difference = 8 x 10™), with similar recall
(35%) for both methods (Fig. 2f). These conclusions were supported by additional benchmarking
analyses (Extended Data Fig. 4).

Altogether, these results suggest that the ENCODE-rE2G models generalize well to new cell
types and achieve state-of-the-art performance for a variety of tasks designed to evaluate
enhancer-gene regulatory interactions. Based on these analyses, the ENCODE-rE2G resource
annotates each predicted regulatory link with the score predicted from the logistic regression
model, indicating the probability that the element has a substantial regulatory effect on the target
gene. The pre-thresholded set of links can be compared to the results in Figure 2 to estimate the
performance of the model at predicting the results of CRISPR perturbations, eQTL variant-gene
links, and causal GWAS genes in a given locus. We share the full benchmarking pipeline to enable
future refinement and comparison of predictive models (see Code Availability).
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Figure 2. Benchmarking predictions of enhancer-gene regulatory interactions

a, We benchmarked the performance of predictive models for enhancer - gene regulatory connections on
three different prediction tasks: 1) Linking enhancers to CRISPR-validated target genes, 2) Enrichment of
putative regulatory variants from fine-mapped eQTL and GWAS datasets, and 3) Linking variants to putative
causal target genes from fine-mapped GWAS datasets.

b, Precision-Recall curves showing the performance of predictive models at predicting experimental results
of CRISPRI data in K562 cells. Combined CRISPRI data was assembled by combining element-gene pairs
from the re-analyzed Nasser et al., 20215, Gasperini et al., 2019%* and Schraivogel et al., 2020% datasets
(10,375 tested element-gene pairs, 472 positives). Curves represent continuous predictors with the dashed
vertical line indicating performance at a threshold corresponding to 70% recall. Single dots represent
performance of binary predictors.

¢, Performance (AUPRC) of quantitative predictors as a function of distance to TSS. Color legend from
panel d applies. Error bars represent 95% range of AUPRC values inferred via bootstrap (1000 iterations).
d, Enrichment — recall curves showing the ratio of fine-mapped distal noncoding eQTLs with a PIP>0.5 in
EBV-transformed lymphocytes in predicted enhancers compared to distal nhoncoding common variants
(enrichment, y-axis) versus fraction of variants overlapping enhancers linked to the correct gene in
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GM12878 cells (recall, x-axis) across different score thresholds for enhancers predicted by different
predictive models. Numerical results are reported in Table S$15.

e, Average enrichment and recall of GWAS fine-mapped SNPs (PIP > 0.1) in predicted elements for each
element-gene linking strategy for 5 “likely relevant” pairs cell lines and biomarker traits: 3 RBC-related (RBC
count, Mean corpuscular volume, HbA1c) traits for K562 cell line and 2 Lymphocyte-related (Lymphocyte
count, Autoimmune disease-combined) traits for the GM12878 cell line. Error bars denote 95% confidence
intervals.

f, For 197 non-coding credible sets corresponding to 11 blood-related traits that are linked to exactly one
“putatively causal” gene with a coding fine-mapped variant within 2Mb on either side of the lead variant, we
compute the precision and recall in linking it to this gene for each of the element-gene predictions in blood
biosamples (see Methods). Error bars represent 95% confidence intervals. Numerical results are reported
in Table $13.
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Genome-wide maps of regulatory interactions

We next applied ENCODE-rE2G across 352 biosamples with DNase-seq data generated by the
ENCODE Project, and identified a total of 13,455,443 element-gene regulatory interactions using
the threshold at 70% recall in the CRISPR benchmark (Fig. 3a, Table S$S12). Properties of these
predicted regulatory interactions inform the architecture of enhancer-gene regulation in the human
genome:

While enhancers can be located up to millions of basepairs from their target genes®, the vast
majority of enhancer-gene regulatory interactions predicted by ENCODE-rE2G occur over much
shorter distances (e.g., a median of 31.8% at <10 kb and 86.8% at <100 kb across biosamples)
(Fig. 3b). This is consistent with the distance distributions of genetic perturbations in CRISPR
experiments, eQTLs, and GWAS positive controls (Fig. S2.1a).

Many ENCODE-rE2G enhancers show elevated levels of active chromatin marks, such as
H3K27ac and DNase-seq (mean DNase-seq signal for candidate elements across biosamples =
3.27; mean for enhancers linked to at least one gene = 7.52) — but importantly, many do not
(15.6% of enhancers have DNase-seq scores below the global median) (Extended Data Fig 5h).
This may be because elements with apparently weak activity can still have regulatory effects if
they are sufficiently close to their target promoter (Fig. S2.1d). In part for this reason, annotations
of enhancers based on 1D chromatin state alone miss 33% (chromHMM) or 61% (cCRE Catalog)
of ENCODE-rE2G enhancers, as well as 30% or 12%, respectively, of the validated enhancer-
gene pairs from the Nasser et al., 2021 unbiased CRISPR DHS tiling dataset® (Extended Data
Fig. 6).

On average, in any given cell type, each gene had 3.99 predicted regulatory elements (median =
3) (Fig. 3d), and each element regulated 1.6 genes (median = 1) (Fig. 3c). As expected, many
element-gene regulatory interactions were highly cell-type specific: 26.4% were present in only
one biosample (mean = 34.49, median = 7 biosamples) (Fig. 3e), and predicted regulatory
interactions were much more specific than the activity of either the promoters or enhancers alone
(Extended Data Fig 5g,h). This degree of biosample-specificity included many cases where an
enhancer regulates different genes in different biosamples (64% of enhancers that were predicted
to regulate more than 1 gene were linked to genes in mutually exclusive sets of biosamples, Fig.
3e).

Global maps of enhancer-gene regulation can inform the functions of genes and identify those
with tight transcriptional control®%°. To explore this, we stratified genes based on the number of
predicted ENCODE-rE2G enhancers per biosample. Among genes expressed in at least 50% of
biosamples, genes with many regulatory elements per cell types (mean >=5 enhancers; 5.9% of
genes) were enriched, relative to the whole genome, for being involved in cell-type specific
biological processes such as Angiogenesis (2.87-fold enrichment, P = 3.60 x 10™), Endocytosis
(2.30-fold enrichment, P = 0.029), and Wnt signaling pathway (2.10-fold enrichment, P = 0.015)
(Fig. 3f), whereas genes with fewer regulatory elements per cell type (mean <=1.5; 15.7% of
genes) were enriched for housekeeping genes with functional enrichments including Purine
biosynthesis (3.08-fold enrichment, P = 0.04), Golgi transport (2.92 Fold Enrichment, P = 1.44 x
10'*) and rRNA processing (2.59-fold enrichment, P = 4.08 x 107°) (Fig. 3f).
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Figure 3. Properties of predicted enhancer-gene regulatory interactions

a. The overall scale of the E-G maps is shown as all enhancers x all genes x 352 biosamples. The heatmaps
on the left show all ENCODE-rE2G scores for every enhancer gene pair on chr21 of K562 and Testis. The
right plot shows a portion of this plot, displaying a 9.67MB region on chr21. For all heatmaps the lightest
yellow represents an ENCODE-rE2G score of 0 and the darkest brown represents a score of 0.994.
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b. Distance between an enhancer and the gene it regulates across each of the 352 biosamples. Each bar
represents the median number of E-G pairs at that distance bin across all 352 biosamples. The locus plot
displays chr5:40,650,000-40,695,000 shows 2 enhancers for the gene PTGER4 CD4-positive, alpha-beta
T cells.

