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Abstract 33 

Background: Ineffective drug treatment is a major problem for many patients with immune-34 

mediated inflammatory diseases (IMIDs). Important reasons are the lack of systematic solutions 35 

for drug prioritisation and repurposing based on characterisation of the complex and 36 

heterogeneous cellular and molecular changes in IMIDs. 37 

Methods: Here, we propose a computational framework, scDrugPrio, which constructs 38 

network models of inflammatory disease based on single-cell RNA sequencing (scRNA-seq) 39 

data. scDrugPrio constructs detailed network models of inflammatory diseases that integrate 40 

information on cell type-specific expression changes, altered cellular crosstalk and 41 

pharmacological properties for the selection and ranking of thousands of drugs. 42 

Results: scDrugPrio was developed using a mouse model of antigen-induced arthritis and 43 

validated by improved precision/recall for approved drugs, as well as extensive in vitro, in vivo, 44 

and in silico studies of drugs that were predicted, but not approved, for the studied diseases. 45 

Next, scDrugPrio was applied to multiple sclerosis, Crohn’s disease, and psoriatic arthritis, 46 

further supporting scDrugPrio through prioritisation of relevant and approved drugs. However, 47 

in contrast to the mouse model of arthritis, great interindividual cellular and gene expression 48 

differences were found in patients with the same diagnosis. Such differences could explain why 49 

some patients did or did not respond to treatment. This explanation was supported by the 50 

application of scDrugPrio to scRNA-seq data from eleven individual Crohn’s disease patients. 51 

The analysis showed great variations in drug predictions between patients, for example, 52 

assigning a high rank to anti-TNF treatment in a responder and a low rank in a nonresponder to 53 

that treatment. 54 

Conclusion: We propose a computational framework, scDrugPrio, for drug prioritisation based 55 

on scRNA-seq of IMID disease. Application to individual patients indicates scDrugPrio’s 56 
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potential for personalised network-based drug screening on cellulome-, genome-, and drugome-57 

wide scales. For this purpose, we made scDrugPrio into an easy-to-use R package 58 

(https://github.com/SDTC-CPMed/scDrugPrio). 59 

 60 

Keywords: single-cell RNA sequencing, scRNA-seq, immune-mediated inflammatory disease, 61 

drug prioritisation, drug repurposing, drug prediction, digital twin 62 

 63 

Introduction 64 

Immune-mediated inflammatory diseases (IMIDs), such as rheumatoid arthritis, Crohn’s 65 

disease, and psoriatic arthritis, affect millions of people worldwide and can cause chronic pain, 66 

disability, and reduced quality of life (1). While new classes of therapies are transforming the 67 

management of IMIDs, it is still a general problem that many patients do not achieve remission 68 

with mono- (2, 3) or combinatorial therapy (3). This may be due to drug development involving 69 

testing drugs on large groups of patients, with the assumption that the drug will work similarly 70 

on all patients. Such an approach does not take into account the fact that each individual’s 71 

genetic makeup and environment are unique, leading to significant variations in drug efficacy 72 

and side effects. 73 

 74 

Given that IMIDs are known to involve thousands of genes that are variably expressed in 75 

different cell types and show temporal and interindividual differences (4, 5), single-cell RNA 76 

sequencing (scRNA-seq) provides a promising foundation for the identification of suitable drug 77 

treatments (6). Indeed, one pioneering case report described scRNA-guided therapy of one 78 

patient with an inflammatory disease (7). The case report described successful outcomes in a 79 

patient who did not respond to standard treatment. A limitation was that drug selection was 80 
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empirical rather than based on systems-level understanding of the relative importance of disease-81 

associated cell types, pathways, and genes. 82 

 83 

Several systematic prediction models for drug selection in cancer exist, in which omics data are 84 

leveraged to determine the chemotherapies’ <killing potential= of tumour cells (8, 9). However, 85 

these models are not immediately translatable to IMIDs as they are 1) trained on large public 86 

drug-response data (e.g., GDSC database (10) and PRISM (11)), which are thus far unavailable 87 

for IMIDs, and 2) pursuing the eradication of disease-associated cell types. Rather few 88 

methodologies are applicable to IMIDs, including 1) identification of all druggable targets (12, 89 

13), 2) targeting enriched pathways (13, 14), 3) network-based proximity calculations (6, 15) 90 

or 4) matching of transcriptomic signatures as by Connectivity Map (CMap) (16). A limitation 91 

of these approaches is that they are developed using bulk transcriptomics or genetic variants 92 

and hence do not possess inherent solutions for rank aggregation for parallel analyses of several 93 

cell types, which limits their applicability to scRNA-seq. 94 

 95 

Aiming to create a systematic framework for scRNA-seq-based drug prioritisation and 96 

repositioning in inflammatory diseases, we hypothesised that the limitations of previous 97 

methodologies could be overcome by transposing network-based approaches (6, 15) to a 98 

systematic and scalable strategy for network-based virtual drug screening of multicellular 99 

disease models (MCDMs). Therefore, we composed a computational framework henceforth 100 

referred to as scDrugPrio (Fig. 1). Using scRNA-seq-derived differentially expressed genes 101 

(DEGs) of either 1) one individual or 2) a group comparison between patients and controls, 102 

scDrugPrio starts by identifying cell type-specific drug candidates by considering both 103 

proximity in a protein‒protein interaction network and biopharmacological criteria. To rank 104 
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drug candidates, scDrugPrio calculates two measures, intracellular and extracellular centrality. 105 

We used these two measures to capture two important drug properties, namely, 1) proficiency 106 

in targeting key disease-associated expression changes in a cell type and 2) the relative 107 

importance of the targeted cell type. These measures are then aggregated over all cell types to 108 

provide a final drug ranking. 109 

 110 

Because of the complexity and heterogeneity of IMIDs, we started by developing scDrugPrio 111 

using scRNA-seq data from a mouse model of antigen-induced arthritis. This reduced 112 

heterogeneity since the mice are inbred and the disease induced in a standardised way. 113 

Moreover, the mouse model allowed extensive in vitro and in vivo validation studies. To 114 

illustrate some potential case-of-use scenarios, we next applied scDrugPrio to cerebrospinal 115 

fluid from multiple sclerosis patients and intestinal biopsies from Crohn’s disease (CD) 116 

patients. Our analyses demonstrated drug selection and ranking capabilities through 1) the 117 

prioritisation of known drugs. For antigen-induced arthritis, drug selection was also supported 118 

by 2) experimental validation of repurposed drugs and 3) favorable comparison with previous 119 

methods. Next, we applied scDrugPrio to paired biopsies from individual CD patients, revealing 120 

its ability to capture the significant heterogeneity in individualised therapeutic prioritisations. 121 

 122 
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 123 

Fig. 1. Overview of the scDrugPrio workflow. Single-cell RNA-sequencing (scRNA-seq) 124 

data from either individuals or groups of patients are preprocessed by undergoing quality 125 

control, denoising, clustering, cell typing and differentially expressed gene (DEG) calculation. 126 

