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Abstract

Background: Ineffective drug treatment is a major problem for many patients with immune-
mediated inflammatory diseases (IMIDs). Important reasons are the lack of systematic solutions
for drug prioritisation and repurposing based on characterisation of the complex and
heterogeneous cellular and molecular changes in IMIDs.

Methods: Here, we propose a computational framework, scDrugPrio, which constructs
network models of inflammatory disease based on single-cell RNA sequencing (scRNA-seq)
data. scDrugPrio constructs detailed network models of inflammatory diseases that integrate
information on cell type-specific expression changes, altered cellular crosstalk and
pharmacological properties for the selection and ranking of thousands of drugs.

Results: scDrugPrio was developed using a mouse model of antigen-induced arthritis and
validated by improved precision/recall for approved drugs, as well as extensive in vitro, in vivo,
and in silico studies of drugs that were predicted, but not approved, for the studied diseases.
Next, scDrugPrio was applied to multiple sclerosis, Crohn’s disease, and psoriatic arthritis,
further supporting scDrugPrio through prioritisation of relevant and approved drugs. However,
in contrast to the mouse model of arthritis, great interindividual cellular and gene expression
differences were found in patients with the same diagnosis. Such differences could explain why
some patients did or did not respond to treatment. This explanation was supported by the
application of scDrugPrio to scRNA-seq data from eleven individual Crohn’s disease patients.
The analysis showed great variations in drug predictions between patients, for example,
assigning a high rank to anti-TNF treatment in a responder and a low rank in a nonresponder to
that treatment.

Conclusion: We propose a computational framework, scDrugPrio, for drug prioritisation based

on scRNA-seq of IMID disease. Application to individual patients indicates scDrugPrio’s
2
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potential for personalised network-based drug screening on cellulome-, genome-, and drugome-
wide scales. For this purpose, we made scDrugPrio into an easy-to-use R package

(https://github.com/SDTC-CPMed/scDrugPrio).

Keywords: single-cell RNA sequencing, sScCRNA-seq, immune-mediated inflammatory disease,

drug prioritisation, drug repurposing, drug prediction, digital twin

Introduction

Immune-mediated inflammatory diseases (IMIDs), such as rheumatoid arthritis, Crohn’s
disease, and psoriatic arthritis, affect millions of people worldwide and can cause chronic pain,
disability, and reduced quality of life (1). While new classes of therapies are transforming the
management of IMIDs, it is still a general problem that many patients do not achieve remission
with mono- (2, 3) or combinatorial therapy (3). This may be due to drug development involving
testing drugs on large groups of patients, with the assumption that the drug will work similarly
on all patients. Such an approach does not take into account the fact that each individual’s
genetic makeup and environment are unique, leading to significant variations in drug efficacy

and side effects.

Given that IMIDs are known to involve thousands of genes that are variably expressed in
different cell types and show temporal and interindividual differences (4, 5), single-cell RNA
sequencing (scRNA-seq) provides a promising foundation for the identification of suitable drug
treatments (6). Indeed, one pioneering case report described scRNA-guided therapy of one
patient with an inflammatory disease (7). The case report described successful outcomes in a

patient who did not respond to standard treatment. A limitation was that drug selection was
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81  empirical rather than based on systems-level understanding of the relative importance of disease-
82  associated cell types, pathways, and genes.
83
84  Several systematic prediction models for drug selection in cancer exist, in which omics data are
85 leveraged to determine the chemotherapies’ “killing potential” of tumour cells (8, 9). However,
86  these models are not immediately translatable to IMIDs as they are 1) trained on large public
87  drug-response data (e.g., GDSC database (10) and PRISM (11)), which are thus far unavailable
88  for IMIDs, and 2) pursuing the eradication of disease-associated cell types. Rather few
89  methodologies are applicable to IMIDs, including 1) identification of all druggable targets (12,
90  13), 2) targeting enriched pathways (13, 14), 3) network-based proximity calculations (6, 15)
91  or 4) matching of transcriptomic signatures as by Connectivity Map (CMap) (16). A limitation
92  of these approaches is that they are developed using bulk transcriptomics or genetic variants
93  and hence do not possess inherent solutions for rank aggregation for parallel analyses of several
94  cell types, which limits their applicability to sScRNA-seq.
95
96 Aiming to create a systematic framework for scRNA-seq-based drug prioritisation and
97  repositioning in inflammatory diseases, we hypothesised that the limitations of previous
98  methodologies could be overcome by transposing network-based approaches (6, 15) to a
99  systematic and scalable strategy for network-based virtual drug screening of multicellular
100  disease models (MCDMs). Therefore, we composed a computational framework henceforth
101 referred to as scDrugPrio (Fig. 1). Using scRNA-seq-derived differentially expressed genes
102 (DEGs) of either 1) one individual or 2) a group comparison between patients and controls,
103 scDrugPrio starts by identifying cell type-specific drug candidates by considering both
104  proximity in a protein—protein interaction network and biopharmacological criteria. To rank

4
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105  drug candidates, scDrugPrio calculates two measures, intracellular and extracellular centrality.
106  We used these two measures to capture two important drug properties, namely, 1) proficiency
107  in targeting key disease-associated expression changes in a cell type and 2) the relative
108  importance of the targeted cell type. These measures are then aggregated over all cell types to
109  provide a final drug ranking.

110

111 Because of the complexity and heterogeneity of IMIDs, we started by developing scDrugPrio
112 using scRNA-seq data from a mouse model of antigen-induced arthritis. This reduced
113 heterogeneity since the mice are inbred and the disease induced in a standardised way.
114  Moreover, the mouse model allowed extensive in vitro and in vivo validation studies. To
115  illustrate some potential case-of-use scenarios, we next applied scDrugPrio to cerebrospinal
116  fluid from multiple sclerosis patients and intestinal biopsies from Crohn’s disease (CD)
117  patients. Our analyses demonstrated drug selection and ranking capabilities through 1) the
118  prioritisation of known drugs. For antigen-induced arthritis, drug selection was also supported
119 by 2) experimental validation of repurposed drugs and 3) favorable comparison with previous
120 methods. Next, we applied scDrugPrio to paired biopsies from individual CD patients, revealing
121  its ability to capture the significant heterogeneity in individualised therapeutic prioritisations.

122
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Fig. 1. Overview of the scDrugPrio workflow. Single-cell RNA-sequencing (scRNA-seq)
data from either individuals or groups of patients are preprocessed by undergoing quality
control, denoising, clustering, cell typing and differentially expressed gene (DEG) calculation.
DEGs for each cell type were calculated between healthy and sick samples. Using DEGs
alongside information on drugs, scDrugPrio selects drug candidates (for each cell type; CT)

whose gene targets are 1) in network proximity to DEGs and 2) who counteract disease-
6
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associated expression changes. These cell type-specific drug candidates are next ranked using
intracellular and intercellular centrality. 3) Intracellular centrality is computed based on the
centrality of drug targets in the largest connected component (LCC) formed by DEGs and
functions as a proxy for drug target importance. 4) Intercellular centrality measures centrality
in disease-associated cellular crosstalk networks called multicellular disease models (MCDMs).
5) To derive a final ranking that aggregated cell type-specific drug selection and ranking into
one list, drug candidates were ranked using a composite score of intra- and intercellular

centralities (Fig. S1).
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139  Results

140  The scDrugPrio framework

141  Aiming to create an analytical framework for scRNA-seq-driven drug prioritisation, we
142 constructed scDrugPrio, which consists of three main modules: 1) drug candidate selection
143 based on cell type-specific DEGs, 2) drug candidate ranking and 3) aggregated ranking of drug
144  candidates from all cell types. For this scDrugPrio requires two components (Fig. 1): a)
145  differentially expressed genes (DEGs) between sick and healthy samples for each cell type and
146  b) drug data, including information on gene drug targets and pharmacological effects.

147

148  Preprocessing includes the calculation of DEGs based on scRNA expression from one or more
149  healthy and one or more sick samples (Fig. S1). Preprocessing starts with quality control, batch
150  correction (if needed) and data denoising of all scRNA-seq data, followed by clustering and
151  cell typing. DEGs are computed per cell type by using sick versus healthy expressions. In the
152 analysis below, we computed DEGs in the two modes. In the first mode, we use data from
153 groups of sick and healthy individuals, while in the second mode, we use scRNA-seq data from
154  paired samples of sick and adjacent healthy tissue for personalised drug prioritisations for one
155  patient of interest.

156

157  scDrugPrio starts by computing the mean closest distance between DEGs and gene targets of
158  drugs (henceforth referred to as drug targets) in the protein—protein interaction network (PPIN)
159  for each cell type and each drug candidate. Intuitively, the “closer” the drug targets are to DEGs,
160  the better is the chance for the drug to affect the disease-associated genes (15). Specifically, a
161  relative proximity measure (z¢) capturing the statistical significance of the observed closest

162  distance (d:.) was calculated based on a comparison of dc. to the random expectation.

8
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163 Furthermore, scDrugPrio assumed that drugs that counteract the fold-change of at least one
164  DEG will have a better chance to reverse disease-associated expression changes in the targeted
165  cell type (following a similar idea as CMap (16)). To determine whether a drug counteracted a
166 DEGs fold change, we considered 1) the direction of the fold change (upregulated or
167  downregulated) and 2) pharmacological action (e.g., agonistic, antagonistic) on the targeted
168  DEG. For each cell type, a list of drug candidates was derived by filtering out drugs with low
169  network proximity (de>1, z>-1.64 corresponding to one-sided P < 0.05) and drugs that did not
170  exert counteracting pharmacological action against at least one targeted DEG.

171

172 In the next step, scDrugPrio computed intra- and intercellular centrality measures that were
173 later used to aggregate the prediction and rank drugs. To compute intracellular centralities per
174 cell type, scDrugPrio determines the largest connected component formed by DEGs in the PPIN
175  and next computes a drug’s centrality score based on the centrality of the drug targets within
176  this component. Intracellular centrality hence presents an approximation of a drug’s target
177  relevance for disease-associated expression changes in a cell type. For intercellular centrality,
178  scDrugPrio constructs a multicellular disease model (MCDM). In short, MCDMs were based
179  on predicted molecular interactions between differentially expressed upstream regulatory genes
180  in any cell type and their downstream genes in any other cell type using NicheNet (17). The
181  resulting MCDM is a network in which cell types were nodes connected by directed, weighted
182  ligand-target interactions. Intercellular centrality refers to the centrality of cell types in the
183 MCDM.

184

185  Finally, scDrugPrio aggregates drug predictions through aggregation of cell type-specific drug

186  predictions and intracellular and intercellular centralities into a compound score (Fig. 1). The

9
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187  resulting scores were used to rank drugs. Hence, overall drug ranking prioritised drugs that
188  targeted key disease-associated expression changes in the most important cell types.

189

190  scDrugPrio development and evaluation in antigen-induced arthritis

191  scRNA-seq data were generated from whole joints of five inbred AIA mice and four naive mice.
192 After application of quality criteria (File 1), data included 16,751 cells with 132,459 mean reads
193 per cell. Data for all mice were denoised jointly using a deep count autoencoder network (DCA)
194  (18), and clusters were cell typed using marker gene expression (Fig. 2a & S2). Comparison of
195  cells from AIA and naive mice identified DEGs in 16 cell types (Fig. 2, Supplementary
196  Results).

197

198  Weretrieved drug target information from DrugBank (19) for 13,339 drugs (File 1). From those
199  drugs, we selected all of which had been FDA approved for human use and had at least one
200  target in the human interactome (n = 1,840). According to the indication information in
201  DrugBank, 57 drugs were FDA approved for RA and hence treated as true positives for the
202 calculation of precision and recall.