c. Distribution of the average number of genes regulated by a given enhancer according to the ENCODE-
rE2G model across each of the 352 biosamples. Summary statistics available in Table S18. The locus plot
displays the region from chr11:85,800,000-86,150,000 and shows an enhancer that regulates two genes in
pulmonary artery endothelial cells.

d. Distribution of the average number of enhancers regulating a given gene according to the ENCODE-
rE2G model across each of the 352 biosamples. Summary statistics available in Table S$19. The locus plot
shows the region on chrX:39,850,000 - 40,200,000 in which there are 7 enhancers for the BCOR gene in
CD8-positive alpha-beta T cells.

e. Distribution of the number of biosamples in which a given enhancer-gene regulatory interaction is
detected in the ENCODE-rE2G model. The locus plot shows the region on chr21:44,300,000-44,556,000
in which an enhancer at chr21:44296889-44298071 regulates LRRC3-DT in brain microvascular
endothelial cells (upper track) and TRPM?2 in right ventricle myocardium superior cells (lower track).

f. Top 5 functional enrichment of genes expressed across more than half of biosamples stratified by the
average number of enhancers they have across biosamples. Biological processes that are enriched in
genes with an average of >= 5 enhancers per biosamples are shown in blue and those enriched in genes
with an average of <= 1.5 enhancers per biosample are shown in red. All enrichments reported have an
adjusted p-value < 0.05. Genes listed are those with the top 5 most enhancers/biosample and top 5 fewest
enhancers/biosample. Fold enrichment is calculated relative to the whole genome background set. The
locus plots show enhancers for SMAD7 which averages 14.7 enhancers per biosample (plot range
chr18:48780700-49036700) and ZNF317 which averages 0.25 enhancers/biosample (plot range
chr19:9,075,000-9,200,000).
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Linking noncoding variants to target genes and cell types

ENCODE-rE2G regulatory links can be integrated with other ENCODE resources and external
data to interpret the functions of noncoding variants associated with common disease. To illustrate
this, we annotated fine-mapped GWAS variants from 94 UK Biobank traits with ENCODE-rE2G
predictions across 352 biosamples describing links from distal enhancers to target genes and
predictions from the Polygenic Priority Score (PoPS)?® about which genes and pathways are likely
to be important for a disease (Fig. 4a). As previously observed, fine-mapped variants underlying
enhancers were often predicted to regulate multiple genes (average=3.4, max=56), including 62%
that are linked to different genes in different cell types; this appears to be a fundamental property
of enhancer-promoter regulation®®'® and motivates combining locus-specific variant-to-gene
information with orthogonal information about gene function?®*°(Note S7, Fig S7.1). Accordingly,
we developed and evaluated different combinations of ENCODE-rE2G predictions with the
polygenic priority score (PoPS)?®, and found that intersecting top two genes with the strongest
ENCODE-rE2G predictions in a given GWAS locus with top two genes with the highest PoPS
scores performed well at identifying known genes.

This combination of ENCODE-rE2G and PoPS predicted a target gene for 3,528 out of 13,012
non-coding credible sets with a PIP > 0.1 fine-mapped variant spanning all traits; this included
5,851 out of 29.2K fine-mapped GWAS variants (Table S13), representing a 3.7-fold excess
overlap compared to control variants (all distal noncoding variants detected in the 1000 Genomes
project, N=9.2 million) (Fig. 4b). ENCODE-rE2G + PoPS identified known links between credible
sets and target genes (Fig. 2f, Fig. 4b) with a precision of 68%, 1.2x and 2.0x higher than the top
ENCODE-rE2G or PoPS gene alone, respectively. It also attained higher precision and
comparable recall compared to our previous atlas generated with the ABC-Max algorithm®,
including new predictions for a total of 1,811 additional credible sets that were not identified in our
previous study®. As expected, variants were enriched for overlapping ENCODE-rE2G enhancers
in expected tissues (Fig. 4c), generalizing the results of Fig. 2e; for example, mean corpuscular
hemoglobin (MCH) showed 17x enrichment in ENCODE-rE2G enhancers in hematopoietic
multipotent progenitors, 2.9x higher than other cell types on average. Examining individual loci
identified a GWAS causal variant rs875741 for MCH (PIP = 0.50) that had a predicted ENCODE-
rE2G link to CPEB4 in hematopoietic progenitors but not in other cell types like B-cells, T-cells
and K562 (Fig 4d). This cell-type specificity is interesting because CPEB4 has shown low
expression specificity across human tissues®'*2. Previous studies show that CPEB4 knockdown
inhibits terminal erythroid differentiation®® and lipid accumulation in adipocytes®, but the variant
associated with MCH is predicted to overlap an enhancer specific to hematopoietic progenitors
and not observed in adipocytes. Other interesting examples at the TFRC, KIT and BCL11A loci
are reported in Note S7 (Fig $7.2). Thus, ENCODE-rE2G predictions can be combined with gene-
to-pathway information to provide a unique resource for accurate inferences about causal genes
and cell types.

We provide further analysis and guidelines regarding the value of adding new cell types to the
ENCODE resource, assessing tissue-specificity of the ENCODE-rE2G biosample predictions,
evaluating other combinations of ENCODE-rE2G and PoPS, and restricting our ENCODE-rE2G
analyses to top disease-enriched biosamples for identifying possible cell types and target genes
for GWAS loci in Note S7 (Fig S7.1).
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Figure 4. Linking noncoding GWAS variants to target genes and cell types
a, A schematic of how a risk variant for a disease is linked to a target gene by ENCODE-rE2G + PoPS, a
combination of ENCODE-rE2G element-gene link and PoPS gene-level disease prioritization score.
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b, (left panel) Fraction of fine-mapped GWAS variants across 94 traits and the enrichment of this fraction
with respect to control variants and (right panel) precision and recall in identifying the known causal gene
for non-coding credible sets, as in Fig. 2f, for the ENCODE-rE2G + PoPS, and ENCODE-rE2G, PoPS and
the previously published atlas of enhancer-gene links using ABC-Max®. For ENCODE-rE2G + PoPs we
intersected the top two ENCODE-rE2G linked genes for predicted enhancers overlapping PIP>0.1 variants
in the credible set with the top two PoPs prioritized genes in a 1Mb window around the credible set. For
ENCODE-E2G and PoPs alone, we only considered the top one gene for each method.