DEGs for each cell type were calculated between healthy and sick samples. Using DEGs 127 

alongside information on drugs, scDrugPrio selects drug candidates (for each cell type; CT) 128 

whose gene targets are 1) in network proximity to DEGs and 2) who counteract disease-129 
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associated expression changes. These cell type-specific drug candidates are next ranked using 130 

intracellular and intercellular centrality. 3) Intracellular centrality is computed based on the 131 

centrality of drug targets in the largest connected component (LCC) formed by DEGs and 132 

functions as a proxy for drug target importance. 4) Intercellular centrality measures centrality 133 

in disease-associated cellular crosstalk networks called multicellular disease models (MCDMs). 134 

5) To derive a final ranking that aggregated cell type-specific drug selection and ranking into 135 

one list, drug candidates were ranked using a composite score of intra- and intercellular 136 

centralities (Fig. S1). 137 

  138 
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Results 139 

The scDrugPrio framework 140 

Aiming to create an analytical framework for scRNA-seq-driven drug prioritisation, we 141 

constructed scDrugPrio, which consists of three main modules: 1) drug candidate selection 142 

based on cell type-specific DEGs, 2) drug candidate ranking and 3) aggregated ranking of drug 143 

candidates from all cell types. For this scDrugPrio requires two components (Fig. 1): a) 144 

differentially expressed genes (DEGs) between sick and healthy samples for each cell type and 145 

b) drug data, including information on gene drug targets and pharmacological effects. 146 

 147 

Preprocessing includes the calculation of DEGs based on scRNA expression from one or more 148 

healthy and one or more sick samples (Fig. S1). Preprocessing starts with quality control, batch 149 

correction (if needed) and data denoising of all scRNA-seq data, followed by clustering and 150 

cell typing. DEGs are computed per cell type by using sick versus healthy expressions. In the 151 

analysis below, we computed DEGs in the two modes. In the first mode, we use data from 152 

groups of sick and healthy individuals, while in the second mode, we use scRNA-seq data from 153 

paired samples of sick and adjacent healthy tissue for personalised drug prioritisations for one 154 

patient of interest. 155 

 156 

scDrugPrio starts by computing the mean closest distance between DEGs and gene targets of 157 

drugs (henceforth referred to as drug targets) in the protein‒protein interaction network (PPIN) 158 

for each cell type and each drug candidate. Intuitively, the <closer= the drug targets are to DEGs, 159 

the better is the chance for the drug to affect the disease-associated genes (15). Specifically, a 160 

relative proximity measure (zc) capturing the statistical significance of the observed closest 161 

distance (dc) was calculated based on a comparison of dc to the random expectation. 162 
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Furthermore, scDrugPrio assumed that drugs that counteract the fold-change of at least one 163 

DEG will have a better chance to reverse disease-associated expression changes in the targeted 164 

cell type (following a similar idea as CMap (16)). To determine whether a drug counteracted a 165 

DEGs fold change, we considered 1) the direction of the fold change (upregulated or 166 

downregulated) and 2) pharmacological action (e.g., agonistic, antagonistic) on the targeted 167 

DEG. For each cell type, a list of drug candidates was derived by filtering out drugs with low 168 

network proximity (dcg1, zcg-1.64 corresponding to one-sided P < 0.05) and drugs that did not 169 

exert counteracting pharmacological action against at least one targeted DEG. 170 

 171 

In the next step, scDrugPrio computed intra- and intercellular centrality measures that were 172 

later used to aggregate the prediction and rank drugs. To compute intracellular centralities per 173 

cell type, scDrugPrio determines the largest connected component formed by DEGs in the PPIN 174 

and next computes a drug’s centrality score based on the centrality of the drug targets within 175 

this component. Intracellular centrality hence presents an approximation of a drug’s target 176 

relevance for disease-associated expression changes in a cell type. For intercellular centrality, 177 

scDrugPrio constructs a multicellular disease model (MCDM). In short, MCDMs were based 178 

on predicted molecular interactions between differentially expressed upstream regulatory genes 179 

in any cell type and their downstream genes in any other cell type using NicheNet (17). The 180 

resulting MCDM is a network in which cell types were nodes connected by directed, weighted 181 

ligand-target interactions. Intercellular centrality refers to the centrality of cell types in the 182 

MCDM. 183 

 184 

Finally, scDrugPrio aggregates drug predictions through aggregation of cell type-specific drug 185 

predictions and intracellular and intercellular centralities into a compound score (Fig. 1). The 186 
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resulting scores were used to rank drugs. Hence, overall drug ranking prioritised drugs that 187 

targeted key disease-associated expression changes in the most important cell types. 188 

 189 

scDrugPrio development and evaluation in antigen-induced arthritis 190 

scRNA-seq data were generated from whole joints of five inbred AIA mice and four naïve mice. 191 

After application of quality criteria (File 1), data included 16,751 cells with 132,459 mean reads 192 

per cell. Data for all mice were denoised jointly using a deep count autoencoder network (DCA) 193 

(18), and clusters were cell typed using marker gene expression (Fig. 2a & S2). Comparison of 194 

cells from AIA and naïve mice identified DEGs in 16 cell types (Fig. 2, Supplementary 195 

Results). 196 

 197 

We retrieved drug target information from DrugBank (19) for 13,339 drugs (File 1). From those 198 

drugs, we selected all of which had been FDA approved for human use and had at least one 199 

target in the human interactome (n = 1,840). According to the indication information in 200 

DrugBank, 57 drugs were FDA approved for RA and hence treated as true positives for the 201 

calculation of precision and recall. 202 

 203 

Applying scDrugPrio, the final list of candidates included 334 out of 1,840 drugs; 32 drugs 204 

were established RA drugs, of which 22 ranked among the top 100 candidates (Fisher exact P 205 

< 10-6; Fig. 3, File 1). To further evaluate the candidates’ relevance, we collected clinical trial 206 

data from clinicaltrials.gov to capture the medical community’s interest in the identified 207 

candidates as RA medications. We also performed a literature review of the top 100 drugs to 208 

evaluate whether candidates had shown promise when tested in human RA or murine/rat RA 209 

models. Through a literature review, evidence for the relevance of 40 additional drugs was 210 
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identified, whereas three of the top 100 ranking drugs had not shown effects in previous trials. 211 

Hence, 62.0% of the top 100 ranking candidates were either approved or had successful 212 

experimental validation in prior literature (Fig. 3e), and 95.4% of previously studied top 100 213 

candidates had shown promise. 214 

 215 

Describing scDrugPrio results in more detail, network proximity selection (dc<1, zc<-1.64) 216 

yielded no drug candidates for eight cell types and an average of 67 drug candidates (min = 2, 217 

max = 226) for the remaining twelve cell types. Precision among cell type-specific candidates 218 

ranged from 0.0% to 12.8%. However, precision of cell types that were central in the MCDM, 219 

such as activated, immature, and plasma B cells (12.8%, 11.4%, and 6.3%, respectively), 220 

outperformed random selection from the 1,840 included drugs (57/1,840 = 3.1%; Fisher exact 221 