203

204  Applying scDrugPrio, the final list of candidates included 334 out of 1,840 drugs; 32 drugs
205  were established RA drugs, of which 22 ranked among the top 100 candidates (Fisher exact P
206 <10 Fig. 3, File 1). To further evaluate the candidates’ relevance, we collected clinical trial

207  data from clinicaltrials.gov to capture the medical community’s interest in the identified

208  candidates as RA medications. We also performed a literature review of the top 100 drugs to
209  evaluate whether candidates had shown promise when tested in human RA or murine/rat RA

210  models. Through a literature review, evidence for the relevance of 40 additional drugs was

10
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211  identified, whereas three of the top 100 ranking drugs had not shown effects in previous trials.
212 Hence, 62.0% of the top 100 ranking candidates were either approved or had successful
213  experimental validation in prior literature (Fig. 3e), and 95.4% of previously studied top 100
214  candidates had shown promise.

215

216  Describing scDrugPrio results in more detail, network proximity selection (dc<l, z.<-1.64)
217  yielded no drug candidates for eight cell types and an average of 67 drug candidates (min = 2,
218  max = 226) for the remaining twelve cell types. Precision among cell type-specific candidates
219  ranged from 0.0% to 12.8%. However, precision of cell types that were central in the MCDM,
220  such as activated, immature, and plasma B cells (12.8%, 11.4%, and 6.3%, respectively),
221  outperformed random selection from the 1,840 included drugs (57/1,840 = 3.1%; Fisher exact
222 P<10", P<10% P=0.4,respectively). Following network proximity calculations that were
223 performed in the absence of information on a drug’s effect on the target, we found tasonermin,
224 asynthetic version of TNF, among the top-ranking candidates for several B-cell subtypes. Since
225  overexpression of TNF has a crucial role in RA pathogenesis (20), this ranking supported the
226  network proximity criterion. However, because tasonermin mimics the effects of TNF, it could
227  worsen the disease. This finding exemplified the importance of pharmacological action
228  selection. Pharmacological action selection resulted in an average of 43 drug candidates per cell
229  type (min = 2, max = 137). Overall precision decreased to a median [range] of 1.56% [0.00 -
230  20.63], although it increased in activated, immature, and plasma B cells (20.6%, 16.1%, and
231 9.1%, respectively) as well as in T cells (Fig. 3¢)

232

233 Having identified drug candidates for every cell type individually, intra- and intercellular

234 centrality were calculated. The use of intra- and intercellular centrality measures for composite

11
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235  ranking was motivated by our findings that 1) intercellular centrality correlated with the
236  significance of GWAS enrichment among cell type-specific DEGs (Pearson's 7 [95% CI] = 0.62
237  [0.21-0.85]; P<0.01), 2) intercellular centrality correlated with the precision among cell type-
238  specific drug candidates (Pearson's » [95% CI]=0.77 [0.46 —0.91]; P < 107%; Fig. S2j), 3) drugs
239  that targeted more than one cell type were more likely to be known RA drugs (Fig. S2k) and 4)
240  intracellular centrality could improve the mean rank of known drugs more than expected by
241  chance (Supplementary Results).

242

243  Using the AIA and human RA data, we benchmarked scDrugPrio against previous
244  methodologies (Supplementary Results) and performed extensive additional testing,
245  demonstrating the advantage of scRNA-seq-driven analysis over genetic variations or bulk
246  transcriptomics. Furthermore, we evaluated drug selection criteria and performed robustness
247  analysis (Supplementary Results).

248
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Fig. 2 Construction and analysis of a multicellular disease model (MCDM) based on
scRNA-seq analysis of a mouse model of antigen-induced arthritis (AIA). a) tSNE of cells
(n =16,751) pooled from all samples. b) Cell type proportions (%) for individual AIA (S1 to
S6) and control (H1 to H4) mice. ¢) Heatmap of z-scores of the cluster-based means of

normalised, denoised gene expression for cell type markers. d) MCDM, in which cell types
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were represented by nodes connected by the predicted interactions between upstream regulatory
genes in any cell type and their downstream target genes in any other cell type (17). Edge width
corresponds to the sum of Pearson coefficients for all interactions between two cell types, with
arrows directed from upstream to downstream cell types. Edge color corresponds to the
upstream cell type. As indicated by more central positions in the MCDM, the four B-cell
clusters were the most central cell types. e) Bar plot depicting eigenvector cell type centrality

in MCDM. Colours in all plots correspond to cell type colours in a).
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264  Fig. 3. Precision and recall in relation to drug selection and ranking criteria. a-b) Precision
265  and recall at different z. cut-offs. In most cell types, precision increased with decreasing z.. Too
266  stringent z. cut-offs, by contrast, led to the exclusion of almost all candidates, including
267  approved RA drugs. c-d) Precision and recall after stepwise application of drug selection

268  criteria. Bars with no pattern represent a zc cut-off that Guney et al.'°

had previously found to
269  offer good coverage of known drug-disease pairs. The dotted pattern represents precision at z¢
270  <-1.64 (corresponding to one-sided P < 0.05). The striped pattern represents precision among
271  candidates with zc <-1.64 and dc < 1 (in other words, candidates passing network proximity-

272  based selection). The crosshatch pattern represents candidates passing network proximity and

273  pharmacological action selection. The application of selection criteria substantially increased
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274  the precision among central cell types. e) Precision for approved RA drugs and drugs with
275  literature evidence among the ranked list of selected candidates. Drug ranking included rank
276  ties. Literature evidence was gathered for the top 100 ranked candidates and is presented as
277  triangles with a dashed line. The colour legend for a-d) is depicted in f).

278

279  Experimental validation of scDrugPrio

280  To further validate scDrugPrio, five high-ranking drugs that were not found to have any prior
281 literature support for their efficacy in RA were chosen alongside the highest-ranking RA drug
282  (auranofin #6) serving as a positive control. We first evaluated the five drugs by in vitro studies
283  of B cells. This cell type was selected because of its crucial role in the pathogenesis of RA and
284  its central position in MCDM (21). We used previously described in vitro models of B-cell
285  functions (21) measuring murine B-cell survival, activation, proliferation, and antibody
286  production upon in vitro stimulation with selected drugs at various concentrations. Auranofin
287  dramatically suppressed B-cell functions, including cell wviability, proliferation, and
288  immunoglobulin production (Fig. 4). Additionally, two of the five novel drugs (#114 amrinone
289  and #100 adapalene) showed concentration-dependent in vitro effects on B-cell viability,
290  proliferation, and immunoglobulin production (Fig. 4). Adapalene also greatly inhibited murine
291  B-cell activation (Fig. 4b). The other three drugs (#91 irbesartan, #98 isosorbide, and #134
292 dimethyl furamate) showed little to no effect on murine B-cell functions (Fig. S3). Next, we
293  examined the effects of drug candidates on the function of human B cells. Similarly, auranofin,
294  adapalene and amrinone inhibited human B-cell viability, activation, proliferation, and IgG
295  production (Fig. S4). Thus, two out of five candidate drugs prioritised by scDrugPrio, namely,
296  adapalene and amrinone, were successfully validated by in vitro studies.

297

16


https://doi.org/10.1101/2023.11.08.566249
http://creativecommons.org/licenses/by-nd/4.0/

298

299

300

301

302

303

304

305

306

307

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.08.566249; this version posted November 13, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

Valid drug candidates should arguably be transposable and replicable. As drug prediction was
performed using data from the AIA model of arthritis, we deployed the collagen-induced
arthritis (CIA) model for further in vivo study. We selected only amrinone for further study, as
adapalene was designed for topical skin use and not for systemic delivery. CIA mice were
administered 30 mg/kg amrinone i.g. for 3 weeks. This treatment significantly reduced the paw
thickness (Fig. 4e) and clinical scores of CIA mice (Fig. 4f). Analysis of collagen-specific
serum autoantibodies revealed a significant inhibitory effect (Fig. 4g). Considering that it even
reduced immune cell infiltration (Fig. 4h) and bone erosion (Fig. 4i), in vivo studies confirmed

the relevance of amrinone treatment and thereby further supported scDrugPrio.
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Fig. 4 Experimental validation of amrinone in suppressing murine B-cell function and the
pathogenesis of the CIA mouse model. Drug effect of the selected drugs and the positive
control on in vitro murine a) B-cell survival, b) activation, ¢) proliferation, and d)
immunoglobulin production. Colours represent the responses to diluent and different drug
concentrations (low, medium, high); for specific concentrations, see Table S1. Having
successfully validated adapalene and amrinone in vitro, we conducted in vivo experiments for
amrinone. Mice with collagen-induced arthritis (CIA) were treated with diluent (n = 5) or

amrinone (30 mg/kg, n = 5) for 3 weeks. The e) rear paw thickness, f) clinical scores, and g)
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317  collagen-specific serum autoantibodies were measured. Furthermore, drug efficacy was
318  assessed by analysis of h) joint immune cell infiltration using H&E staining and i) bone erosion
319  using Safranin-O staining. * P <0.05, **P < 0.01, ***P < (0.001. Dimethyl furamate, DMF.
320

321  Application of scDrugPrio to multiple sclerosis

322 We next applied scDrugPrio to human IMIDs using scRNA-seq data of cerebrospinal fluid
323 (CSF) from multiple sclerosis (MS) patients and idiopathic intracranial hypertension that served
324  as controls (22). After application of quality cut-offs (File 2), the data included 33,848 cells
325  with 47,332 mean reads per cell. Comparing MS samples with controls, DEGs were calculated
326  from batch-corrected, normalised expression scores. scDrugPrio identified on average 59 (min
327 =1,max=270)drugs in 19 cell types (Fig. 5 & S5). Aggregated ranking of 417 drug candidates
328  (Fig. S6, File 2) included ten out of 17 approved MS drugs. Among the top 100 ranking
329  candidates, four approved MS drugs, as well as biosimilars rituximab and obinutuzumab, were
330 identified, which outperformed random expectation (precision 0.9%). A literature search
331 revealed that an additional 22 of the top 100 ranking drugs had shown effects in previous
332 studies, resulting in a precision of 28.3% (Fig. 5d). Seventy-one drugs had not yet been
333  wvalidated in previous studies, and one evaluated drug had not shown promise in previous
334  studies. Hence, 96.7% of the studied candidates showed efficacy. Taken together, these data
335  supported the potential of scDrugPrio to predict the response to drugs approved for that disease,
336  as well as for repurposing other drugs.

337

338  The value of above rank aggregation was supported as precision among cell type-specific drug
339  candidates only ranging from 0.0% to 12.5%. The MCDM (Fig. 5c, File 2) indicated plasma

340  cells, mononuclear phagocytes, natural killer cells, and activated CD8+ T cells to be of central
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341  importance, which is consistent with the current pathophysiological understanding (22, 23).

342 Notably, the MS MCDM was more complex than the AIA MCDM regarding the number of cell

IIH

343  types and interactions.
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345  Fig. 5. scDrugPrio applied to scRNA-seq data from cerebrospinal fluid samples of MS
346  patients and controls. a-b) Clustering and cell type proportions (%) for CSF samples of
347  idiopathic intracranial hypertension (ITH) and multiple sclerosis patients (MS). Cell type
348  proportions showed significant interindividual differences among MS patients. ¢) The MCDM
349  for MS was more complex than that of AIA mice. The most central cells included mononuclear
350 phagocyte 3, natural killer cells, mononuclear phagocyte 2, early activated CD8+ T cells and

351  plasma B cells. (in order of eigenvector centrality). d) Precision among ranked candidates for
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352  approved MS drugs and the top 100 drugs with literature-derived evidence. Abbreviations: Tm,
353 T memory; Tem, T effector memory.