¢, Heatmap representing the enrichment of GWAS-finemapped variants (PIP > 0.1) that are linked to a
gene by the ENCODE-rE2G + PoPS method for each of 76 GWAS ftraits (along the columns) and 172
biosamples that are mapped to distinct tissues of origin (grouped along the rows). Only enrichments that
are FDR significant (FDR < 0.10) in significance are shown.

d, An example fine-mapped causal variant for mean corpuscular hemoglobin, rs875741, linked to the gene
CPEB4 (the top-scored PoPS gene in the locus) by ENCODE-rE2G only in hematopoietic progenitors and
not in other closely related blood cell types like B-cells, T-cells and K562.

Numerical results for each of the Figure panels are reported in Table S13.
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Molecular features guiding enhancer-gene regulation

Toward understanding and advancing future modeling of molecular mechanisms of enhancer-
promoter communication, we next sought to identify and explore the features that drive predictions
of the ENCODE-rE2G classifiers (Fig. 5, Fig. S4.1-2, Note S4, Note S5).

We performed a series of analyses to gauge the importance of features in ENCODE-rE2G,
including removing groups of related features (Fig. 5b), assessing the performance of each
feature alone (Fig. 5¢), removing one feature at a time (Fig. 5d), or performing sequential feature
selection (Fig. 5e). The most informative features groups were 3D contact/distance and enhancer
activity (Fig. 5b), and the most informative individual feature was the ABC score itself (Fig. 5c-
e). These results are consistent with the importance of enhancer activity and 3D contact in
enhancer regulation and highlight the utility of combining them as in the ABC model (Fig. 2b,c,
Fig S4.3).

While we designed ENCODE-rE2G to use particular assays for enhancer activity and 3D contact
(including DNase-seq and Hi-C), ENCODE has collected hundreds of other assays that could
potentially be used. To compare the performance of other assays, we tested variations of the
simpler ABC model in K562 cells in which we substituted different ENCODE assays for the
enhancer activity or 3D contact frequency components:

(i) Out of 513 ENCODE 1D chromatin experiments that could represent enhancer activity,
we found that DNase-seq and H3K27ac ChlP-seq were indeed among the best performing assays
(Fig. 5f). Other ChIP-seq assays (for EP300, NCOA1, NCOR1, and other transcription factors)
achieved equal performance (Fig. 5f, Fig. S11). Notably, ATAC-seq performed worse than
DNase-seq in the ABC model (precision at 70% recall = 52% vs 41%, Fig. S11a).

(i) Out of 6 methods for estimating 3D enhancer-promoter contact frequency in the ABC
model, we found that the best dataset was cell-type-specific ENCODE Hi-C (precision at 70%
recall = 53.8%; Hi-C depth = 2 billion reads, 5-kb resolution), which outperformed other datasets
including in situ Hi-C (1 billion reads) or an inverse function of distance (precision at 70% recall =
50.4% or 31.8%, respectively) (Fig. 5g, Note S2). Incorporating Hi-C data led to particular
improvements in performance for element-gene pairs located at longer distances (e.g., >100 kb,
Fig. S2.1f,g).

Beyond enhancer activity and 3D contact, additional features contributed to the performance of
ENCODE-rE2G and ENCODE-rE2G5*"? _ poth of which significantly outperformed the ABC
model alone (Fig. 2b,c). Key additional features were related to promoter class and enhancer-
enhancer interactions (Fig. 5b,h, Fig S4.4). We explore these two features below:
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Figure 5. Molecular features guiding enhancer-gene regulation
a. ENCODE-rE2G features for the PRKARZ2B locus. Only features for PRKAR2B E-G pairs are displayed.
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b. Effect of different feature categories on performance of the ENCODE-rE2G model in classifying K562
enhancer-gene regulatory interactions. Each feature category is removed from the feature set used by
ENCODE-rE2G to see the amount of performance reduction. The numbers inside the parentheses show
the numbers of the deleted features. Bar plots of delta AUPRC. Bar plots and error bars show the mean of
delta AUPRC and 95% confidence intervals when randomly subsampling the EG pairs without replacement
(bootstrapping) 1000 times.

c. Performance of individual ENCODE-rE2G features at predicting enhancer-gene regulatory connections
from CRISPR data. Bars show AUPRC of non-binary features. Error bars represent 95% range of AUPRC
values inferred via bootstrap (1000 iterations).

d. ENCODE-rE2G’s leave one out performance. Each feature of ENCODE-rE2G is ablated individually and
the difference in AUPRC (Delta AUPRC) is calculated. Error bars represent 95% range of AUPRC values
inferred via bootstrap (1000 iterations). Features with significant AUPRC reduction (P<0.05) are marked by
stars.

e. Sequential feature selection performed on ENCODE-rE2G, in which features were selected one at a time
based on which one yields the greatest AUPRC. Bars show the change in AUPRC from the previous model
including features above it. Gray dots show the total AUPRC for the model including the feature labeled
and all above it. See Methods, ‘CRISPRi benchmark’ section for description of statistical test.

f. Performance (AUPRC) of Activity-By-Contact (ABC) models using different ENCODE chromatin assays
to estimate enhancer activity at predicting experimental results of CRISPRI data in K562 cells. Solid lines
correspond to AUPRC of the distance to target TSS baseline predictor. For NCOR1 data from two separate
experiments (1, 2) were included. Error bars in barplot represent 95% range of AUPRC values inferred via
bootstrap (1000 iterations).

g. Performance (AUPRC) of different 3D features at classifying regulatory E-P interactions from CRISPRI
perturbations in K562 cells (n = 10,292 pairs). Each feature, apart from ENCODE-rE2G and ENCODE-
rE2Gextended represents different 3D contact measurements incorporated into the ABC model as the contact
component. Error bars represent 95% range of AUPRC values inferred via bootstrap (1000 iterations).

h. Precision recall curves showing that the addition of whether a gene ubiquitously expressed or not to the
ABC model (hot pink curve) significantly improves on the performance of ABC (blue) (AUPRC increased by
0.044, P < 1.0 x 104). Error bars in barplot represent 95% range of AUPRC values inferred via bootstrap
(10,000 iterations). See Methods, ‘CRISPRIi benchmark’ section for description of statistical test.