P < 10-12, P < 10-8, P = 0.4, respectively). Following network proximity calculations that were 222 

performed in the absence of information on a drug’s effect on the target, we found tasonermin, 223 

a synthetic version of TNF, among the top-ranking candidates for several B-cell subtypes. Since 224 

overexpression of TNF has a crucial role in RA pathogenesis (20), this ranking supported the 225 

network proximity criterion. However, because tasonermin mimics the effects of TNF, it could 226 

worsen the disease. This finding exemplified the importance of pharmacological action 227 

selection. Pharmacological action selection resulted in an average of 43 drug candidates per cell 228 

type (min = 2, max = 137). Overall precision decreased to a median [range] of 1.56% [0.00 -229 

20.63], although it increased in activated, immature, and plasma B cells (20.6%, 16.1%, and 230 

9.1%, respectively) as well as in T cells (Fig. 3c) 231 

 232 

Having identified drug candidates for every cell type individually, intra- and intercellular 233 

centrality were calculated. The use of intra- and intercellular centrality measures for composite 234 
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ranking was motivated by our findings that 1) intercellular centrality correlated with the 235 

significance of GWAS enrichment among cell type-specific DEGs (Pearson's r [95% CI] = 0.62 236 

[0.21 – 0.85]; P < 0.01), 2) intercellular centrality correlated with the precision among cell type-237 

specific drug candidates (Pearson's r [95% CI] = 0.77 [0.46 – 0.91]; P < 10-3; Fig. S2j), 3) drugs 238 

that targeted more than one cell type were more likely to be known RA drugs (Fig. S2k) and 4) 239 

intracellular centrality could improve the mean rank of known drugs more than expected by 240 

chance (Supplementary Results). 241 

 242 

Using the AIA and human RA data, we benchmarked scDrugPrio against previous 243 

methodologies (Supplementary Results) and performed extensive additional testing, 244 

demonstrating the advantage of scRNA-seq-driven analysis over genetic variations or bulk 245 

transcriptomics. Furthermore, we evaluated drug selection criteria and performed robustness 246 

analysis (Supplementary Results). 247 

 248 
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 249 

Fig. 2 Construction and analysis of a multicellular disease model (MCDM) based on 250 

scRNA-seq analysis of a mouse model of antigen-induced arthritis (AIA). a) tSNE of cells 251 

(n = 16,751) pooled from all samples. b) Cell type proportions (%) for individual AIA (S1 to 252 

S6) and control (H1 to H4) mice. c) Heatmap of z-scores of the cluster-based means of 253 

normalised, denoised gene expression for cell type markers. d) MCDM, in which cell types 254 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 13, 2023. ; https://doi.org/10.1101/2023.11.08.566249doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.08.566249
http://creativecommons.org/licenses/by-nd/4.0/


   

 

14 

 

were represented by nodes connected by the predicted interactions between upstream regulatory 255 

genes in any cell type and their downstream target genes in any other cell type (17). Edge width 256 

corresponds to the sum of Pearson coefficients for all interactions between two cell types, with 257 

arrows directed from upstream to downstream cell types. Edge color corresponds to the 258 

upstream cell type. As indicated by more central positions in the MCDM, the four B-cell 259 

clusters were the most central cell types. e) Bar plot depicting eigenvector cell type centrality 260 

in MCDM. Colours in all plots correspond to cell type colours in a). 261 

  262 
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 263 

Fig. 3. Precision and recall in relation to drug selection and ranking criteria. a-b) Precision 264 

and recall at different zc cut-offs. In most cell types, precision increased with decreasing zc. Too 265 

stringent zc cut-offs, by contrast, led to the exclusion of almost all candidates, including 266 

approved RA drugs. c-d) Precision and recall after stepwise application of drug selection 267 

criteria. Bars with no pattern represent a zc cut-off that Guney et al.10 had previously found to 268 

offer good coverage of known drug-disease pairs. The dotted pattern represents precision at zc 269 

< -1.64 (corresponding to one-sided P < 0.05). The striped pattern represents precision among 270 

candidates with zc < -1.64 and dc < 1 (in other words, candidates passing network proximity-271 

based selection). The crosshatch pattern represents candidates passing network proximity and 272 

pharmacological action selection. The application of selection criteria substantially increased 273 
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the precision among central cell types. e) Precision for approved RA drugs and drugs with 274 

literature evidence among the ranked list of selected candidates. Drug ranking included rank 275 

ties. Literature evidence was gathered for the top 100 ranked candidates and is presented as 276 

triangles with a dashed line. The colour legend for a-d) is depicted in f). 277 

 278 

Experimental validation of scDrugPrio 279 

To further validate scDrugPrio, five high-ranking drugs that were not found to have any prior 280 

literature support for their efficacy in RA were chosen alongside the highest-ranking RA drug 281 

(auranofin #6) serving as a positive control. We first evaluated the five drugs by in vitro studies 282 

of B cells. This cell type was selected because of its crucial role in the pathogenesis of RA and 283 

its central position in MCDM (21). We used previously described in vitro models of B-cell 284 

functions (21) measuring murine B-cell survival, activation, proliferation, and antibody 285 

production upon in vitro stimulation with selected drugs at various concentrations. Auranofin 286 

dramatically suppressed B-cell functions, including cell viability, proliferation, and 287 

immunoglobulin production (Fig. 4). Additionally, two of the five novel drugs (#114 amrinone 288 

and #100 adapalene) showed concentration-dependent in vitro effects on B-cell viability, 289 

proliferation, and immunoglobulin production (Fig. 4). Adapalene also greatly inhibited murine 290 

B-cell activation (Fig. 4b). The other three drugs (#91 irbesartan, #98 isosorbide, and #134 291 

dimethyl furamate) showed little to no effect on murine B-cell functions (Fig. S3). Next, we 292 

examined the effects of drug candidates on the function of human B cells. Similarly, auranofin, 293 

adapalene and amrinone inhibited human B-cell viability, activation, proliferation, and IgG 294 

production (Fig. S4). Thus, two out of five candidate drugs prioritised by scDrugPrio, namely, 295 

adapalene and amrinone, were successfully validated by in vitro studies. 296 

 297 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 13, 2023. ; https://doi.org/10.1101/2023.11.08.566249doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.08.566249
http://creativecommons.org/licenses/by-nd/4.0/


   

 

17 

 

Valid drug candidates should arguably be transposable and replicable. As drug prediction was 298 

performed using data from the AIA model of arthritis, we deployed the collagen-induced 299 

arthritis (CIA) model for further in vivo study. We selected only amrinone for further study, as 300 

adapalene was designed for topical skin use and not for systemic delivery. CIA mice were 301 

administered 30 mg/kg amrinone i.g. for 3 weeks. This treatment significantly reduced the paw 302 

thickness (Fig. 4e) and clinical scores of CIA mice (Fig. 4f). Analysis of collagen-specific 303 

serum autoantibodies revealed a significant inhibitory effect (Fig. 4g). Considering that it even 304 

reduced immune cell infiltration (Fig. 4h) and bone erosion (Fig. 4i), in vivo studies confirmed 305 

the relevance of amrinone treatment and thereby further supported scDrugPrio. 306 