354

355  Application of scDrugPrio to Crohn’s disease

356  Next, scDrugPrio was applied to patients with Crohn’s disease (CD) from whom scRNA-seq
357  data (24) from paired inflamed and uninflamed intestinal tissue biopsies were available. After
358  application of quality criteria (File 3), 77,416 cells were included with 3,591 mean unique
359  molecular identifiers (UMIs) per cell. Following preprocessing, analysis was performed on
360  batch-corrected, pooled data from all patients in which DEGs were calculated through
361  comparison of inflamed and uninflamed samples (Fig. S7 & S8, File 3). The aggregated ranking
362  included 343 drug candidates, of which five were known CD drugs. These five consisted of
363  sulfasalazine (#91), mesalazine (#169.5), rifaximin (#238) and two anti-TNF drugs
364 (adalimumab and infliximab, tied rank #292.5). Apart from sulfasalazine, literature evidence
365  suggested the effectiveness of 13 additional top-ranking 100 drugs, resulting in a precision of
366  14%.

367

368  Patient heterogeneity in human disease

369  An important difference between human data and mouse data was substantial interindividual
370  heterogeneity in human patients. To illuminate such differences, we compared 1) cell type
371  proportions, 2) gene expression profiles and 3) examination of latent features of the non-batch-
372  corrected data. Mice, as expected, showed no differences in cell type proportions (chi-square P
373 = 0.9919; Fig. 2¢), gene expression (95% CI of misclassification rate 0.504~0.532 in the
374  training data and 0.638-0.655 in the test data), or latent features (Fig. S2¢). However, both MS

375 and CD patients showed great interindividual heterogeneity in cell type composition (chi-square

21


https://doi.org/10.1101/2023.11.08.566249
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.08.566249; this version posted November 13, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

376 P < 10", respectively). Heterogeneity in cell type composition, although decreased, can still
377  be observed in the batch-corrected data (Fig Sb & S7i). A patient effect was also observed in
378  the non-batch-corrected gene expression for MS (random forest, 95% CI of misclassification
379  rate 0.075 - 0.084 in training data and 0.124 - 0.132 in testing data) and CD patients (random
380  forest; 95% CI of misclassification rate 0.270 — 0.283 in training data and 0.378 ~ 0.385 in
381  testing data) as well as latent features derived from non-batch-corrected data (Fig. S5 & S8).
382  Taken together, such patient effects necessitated batch correction for pooled prediction using
383  the human data sets above.

384

385  Potential for individualised predictions

386  Even though batch correction had been applied appropriately, a potential limitation of the above
387 MS and CD analyses was that scDrugPrio was applied to pooled data derived from
388  heterogeneous patients and controls. Patient effects might form the bases for the
389  responder/nonresponder dichotomy, and we therefore evaluated scDrugPrios potential for
390 individualised drug prioritisation. For this, we applied scDrugPrio to individual CD patients,
391  using similar preprocessing as for CD data above with the following exceptions: 1) data were
392  not batch-corrected, and 2) following denoising, cells from inflamed and uninflamed samples
393  ofeach patient were clustered separately. DEGs were derived through comparison of individual
394  patient inflamed and uninflamed cells in each cluster. DEGs showed that the eleven patients
395  expressed important CD drug targets differently (Fig. S9a-b). To investigate whether such
396  molecular differences could affect drug prediction outcomes, scDrugPrio was applied to all
397  patients separately (Fig. S9-11, File 4).

398
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399  Strikingly, individualised drug predictions of nine out of eleven patients (such as patient 1:
400  19.0%; patient 10: 20.5%, Fig. 6 & S12) outperformed the precision of pooled patient analysis
401  (14.0%). Among the top 10 candidates, precisions for individualised predictions (20-70%)
402  outperformed precision of pooled patient analysis in seven patients and equalled that of pooled
403  patient analysis in four patients (10%). All predictions outperformed random chance (1.5%).
404  More detailed analysis revealed interindividual differences in cell type proportions and network
405  properties in the MCDM (Fig. S11) as well as different drug rankings (Fig. S13). Taken
406  together, these findings supported that scDrugPrio presents a valid strategy for personalised
407  drug prioritisation.

408

409  To exemplify the potential of scDrugPrio for individual patients, we next compared two patients
410  who previously had been classified as an anti-TNF responder (patient 10) and nonresponder
411  (patient 1) based on a cellular signature score (24). In agreement with the previous classification
412 of anti-TNF response (24), TNF had a more central role in the MCDM of patient 10 (Fig. S10m,
413  n). Hence, it was not surprising that aggregated drunk ranking ranked adalimumab (anti-TNF)
414  higher for patient 10 (#15.5) than for patient 1 (#658). As expected, adalimumab was the
415  highest-ranking approved CD drug in patient 10. For patient 1, scDrugPrio prioritised other
416  immunomodulatory drugs over anti-TNF treatment, namely, natalizumab (#19), human
417  intravenous immune globulin (#21), basiliximab (#25), sarilumab (#29), and other approved
418  CD drugs, such as methotrexate (#188) and sulfasalazine (#202).

419
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421  Fig. 6. scDrugPrio for individual drug prediction. a-b) Cell type proportions differed greatly
422  between two CD patients, as shown in the horizontally stacked bar plots representing paired
423  biopsies from inflamed (infl) and uninflamed (uninfl) lesions that were taken from each patient.
424

c-d) Patients also show differences in the composition and interconnectivity (representing

425  ligand interactions) of the MCDMSs. Patient 1 had a cell type for which no ligand-target

426  interactions could be found with any other cell types in the MCDM. e-f) The precision for the
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427  ranked drug candidates for patient 1 was low for approved CD drugs, while literature evidence
428  supported the top-ranking drugs, of which many are anti-inflammatory. In contrast, patient 10
429  had several approved CD drugs among the top 100 candidates, and a curated literature search
430  confirmed the validity of many more candidates. g) Precision for prediction based on pooled
431  patient data was poor. h) Venn diagram presenting the overlap of considered drug candidates
432  for patients 1 and 10. i) Interindividual differences between patients 1 and 10 were reflected in
433  the prediction outcome, as no correlation existed between the drug rank of drugs that were
434  candidates in both patients.

435

436  Application of scDrugPrio to nonresponder/responder data from patients with psoriatic
437  arthritis highlighted the importance of local tissue samples

438  Since the previous analyses supported scDrugPrio’s potential for another case-of-use scenario,
439  namely, to distinguish drug responders from nonresponders. To explore this potential, we
440  collected peripheral mononuclear blood cells (PBMCs) from patients with psoriatic arthritis
441  (PsA) as well as healthy controls. PBMCs were chosen because the analysis of blood samples
442  1s clinically more tractable than the analysis of biopsies. Samples were cryopreserved before
443  treatment with either anti-TNF or anti-IL17. Treatment response was later assessed by a
444 rheumatologist according to EULAR response criteria (25) (File 5). We next selected 32
445  patients, of whom eight were classified as responders (R) and eight as nonresponders (NR) to
446  either of the two drugs, as well as eight healthy controls. Cryopreserved PBMCs from these
447  patients were analysed with scRNA-seq. For preprocessing, data were divided into two data
448  sets by treatment regimen, each data set containing the corresponding eight R and NR along
449  with the eight healthy controls. After application of quality cut-offs, the data included 78,610

450  cells with 5,088 mean reads for anti-TNF analysis and 72,472 cells with 5,343 mean reads for
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451  anti-IL17 analysis. Data were batch-corrected and DCA denoised before clusters were
452  identified and cell-typed using marker genes (Fig. S14 & S15, File 5).

453

454  For each data set, DEGs were calculated through comparison of cells from healthy controls to
455  either R or NR. The precision for approved PsA drugs among the top 100 candidates in the
456  respective aggregated ranking was 0% for anti-IL17 NR, 4% for anti-IL17 R, 1% for anti-TNF
457  NR and 1% for anti-TNF R (Fig. S14 & S15). Unexpectedly, anti-TNF treatment received a
458  low rank in anti-TNF R but not in NR (#333 and #88, respectively), while anti-IL-17 was not
459  considered a candidate in either R or NR.

460

461  Further analyses of our PBMC data from all R and NR patients showed that the TNF signaling
462  pathway was significant in only 8% and 8% of clusters, respectively. The corresponding figures
463  for the IL-17 signaling pathway were 17% and 13% in the anti-IL17 R and NR groups,
464  respectively. In those cell types, most pathways were downregulated, including those regulated
465 by TNF and IL17 (Fig. S16). This result contrasted with previous studies of skin and synovium
466  from PsA, which showed increased expression of TNF and IL17, as well as their pathways (26,
467  27). A similar dichotomy between local inflamed tissues and cells in the blood in autoimmune
468  diseases has been previously described (28). This dichotomy can be explained by the
469  physiological need to localise inflammatory responses to inhibit systemic and possibly fatal
470  responses. The general clinical implication may be that drug predictions should ideally be based
471  on local tissue samples (25).

472
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473  Discussion

474  The main problem in therapeutics, which serves as the basis for this study, is the large number
475  of IMID patients who do not respond to treatment (2, 3, 29). Previous virtual drug screening
476  methods for inflammatory diseases are based on genetic variance or bulk RNA sequencing (15,
477 30, 31) and hence do not consider variations in gene expression across different cell types,
478  biopharmacological properties, or individual variations between patients with the same
479  diagnosis. While harnessing the daunting complexity and heterogeneity for personalised
480 treatment may seem impossible by health care standards today, this challenge should be put in
481  the context of the suffering and costs resulting from ineffective drug treatment. Many IMIDs
482  cause life-long morbidity and increased mortality. The yearly cost of treating an individual
483  IMID patient may be hundreds of thousands of dollars for drugs and hospital care (1).

484

485  Recent efforts for drug toxicity screening (8, 32) support the feasibility of scRNA-seq to capture
486  relevant cellular information. However, systematic solutions for drug prioritisation for IMIDs
487  based on scRNA-seq remain to be devised. We therefore propose a computational framework,
488  scDrugPrio, that extends on existing bioinformatic tools (6, 15, 17) by providing a framework
489  for data integration, enabling drug ranking based on a multifaceted understanding of cell type-
490  specific disease mechanisms, altered cellular crosstalk and pharmacological effects. We
491  demonstrate that scDrugPrio yields relevant and robust drug prioritisations, outperforms
492  previous methods (14, 33) and holds potential for individualised as well as pooled drug
493  prioritisation and repurposing.

494

495  An important advance of scDrugPrio is that it can be applied to scRNA-seq data. The

496  importance lies in the fact that complex diseases each involve differential expression of
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497  thousands of genes across multiple cell types (6). A previous case report (7) described one
498  successful example of treating an individual patient with immunological diseases based on
499  scRNA-seq data. However, the drug choices were empirical rather than systematic. Because
500 scRNA-seq allows transcriptome-wide analyses in each of thousands of cells, it is possible to
501 infer disease-associated changes in individual patients preferably by comparisons with
502  noninflamed samples from the same individual or to groups of healthy individuals. Thus,
503  scDrugPrio has the potential to personalise the treatment of individual patients. The importance
504  of this advance is highlighted by our results and previous findings (24, 34) showing great
505 interindividual differences in the molecular and cellular composition of human diseases. For
506  example, we showed that scDrugPrio ranked anti-TNF treatment high in a CD patient who was
507  classified as a responder but not in a nonresponding patient. In the latter patient, other
508  immunomodulatory drugs, such as natalizumab, received high ranks. Natalizumab is mainly
509  used in MS but has, in previous studies, shown positive effects in CD (35), making it a viable
510 recommendation. These examples emphasise that successful drug screening will need to
511  consider variations between patients with the same diagnosis.