i. Performance of ENCODE-rE2G models using different assays to measure enhancer activity and 3D
contact between elements and gene promoters at predicting results of CRISPRI data in K562 cells. Error
bars in barplot represent 95% range of AUPRC values inferred via bootstrap (1000 iterations). See
Methods, ‘CRISPRi benchmark’ section for description of statistical test.
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Ubiquitously expressed genes are less sensitive to distal enhancers

ENCODE-rE2G and ENCODE-rE2GE"% |earned that 3 features related to promoter class —
whether the gene is ubiquitously, uniformly expressed across cell types, whether the promoter is
predicted to be sensitive to distal enhancers in ExP-STARR-seq assays®, and whether the
regulatory landscape around a gene is highly correlated across cell types® — all predict that a
gene is less likely to have distal regulatory elements. For example, ubiquitously expressed genes
were 5-fold less likely (Fisher's Exact Test P = 6.2 x 10*°) to have distal regulatory elements in
the K562 CRISPR dataset and 1.13-fold less likely (Fisher’'s Exact Test P = 0.0006) (Fig. S6.1b)
to have a fine-mapped eQTL variant in a distal accessible site (Fig. $6.1a). Removing these
features from ENCODE-rE2GF*"%d or ENCODE-rE2G led to a significant drop in performance
(AUPRC decreased by 0.0140 or 0.016, Ppootstrap = 0.002 or 0.0075, respectively), and combining
them with the ABC score in a 4-feature logistic regression model led to a significant improvement
(AUPRC increased by 0.044, P = 1.0 x 10™) (Fig. 5h, Fig. S6.1c-f). Together, these observations
support a model in which sequence-intrinsic features of the promoters of ubiquitously expressed
genes make them less sensitive to distal enhancers®*>* (see Note S6).

Super-additive functions of distal enhancers

For nearby enhancer activity, ENCODE-rE2G learned that 2 features related to enhancer-
enhancer interactions — specifically, the number and summed activity of all other elements within
5 kb of the perturbed element — indicated that the perturbed element was more likely to have a
regulatory effect on gene expression (Fig. 5b). Removing these features from ENCODE-rE2G
led to a significant drop in performance (decrease in AUPRC of 0.0385, Ppootstrap < 0.001). The
importance of these features could be consistent with previous proposals that enhancers near
one another in the genome can act in a synergistic manner’=°, and contrary to an assumption of
the ABC model which assumes that enhancers act additively and independently to regulate gene
expression®.

We analyzed and conducted additional genetic perturbation experiments to explore whether and
in which cases enhancers might have super-additive effects on gene expression — here, defined
as two enhancers, when added to a gene, having a larger effect than expected based on the sum
of their individual effects in linear gene expression space (equivalently, such enhancers would
appear “sub-subtractive” in perturbation experiments, where combined inhibition of both
enhancers leads to a smaller decrease in expression than expected from an additive model). We
found multiple lines of evidence for such effects:

(i) Of the 20 CRISPRI tiling experiments in which all nearby candidate enhancers near a
gene were perturbed® %%, we identified 10 genes where the sum of the effect sizes of individual
enhancers linked to a given gene was greater than 100% (Fig. 6a). This indicates that at least
some pairs of enhancers at these loci have super-additive effects.

(i) We performed combinatorial CRISPRI perturbations to all pairwise combinations of 7
enhancers near the MYC gene in K562 cells using CRISPRI-FlowFISH?® (Fig. 6b,c). All of the 21
MYC enhancer pairs displayed evidence of significant super-additive interaction effects on gene
expression (Benjamini-Hochberg corrected P < 0.001, F-test), although to differing degrees (Fig.
6d,e). Stronger interaction effects (16-37% difference from additive model) were observed for
pairs of enhancers closer in genomic distance (3-89 kb) and with higher 3D contact frequency,
whereas weaker interaction effects (2-10% difference from additive model) were observed for
enhancers that were located farther from one another (107 kb—1.79 Mb) (Fig. 6f). This suggests
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that enhancers nearby to one another in the genome have super-additive effects on gene
expression, whereas more distant enhancers combine approximately additively.

To further understand how enhancers near one another in the genome could have super-additive
effects on expression, we analyzed their effects on chromatin state. We performed and collated
experiments where enhancers were perturbed with CRISPRI, genetic deletions, or naturally
occurring genetic variants and effects on nearby enhancers measured with H3K27ac ChIP-seq**
2 |n each dataset, perturbations to individual enhancers on average reduced H3K27ac signal at
other nearby enhancers, and the magnitude of the effect decreased as enhancer-enhancer
distance increased (Fig. 6g,h, Extended Data Fig. 8).

Together, these data indicate that enhancers near one another in the genome often influence
each other’s chromatin state and have super-additive effects on gene expression. These effects
could explain the importance of enhancer-enhancer interactions in the ENCODE-rE2G model,
and highlight how interpreting the model can guide mechanistic explorations of enhancer function.

Applying ENCODE-rE2G to new cell types

Toward guiding further data collection and model application to new cell types, we systematically
compared the marginal utility of adding assays to ENCODE-rE2G. We constructed logistic
regression classifiers with different combinations of DNase-seq, H3K27ac, and Hi-C as cell-type
specific input datasets in K562 cells. Adding either cell-type specific H3K27ac and/or Hi-C data in
addition to DNase-seq data led to significant improvements in model performance, nearing the
performance of ENCODE-rE2GF*"*? on the CRISPR benchmark (Fig. 5i). To facilitate
constructing ENCODE-rE2G models in additional cell types in the future, we provide code for
computing the input feature tables and applying pre-trained models for each combination of input
datasets (see Code Availability).
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Figure 6. Super-additive functions of distal enhancers
a. Box plots showing the combined effect size on expression of a given gene from CRISPRi experiments
targeting all enhancers of that gene®®'° by the number of enhancers.
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b. Acetylation and DNase-seq peaks at the MYC locus in K562.

c. Experimental design panel. Individual guides targeting a specific element at the MYC locus are paired
with every other guide and transduced into K562-KRAB-dCas9 cells. Effects are measured with CRISPRIi-
FlowFISH.

d. Individual and combined effects on gene expression from perturbing e2 and €3 (left), and perturbing e1
and e7 (right), with the expected effect under additive and multiplicative models annotated.

e. Heatmap: Fold change in observed pairwise effects on gene expression versus expected pairwise effects
under an additive model from paired CRISPRIi screen.

f. Heatmap: Normalized Hi-C contact (5 kb resolution) between MYC enhancers in K562 cells.