 307 
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 308 

Fig. 4 Experimental validation of amrinone in suppressing murine B-cell function and the 309 

pathogenesis of the CIA mouse model. Drug effect of the selected drugs and the positive 310 

control on in vitro murine a) B-cell survival, b) activation, c) proliferation, and d) 311 

immunoglobulin production. Colours represent the responses to diluent and different drug 312 

concentrations (low, medium, high); for specific concentrations, see Table S1. Having 313 

successfully validated adapalene and amrinone in vitro, we conducted in vivo experiments for 314 

amrinone. Mice with collagen-induced arthritis (CIA) were treated with diluent (n = 5) or 315 

amrinone (30 mg/kg, n = 5) for 3 weeks. The e) rear paw thickness, f) clinical scores, and g) 316 
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collagen-specific serum autoantibodies were measured. Furthermore, drug efficacy was 317 

assessed by analysis of h) joint immune cell infiltration using H&E staining and i) bone erosion 318 

using Safranin-O staining. * P < 0.05, **P < 0.01, ***P < 0.001. Dimethyl furamate, DMF. 319 

 320 

Application of scDrugPrio to multiple sclerosis 321 

We next applied scDrugPrio to human IMIDs using scRNA-seq data of cerebrospinal fluid 322 

(CSF) from multiple sclerosis (MS) patients and idiopathic intracranial hypertension that served 323 

as controls (22). After application of quality cut-offs (File 2), the data included 33,848 cells 324 

with 47,332 mean reads per cell. Comparing MS samples with controls, DEGs were calculated 325 

from batch-corrected, normalised expression scores. scDrugPrio identified on average 59 (min 326 

= 1, max = 270) drugs in 19 cell types (Fig. 5 & S5). Aggregated ranking of 417 drug candidates 327 

(Fig. S6, File 2) included ten out of 17 approved MS drugs. Among the top 100 ranking 328 

candidates, four approved MS drugs, as well as biosimilars rituximab and obinutuzumab, were 329 

identified, which outperformed random expectation (precision 0.9%). A literature search 330 

revealed that an additional 22 of the top 100 ranking drugs had shown effects in previous 331 

studies, resulting in a precision of 28.3% (Fig. 5d). Seventy-one drugs had not yet been 332 

validated in previous studies, and one evaluated drug had not shown promise in previous 333 

studies. Hence, 96.7% of the studied candidates showed efficacy. Taken together, these data 334 

supported the potential of scDrugPrio to predict the response to drugs approved for that disease, 335 

as well as for repurposing other drugs. 336 

 337 

The value of above rank aggregation was supported as precision among cell type-specific drug 338 

candidates only ranging from 0.0% to 12.5%. The MCDM (Fig. 5c, File 2) indicated plasma 339 

cells, mononuclear phagocytes, natural killer cells, and activated CD8+ T cells to be of central 340 
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importance, which is consistent with the current pathophysiological understanding (22, 23). 341 

Notably, the MS MCDM was more complex than the AIA MCDM regarding the number of cell 342 

types and interactions. 343 

 344 

Fig. 5. scDrugPrio applied to scRNA-seq data from cerebrospinal fluid samples of MS 345 

patients and controls. a-b) Clustering and cell type proportions (%) for CSF samples of 346 

idiopathic intracranial hypertension (IIH) and multiple sclerosis patients (MS). Cell type 347 

proportions showed significant interindividual differences among MS patients. c) The MCDM 348 

for MS was more complex than that of AIA mice. The most central cells included mononuclear 349 

phagocyte 3, natural killer cells, mononuclear phagocyte 2, early activated CD8+ T cells and 350 

plasma B cells. (in order of eigenvector centrality). d) Precision among ranked candidates for 351 
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approved MS drugs and the top 100 drugs with literature-derived evidence. Abbreviations: Tm, 352 

T memory; Tem, T effector memory. 353 

 354 

Application of scDrugPrio to Crohn’s disease 355 

Next, scDrugPrio was applied to patients with Crohn’s disease (CD) from whom scRNA-seq 356 

data (24) from paired inflamed and uninflamed intestinal tissue biopsies were available. After 357 

application of quality criteria (File 3), 77,416 cells were included with 3,591 mean unique 358 

molecular identifiers (UMIs) per cell. Following preprocessing, analysis was performed on 359 

batch-corrected, pooled data from all patients in which DEGs were calculated through 360 

comparison of inflamed and uninflamed samples (Fig. S7 & S8, File 3). The aggregated ranking 361 

included 343 drug candidates, of which five were known CD drugs. These five consisted of 362 

sulfasalazine (#91), mesalazine (#169.5), rifaximin (#238) and two anti-TNF drugs 363 

(adalimumab and infliximab, tied rank #292.5). Apart from sulfasalazine, literature evidence 364 

suggested the effectiveness of 13 additional top-ranking 100 drugs, resulting in a precision of 365 

14%. 366 

 367 

Patient heterogeneity in human disease 368 

An important difference between human data and mouse data was substantial interindividual 369 

heterogeneity in human patients. To illuminate such differences, we compared 1) cell type 370 

proportions, 2) gene expression profiles and 3) examination of latent features of the non-batch-371 

corrected data. Mice, as expected, showed no differences in cell type proportions (chi-square P 372 

= 0.9919; Fig. 2c), gene expression (95% CI of misclassification rate 0.504~0.532 in the 373 

training data and 0.638-0.655 in the test data), or latent features (Fig. S2c). However, both MS 374 

and CD patients showed great interindividual heterogeneity in cell type composition (chi-square 375 
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P < 10-15, respectively). Heterogeneity in cell type composition, although decreased, can still 376 

be observed in the batch-corrected data (Fig 5b & S7i). A patient effect was also observed in 377 

the non-batch-corrected gene expression for MS (random forest, 95% CI of misclassification 378 

rate 0.075 - 0.084 in training data and 0.124 - 0.132 in testing data) and CD patients (random 379 

forest; 95% CI of misclassification rate 0.270 – 0.283 in training data and 0.378 ~ 0.385 in 380 

testing data) as well as latent features derived from non-batch-corrected data (Fig. S5 & S8). 381 

Taken together, such patient effects necessitated batch correction for pooled prediction using 382 

the human data sets above. 383 

 384 

Potential for individualised predictions 385 

Even though batch correction had been applied appropriately, a potential limitation of the above 386 