512

513  There are several limitations of scRNA-seq-based drug predictions in IMIDs. Many of these
514 depend on the challenges involved in harnessing complex and heterogeneous disease-
515 associated changes with an emerging technology such as scRNA-seq. An analogy to a historical
516 example may illustrate how such limitations may drive scientific progress. In 1970,
517 Needleman-Wunsch (36) and 1981, Smith—Waterman (37) published algorithms for global
518 and local sequence alignment, which were widely used. The limitations of those algorithms

519  were that they were mainly useful for nucleotide but not protein sequence analyses because
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520  of limited protein sequence data and no scoring system that modelled protein evolution.
521  During the next two decades, these problems were resolved by increasingly accurate data and
522  methods (38). Importantly, 42 years after publication of the Smith—Waterman algorithms for
523  proteins, these algorithms can generate very accurate results when combined with scoring
524  systems that were later developed (38). We propose that the limitations of sSCRNA-seq that we
525  face today will lead to a similar development of increasingly accurate technologies. One
526  obvious limitation of scRNA-seq is that mRNA and protein levels may be poorly correlated,
527  which can limit biological interpretability. From this perspective, the use of DEGs for
528  scDrugPrio’s pharmacological predictions is a relative strength, as DEGs have been shown to
529  correlate significantly better with protein levels (39) compared to mRNA levels alone and hence
530 increase the biological relevance of our predictions. Inherent limitations of scDrugPrio also
531  derive from the use of current interactomes, which are not comprehensive in terms of proteins,
532  interactions, and variations across cell types (40) and are prone to investigative biases. While it
533  is impossible to address all these concerns, we explored whether network proximity-based drug
534  selection was influenced by investigative bias through replication of key results in a smaller yet
535  unbiased interactome. We found that precision among candidates was slightly lower, partly due
536  to missing drug targets in the interactome, but that results were comparable. Additionally,
537  scDrugPrio might benefit from systematic parameter optimisation, which is currently not
538  possible due to the limited amount of suitable sSCRNA-seq data sets.

539

540  Predictions were based on complex or partially uncharacterised drug-target effects, which may
541  vary between different locations in the body. The need for better characterised drug effects and
542 the relative importance of drug targets is exemplified by etanercept, which inhibits TNF and its

543 receptors but may activate IgG receptors. The TNF-inhibitory effects are beneficial in PsA,
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544  while those on IgG receptors are not clearly defined. However, because all these targets were
545  downregulated in PBMCs from nonresponding PsA patients, etanercept (counteracting IgG
546  downregulation) received a higher rank than in patients responding to anti-TNF treatment.
547  While unexpected, this highlights the need for systematic information about the relative
548  importance of drug targets. Future efforts aiming to address these limitations might find that
549  the predictive capability of scDrugPrio can be further enhanced by integration of binding
550  affinity (e.g., BindingDB) or bioactivity (e.g., ChEMBL), especially if data become more
551  comprehensive.

552

553  The above example of etanercept in PsA highlights an important clinical concern, which to our
554  knowledge has not been recognised in the context of drug prediction methods. While analyses
555  of blood samples are often more tractable in routine clinical practice, disease-associated
556  mechanisms may vary greatly between cells in blood and inflamed tissues. Our scRNA-seq
557  analyses of PBMCs from PsA patients who did or did not respond to treatment with either anti-
558  TNF or anti-IL-17 showed that TNF and IL-17 signaling was found only in a small portion of
559  the PBMC cell types and, in fact, was downregulated in both responders and nonresponders. In
560  contrast, previous studies (26, 27) of synovium from PsA patients have shown consistent
561  upregulation of both signaling pathways. Additionally, one previous study also showed
562  differences between synovium and skin from the same patients (26). Thus, scDrugPrio should
563  ideally be applied to local, inflamed tissue samples of the relevant tissue.

564

565  Despite these limitations, the translational relevance of scDrugPrio was supported by analyses
566  of precision/recall for drugs that were approved for the studied diseases, as well as by in vitro

567 and in vivo experiments. Those experiments implied two drugs, namely, adapalene (used for
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568  acne vulgaris) and amrinone (used for congestive heart failure), that had not been previously
569  described as candidates for RA treatment. However, both have anti-inflammatory effects and
570  could, therefore, be effective (41, 42). This potential was supported by in vivo experiments in
571  which CIA mice were treated with amrinone (adapalene is a topical skin drug and hence is not
572  suitable for systemic treatment in this experimental system). This example also suggests a
573  potentially important pharmacological application of scDrugPrio, namely, virtual drug
574  repurposing by systematic screening of thousands of drugs across several inflammatory
575  diseases, as well as in patients who do not respond to standard treatment.

576

577  Here, we show that scDrugPrio has the potential for individualised drug predictions. We have
578  made data and tools freely available for this purpose. However, further parameter optimisation
579  and controlled, prospective clinical studies are needed for clinical translation. If successful, this
580  approach could lead to a radical change in health care, which today is largely based on treating
581  groups of patients with the same diagnosis with a limited number of drugs based on a limited
582  understanding of the underlying molecular complexity and heterogeneity with limited
583  population-based efficacy (43).
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606 Material & Methods

607  scDrugPrio’s computational framework

608  As indicated in Fig. S1, scDrugPrio requires 1) an adjusted scRNA-seq matrix, 2) disease-
609  associated differentially expressed genes (DEGs) for each cell type from either group-based
610  comparison of healthy and sick samples or from inflamed and noninflamed samples of one
611 individual, 3) a protein—protein interaction network (PPIN) and 4) drug-target information.
612  scDrugPrio then utilises this information for cell type-specific drug selection, calculation of
613  drug ranking measures and finally rank aggregation.

614

615  For drug selection, scDrugPrio first computes the mean closest network distance (dc) between
616  cell type-specific DEGs and drug targets in the PPIN for each cell type-drug combination. To
617  calculate z-scores (z¢) for network distance, permutation tests (1,000 iterations) were performed
618  in which both cell type-specific DEGs and drug targets were randomised in a bin-adjusted
619  manner (15) before the mean closest distance was calculated. The minimal bin size for
620  randomisation was set at 100 genes. Drugs that did not have any target in the interactome were
621 removed from the analysis (n = 4 for literature-curated PPIN). Based on network distance, we
622  selected only drugs that targets were significantly close (zc < -1.64 corresponding to one-sided
623 P < 0.05) to DEGs and that frequently targeted DEGs directly (dc < 1). These cut-offs were
624  chosen based on our empirical observations (Fig. 3a-d & S2h,j) and previous knowledge (44).
625  As the significance of network proximity can depend on the number of DEGs relative to the
626  size of the network, cut-offs allowing only the top significant DEGs to enter analysis were
627 implemented when needed. Cell type-specific drug candidates were selected further by
628  requiring drugs to counteract the fold change of at least one targeted DEG. This criterion

629 intuitively removes drugs that likely will not help to restore transcriptomic homeostasis. For
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630 this purpose, the pharmacological action of the drugs on their targets was determined. Binary
631  drug action (activating/enhancing or inhibiting) on the drug target was recorded for each drug
632  (File 1-5). If the pharmacological effect of the drug on the target had not been specified
633  explicitly in DrugBank (19), a literature search was performed using the drug name and gene
634  symbol of the targeted DEG as search terms in PubMed and Google Scholar. Additional
635  information gathered from the literature can be found in Files 1-5. In case the pharmacological
636 effect of the drug on a target, despite a literature search, could not be classified as
637  enhancing/activating or inhibiting, the drug target was assumed to not counteract fold-change.
638

639  Drug ranking by intra- and intercellular centralities was motivated by empirical observations
640  (Fig. 3e & S17) in our study as well as previous indications of the biological importance of
641  disease modules (6, 45) and central cell types in MCDMs (6). For calculation of intracellular
642  centrality, disease modules for each cell type were defined as the largest connected component
643  (LCC) formed by a cell type’s DEGs in the PPIN. For LCC identification, the igraph R package
644  (46) was utilised. To avoid overparameterisation, the eigenvector centrality (47) of DEGs in the
645  LCC was calculated using the CINNA R package (48). For each drug, the intracellular centrality
646  was calculated as the geometric mean of its differentially expressed target centrality scores in
647  the cell type-specific LCCs. If a drug did not target any DEG included in the LCC, intracellular
648  centrality was set to zero.

649

650 Intercellular centrality was calculated using MCDMs that modelled disease-associated cellular
651  crosstalk. For the creation of MCDMs, first, cell type interactions were predicted using
652  NicheNet (17). Briefly, NicheNet predicts and ranks ligand—target links between interacting

653  cells by combining their expression data with prior knowledge on signalling and gene
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654  regulatory networks. As suggested by Browaeys et al (17), Pearson correlation was used to
655 measure each ligand’s ability to predict the gene expression of genes in the gene set of interest
656  compared to background genes in the receiving cell type. This means that a ligand has a strong
657  positive correlation coefficient if its cognate receptor and the downstream genes of that receptor
658 are all differentially expressed in the downstream cell type. We downloaded the human ligand-
659 target model as well as the human ligand—receptor network (downloaded from
660  https://zenodo.org/record/3260758 April 2020). Cell type-specific DEGs constituted the gene
661  set of interest. A set of potentially active ligands was defined as the intersection of ligands
662  included in the downloaded human ligand-target model and ligands among respective cell type
663  DEGs. Background genes for each cell type were defined as genes (7) in the denoised single-
664  cell expression matrix D of k cell type-associated cells that showed a mean aggregate
665  expression, Ea(i), over Ea(i) > 0.2. This definition of background genes was similar to
666  definitions by Browaeys et al. (17) and Puram et al. (49). At the chosen cut-off, we identified
667  ca. 10,000 background genes that corresponded to the recommended amount for NicheNet
668  calculations (17).

669

k
670 Ea(i) = log, (Z 10Pij /k)
j=1

671

672  All genes were translated to human Entrez gene symbols using human-mouse orthologues
673  downloaded from NCBI (August 2019). Ligand activity analysis in NicheNet was performed
674  for all possible cell type pairs, including self-interactions, excluding cell types that did not
675  express DEGs. In the next step of MCDM construction, directed cell type interactions were

676  derived from ligand activity results and weighted by NicheNet-derived Pearson coefficients.
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677  Only ligand interactions with a positive Pearson correlation coefficient were considered
678  negative Pearson coefficients that reflected the association of a ligand with background genes
679 and therefore were not biologically relevant. The resulting MCDM was visualised using
680  Cytoscape 3.6.1 (50), and for visualisation purposes, the sum of Pearson coefficients that
681  described the directed interaction between two cell types was used. Supplemental analysis
682  supported the relevance of identified ligand interactions (Supplementary Results).
683  Eigenvector centrality was calculated for each cell type based on the weighted, directed
684  interactions in the MCDM using the igraph and CINNA R package (46, 48). The intercellular
685  centrality of each drug was computed as the sum of MCDM centralities of the cell types that
686  had selected the drug as a candidate. While eigenvector centrality is well tailored to capture
687  central disease-associated cell types in the MCDM, considering both direct and indirect node
688  connections (47), multiple centrality measures are available. We evaluated several of them,
689  finding them to yield similar results to eigenvector centrality (Supplementary Results, File 1-
690 5).

691

692  Final rank aggregation involved the calculation of a drug’s compounded intra- and intercellular
693  centrality. For this, we calculated combined intracellular centrality for each drug as the sum of
694  drug-specific intracellular centralities in all cell types. The centrality compound score consisted
695  of a drug intercellular centrality + 0.1 x combined intracellular centrality and thereby
696  emphasised the importance of intercellular centrality over intracellular centrality. Intracellular
697  centrality effectively worked as a tiebreaker. Drugs were ranked based on centrality compound
698  scores, using the average position for ties.