d. Box plots showing the effect of CRISPRI perturbations to an enhancer on H3K27ac at a nearby enhancer
stratified by distance®“°. There is a significant difference in the distributions of perturbation/enhancer
distances between 1 and 10 kb and distances greater than 100 kb distance bin (two-sided Wilcoxon rank
sum exact test, P=1.79x107), between the between distributions for distances between 1 and 10 kb and 10
and 100 kb (P=7.37x10), and between the distributes for distance between 10 kb and 100 kb and greater
than 100 kb (P=0.031). See Methods, ‘Data visualization’ section for definition of box plot elements. All data
points are shown in addition to box plots.

h. Box plots showing effect of CRISPR-Cas9-mediated knockout of enhancers on nearby elements,
stratified by distance*!. There is a significant difference between distributions in each distance group (two-
sided Wilson rank sum test with continuity correction, 1-10 kb vs 10-100 kb, P = 0.0077; 10-100 kb vs >100
kb, p=0.0026; 1-10 kb vs >100 kb, p=0.00025). See Methods, ‘Data visualization’ section for definition of
box plot elements. All data points are shown in addition to box plots.
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Discussion

Here we presented the ENCODE encyclopedia of enhancer-gene regulatory interactions in the
human genome. This resource includes: (i) New improved models that can be applied to new cell
types using DNase-seq data alone, along with guidelines and software for construction of new
enhancer-gene maps; (i) Benchmarking datasets and pipelines that will enable systematic
comparisons and iterative improvements to enhancer-gene models; and (iii) Genome-wide maps
of enhancer-gene regulatory interactions across ENCODE biosamples to identify enhancers for
genes of interest, find genes regulated by enhancers of interest, and interpret the functions of
human genetic variants.

Identifying enhancers and their target genes has been a long-standing challenge in genomics®.
Over its 20-year history, the ENCODE Project has generated key datasets that enabled the
development of predictive models to address this challenge. ENCODE data about chromatin
states across cell types led to the first models to link enhancers to target genes genome-wide by
correlating measures of enhancer activity with gene expression across tissues, cell types, or
conditions 44447 ENCODE maps of 3D chromosome contacts provided initial pictures of the
physical interactions between enhancers and promoters*®=*° and gave rise to predictive models
aimed at identifying these physical interactions'®®'. The availability of maps of both chromatin
state and 3D contacts enabled the development of models that began to combine these features,
including ABC and others®?. Now, high-throughput CRISPR screens have provided a sufficiently
broad survey of regulatory effects directly in the genome to enable our supervised learning
framework to find optimal combinations of assays, processing methods, and feature extraction
approaches to make reliable predictions of enhancer-gene regulatory interactions. We expect that
this ENCODE resource of harmonized data, models, and benchmarks will continue to play an
important role in future efforts to develop improved models of gene regulation.

Our analysis, together with previous data, suggest a simple set of rules that specify enhancer-
gene regulatory interactions in the human genome. Enhancers activate promoters dependent on
their 3D contact frequencies, as in the classic looping model, with contact frequencies determined
by various factors including genomic distance, loop extrusion, and the positions of CTCF sites®.
The effect of perturbing an enhancer on gene expression is, to a first approximation, proportional
to 3D contact frequency and the “activity” of the enhancer, as described by the ABC model®. This
effect is tuned by at least two additional factors. First, promoters of ubiquitously expressed genes
are less responsive to distal enhancers (Fig. S6.1b), possibly because they contain built-in motifs
for activating transcription factors that buffer them against distal enhancers®. Second, the activity
of an enhancer is increased by the presence of other nearby enhancers, which appear to act
super-additively with those in close 3D proximity (Fig. 6). These four factors — intrinsic enhancer
activity, enhancer-promoter 3D contacts, promoter class, and enhancer-enhancer interactions —
together can explain a substantial fraction of the regulatory effects observed in CRISPR
perturbation datasets.

Our observations regarding super-additive effects of enhancers require particular care in
interpretation. Previous studies have investigated how enhancers might combine additively,
synergistically, or redundantly by assessing effects at the level of gene expression®*5-’, cellular
phenotypes®, or organismal phenotypes®®°. These studies have offered conflicting views,
perhaps in part because these higher-order phenotypes might have varying non-linear
relationships with quantitative gene expression. Here we studied pairs of enhancers using a highly
quantitative assay with good power to distinguish between these models directly at the level of
gene expression (Fig. 6d-h). We observe enhancers that show pairwise effects ranging from

24


https://doi.org/10.1101/2023.11.09.563812
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.09.563812; this version posted November 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

approximately additive to approximately multiplicative in linear gene expression space, showing
that different effects are possible even at a single gene. The interaction effects between
enhancers appear to depend on their 3D proximity to one another, where enhancers that contact
frequently combine super-additively and enhancers that contact less frequently combine
additively (Fig. 6g,h). Notably, neither the single-guide CRISPR datasets nor the paired-guide
CRISPR data offer support for a model where enhancers have “redundant” effects at the level of
gene expression: in the single-guide CRISPR data, many enhancers have significant individual
effects on expression, and in the dual-guide CRISPR data we do not observe any cases of sub-
additive effects.

Our study highlights the importance of benchmarking models using genetic perturbation data.
Here, we developed and validated ENCODE-rE2G using an array of independent datasets across
multiple tissues and cell types, including CRISPR perturbations and datasets about the impact of
genetic variants. However, these genetic perturbation datasets have limitations. The CRISPR
datasets still have a relatively small number of positive examples; were designed with certain
biases in enhancer and gene selection; do not distinguish cis from trans effects; are conducted
largely in a single cell type (K562); and are underpowered to detect regulatory interactions with
small effect sizes (e.g., <25%) (see Note S1). The predictions of the ENCODE-rE2G model could
therefore be biased in similar ways. Similarly, the eQTL datasets®” are largely from tissues, lack
cell-type resolution, and can be underpowered to detect small effects. Future efforts to collect
larger, unbiased CRISPR perturbation and eQTL datasets with resolution for individual cell types
are needed to train improved models.

In summary, this study develops a new approach to map enhancer-gene regulatory interactions
in the human genome, and provides an expansive resource for building, benchmarking, and
applying such maps. Our strategy included collecting and labeling high-quality genetic
perturbation data, establishing benchmarking pipelines in a collaborative framework, and
developing predictive models that can be applied across human cell types. This strategy may be
more generally applicable to learning rules of gene regulation beyond enhancer-gene regulatory
interactions, including identifying the target genes of transcription factors, mapping effects of
variants on chromatin state, and others. Continued efforts to build such a human gene regulation
map will provide a foundation for understanding the biology of health and disease, programming
gene expression, and interpreting the functions of genetic variants.