MS and CD analyses was that scDrugPrio was applied to pooled data derived from 387 

heterogeneous patients and controls. Patient effects might form the bases for the 388 

responder/nonresponder dichotomy, and we therefore evaluated scDrugPrios potential for 389 

individualised drug prioritisation. For this, we applied scDrugPrio to individual CD patients, 390 

using similar preprocessing as for CD data above with the following exceptions: 1) data were 391 

not batch-corrected, and 2) following denoising, cells from inflamed and uninflamed samples 392 

of each patient were clustered separately. DEGs were derived through comparison of individual 393 

patient inflamed and uninflamed cells in each cluster. DEGs showed that the eleven patients 394 

expressed important CD drug targets differently (Fig. S9a-b). To investigate whether such 395 

molecular differences could affect drug prediction outcomes, scDrugPrio was applied to all 396 

patients separately (Fig. S9-11, File 4). 397 

 398 
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Strikingly, individualised drug predictions of nine out of eleven patients (such as patient 1: 399 

19.0%; patient 10: 20.5%, Fig. 6 & S12) outperformed the precision of pooled patient analysis 400 

(14.0%). Among the top 10 candidates, precisions for individualised predictions (20-70%) 401 

outperformed precision of pooled patient analysis in seven patients and equalled that of pooled 402 

patient analysis in four patients (10%). All predictions outperformed random chance (1.5%). 403 

More detailed analysis revealed interindividual differences in cell type proportions and network 404 

properties in the MCDM (Fig. S11) as well as different drug rankings (Fig. S13). Taken 405 

together, these findings supported that scDrugPrio presents a valid strategy for personalised 406 

drug prioritisation. 407 

 408 

To exemplify the potential of scDrugPrio for individual patients, we next compared two patients 409 

who previously had been classified as an anti-TNF responder (patient 10) and nonresponder 410 

(patient 1) based on a cellular signature score (24). In agreement with the previous classification 411 

of anti-TNF response (24), TNF had a more central role in the MCDM of patient 10 (Fig. S10m, 412 

n). Hence, it was not surprising that aggregated drunk ranking ranked adalimumab (anti-TNF) 413 

higher for patient 10 (#15.5) than for patient 1 (#658). As expected, adalimumab was the 414 

highest-ranking approved CD drug in patient 10. For patient 1, scDrugPrio prioritised other 415 

immunomodulatory drugs over anti-TNF treatment, namely, natalizumab (#19), human 416 

intravenous immune globulin (#21), basiliximab (#25), sarilumab (#29), and other approved 417 

CD drugs, such as methotrexate (#188) and sulfasalazine (#202). 418 

 419 
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 420 

Fig. 6. scDrugPrio for individual drug prediction. a-b) Cell type proportions differed greatly 421 

between two CD patients, as shown in the horizontally stacked bar plots representing paired 422 

biopsies from inflamed (infl) and uninflamed (uninfl) lesions that were taken from each patient. 423 

c-d) Patients also show differences in the composition and interconnectivity (representing 424 

ligand interactions) of the MCDMs. Patient 1 had a cell type for which no ligand-target 425 

interactions could be found with any other cell types in the MCDM. e-f) The precision for the 426 
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ranked drug candidates for patient 1 was low for approved CD drugs, while literature evidence 427 

supported the top-ranking drugs, of which many are anti-inflammatory. In contrast, patient 10 428 

had several approved CD drugs among the top 100 candidates, and a curated literature search 429 

confirmed the validity of many more candidates. g) Precision for prediction based on pooled 430 

patient data was poor. h) Venn diagram presenting the overlap of considered drug candidates 431 

for patients 1 and 10. i) Interindividual differences between patients 1 and 10 were reflected in 432 

the prediction outcome, as no correlation existed between the drug rank of drugs that were 433 

candidates in both patients. 434 

 435 

Application of scDrugPrio to nonresponder/responder data from patients with psoriatic 436 

arthritis highlighted the importance of local tissue samples 437 

Since the previous analyses supported scDrugPrio’s potential for another case-of-use scenario, 438 

namely, to distinguish drug responders from nonresponders. To explore this potential, we 439 

collected peripheral mononuclear blood cells (PBMCs) from patients with psoriatic arthritis 440 

(PsA) as well as healthy controls. PBMCs were chosen because the analysis of blood samples 441 

is clinically more tractable than the analysis of biopsies. Samples were cryopreserved before 442 

treatment with either anti-TNF or anti-IL17. Treatment response was later assessed by a 443 

rheumatologist according to EULAR response criteria (25) (File 5). We next selected 32 444 

patients, of whom eight were classified as responders (R) and eight as nonresponders (NR) to 445 

either of the two drugs, as well as eight healthy controls. Cryopreserved PBMCs from these 446 

patients were analysed with scRNA-seq. For preprocessing, data were divided into two data 447 

sets by treatment regimen, each data set containing the corresponding eight R and NR along 448 

with the eight healthy controls. After application of quality cut-offs, the data included 78,610 449 

cells with 5,088 mean reads for anti-TNF analysis and 72,472 cells with 5,343 mean reads for 450 
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anti-IL17 analysis. Data were batch-corrected and DCA denoised before clusters were 451 

identified and cell-typed using marker genes (Fig. S14 & S15, File 5). 452 

 453 

For each data set, DEGs were calculated through comparison of cells from healthy controls to 454 

either R or NR. The precision for approved PsA drugs among the top 100 candidates in the 455 

respective aggregated ranking was 0% for anti-IL17 NR, 4% for anti-IL17 R, 1% for anti-TNF 456 

NR and 1% for anti-TNF R (Fig. S14 & S15). Unexpectedly, anti-TNF treatment received a 457 

low rank in anti-TNF R but not in NR (#333 and #88, respectively), while anti-IL-17 was not 458 

considered a candidate in either R or NR. 459 

 460 

Further analyses of our PBMC data from all R and NR patients showed that the TNF signaling 461 

pathway was significant in only 8% and 8% of clusters, respectively. The corresponding figures 462 

for the IL-17 signaling pathway were 17% and 13% in the anti-IL17 R and NR groups, 463 

respectively. In those cell types, most pathways were downregulated, including those regulated 464 

by TNF and IL17 (Fig. S16). This result contrasted with previous studies of skin and synovium 465 

from PsA, which showed increased expression of TNF and IL17, as well as their pathways (26, 466 

27). A similar dichotomy between local inflamed tissues and cells in the blood in autoimmune 467 

diseases has been previously described (28). This dichotomy can be explained by the 468 

physiological need to localise inflammatory responses to inhibit systemic and possibly fatal 469 

responses. The general clinical implication may be that drug predictions should ideally be based 470 

on local tissue samples (25). 471 

 472 
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Discussion 473 

The main problem in therapeutics, which serves as the basis for this study, is the large number 474 

of IMID patients who do not respond to treatment (2, 3, 29). Previous virtual drug screening 475 

methods for inflammatory diseases are based on genetic variance or bulk RNA sequencing (15, 476 