699
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700  Drug data

701  We retrieved data on 13,339 drugs from DrugBank (19) (downloaded July 2019) and selected
702 only drugs that had been or currently FDA approved (n = 4,021), were indicated for use in
703  humans (n=1,964), and had at least one human protein target (n = 1,864). Of those, drug targets
704  could be translated to human Entrez IDs for 1,844 drugs. The drug-target interactions used are
705  provided in File 1. Sets of drugs that are approved for each disease were identified according
706  to DrugBank’s (19) “Indication” category (Supplementary Results, File 1-3 & 5). Unless
707  otherwise specified, precision is calculated using these disease-specific sets of FDA-approved
708  drugs as relevant drugs or true positives.

709

710  For validation of ranked drug candidates, we also downloaded data from www.clinicaltrials.gov

711 (September 2023). Data included information on 465,269 clinical trials registered from
712 September 17" 1999, to September 7% 2023. Clinical trials (n = 70,396) for 1,085 of the
713 included 1,844 drugs were found. To derive information on the disease relevance of drug
714 candidates, we filtered clinical trials further by MESH terms, resulting in sets of 724, 494, 532
715  and 140 drugs that had been tried for rheumatoid arthritis, multiple sclerosis, Crohn’s disease
716  and psoriatic arthritis, respectively (File 1-5). Even though the outcome of such trials is largely
717  unknown, using drugs registered for clinical trials alongside approved drugs for calculation of
718  precision tests scDrugPrio’s ability to capture the pharmacological consensus of the medical
719  community on drugs with an expected effect.

720

721  For further validation of drug ranking, we also performed a literature search for the top 100
722 ranked drug candidates of each data set. We systematically searched PubMed and Google

723 Scholar between June 2020 and December 2022 using the specific disease denotation and the
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724  drug name as search terms. No restrictions or filters were applied. The relevance of the
725  identified articles was screened by title and abstract. When no relevant articles were identified,
726  the drug name was replaced by the substance name, and another search was conducted. To be
727  eligible, studies had to 1) include a control group, 2) be a human clinical study or rodent
728  experiment, 3) measure inflammatory activity and 4) be accessible. When several studies were
729  identified that reported contradictory results, the drug was labelled as having a previously
730  reported effect, reasoning that it would be impossible to determine the evidence and accuracy
731  level in every such instance. In Files 1-4, a summary on the nature of the identified article and
732 a full reference is provided, listed by drug.

733

734  Precision and recall

| {relevant drugs} N {drugs in selection} |

735 precision =
| {drugs in selection} |
736
737 " | {relevant drugs} N {drugs in selection} |
recall =

| {relevant drugs} |
738  When referring to precision among the top 100 candidates, we refer to all candidates with rank
739  <100.
740
741  Protein—protein interaction network
742 The human interactome was derived from do Valle et al.(51). The literature-curated interactome
743 included 351,444 protein—protein interactions (PPIs) connecting 17,706 unique proteins and
744  was annotated using Entrez Gene IDs. The largest connected component included 351,393 PPIs

745  and 17,651 proteins. Only the largest connected component was used for further analysis.
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746

747  Antigen-induced arthritis mouse model

748  Antigen-induced arthritis (AIA) was triggered in six 8-week-old, anaesthetised female 129/Sve
749  mice by intra-articular injection of methylated bovine serum (mBSA) in the left knee joint after
750  having presensitised mice to mBSA. The left knee joints of four naive mice were injected with
751  phosphate-buffered saline (PBS, 20 puL) and used as a negative control. One week after intra-
752  articular triggering of AIA, mice were sacrificed, and joints were either used for
753  immunohistochemistry or scRNA-seq. Histochemical preparation was performed as previously
754  described (6), and specimens were examined in a blinded manner for pannus formation, cartilage
755  and subchondral bone destruction, and synovial hypertrophy on an arbitrary scale, 0-3, as
756  described by Magnusson et al. (52). For the scRNA-seq experiment, joint tissue was minced to
757  ~1 mm?® pieces, which were digested by collagenase IV (1.5 mg/mL) and DNase I (100 pg/mL)
758  at 37°C. Dissociated cells were passed through a 70-um cell strainer. Single-cell suspensions
759  were resuspended in RPMI-1640 at a density of 1 x 10° cells/mL for cell loading. One mouse
760  in which AIA had been triggered developed only mild arthritis (arthritis score 0.5) and was
761  therefore excluded from further analysis. All experimental procedures were performed
762  according to the guidelines provided by the Swedish Animal Welfare Act and approved by the
763  Ethical Committee for Research on Animals in Stockholm, Sweden (N271-14).

764

765  scRNA sequencing was performed using the Seq-Well technique (53) following a described
766  protocol (6). Briefly, prepared single-cell suspensions were counted and coloaded with barcoded
767  and functionalised oligo-dT beads (Chemgenes, Wilmington, MA, USA, cat. No. MACOSKO-
768  2011-10) on microwell arrays synthesised as described by Gierahn et al. (53). For each sample,

769 20,000 live cells were loaded per array to bind with oligo-dT beads. Beads were collected for
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770  capturing mRNA and preparing the library following cell lysis, hybridisation, reverse
771  transcription and transcriptome amplification. Except for one library, which was sequenced
772  alone, libraries from three samples were pooled for sequencing (Table S2), resulting in a
773  coverage of 6.6 reads per base. Four libraries were prepared for each sample using the Nextera
774  XT DNA Library Preparation Kit (Illumina, San Diego, CA, USA; cat. No. FC-131-1096)
775  according to the manufacturer’s instructions. Each library was sequenced once, except for one
776  library, which was sequenced twice using the NextSeq 500/550 system.

777

778  The single-cell data were processed into digital gene expression matrices following James
779  Nemesh, McCarrol’s lab Drop-seq Core Computational Protocol (version 1.0.1,

780  http://mccarrolllab.com) using bcl2fastg Conversion and Picard software. To increase the read

781  depth for the cells, each sample was sequenced multiple times (Table S2), and the fastq files
782  for each sample were merged before further alignment steps. The indexed reference for
783  alignment of reads was generated from GRCm38 (June 2017, Ensembl) using STAR software
784  (2.5.3). Only primary alignments towards the reference genome were considered during
785  downstream analyses, according to the mapping quality using STAR software.

786

787  Sampling and sequencing of psoriatic arthritis patients

788  Sampling. Psoriatic arthritis (PsA) patients and controls were recruited by the Immune-
789  Mediated Inflammatory Diseases Consortium (IMIDC) (54). PsA patients were recruited from
790  different rheumatology departments from university hospitals belonging to the IMIDC. All PsA
791  patients were diagnosed according to the CASPAR diagnostic criteria for PsA (55) with > 1
792  year of disease evolution and > 18 years old at the time of recruitment. Exclusion criteria for

793  PsA included the presence of any other form of inflammatory arthritis, rheumatoid factor levels
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794  greater than twice the normality threshold or confirmed presence of an inflammatory bowel
795  disease. PBMCs were sampled prior to treatment with anti-TNF or anti-IL17 and cryopreserved.
796  Treatment response was classified at week 12 according to the EULAR response (25) (File 5).
797  For the anti-TNF study, 6 males and 10 females were included. The corresponding figures for
798  anti-IL-17 treatment were 3 males (2 responders) and 13 females (6 responders).
799  Simultaneously, healthy age- and sex-matched control subjects (File 5) were recruited from
800  healthy volunteers recruited through the Vall d’Hebron University Hospital in Barcelona
801  (Spain). All the controls were screened for the presence of any autoimmune disorder, as well
802 as for first-degree family occurrence of autoimmune diseases. None were found to be positive.
803  Four males and four females were included. The study was approved by the Hospital
804  Universitari Vall d’Hebron Clinical Research Ethics Committee. Protocols were reviewed and

805  approved by the local institutional review board of each participating center.
806

807  Cell thawing. PBMCs cryopreserved at -80°C were thawed in a 37°C water bath and transferred
808  with a bored tip to a 15 ml Falcon tube containing 14 ml of 37°C prewarmed RPMI medium
809  supplemented with 10% FBS (Thermo Fisher Scientific). Samples were centrifuged at 300x g
810 for 10 min at (room temperature) RT, the supernatant was removed, and pellets were
811  resuspended in 1 ml of 1X PBS (Thermo Fisher Scientific) supplemented with 1% BSA (PN
812 130-091-376, Miltenyi Biotec) and 10 puL of DNase I (PN LS002007, Worthington-Biochem).
813  After incubation at RT for 10 min with periodic shaking, the cells were filtered with a 20 pm
814  strainer (PN 43-10020-70, Cell Strainer) into a new 15 ml falcon on ice, and the filter was
815 washed by adding 9 mL of cold 1x PBS. Samples were concentrated afterwards by
816  centrifugation at 300 x g for 10 min at 4°C and resuspended in 1 x PBS with 0,05% BSA for

817  further assessment of cell numbers and viability with the TC20™ Automated Cell Counter (Bio-
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818  Rad). Samples balanced by responders and nonresponders for each treatment were mixed in
819  pools of 8 patients at a 50:50 ratio and concentrated by centrifugation in an appropriate volume
820  of 1 x PBS-0.05% BSA to obtain a final cell concentration > 4,000 cells/uL, suitable for 10x
821  Genomics scRNA-sequencing. The suspension was filtered again with a 20 pm strainer, and
822  the cell concentration was verified by counting with the TC20™ Automated Cell Counter.

823

824  Cell encapsulation and library preparation. Cells were partitioned into Gel BeadInEmulsions
825  (GEMs) by using the Chromium Controller system (10 x Genomics). Each pooled sample was
826  loaded into two channels with a target recovery of 35,000 cells per channel to ensure a minimum
827  final recovery of 2,000 cells per sample condition. After GEM-RT incubation, the resulting
828  cDNAs were purified with SPRI beads. To ensure maximal cDNA recovery, a second Sylane
829  bead purification was performed on the supernatant from the first purification, and both
830  products were eluted together and preamplified for 13 cycles, following the 10 x Genomics
831  protocol. cDNA was quantified on an Agilent Bioanalyzer High Sensitivity chip (Agilent
832  Technologies), and 100 ng was used for library preparation. Gene Expression (GEX) libraries
833  were indexed with 13 cycles of amplification using the Dual Index Plate TT Set A (10 x
834  Genomics; PN-3000431). The size distribution and concentration of full-length GEX libraries
835  were verified on an Agilent Bioanalyzer High Sensitivity chip. Finally, sequencing of GEX
836  libraries was carried out on a NovaSeq 6000 sequencer (Illumina) using the following
837  sequencing conditions: 28 bp (Read 1) + 10 bp (17 index) + 10 bp (i5 index) + 90 bp (Read 2)
838  to obtain approximately >20,000 paired-end reads per cell.

839

840 3’ Single-cell RNA sequencing (scRNA-seq). PBMC samples from 32 patients and 8 healthy

841  controls were evenly mixed in pools of 8 donors per library following a multiplexing approach
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842  based on donor genotype, as in Kang et al. (56), for a more cost- and time-efficient strategy.
843  Importantly, libraries were designed to pool samples together from the same treatment (anti-
844  TNF or anti-IL17) but mixing patients with a different response to treatment. With this
845  approach, we aimed to avoid technical artifacts that could mask subtle biological differences
846  between responders and nonresponders. To profile the cellular transcriptome, we processed the
847  sequencing reads with 10X Genomics Inc. software package CellRanger v6.1.1 and mapped
848  them against the human GRCh38 reference genome.