25


https://doi.org/10.1101/2023.11.09.563812
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.09.563812; this version posted November 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Data availability

ENCODE-rE2G predictions and input epigenomics dataset are available on the ENCODE Portal
(www.encodeproject.org). ENCODE file accessions are listed in Table S2 and Table S$10.
ENCODE portal accession ids and public links for GraphReg and EPlraction predictions are
available in Table S8 and Table S9.

The combined CRISPR dataset is available as part of the CRISPR benchmarking pipeline at
https://github.com/EngreitzLab/CRISPR _comparison/blob/main/resources/crispr_data/EPCrispr
Benchmark ensemble data_ GRCh38.tsv.gz. The CRISPR data is also available on the
ENCODE portal under the accession ENCSR998YDI.

For the eQTL benchmarking pipeline, GTEx eQTL variants and RNA expression data for each
tissue used in the eQTL benchmarking pipeline are available on Synapse:
https://www.synapse.org/#!Synapse:syn52264240

For the GWAS benchmarking pipeline, fine-mapped GWAS data for UK Biobank traits is available
from https://www.finucanelab.org/data/.

Files containing baseline predictors used for benchmarking analyses can be found on Synapse:
https://www.synapse.org/#!Synapse:syn52234396.

Data from the pairwise CRISPRi enhancer perturbation experiment at the MYC locus in K562 is
available on the ENCODE portal under: ENCSR443VTK.

CRISPRIi-H3K27ac ChIP-seq experiments at the MYC locus are available at the NCBI Gene
Expression Omnibus, Accession GSE225157.

Code availability

ENCODE-rE2G: https://github.com/karbalayghareh/ENCODE-rE2G

ABC: https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction

GraphReg: https://github.com/karbalayghareh/GraphReg

CRISPR benchmarking pipeline: https://github.com/EngreitzLab/CRISPR _comparison
eQTL benchmarking pipeline: https://github.com/EngreitzL ab/eQTLEnrichment
GWAS benchmarking pipeline: https://github.com/EngreitzL ab/ABC-Max-pipeline
EPlraction: https://github.com/quigolab/EPIraction

CIA and CCD features: https://github.com/wangxi001/CIA

EpiMap: https://qgithub.com/KellisLab/EpiMap GRCh38 linking

CRISPR data analysis: https://github.com/argschwind/ENCODE _CRISPR data

Acknowledgements

We thank members of the ENCODE Consortium, Nuclear Architecture Working Group, and Distal
Regulation subgroup for data generation, analysis support, and discussions to develop the
manuscript. We thank Molly Gasperini for discussions about CRISPR screen analysis. We thank
Anna Shcherbina, Kun Xiong, Sarah Gradesieck, Jacob Schreiber, Nate Tippens, Heini Natri, Ray
Jones, and Gamze Gursoy for jamboree support and participation. We thank Georgi Marinov for

26


http://www.encodeproject.org/
https://github.com/EngreitzLab/CRISPR_comparison/blob/main/resources/crispr_data/EPCrisprBenchmark_ensemble_data_GRCh38.tsv.gz
https://github.com/EngreitzLab/CRISPR_comparison/blob/main/resources/crispr_data/EPCrisprBenchmark_ensemble_data_GRCh38.tsv.gz
https://www.synapse.org/#!Synapse:syn52264240
https://www.finucanelab.org/data/
https://www.synapse.org/#!Synapse:syn52234396
https://www.encodeproject.org/functional-characterization-experiments/ENCSR443VTK/
https://github.com/karbalayghareh/ENCODE-E2G
https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction
https://github.com/karbalayghareh/GraphReg
https://github.com/EngreitzLab/CRISPR_comparison
https://github.com/EngreitzLab/eQTLEnrichment
https://github.com/EngreitzLab/ABC-Max-pipeline
https://github.com/guigolab/EPIraction
https://github.com/wangxi001/CIA
https://github.com/KellisLab/EpiMap_GRCh38_linking
https://github.com/argschwind/ENCODE_CRISPR_data
https://doi.org/10.1101/2023.11.09.563812
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.09.563812; this version posted November 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

consulting on enhancer synergy screens. M.U.S. acknowledges the support of an NSF Graduate
Research Fellowship (DGE-1656518). K.K.D. acknowledges the support of ROOHG012203,
P30CA008748, and the Josie Robertson Investigator Fellowship. E.J. was supported by the Novo
Nordisk Foundation (NNF21SA0072102). A.R.G. and L.M.S. acknowledge the support of
1R01HG011664-01A1 and the NHGRI Impact of Genomic Variation on Function Consortium
(UM1HGO011972). Z.W. and K.F. acknowledges the support of U24HG009446. A.Kundaje
acknowledges support of UUTHG009431 and U0O1HG012069. R.G. and R.N.N. acknowledge the
support of the Spanish Ministry of Economy and Competitiveness (MEC) (BIO2011-26205). D.Y.
acknowledges the support of the National Science Foundation Graduate Research Fellowship
(DGE-1656518). B.T.J. was supported by the National Science Foundation Graduate Research
Fellowship (Grant No. 1745302). B.R.D. was supported by the National Science Foundation
Graduate Research Fellowship (DGE-1656518). A.L.P. acknowledges the support of NIH grant
U01 HG012009. M.S.S. acknowledges the support of the Paul and Daisy Soros Fellowship.
K.Andreeva acknowledges the support of U24HG009397 and U41HG006992. M.A.B.
acknowledges the support of RO1HG012367 and U01HGO009380. C.S.L. acknowledges the
support of UOTHG009395 and U01HGO012103. W.J.G. and M.C.B. acknowledge the support of
NIH ENCODE UM1HG009436. J.M.E. acknowledges support from an NIH Pathway to
Independence Award (K99HG009917 and ROOHG009917); a NHGRI Genomic Innovator Award
(R35HG011324); Gordon and Betty Moore and the BASE Research Initiative at the Lucile
Packard Children’s Hospital at Stanford University; ENCODE UM1HG009436; the NHGRI Impact
of Genomic Variation on Function Consortium (UM1HG011972); the Novo Nordisk Foundation
(NNF21SA0072102); and the Chan Zuckerberg Initiative DAF (2022-249191), an advised fund of
Silicon Valley Community Foundation.