30, 31) and hence do not consider variations in gene expression across different cell types, 477 

biopharmacological properties, or individual variations between patients with the same 478 

diagnosis. While harnessing the daunting complexity and heterogeneity for personalised 479 

treatment may seem impossible by health care standards today, this challenge should be put in 480 

the context of the suffering and costs resulting from ineffective drug treatment. Many IMIDs 481 

cause life-long morbidity and increased mortality. The yearly cost of treating an individual 482 

IMID patient may be hundreds of thousands of dollars for drugs and hospital care (1). 483 

 484 

Recent efforts for drug toxicity screening (8, 32) support the feasibility of scRNA-seq to capture 485 

relevant cellular information. However, systematic solutions for drug prioritisation for IMIDs 486 

based on scRNA-seq remain to be devised. We therefore propose a computational framework, 487 

scDrugPrio, that extends on existing bioinformatic tools (6, 15, 17) by providing a framework 488 

for data integration, enabling drug ranking based on a multifaceted understanding of cell type-489 

specific disease mechanisms, altered cellular crosstalk and pharmacological effects. We 490 

demonstrate that scDrugPrio yields relevant and robust drug prioritisations, outperforms 491 

previous methods (14, 33) and holds potential for individualised as well as pooled drug 492 

prioritisation and repurposing. 493 

 494 

An important advance of scDrugPrio is that it can be applied to scRNA-seq data. The 495 

importance lies in the fact that complex diseases each involve differential expression of 496 
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thousands of genes across multiple cell types (6). A previous case report (7) described one 497 

successful example of treating an individual patient with immunological diseases based on 498 

scRNA-seq data. However, the drug choices were empirical rather than systematic. Because 499 

scRNA-seq allows transcriptome-wide analyses in each of thousands of cells, it is possible to 500 

infer disease-associated changes in individual patients preferably by comparisons with 501 

noninflamed samples from the same individual or to groups of healthy individuals. Thus, 502 

scDrugPrio has the potential to personalise the treatment of individual patients. The importance 503 

of this advance is highlighted by our results and previous findings (24, 34) showing great 504 

interindividual differences in the molecular and cellular composition of human diseases. For 505 

example, we showed that scDrugPrio ranked anti-TNF treatment high in a CD patient who was 506 

classified as a responder but not in a nonresponding patient. In the latter patient, other 507 

immunomodulatory drugs, such as natalizumab, received high ranks. Natalizumab is mainly 508 

used in MS but has, in previous studies, shown positive effects in CD (35), making it a viable 509 

recommendation. These examples emphasise that successful drug screening will need to 510 

consider variations between patients with the same diagnosis. 511 

 512 

There are several limitations of scRNA-seq-based drug predictions in IMIDs. Many of these 513 

depend on the challenges involved in harnessing complex and heterogeneous disease-514 

associated changes with an emerging technology such as scRNA-seq. An analogy to a historical 515 

example may illustrate how such limitations may drive scientific progress. In 1970, 516 

Needleman‒Wunsch (36) and 1981, Smith‒Waterman (37) published algorithms for global 517 

and local sequence alignment, which were widely used. The limitations of those algorithms 518 

were that they were mainly useful for nucleotide but not protein sequence analyses because 519 
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of limited protein sequence data and no scoring system that modelled protein evolution. 520 

During the next two decades, these problems were resolved by increasingly accurate data and 521 

methods (38). Importantly, 42 years after publication of the Smith‒Waterman algorithms for 522 

proteins, these algorithms can generate very accurate results when combined with scoring 523 

systems that were later developed (38). We propose that the limitations of scRNA-seq that we 524 

face today will lead to a similar development of increasingly accurate technologies. One 525 

obvious limitation of scRNA-seq is that mRNA and protein levels may be poorly correlated, 526 

which can limit biological interpretability. From this perspective, the use of DEGs for 527 

scDrugPrio’s pharmacological predictions is a relative strength, as DEGs have been shown to 528 

correlate significantly better with protein levels (39) compared to mRNA levels alone and hence 529 

increase the biological relevance of our predictions. Inherent limitations of scDrugPrio also 530 

derive from the use of current interactomes, which are not comprehensive in terms of proteins, 531 

interactions, and variations across cell types (40) and are prone to investigative biases. While it 532 

is impossible to address all these concerns, we explored whether network proximity-based drug 533 

selection was influenced by investigative bias through replication of key results in a smaller yet 534 

unbiased interactome. We found that precision among candidates was slightly lower, partly due 535 

to missing drug targets in the interactome, but that results were comparable. Additionally, 536 

scDrugPrio might benefit from systematic parameter optimisation, which is currently not 537 

possible due to the limited amount of suitable scRNA-seq data sets. 538 

 539 

Predictions were based on complex or partially uncharacterised drug-target effects, which may 540 

vary between different locations in the body. The need for better characterised drug effects and 541 

the relative importance of drug targets is exemplified by etanercept, which inhibits TNF and its 542 

receptors but may activate IgG receptors. The TNF-inhibitory effects are beneficial in PsA, 543 
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while those on IgG receptors are not clearly defined. However, because all these targets were 544 

downregulated in PBMCs from nonresponding PsA patients, etanercept (counteracting IgG 545 

downregulation) received a higher rank than in patients responding to anti-TNF treatment. 546 

While unexpected, this highlights the need for systematic information about the relative 547 

importance of drug targets. Future efforts aiming to address these limitations might find that 548 

the predictive capability of scDrugPrio can be further enhanced by integration of binding 549 

affinity (e.g., BindingDB) or bioactivity (e.g., ChEMBL), especially if data become more 550 

comprehensive. 551 

 552 

The above example of etanercept in PsA highlights an important clinical concern, which to our 553 

knowledge has not been recognised in the context of drug prediction methods. While analyses 554 

of blood samples are often more tractable in routine clinical practice, disease-associated 555 

mechanisms may vary greatly between cells in blood and inflamed tissues. Our scRNA-seq 556 

analyses of PBMCs from PsA patients who did or did not respond to treatment with either anti-557 

TNF or anti-IL-17 showed that TNF and IL-17 signaling was found only in a small portion of 558 

the PBMC cell types and, in fact, was downregulated in both responders and nonresponders. In 559 

contrast, previous studies (26, 27) of synovium from PsA patients have shown consistent 560 

upregulation of both signaling pathways. Additionally, one previous study also showed 561 

differences between synovium and skin from the same patients (26). Thus, scDrugPrio should 562 

ideally be applied to local, inflamed tissue samples of the relevant tissue. 563 

 564 

Despite these limitations, the translational relevance of scDrugPrio was supported by analyses 565 

of precision/recall for drugs that were approved for the studied diseases, as well as by in vitro 566 

and in vivo experiments. Those experiments implied two drugs, namely, adapalene (used for 567 
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acne vulgaris) and amrinone (used for congestive heart failure), that had not been previously 568 

described as candidates for RA treatment. However, both have anti-inflammatory effects and 569 

could, therefore, be effective (41, 42). This potential was supported by in vivo experiments in 570 

which CIA mice were treated with amrinone (adapalene is a topical skin drug and hence is not 571 

suitable for systemic treatment in this experimental system). This example also suggests a 572 