849

850  Library demultiplexing. The donor’s genotypes (VCF format) were simplified by removing
851  SNPs that were unannotated or located in the sexual Y, pseudoautosomal XY or mitochondrial
852  chromosomes (chr 0, 24, 25 and 26, respectively). As genotypes were assembled using the
853  human GRCh19 reference genome, we converted them to the same genome assembly used to
854  map the sequencing reads, the human GRCh38 reference genome, using the USCS LiftOver

855  (https://genome.ucsc.edu/cgi-bin/hgliftOver) command line executable. To meet the LiftOver

856  required format (BED format), we used an available wrapper script (liftOver_vcf.py) to support
857  input/output from VCF format (57). The library demultiplexing by donor was performed with
858  cellsnp-lite v1.2.2 in Mode 1a (57), which allows genotyping single-cell GEX libraries by
859  piling-up the expressed alleles based on a list of given SNPs. To do so, we used a list of 7.4
860  million common SNPs in the human population (MAF > 5%) published by the 10,00 Genome
861  Project consortium and compiled by Huang et al. (57). Importantly, we used the default
862  parameters, setting the MAF > 5% (--minMAF 0.05) and requesting genotyping in addition to
863  counting (--genotype). Then, we performed donor deconvolution with vireo v0.5.6 (58), which

864  assigns the deconvoluted samples to their donor identity using known genotypes while detecting
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865  doublets and unassigned cells. Finally, we discarded detected doublets and unassigned cells
866  before moving on to the downstream processing steps.

867

868  scRNA-seq data sets and preprocessing

869  Below, we describe all of the scRNA-seq data sets and the preprocessing steps of the current
870  work as outlined in Fig. S1. As most preprocessing steps were applied to scRNA-seq expression
871  matrices of all data sets, we will describe them jointly.

872

873 Quality cut-offs. Starting from a raw scRNA-seq gene expression matrix, the quality of cells
874  was assured by application of quality cut-offs that aimed to filter out low-quality cells (few
875  genes, low read depth), dying cells (high expression of mitochondrial genes) and doublets
876  (unexpectedly high reads and large number of genes). While arbitrary, these specific cut-offs
877  were adapted to the corresponding data set and reported in File 1-5 (59). Genes that were
878  expressed in less than three cells were excluded from further analysis.

879

880  Batch correction. In case a high degree of interindividual expression differences existed, batch
881  correction was performed according to a previously established pipeline (60). In short, we used
882  Seurat’s function findIntegrationAnchors() (61) for the list of objects that corresponded to each
883  individual. These anchors were later used by IntegrateData() (61) to integrate the data from
884  individuals to correct for patient-specific differences as suggested in (62).

885

886  Denoising. Next, data for all cells were processed by a deep count autoencoder (DCA) model
887  (18), which is a neural network performing a nonlinear principal component analysis (PCA).

888  The DCA method is initiated by computing a library size, log- and z-score normalised
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889  expression matrix, which is taken as an input to the neural network, and the output of the neural
890  network logl0 transformed), and denoised single-cell expression matrix D, which has the same
891  features as the original data but is corrected for various sources of noise in the data. The DCA
892  method also outputs a representation of the original single-cell data in a latent space. This
893  representation has many fewer features than the original data, which is particularly important
894  for performing accurate cluster analyses. The intercellular expression differences are generally
895  better represented in this latent space than in purely linear PCA models, and the latent space
896  representation is also corrected for single-cell data artefacts such as dropouts and varying
897  library sizes.

898

899  Clustering analysis was performed using the Seurat v3.1 package (61) on the DCA-derived
900 latent representation. A shared nearest neighbor graph was constructed, and neighborhood
901  overlap between every cell and its k-nearest neighbors was calculated based on the Jaccard
902  index using the FindNeighbors() function on all supplied latent features. Next, clusters were
903 identified through application of the Louvain algorithm to the shared nearest neighbor graph
904  using the FindClusters() function along with a specified resolution setting. The resolution
905  parameter and & for k-nearest neighbor analysis were tailored to each data set and are reported
906  below. Clusters were visualised through RunTSNE ().

907

908  Analyses of interindividual molecular heterogeneity. After denoising and clustering,
909  heterogeneity among samples was determined. For this, we trained a flexible machine learning
910  model that attempts to find a decision boundary between the given groups of cells. If this model
911  results in a high misclassification rate for test data, it indicates that groups are highly mixed.

912  More specifically, the data were randomly divided in half and used for training and testing the
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913  model. A random forest classifier (63) was used to classify cells from sick samples based on
914  what patient the sample was derived from. Cross-validation with 10-fold and grid search (64)
915  was used to find the most appropriate hyperparameters of the random forest. The bootstrap
916  (65)percentile method (65) was used to construct the 95% confidence intervals for training and
917  test misclassification rates. The Scikit package (66) from Python (3.7.9) was used to perform
918 the analysis.

919

920  Furthermore, patient heterogeneity was explored through comparison of cell type proportions
921 and examination of latent features of the non-batch-corrected data. Interindividual differences
922 in cell type proportions were explored by the application of the chi-square test to the proportions
923 of cell types in sick samples. Latent feature comparison was conducted visually through tSNE
924  visualisation of the latent features of each patient. The results for these analyses are found in
925  the Supplementary Results.

926

927  Cell typing. While cell typing is not crucial for scDrugPrio (which might be performed on
928  unlabelled clusters), we cell typed clusters to enhance biological interpretation. Cell types were
929  assigned to each cluster based on the relative coexpression of several known cell type marker
930  genes. For AIA data, each gene’s expression was expressed as a fraction of a cell’s total gene
931  expression score. For visualisation of gene expression differences between clusters, z-scores
932  were calculated. Z-scores for single cells were derived by comparison of one cell’s gene fraction
933  to all other cells’ gene fractions. Z-scores for gene expression of clusters were derived by
934  comparison of the average gene fraction in a cluster to the cluster-averaged gene fractions of
935  cells in other clusters. Murine cell type-specific marker genes for the RA data were derived

936  from the online resources of the R&D systems (www.rndsystems.com/research-area; accessed
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937  July 2020). Cell typing of the human data sets was performed using DCA denoised gene
938  fractions and utilised combinations of marker genes (File 2 & 3).

939

940  Differentially expressed genes. For each cell type separately, differentially expressed genes
941 (DEGs) were calculated by comparing denoised gene expression of cells derived from healthy
942  samples vs. cells from sick samples. For this purpose, the FindMarkers() function in Seurat (61)
943  was used to deploy a scRNA-seq-tailored hurdle model supplied by the MAST package (67).
944  Genes were considered significantly differentially expressed when they showed an absolute log
945  fold change greater than or equal to 1.5 and a Bonferroni-adjusted P < 0.05. The fold change
946  cut-off was motivated by previous studies (68) and aimed to decrease the number of DEGs for
947  later network calculations.

948

949  Antigen-induced arthritis. Quality cut-offs resulted in a total of 16,751 cells (File 1). Genes
950  were annotated as murine NCBI Gene Symbols. Following denoising, clustering using k = 20
951 and a resolution of 0.6 resulted in the identification of 20 clusters that were cell typed.
952  Heterogeneity analysis used n_estimators = 1,500, max_depth = 15, min_samples_split = 50,
953  and min_samples leaf = 50 and showed no significant heterogeneity. DEGs and the denoised
954  expression matrix were translated to human Entrez gene IDs using human-mouse orthologues
955  downloaded from NCBI (August 2019).

956

957  Multiple sclerosis. A unique molecular identifier (UMI) matrix (22) for cerebrospinal fluid
958  (CSF) of five human multiple sclerosis (MS) patients and five human patients with idiopathic
959 intracerebral hypertension (IIH) were downloaded from the Gene Expression Omnibus (GEO)

960 database (GSE138266). Gene annotation was translated from human Ensembl gene IDs to
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961  human Entrez gene IDs and symbols using the HUGO Gene Nomenclature Committee (HGNC)
962  database (69) (downloaded November 2020). After the application of quality cut-offs (File 2),
963  we derived 33,848 cells. Initial preprocessing was performed without batch correction using
964  cluster parameters k = 10 and resolution = 0.2 after DCA denoising to derive 17 clusters.
965  Interindividual heterogeneity was assessed as described below using the following
966  hyperparameters: n_estimators = 500, max depth = 30, min_samples split = 50,
967 min_samples leaf = 25. Since we noticed substantial patient-related heterogeneity (Fig. S5a),
968  preprocessing was repeated, including batch correction, DCA denoising, and clustering using k
969 =15 and resolution = 0.35 to derive 21 clusters that were cell typed using known marker genes
970  derived from the original publication (22) (File 2). The number of DEGs ranged from 0 to
971  10,076.

972

973 Crohn’s disease. A unique molecular identifier (UMI) matrix (24) for eleven human Crohn’s
974  disease (CD) patients was downloaded from GEO (GSE134809). Data for each patient included
975  intestinal biopsies from one inflamed site and one uninflamed site. After application of quality
976  cut-offs (File 3), we derived 77,416 cells. Gene annotation was translated from human Ensembl
977  gene IDs to human Entrez gene IDs and symbols using the HGNC database (2020-11-08) (69).
978 Initially, data were DCA denoised without applying batch correction. Clustering was performed
979  using k = 15 and resolution = 0.8. Interindividual molecular heterogeneity was assessed as
980  described below using the following hyperparameters: n_estimators = 1,000, max_depth = 20,
981  min_samples_split = 50, min_samples leaf = 25. Since there was substantial interindividual
982  heterogeneity (Fig. S8a), preprocessing was repeated now batch-correcting before DCA
983  denoising. Clustering was again performed using £ = 15 and resolution = 0.8.

984
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985  Individual Crohn’s patients. For individual patient predictions, we used the same quality cut-
986  offs as for the pooled analysis of CD patients. As interindividual heterogeneity does not affect
987  the predictions made for individual patients, these calculations were performed on non-batch-
988  corrected data. DCA denoising was applied to the joint data, and gene annotation was translated
989  to Entrez gene IDs. Thereafter, scRNA-seq data were separated by patient, and cells from each
990  patient were clustered individually. An individual patient cluster was assigned a cell type based
991  on which cluster it most resembled in the joined CD analysis, as measured by the number of
992  shared cell identifiers. DEGs were then calculated between cells from sick and healthy samples.

993  Visualisations of data were in part created using BioRender.com.

994

995  Psoriatic arthritis. Data sets were divided into one anti-TNF and one anti-IL17 data set,
996  including responders (R), nonresponders (NR) and healthy controls. We filtered out the doublet
997  and unassigned cells as well as those that did not meet the quality cut-off criteria (File 5) and
998  derived 78,610 cells with 5,088 mean reads for the anti-TNF data set and 72,472 cells with
999 5,343 mean reads for the anti-IL17 data set. In both data sets, 19,415 cells were derived from
1000  healthy controls. Data sets were batch-corrected, and DCA was performed. For anti-TNF,
1001  clustering was performed using k£ =25 and resolution = 0.25. The corresponding parameters for
1002  anti-IL17 were k= 15 and resolution = 0.45. The remaining downstream analysis was performed
1003  for responders and nonresponders separately, which meant that DEGs were calculated between
1004  responders and healthy controls and between nonresponders and healthy controls. For the anti-
1005  TNF data set, the number of DEGs ranged from 0 to 5,989 for R and from 0 to 5,877 for NR.
1006  The corresponding figures for anti-IL17 were 0 to 3,097 and 0 to 3,284. Next, scDrugPrio was

1007  applied to DEGS from anti-TNF R and NR as well as anti-IL17 R and NR separately.
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1008

1009  In vitro validation of potential novel drugs

1010  To validate the predicted novel drugs, in vitro culture of murine and human B cells upon
1011  activation with the indicated stimuli was employed to assess the effects of the predicted drugs
1012 on B-cell survival, activation, proliferation, and antibody production. Three doses for each
1013 predicted drug were used to challenge in vitro cultured B cells (Table S1). For the assessment
1014  of potential novel drugs on murine B-cell survival and activation, 300,000 murine naive B cells
1015  (Lin'B220°CD43") were enriched by flow cytometric sorting and cultured in the presence of
1016  AffiniPure F(ab'). Fragment goat anti-mouse anti-IgM (10 pg/mL, CAT: 115-006-075, Jackson
1017  ImmunoResearch), anti-mouse CD40 (10 ug/mL, Clone:1C10, Biolegend), or LPS (10 pug/mL)
1018  for 24 hours. B-cell survival was determined by flow cytometric analysis of propidium iodide
1019 (PI)" cells. Surface CD69, CD86, and MHC-II were used as readouts for assaying B-cell
1020  activation. For the analysis of B-cell proliferation, purified B cells were stained with
1021  carboxyfluorescein succinimidyl ester (CFSE) (1 uM) before in vitro culture for three days. To
1022  determine the effects of the predicted drugs on antibody production, 200,000 purified murine
1023 naive B cells were stimulated with anti-CD40 (10 pg/mL) + IL-4 (10 ng/mL), LPS (10 pg/mL)
1024  +1IL-4 (10 ng/mL), or LPS (10 pg/mL) + IFN-y (10 ng/mL) for six days.