Author Contributions

A.R.G., K.S.M., A Karbalayghareh, M.U.S., K.K.D., R.N., EJ., W.X,, and J.M.E. conducted
analyses and wrote the manuscript with input from all authors. A.R.G., K.S.M., and J.M.E. co-led
the analysis group and contributed to most analyses in the paper. K.S.M. coordinated ENCODE
epigenomics data download and processing. A.R.G. and J.N. developed the CRISPR
benchmarking pipeline. M.U.S. and J.N. developed the eQTL benchmarking pipeline. K.K.D. and
K.S.M. developed and applied the GWAS benchmarking pipeline. A.Karbalayghareh developed
the ENCODE-rE2G logistic regression models. A.R.G., J.N., and B.R.D. collected and analyzed
published CRISPR datasets. K.S.M. and W.X. compared the performance of 3D contact
measurements. A.R.G. compared performance of enhancer activity measurements. M.U.S., H.J.,
J.N., and A.Karbalayghareh analyzed evidence for enhancer synergy. R.N., A.R.G., and
A.Karbalayghareh analyzed the impact of correlation features. E.J. and K.S.M. analyzed the
global properties of E-G predictions. E.J. and A.Karbalayghareh analyzed the impact of features
related to ubiquitously expressed genes. K.S.M., M.U.S. A.S.T. and X.R.M. updated and applied
the ABC model. B.J. and M.K. updated and generated predictions from the EpiMap model. R.N.
and R.G. generated predictions from the EPlaction model. Z.A. and D.K. generated predictions
from the Enformer model. A.Karbalayghareh and C.S.L. generated predictions from the
GraphReg model and analyzed the impact of GraphReg features. W.X. and M.A.B. generated

27


https://doi.org/10.1101/2023.11.09.563812
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.09.563812; this version posted November 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

predictions from the CIA Model. D.Y. designed the paired-guide MYC screen. D.Y., H.J., and T.N.
conducted experiments for the paired-guide MYC screen. H.J. analyzed the paired-guide MYC
screen. E.M.P. designed and conducted ChIP-seq experiments for MYC enhancers. K.S.M,
M.S.S., R.M,, N.C.D., S.S.P.R,, and E.L.A. contributed to analysis of Hi-C data. J.M.E., R.N.,
K.S.M,, AR.G., KA., KK.D,, M.U.S,, and A.Karbalayghareh, developed file formats for predictive
models. J.C.U. and H.K.F. contributed fine-mapped eQTL data. K.F., J.E.M., and Z.W. contributed
to analysis of ENCODE cCREs. A.L.P., M.AB., R.G., A.Kundaje, L.M.S., C.S.L., and J.M.E.
supervised members of the writing team. A.L.P., M.A.B., R.G., A.Kundaje, LM.S.,C.S.L., JAS,,
E.L.A., W.J.G. and J.M.E. contributed to data analysis and interpretation. J.M.E. provided overall
supervision for the study.

Conflict of Interest Statement

Z.A. is employed by Google DeepMind. J.C.U. is an employee of lllumina, Inc. D.R.K. is employed
by Calico Life Sciences LLC. Z.W. co-founded Rgenta Therapeutics, and she serves as a
scientific advisor for the company and is a member of its board. W.J.G. is an inventor on IP
licensed by 10x Genomics. A.Kundaje is on the scientific advisory board of PatchBio, Serimmune
and OpenTargets, was a consultant with lllumina, and owns shares in DeepGenomics, ImmunAl
and Freenome. J.M.E. is a consultant and equity holder in Martingale Labs, Inc. and has received
materials from 10x Genomics unrelated to this study.

28


https://doi.org/10.1101/2023.11.09.563812
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.09.563812; this version posted November 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

References

10.

11.

12.

13.

14.

15.

16.

Gasperini, M., Tome, J. M. & Shendure, J. Towards a comprehensive catalogue of
validated and target-linked human enhancers. Nat. Rev. Genet. 21, 292-310 (2020).

van Arensbergen, J., van Steensel, B. & Bussemaker, H. J. In search of the determinants
of enhancer—promoter interaction specificity. Trends Cell Biol. 24, 695702 (2014).
Zaugg, J. B. et al. Current challenges in understanding the role of enhancers in disease.
Nat. Struct. Mol. Biol. 29, 1148-1158 (2022).

Maurano, M. T. et al. Systematic localization of common disease-associated variation in
regulatory DNA. Science 337, 1190-1195 (2012).

Farh, K. K.-H. et al. Genetic and epigenetic fine mapping of causal autoimmune disease
variants. Nature 518, 337-343 (2015).

Nasser, J. et al. Genome-wide enhancer maps link risk variants to disease genes. Nature
593, 238-243 (2021).

The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the
human genome. Nature 489, 57-74 (2012).

Boix, C. A., James, B. T., Park, Y. P., Meuleman, W. & Kellis, M. Regulatory genomic
circuitry of human disease loci by integrative epigenomics. Nature 590, 300—-307 (2021).
Fulco, C. P. et al. Activity-by-contact model of enhancer-promoter regulation from
thousands of CRISPR perturbations. Nat. Genet. 51, 1664—1669 (2019).
Karbalayghareh, A., Sahin, M. & Leslie, C. S. Chromatin interaction—aware gene regulatory
modeling with graph attention networks. Genome Res. 32, 930-944 (2022).

Avsec, Z. et al. Effective gene expression prediction from sequence by integrating long-
range interactions. Nat. Methods 18, 1196—1203 (2021).

Liu, Y., Sarkar, A., Kheradpour, P., Ernst, J. & Kellis, M. Evidence of reduced
recombination rate in human regulatory domains. Genome Biol. 18, 193 (2017).
Thurman, R. E. et al. The accessible chromatin landscape of the human genome. Nature
489, 75-82 (2012).

Sheffield, N. C. et al. Patterns of regulatory activity across diverse human cell types predict
tissue identity, transcription factor binding, and long-range interactions. Genome Res. 23,
777-788 (2013).

Whalen, S., Truty, R. M. & Pollard, K. S. Enhancer—promoter interactions are encoded by
complex genomic signatures on looping chromatin. Nat. Genet. 48, 488-496 (2016).

Luo, R. et al. Dynamic network-guided CRISPRi screen reveals CTCF loop-constrained

29


https://doi.org/10.1101/2023.11.09.563812
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.09.563812; this version posted November 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

nonlinear enhancer-gene regulatory activity in cell state transitions. bioRxiv (2023)
doi:10.1101/2023.03.07.531569.

17. Karollus, A., Mauermeier, T. & Gagneur, J. Current sequence-based models capture gene
expression determinants in promoters but mostly ignore distal enhancers. Genome Biol.
24, 56 (2023).

18. Gasperini, M. et al. A Genome-wide Framework for Mapping Gene Regulation via Cellular
Genetic Screens. Cell 176, 1516 (2019).

19. Klann, T. S. et al. CRISPR-Cas9 epigenome editing enables high-throughput screening for
functional regulatory elements in the human genome. Nat. Biotechnol. 35, 561-568 (2017).