potentially important pharmacological application of scDrugPrio, namely, virtual drug 573 

repurposing by systematic screening of thousands of drugs across several inflammatory 574 

diseases, as well as in patients who do not respond to standard treatment. 575 

 576 

Here, we show that scDrugPrio has the potential for individualised drug predictions. We have 577 

made data and tools freely available for this purpose. However, further parameter optimisation 578 

and controlled, prospective clinical studies are needed for clinical translation. If successful, this 579 

approach could lead to a radical change in health care, which today is largely based on treating 580 

groups of patients with the same diagnosis with a limited number of drugs based on a limited 581 

understanding of the underlying molecular complexity and heterogeneity with limited 582 

population-based efficacy (43). 583 
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Material & Methods 606 

scDrugPrio’s computational framework 607 

As indicated in Fig. S1, scDrugPrio requires 1) an adjusted scRNA-seq matrix, 2) disease-608 

associated differentially expressed genes (DEGs) for each cell type from either group-based 609 

comparison of healthy and sick samples or from inflamed and noninflamed samples of one 610 

individual, 3) a protein‒protein interaction network (PPIN) and 4) drug-target information. 611 

scDrugPrio then utilises this information for cell type-specific drug selection, calculation of 612 

drug ranking measures and finally rank aggregation. 613 

 614 

For drug selection, scDrugPrio first computes the mean closest network distance (dc) between 615 

cell type-specific DEGs and drug targets in the PPIN for each cell type-drug combination. To 616 

calculate z-scores (zc) for network distance, permutation tests (1,000 iterations) were performed 617 

in which both cell type-specific DEGs and drug targets were randomised in a bin-adjusted 618 

manner (15) before the mean closest distance was calculated. The minimal bin size for 619 

randomisation was set at 100 genes. Drugs that did not have any target in the interactome were 620 

removed from the analysis (n = 4 for literature-curated PPIN). Based on network distance, we 621 

selected only drugs that targets were significantly close (zc < -1.64 corresponding to one-sided 622 

P < 0.05) to DEGs and that frequently targeted DEGs directly (dc < 1). These cut-offs were 623 

chosen based on our empirical observations (Fig. 3a-d & S2h,j) and previous knowledge (44). 624 

As the significance of network proximity can depend on the number of DEGs relative to the 625 

size of the network, cut-offs allowing only the top significant DEGs to enter analysis were 626 

implemented when needed. Cell type-specific drug candidates were selected further by 627 

requiring drugs to counteract the fold change of at least one targeted DEG. This criterion 628 

intuitively removes drugs that likely will not help to restore transcriptomic homeostasis. For 629 
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this purpose, the pharmacological action of the drugs on their targets was determined. Binary 630 

drug action (activating/enhancing or inhibiting) on the drug target was recorded for each drug 631 

(File 1-5). If the pharmacological effect of the drug on the target had not been specified 632 

explicitly in DrugBank (19), a literature search was performed using the drug name and gene 633 

symbol of the targeted DEG as search terms in PubMed and Google Scholar. Additional 634 

information gathered from the literature can be found in Files 1-5. In case the pharmacological 635 

effect of the drug on a target, despite a literature search, could not be classified as 636 

enhancing/activating or inhibiting, the drug target was assumed to not counteract fold-change. 637 

 638 

Drug ranking by intra- and intercellular centralities was motivated by empirical observations 639 

(Fig. 3e & S17) in our study as well as previous indications of the biological importance of 640 

disease modules (6, 45) and central cell types in MCDMs (6). For calculation of intracellular 641 

centrality, disease modules for each cell type were defined as the largest connected component 642 

(LCC) formed by a cell type’s DEGs in the PPIN. For LCC identification, the igraph R package 643 

(46) was utilised. To avoid overparameterisation, the eigenvector centrality (47) of DEGs in the 644 

LCC was calculated using the CINNA R package (48). For each drug, the intracellular centrality 645 

was calculated as the geometric mean of its differentially expressed target centrality scores in 646 

the cell type-specific LCCs. If a drug did not target any DEG included in the LCC, intracellular 647 

centrality was set to zero. 648 

 649 

Intercellular centrality was calculated using MCDMs that modelled disease-associated cellular 650 

crosstalk. For the creation of MCDMs, first, cell type interactions were predicted using 651 

NicheNet (17). Briefly, NicheNet predicts and ranks ligand–target links between interacting 652 

cells by combining their expression data with prior knowledge on signalling and gene 653 
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regulatory networks. As suggested by Browaeys et al (17), Pearson correlation was used to 654 

measure each ligand’s ability to predict the gene expression of genes in the gene set of interest 655 

compared to background genes in the receiving cell type. This means that a ligand has a strong 656 

positive correlation coefficient if its cognate receptor and the downstream genes of that receptor 657 

are all differentially expressed in the downstream cell type. We downloaded the human ligand-658 

target model as well as the human ligand‒receptor network (downloaded from 659 

https://zenodo.org/record/3260758 April 2020). Cell type-specific DEGs constituted the gene 660 

set of interest. A set of potentially active ligands was defined as the intersection of ligands 661 

included in the downloaded human ligand-target model and ligands among respective cell type 662 

DEGs. Background genes for each cell type were defined as genes (i) in the denoised single-663 

cell expression matrix D of k cell type-associated cells that showed a mean aggregate 664 

expression, Ea(i), over Ea(i) g 0.2. This definition of background genes was similar to 665 

definitions by Browaeys et al. (17) and Puram et al. (49). At the chosen cut-off, we identified 666 

ca. 10,000 background genes that corresponded to the recommended amount for NicheNet 667 

calculations (17). 668 

 669 

��(�) = log2 (∑ 10�ÿĀĀÿ=1 ý⁄ ) 670 

 671 

All genes were translated to human Entrez gene symbols using human-mouse orthologues 672 

downloaded from NCBI (August 2019). Ligand activity analysis in NicheNet was performed 673 

for all possible cell type pairs, including self-interactions, excluding cell types that did not 674 

express DEGs. In the next step of MCDM construction, directed cell type interactions were 675 

derived from ligand activity results and weighted by NicheNet-derived Pearson coefficients. 676 
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Only ligand interactions with a positive Pearson correlation coefficient were considered 677 

negative Pearson coefficients that reflected the association of a ligand with background genes 678 

and therefore were not biologically relevant. The resulting MCDM was visualised using 679 

Cytoscape 3.6.1 (50), and for visualisation purposes, the sum of Pearson coefficients that 680 

described the directed interaction between two cell types was used. Supplemental analysis 681 

supported the relevance of identified ligand interactions (Supplementary Results). 682 

Eigenvector centrality was calculated for each cell type based on the weighted, directed 683 

interactions in the MCDM using the igraph and CINNA R package (46, 48). The intercellular 684 

centrality of each drug was computed as the sum of MCDM centralities of the cell types that 685 

had selected the drug as a candidate. While eigenvector centrality is well tailored to capture 686 

central disease-associated cell types in the MCDM, considering both direct and indirect node 687 

connections (47), multiple centrality measures are available. We evaluated several of them, 688 

finding them to yield similar results to eigenvector centrality (Supplementary Results, File 1-689 