1025

1026  For the analysis of novel drugs predicted to regulate the biology of human B cells, peripheral
1027  blood mononuclear cells (PBMCs) were isolated from the buffy coat as previously described
1028 (70, 71). Human naive B cells were subsequently preenriched by MACS sorting using a B-Cell
1029  Isolation Kit II (Miltenyi) and further purified by flow cytometric sorting of CD19*CD27" B
1030  cells. Purified human naive B cells were cultured in 96-well plates in the presence of AffiniPure

1031  F(ab'). Fragment goat anti-human IgG + IgM (5 pg/mL, CAT: 109-006-127, Jackson
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1032  ImmunoResearch), anti-human CD40 (5 pg/mL, Clone: G28.5, Bio X Cell), and IL-21 (10
1033  ng/mL, PeproTech).

1034

1035  B-cell survival was determined by flow cytometric analysis of propidium iodide (PI)+- cells.
1036  Surface CD69, CD86, and MHC-II were used as readouts for assaying murine B-cell activation.
1037  Surface CD69 was assayed for the measurement of human B-cell activation. For the analysis
1038  of B-cell proliferation, purified B cells were prestained with carboxyfluorescein succinimidyl
1039  ester (CFSE) (1 uM) before in vitro culture for three days. Murine IgG2a and IgGl1, as well as
1040  human IgG in the supernatant, were determined by enzyme-linked immunosorbent assay
1041  (ELISA) using goat anti-mouse Ig, goat-anti-mouse IgG1-HRP and goat-anti-human IgG2a-
1042  HRP, goat anti-human Ig, and goat-anti-human IgG-HRP (SouthernBiotech) as previously
1043 described (72).

1044

1045  In vivo validation of predicted drugs

1046  Amrinone was tested for treating collagen-induced arthritis (CIA). For this, male DBA1/J mice
1047  purchased from GemPharmatech (China) were immunised intradermally with 100 pg of
1048  chicken type II collagen (2 mg/mL, Chondrex, USA) emulsified with complete Freund’s
1049  adjuvant (CFA, 1 mg/mL) and boosted on day 21 with 100 pg of chicken type II collagen
1050  emulsified with incomplete Freund’s adjuvant (IFA). Mice were i.g. given with diluent (n = 5)
1051  or amrinone (30 mg/kg, n = 5) daily from day 21 for 3 weeks. The rear paw thickness and the
1052  clinical arthritis score for each limb were recorded every other day from 0 to 4 with a maximal
1053  score of 16 for each mouse according to the previous protocol (73). Mice were maintained in a

1054  specific pathogen-free animal facility at Xuzhou Medical University, and all animal studies
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1055  were performed in accordance with protocols approved by the Animal Experimental Ethics
1056  Committee of Xuzhou Medical University (202012A162).

1057

1058  Mice were sacrificed on day 21 post drug intervention. Serum was collected for the analysis of
1059  collagen-specific autoantibodies by enzyme-linked immunosorbent assay (ELISA) as
1060  previously described (74). Briefly, diluted serum was incubated in a 96-well ELISA plate
1061  precoated with chicken type II collagen (5 pg/mL). Goat-anti-mouse IgG1-HRP, goat-anti-
1062  mouse IgG2a-HRP, and goat-anti-mouse IgG-HRP (SouthernBiotech) were used as detection
1063  antibodies. Knee joints were fixed in 4% formaldehyde and subsequently decalcified with
1064  decalcification solution (ServiceBio, China) for one week. The specimens were next embedded
1065  in paraffin, and sagittal sections (4 um) were cut. The sections were stained with hematoxylin
1066  and eosin (H&E) for the histological analysis of immune cell infiltration and Safranin-O for the
1067  analysis of bone erosion as previously described (72, 74).

1068

1069  Comparison of scRNA-seq-based screening outcomes for rheumatoid arthritis to other data
1070  types and prediction methods

1071  Briefly, we benchmarked outcomes based on the scRNA-seq-derived DEGs against microarray
1072  data (GSE55235 & GSE93272) (75, 76), GWAS Catalog (77) genes and OMIM (78) genes as
1073  well as combinations of these data sets. scDrugPrio was compared to previous methods such as
1074 1) identifying druggable DEGs, targeting key enriched pathways (79), CMAP (33) drug
1075  predictions and the empirical drug selection of Kim et al. (14). Predictions were also replicated
1076  using the smaller, unbiased HuRI PPIN (80) (8,236 proteins, 52,150 interactions) to ensure the
1077  absence of knowledge bias. More information can be found in the Supplementary Results.

1078
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Data and code availability

scRNA-seq data that support the findings of this study are openly available at Gene Expression
Omnibus (GEO), reference number GSE193536. Unless otherwise stated, analysis was
performed in R 3.6.3. The code for data cleaning and analysis associated with the current

submission is available at https://github.com/SDTC-CPMed/scDrugPrio.

53


https://github.com/SDTC-CPMed/scDrugPrio
https://doi.org/10.1101/2023.11.08.566249
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.08.566249; this version posted November 13, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

1085 References

1086 1. Bjérnsson B, Borrebaeck C, Elander N, Gasslander T, Gawel DR, Gustafsson M, et al. Digital
1087  twins to personalize medicine. Genome Medicine. 2019;12(1):4.
1088 2. Kayal M, Ungaro RC, Bader G, Colombel J-F, Sandborn W), Stalgis C. Net Remission Rates with

1089 Biologic Treatmentin Crohn’s Disease: A Reappraisal of the Clinical Trial Data. Clinical Gastroenterology
1090  and Hepatology. 2022.

1091 3. Alric H, Amiot A, Kirchgesner J, Tréton X, Allez M, Bouhnik Y, et al. The effectiveness of either
1092  ustekinumab or vedolizumab in 239 patients with Crohn's disease refractory to anti-tumour necrosis
1093  factor. Alimentary Pharmacology & Therapeutics. 2020;51(10):948-57.

1094 4. Shalek AK, Benson M. Single-cell analyses to tailor treatments. Sci Transl Med. 2017;9(408).
1095 5. Breynaert C, Dresselaers T, Perrier C, Arijs I, Cremer J, Van Lommel L, et al. Unique gene
1096  expression and MR T2 relaxometry patterns define chronic murine dextran sodium sulphate colitis as
1097  a model for connective tissue changes in human Crohn’s disease. PLoS One. 2013;8(7):e68876.

1098 6. Gawel DR, Serra-Musach J, Lilja S, Aagesen J, Arenas A, Asking B, et al. A validated single-cell-
1099  based strategy to identify diagnostic and therapeutic targets in complex diseases. Genome Med.
1100  2019;11(1):47.

1101 7. Kim D, Kobayashi T, Voisin B, Jo JH, Sakamoto K, Jin SP, et al. Targeted therapy guided by single-
1102  cell transcriptomic analysis in drug-induced hypersensitivity syndrome: a case report. Nat Med.
1103 2020;26(2):236-43.

1104 8. Hsieh C-Y, Wen J-H, Lin S-M, Tseng T-Y, Huang J-H, Huang H-C, et al. scDrug: From single-cell
1105 RNA-seq to drug response prediction. Computational and Structural Biotechnology Journal.
1106 2023;21:150-7.

1107 o. Suphavilai C, Chia S, Sharma A, Tu L, Da Silva RP, Mongia A, et al. Predicting heterogeneity in
1108  clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures. Genome
1109 Medicine. 2021;13(1):189.

1110 10. lorio F, Knijnenburg TA, Vis DJ, Bignell GR, Menden MP, Schubert M, et al. A Landscape of
1111 Pharmacogenomic Interactions in Cancer. Cell. 2016;166(3):740-54.

1112 11. Corsello SM, Nagari RT, Spangler RD, Rossen J, Kocak M, Bryan JG, et al. Discovering the
1113 anticancer potential of non-oncology drugs by systematic viability profiling. Nature Cancer.
1114  2020;1(2):235-48.

1115 12. Freshour SL, Kiwala S, Cotto KC, Coffman AC, McMichael JF, Song JJ, et al. Integration of the
1116  Drug-Gene Interaction Database (DGIldb 4.0) with open crowdsource efforts. Nucleic Acids Res.
1117  2021;49(D1):D1144-d51.

1118 13. Li X, Lee EJ, Lilja S, Loscalzo J, Schéfer S, Smelik M, et al. A dynamic single cell-based framework
1119  for digital twins to prioritize disease genes and drug targets. Genome Med. 2022;14(1):48.

1120 14, Kim D, Kobayashi T, Voisin B, Jo J-H, Sakamoto K, Jin S-P, et al. Targeted therapy guided by
1121 single-cell transcriptomic analysis in drug-induced hypersensitivity syndrome: a case report. Nature
1122 Medicine. 2020;26(2):236-43.

1123 15. Guney E, Menche J, Vidal M, Barabasi AL. Network-based in silico drug efficacy screening. Nat
1124  Commun. 2016;7:10331.

1125 16. Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour CD, et al. Functional
1126  discovery via a compendium of expression profiles. Cell. 2000;102(1):109-26.

1127 17. Browaeys R, Saelens W, Saeys Y. NicheNet: modeling intercellular communication by linking
1128  ligands to target genes. Nature Methods. 2020;17(2):159-62.

1129 18. Eraslan G, Simon LM, Mircea M, Mueller NS, Theis FJ. Single-cell RNA-seq denoising using a
1130  deep count autoencoder. Nature Communications. 2019;10(1):390.

54


https://doi.org/10.1101/2023.11.08.566249
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.08.566249; this version posted November 13, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

1131 19. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, et al. DrugBank: a
1132  comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res.
1133 2006;34(Database issue):D668-72.

1134  20. Taylor PC, Feldmann M. Anti-TNF biologic agents: still the therapy of choice for rheumatoid
1135  arthritis. Nature Reviews Rheumatology. 2009;5(10):578-82.

1136  21. Rizzi M, Lorenzetti R, Fischer K, Staniek J, Janowska |, Troilo A, et al. Impact of tofacitinib
1137  treatment on human B-cells in vitro and in vivo. J Autoimmun. 2017;77:55-66.

1138 22. Schafflick D, Xu CA, Hartlehnert M, Cole M, Schulte-Mecklenbeck A, Lautwein T, et al.
1139 Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis. Nat
1140  Commun. 2020;11(1):247.

1141 23. Hausser-Kinzel S, Weber MS. The Role of B Cells and Antibodies in Multiple Sclerosis,
1142 Neuromyelitis Optica, and Related Disorders. Front Immunol. 2019;10:8.

1143 24. Martin JC, Chang C, Boschetti G, Ungaro R, Giri M, Grout JA, et al. Single-Cell Analysis of Crohn's
1144  Disease Lesions Identifies a Pathogenic Cellular Module Associated with Resistance to Anti-TNF
1145  Therapy. Cell. 2019;178(6):1493-508.e20.