20. Yao, D. et al. Multi-center integrated analysis of non-coding CRISPR screens. bioRxiv
2022.12.21.520137 (2022) doi:10.1101/2022.12.21.520137.

21. Mapping chromatin loops at base-pair resolution across over 100 human tissues. In
preparation.

22. Meuleman, W. et al. Index and biological spectrum of human DNase | hypersensitive sites.
Nature 584, 244-251 (2020).

23. Schraivogel, D. et al. Targeted Perturb-seq enables genome-scale genetic screens in
single cells. Nat. Methods 17, 629-635 (2020).

24. Gasperini, M. et al. A Genome-wide Framework for Mapping Gene Regulation via Cellular
Genetic Screens. Cell 176, 377-390.e19 (2019).

25. Fulco, C. P. et al. Systematic mapping of functional enhancer—promoter connections with
CRISPR interference. Science 354, 769-773 (2016).

26. Nurtdinov, R. & Guigd, R. EPIraction. In preparation.

27. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human
tissues. Science 369, 1318-1330 (2020).

28. Weeks, E. M. et al. Leveraging polygenic enrichments of gene features to predict genes
underlying complex traits and diseases. bioRxiv (2020) doi:10.1101/2020.09.08.20190561.

29. Wang, X. & Goldstein, D. B. Enhancer Domains Predict Gene Pathogenicity and Inform
Gene Discovery in Complex Disease. Am. J. Hum. Genet. 106, 215-233 (2020).

30. Schnitzler, G. R. et al. Mapping the convergence of genes for coronary artery disease onto
endothelial cell programs. bioRxiv 2022.11.01.514606 (2022)
doi:10.1101/2022.11.01.514606.

31. GTEx Consortium et al. Genetic effects on gene expression across human tissues. Nature
550, 204-213 (2017).

32. Thul, P. J. & Lindskog, C. The human protein atlas: A spatial map of the human proteome.

30


https://doi.org/10.1101/2023.11.09.563812
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.09.563812; this version posted November 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Protein Sci. 27, 233-244 (2018).

33. Hu, W., Yuan, B. & Lodish, H. F. Cpeb4-mediated translational regulatory circuitry controls
terminal erythroid differentiation. Dev. Cell 30, 660-672 (2014).

34. Pell, N. et al. Targeting the cytoplasmic polyadenylation element-binding protein CPEB4
protects against diet-induced obesity and microbiome dysbiosis. Mol Metab 54, 101388
(2021).

35. Bergman, D. T. et al. Compatibility rules of human enhancer and promoter sequences.
Nature 607, 176-184 (2022).

36. Martinez-Ara, M., Comoglio, F., van Arensbergen, J. & van Steensel, B. Systematic
analysis of intrinsic enhancer-promoter compatibility in the mouse genome. Mol. Cell 82,
2519-2531.e6 (2022).

37. Lin, X. et al. Nested epistasis enhancer networks for robust genome regulation. Science
377, 1077-1085 (2022).

38. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934—
947 (2013).

39. Brosh, R. et al. Synthetic regulatory genomics uncovers enhancer context dependence at
the Sox2 locus. Mol. Cell 83, 1140-1152.e7 (2023).

40. Fuentes, D. R., Swigut, T. & Wysocka, J. Systematic perturbation of retroviral LTRs reveals
widespread long-range effects on human gene regulation. Elife 7, (2018).

41. Huang, J. et al. Dissecting super-enhancer hierarchy based on chromatin interactions. Nat.
Commun. 9, 943 (2018).

42. Delaneau, O. et al. Chromatin three-dimensional interactions mediate genetic effects on
gene expression. Science 364, (2019).

43. Yao, L., Berman, B. P. & Farnham, P. J. Demystifying the secret mission of enhancers:
linking distal regulatory elements to target genes. Crit. Rev. Biochem. Mol. Biol. 50, 550—
573 (2015).

44. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types.
Nature 473, 43—49 (2011).

45. Shen, Y. et al. A map of the cis-regulatory sequences in the mouse genome. Nature 488,
116-120 (2012).

46. Yao, L., Shen, H., Laird, P. W., Farnham, P. J. & Berman, B. P. Inferring regulatory
element landscapes and transcription factor networks from cancer methylomes. Genome
Biol. 16, 105 (2015).

47. Corradin, O. et al. Combinatorial effects of multiple enhancer variants in linkage

31


https://doi.org/10.1101/2023.11.09.563812
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.09.563812; this version posted November 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

available under aCC-BY-ND 4.0 International license.

disequilibrium dictate levels of gene expression to confer susceptibility to common traits.
Genome Res. 24, 1-13 (2014).

Sanyal, A., Lajoie, B. R., Jain, G. & Dekker, J. The long-range interaction landscape of
gene promoters. Nature 489, 109-113 (2012).

Li, G. et al. Extensive promoter-centered chromatin interactions provide a topological basis
for transcription regulation. Cell 148, 84-98 (2012).

Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals
principles of chromatin looping. Cell 159, 1665-1680 (2014).

He, B., Chen, C., Teng, L. & Tan, K. Global view of enhancer-promoter interactome in
human cells. Proc. Natl. Acad. Sci. U. S. A. 111, E2191-9 (2014).

Popay, T. M. & Dixon, J. R. Coming full circle: On the origin and evolution of the looping
model for enhancer-promoter communication. J. Biol. Chem. 298, 102117 (2022).

Dukler, N., Gulko, B., Huang, Y.-F. & Siepel, A. Is a super-enhancer greater than the sum
of its parts? Nature genetics vol. 49 2-3 (2016).

Shin, H. Y. et al. Hierarchy within the mammary STAT5-driven Wap super-enhancer. Nat.
Genet. 48, 904-911 (2016).

Hay, D. et al. Genetic dissection of the a-globin super-enhancer in vivo. Nat. Genet. 48,
895-903 (2016).

Zhou, J., Guruvayurappan, K., Chen, H. V., Chen, A. R. & McVicker, G. Genome-wide
analysis of CRISPR perturbations indicates that enhancers act multiplicatively and without
epistatic-like interactions. bioRxiv (2023) doi:10.1101/2023.04.26.538501.

Bothma, J. P. et al. Enhancer additivity and non-additivity are determined by enhancer
strength in the Drosophila embryo. Elife 4, (2015).

Osterwalder, M. et al. Enhancer redundancy provides phenotypic robustness in
mammalian development. Nature 554, 239-243 (2018).

Lam, D. D. et al. Partially redundant enhancers cooperatively maintain Mammalian pomc
expression above a critical functional threshold. PLoS Genet. 11, e1004935 (2015).

32


https://doi.org/10.1101/2023.11.09.563812
http://creativecommons.org/licenses/by-nd/4.0/