1146 25. Ritchlin CT, Kavanaugh A, Gladman DD, Mease PJ, Helliwell P, Boehncke WH, et al. Treatment
1147  recommendations for psoriatic arthritis. Ann Rheum Dis. 2009;68(9):1387-94.

1148 26. Belasco J, Louie JS, Gulati N, Wei N, Nograles K, Fuentes-Duculan J, et al. Comparative genomic
1149 profiling of synovium versus skin lesions in psoriatic arthritis. Arthritis Rheumatol. 2015;67(4):934-44.
1150 27. Nerviani A, Boutet MA, Tan WSG, Goldmann K, Purkayastha N, Lajtos TA, et al. IL-23 skin and
1151  joint profiling in psoriatic arthritis: novel perspectives in understanding clinical responses to IL-23
1152  inhibitors. Ann Rheum Dis. 2021;80(5):591-7.

1153 28. Lee EJ, Lilja S, Li X, Schafer S, Zhang H, Benson M. Bulk and single cell transcriptomic data
1154  indicate that a dichotomy between inflammatory pathways in peripheral blood and arthritic joints
1155  complicates biomarker discovery. Cytokine. 2020;127:154960.

1156  29. FDA U. Paving the way for personalized medicine. FDA's Role in a new Era of Medical Product
1157 Development US Department of Health and Human Services. 2013:1-61.

1158  30. Cheng F, Desai RJ, Handy DE, Wang R, Schneeweiss S, Barabasi A-Ls, et al. Network-based
1159  approach to prediction and population-based validation of in silico drug repurposing. Nature
1160  communications. 2018;9(1):1-12.

1161 31. ChengF, Zhao J, Wang Y, Lu W, LiuZ, Zhou Y, et al. Comprehensive characterization of protein—
1162  protein interactions perturbed by disease mutations. Nature Genetics. 2021;53(3):342-53.

1163 32. Kanemaru K, Cranley J, Muraro D, Miranda AMA, Ho SY, Wilbrey-Clark A, et al. Spatially
1164  resolved multiomics of human cardiac niches. Nature. 2023;619(7971):801-10.

1165 33, Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al. The Connectivity Map: using
1166  gene-expression signatures to connect small molecules, genes, and disease. Science.
1167 2006;313(5795):1929-35.

1168  34. Menche J, Guney E, Sharma A, Branigan PJ, Loza MJ, Baribaud F, et al. Integrating personalized
1169  gene expression profiles into predictive disease-associated gene pools. npj Systems Biology and
1170  Applications. 2017;3(1):10.

1171 35, Nelson SML, Nguyen TM, McDonald JWD, MacDonald JK. Natalizumab for induction of
1172  remission in Crohn's disease. Cochrane Database of Systematic Reviews. 2018(8).

1173  3e. Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the
1174  amino acid sequence of two proteins. Journal of molecular biology. 1970;48(3):443-53.

1175 37. Smith TF, Waterman MS. Identification of common molecular subsequences. Journal of
1176  molecular biology. 1981;147(1):195-7.

1177 38. Henikoff S, Henikoff JG. Amino acid substitution matrices from protein blocks. Proc Natl Acad
1178 Sci US A.1992;89(22):10915-9.

55


https://doi.org/10.1101/2023.11.08.566249
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.08.566249; this version posted November 13, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

1179  39. Koussounadis A, Langdon SP, Um IH, Harrison DJ, Smith VA. Relationship between differentially
1180  expressed mRNA and mRNA-protein correlations in a xenograft model system. Scientific Reports.
1181  2015;5(1):10775.

1182  40. Gillis J, Pavlidis P. The impact of multifunctional genes on" guilt by association" analysis. PloS
1183 one. 2011;6(2):e17258.

1184  41. Rusu A, Tanase C, Pascu GA, Todoran N. Recent Advances Regarding the Therapeutic Potential
1185  of Adapalene. Pharmaceuticals (Basel). 2020;13(9).

1186  42. Chanani NK, Cowan DB, Takeuchi K, Poutias DN, Garcia LM, del Nido PJ, et al. Differential
1187  effects of amrinone and milrinone upon myocardial inflammatory signaling. Circulation. 2002;106(12
1188  Suppl 1):1284-9.

1189  43. Schork NJ. Personalized medicine: Time for one-person trials. Nature. 2015;520(7549):609-11.
1190 44, Cheng F, Kovacs IA, Barabasi AL. Network-based prediction of drug combinations. Nat
1191 Commun. 2019;10(1):1197.

1192  4s5. Ozgiir A, Vu T, Erkan G, Radev DR. Identifying gene-disease associations using centrality on a
1193 literature mined gene-interaction network. Bioinformatics. 2008;24(13):i277-i85.

1194  4e. Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal,
1195  complex systems. 2006;1695(5):1-9.

1196 47. Negre CFA, Morzan UN, Hendrickson HP, Pal R, Lisi GP, Loria JP, et al. Eigenvector centrality for
1197  characterization of protein allosteric pathways. Proc Natl Acad Sci U S A. 2018;115(52):E12201-e8.
1198  48. Ashtiani M, Mirzaie M, Jafari M. CINNA: an R/CRAN package to decipher Central Informative
1199  Nodes in Network Analysis. Bioinformatics (Oxford, England). 2018;35.

1200  49. Puram SV, Tirosh |, Parikh AS, Patel AP, Yizhak K, Gillespie S, et al. Single-Cell Transcriptomic
1201 Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer. Cell.
1202 2017;171(7):1611-24.e24.

1203 50. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software
1204  environment for integrated models of biomolecular interaction networks. Genome Res.
1205  2003;13(11):2498-504.

1206  51. do Valle IF, Roweth HG, Malloy MW, Moco S, Barron D, Battinelli E, et al. Network medicine
1207  framework shows that proximity of polyphenol targets and disease proteins predicts therapeutic
1208  effects of polyphenols. Nature Food. 2021;2(3):143-55.

1209  52. Magnusson M, Zare F, Tarkowski A. Requirement of type | interferon signaling for arthritis
1210  triggered by double-stranded RNA. Arthritis Rheum. 2006;54(1):148-57.

1211 53. Gierahn TM, Wadsworth MH, 2nd, Hughes TK, Bryson BD, Butler A, Satija R, et al. Seq-Well:
1212 portable, low-cost RNA sequencing of single cells at high throughput. Nat Methods. 2017;14(4):395-8.
1213 54, Aterido A, Cafiete JD, Tornero J, Ferrandiz C, Pinto JA, Gratacds J, et al. Genetic variation at the
1214  glycosaminoglycan metabolism pathway contributes to the risk of psoriatic arthritis but not psoriasis.
1215  Ann Rheum Dis. 2019;78(3).

1216  55. Taylor W, Gladman D, Helliwell P, Marchesoni A, Mease P, Mielants H. Classification criteria
1217  for psoriatic arthritis: development of new criteria from a large international study. Arthritis Rheum.
1218 2006;54(8):2665-73.

1219  56. Kang HM, Subramaniam M, Targ S, Nguyen M, Maliskova L, McCarthy E, et al. Multiplexed
1220  droplet single-cell RNA-sequencing using natural genetic variation. Nature biotechnology.
1221 2018;36(1):89-94.

1222 57. Huang X, Huang Y. Cellsnp-lite: an efficient tool for genotyping single cells. Bioinformatics.
1223 2021;37(23):4569-71.

1224  58. Huang Y, McCarthy DJ, Stegle O. Vireo: Bayesian demultiplexing of pooled single-cell RNA-seq
1225  data without genotype reference. Genome Biol. 2019;20(1):273.

1226  59. Luecken MD, Theis FJ. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol Syst
1227 Biol. 2019;15(6):e8746.

56


https://doi.org/10.1101/2023.11.08.566249
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.08.566249; this version posted November 13, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

1228  60. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al. Comprehensive
1229  Integration of Single-Cell Data. Cell. 2019;177(7):1888-902.e21.

1230  61. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data
1231  across different conditions, technologies, and species. Nature Biotechnology. 2018;36(5):411-20.
1232 62. Luecken MD, Bittner M, Chaichoompu K, Danese A, Interlandi M, Mueller MF, et al.
1233  Benchmarking atlas-level data integration in single-cell genomics. Nature Methods. 2022;19(1):41-50.
1234  63. Breiman L. Random forests. Machine learning. 2001;45(1):5-32.

1235  64. Krstajic D, Buturovic LJ, Leahy DE, Thomas S. Cross-validation pitfalls when selecting and
1236  assessing regression and classification models. Journal of cheminformatics. 2014;6(1):1-15.

1237  65. Efron B, Tibshirani RJ. An introduction to the bootstrap: CRC press; 1994.

1238  66. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn:
1239  Machine learning in Python. the Journal of machine Learning research. 2011;12:2825-30.

1240  67. Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, et al. MAST: a flexible statistical
1241 framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA
1242 sequencing data. Genome biology. 2015;16(1):278.

1243  68. Zhao B, Erwin A, Xue B. How many differentially expressed genes: A perspective from the
1244  comparison of genotypic and phenotypic distances. Genomics. 2018;110(1):67-73.

1245 69. Tweedie S, Braschi B, Gray K, Jones TEM, Seal RL, Yates B, et al. Genenames.org: the HGNC and
1246  VGNC resources in 2021. Nucleic Acids Res. 2021;49(D1):D939-d46.

1247 70. ShiY, Xu M, Pan S, Gao S, Ren J, Bai R, et al. Induction of the apoptosis, degranulation and IL-
1248 13 production of human basophils by butyrate and propionate via suppression of histone
1249  deacetylation. Immunology. 2021;164(2):292-304.

1250 71. He C, Gao S, Zhao X, Shi Y, Tang Y, Cao Y, et al. An efficient and cost-effective method for the
1251 purification of human basophils. Cytometry A. 2022;101(2):150-8.

1252  72. LiH, Tang Y, Ren J, Bai R, Hu L, Jia W, et al. Identification of novel B-1 transitional progenitors
1253 by B-1 lymphocyte fate-mapping transgenic mouse model Bhlhe41 (dTomato-Cre). Front Immunol.
1254 2022;13:946202.

1255 73. Brand DD, Latham KA, Rosloniec EF. Collagen-induced arthritis. Nat Protoc. 2007;2(5):1269-75.
1256  74. Park SH, Rhee J, Kim SK, Kang JA, Kwak JS, Son YO, et al. BATF regulates collagen-induced
1257  arthritis by regulating T helper cell differentiation. Arthritis Res Ther. 2018;20(1):161.

1258  75. Woetzel D, Huber R, Kupfer P, Pohlers D, Pfaff M, Driesch D, et al. Identification of rheumatoid
1259  arthritis and osteoarthritis patients by transcriptome-based rule set generation. Arthritis Res Ther.
1260  2014;16(2):R84.

1261 76. Tasaki S, Suzuki K, Kassai Y, Takeshita M, Murota A, Kondo Y, et al. Multi-omics monitoring of
1262  drug response in rheumatoid arthritis in pursuit of molecular remission. Nature communications.
1263 2018;9(1):2755-.

1264  77. Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, et al. The NHGRI-
1265  EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary
1266  statistics 2019. Nucleic Acids Res. 2019;47(D1):D1005-d12.

1267  78. Amberger J, Bocchini CA, Scott AF, Hamosh A. McKusick's Online Mendelian Inheritance in Man
1268  (OMIM). Nucleic Acids Res. 2009;37(Database issue):D793-6.

1269  79. Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci.
1270 2019;28(11):1947-51.

1271 80. Luck K, Kim D-K, Lambourne L, Spirohn K, Begg BE, Bian W, et al. A reference map of the human
1272  binary protein interactome. Nature. 2020;580(7803):402-8.

1273

57


https://doi.org/10.1101/2023.11.08.566249
http://creativecommons.org/licenses/by-nd/4.0/