5). 690 

 691 

Final rank aggregation involved the calculation of a drug’s compounded intra- and intercellular 692 

centrality. For this, we calculated combined intracellular centrality for each drug as the sum of 693 

drug-specific intracellular centralities in all cell types. The centrality compound score consisted 694 

of a drug intercellular centrality + 0.1 x combined intracellular centrality and thereby 695 

emphasised the importance of intercellular centrality over intracellular centrality. Intracellular 696 

centrality effectively worked as a tiebreaker. Drugs were ranked based on centrality compound 697 

scores, using the average position for ties. 698 

 699 
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Drug data 700 

We retrieved data on 13,339 drugs from DrugBank (19) (downloaded July 2019) and selected 701 

only drugs that had been or currently FDA approved (n = 4,021), were indicated for use in 702 

humans (n = 1,964), and had at least one human protein target (n = 1,864). Of those, drug targets 703 

could be translated to human Entrez IDs for 1,844 drugs. The drug-target interactions used are 704 

provided in File 1. Sets of drugs that are approved for each disease were identified according 705 

to DrugBank’s (19) <Indication= category (Supplementary Results, File 1-3 & 5). Unless 706 

otherwise specified, precision is calculated using these disease-specific sets of FDA-approved 707 

drugs as relevant drugs or true positives. 708 

 709 

For validation of ranked drug candidates, we also downloaded data from www.clinicaltrials.gov 710 

(September 2023). Data included information on 465,269 clinical trials registered from 711 

September 17th, 1999, to September 7th, 2023. Clinical trials (n = 70,396) for 1,085 of the 712 

included 1,844 drugs were found. To derive information on the disease relevance of drug 713 

candidates, we filtered clinical trials further by MESH terms, resulting in sets of 724, 494, 532 714 

and 140 drugs that had been tried for rheumatoid arthritis, multiple sclerosis, Crohn’s disease 715 

and psoriatic arthritis, respectively (File 1-5). Even though the outcome of such trials is largely 716 

unknown, using drugs registered for clinical trials alongside approved drugs for calculation of 717 

precision tests scDrugPrio’s ability to capture the pharmacological consensus of the medical 718 

community on drugs with an expected effect. 719 

 720 

For further validation of drug ranking, we also performed a literature search for the top 100 721 

ranked drug candidates of each data set. We systematically searched PubMed and Google 722 

Scholar between June 2020 and December 2022 using the specific disease denotation and the 723 
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drug name as search terms. No restrictions or filters were applied. The relevance of the 724 

identified articles was screened by title and abstract. When no relevant articles were identified, 725 

the drug name was replaced by the substance name, and another search was conducted. To be 726 

eligible, studies had to 1) include a control group, 2) be a human clinical study or rodent 727 

experiment, 3) measure inflammatory activity and 4) be accessible. When several studies were 728 

identified that reported contradictory results, the drug was labelled as having a previously 729 

reported effect, reasoning that it would be impossible to determine the evidence and accuracy 730 

level in every such instance. In Files 1-4, a summary on the nature of the identified article and 731 

a full reference is provided, listed by drug. 732 

 733 

Precision and recall 734 

āÿÿý�Ā�Āÿ = │{relevant drugs} ∩ {þÿĂ�Ā �ÿ Āÿþÿýā�Āÿ}││{drugs in selection}│  735 

 736 

ÿÿý�þþ = │{relevant drugs} ∩ {þÿĂ�Ā �ÿ Āÿþÿýā�Āÿ}││{relevant drugs}│  737 

When referring to precision among the top 100 candidates, we refer to all candidates with rank 738 

f 100. 739 

 740 

Protein‒protein interaction network 741 

The human interactome was derived from do Valle et al.(51). The literature-curated interactome 742 

included 351,444 protein‒protein interactions (PPIs) connecting 17,706 unique proteins and 743 

was annotated using Entrez Gene IDs. The largest connected component included 351,393 PPIs 744 

and 17,651 proteins. Only the largest connected component was used for further analysis. 745 
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 746 

Antigen-induced arthritis mouse model 747 

Antigen-induced arthritis (AIA) was triggered in six 8-week-old, anaesthetised female 129/Sve 748 

mice by intra-articular injection of methylated bovine serum (mBSA) in the left knee joint after 749 

having presensitised mice to mBSA. The left knee joints of four naïve mice were injected with 750 

phosphate-buffered saline (PBS, 20 μL) and used as a negative control. One week after intra-751 

articular triggering of AIA, mice were sacrificed, and joints were either used for 752 

immunohistochemistry or scRNA-seq. Histochemical preparation was performed as previously 753 

described (6), and specimens were examined in a blinded manner for pannus formation, cartilage 754 

and subchondral bone destruction, and synovial hypertrophy on an arbitrary scale, 0–3, as 755 

described by Magnusson et al. (52). For the scRNA-seq experiment, joint tissue was minced to 756 

~1 mm3 pieces, which were digested by collagenase Ⅳ (1.5 mg/mL) and DNase Ⅰ (100 µg/mL) 757 

at 37°C. Dissociated cells were passed through a 70-µm cell strainer. Single-cell suspensions 758 

were resuspended in RPMI-1640 at a density of 1 × 105 cells/mL for cell loading. One mouse 759 

in which AIA had been triggered developed only mild arthritis (arthritis score 0.5) and was 760 

therefore excluded from further analysis. All experimental procedures were performed 761 

according to the guidelines provided by the Swedish Animal Welfare Act and approved by the 762 

Ethical Committee for Research on Animals in Stockholm, Sweden (N271-14). 763 

 764 

scRNA sequencing was performed using the Seq-Well technique (53) following a described 765 

protocol (6). Briefly, prepared single-cell suspensions were counted and coloaded with barcoded 766 

and functionalised oligo-dT beads (Chemgenes, Wilmington, MA, USA, cat. No. MACOSKO-767 

2011-10) on microwell arrays synthesised as described by Gierahn et al. (53). For each sample, 768 

20,000 live cells were loaded per array to bind with oligo-dT beads. Beads were collected for 769 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 13, 2023. ; https://doi.org/10.1101/2023.11.08.566249doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.08.566249
http://creativecommons.org/licenses/by-nd/4.0/


   

 

40 

 

capturing mRNA and preparing the library following cell lysis, hybridisation, reverse 770 

transcription and transcriptome amplification. Except for one library, which was sequenced 771 

alone, libraries from three samples were pooled for sequencing (Table S2), resulting in a 772 

coverage of 6.6 reads per base. Four libraries were prepared for each sample using the Nextera 773 

XT DNA Library Preparation Kit (Illumina, San Diego, CA, USA; cat. No. FC-131-1096) 774 

according to the manufacturer’s instructions. Each library was sequenced once, except for one 775 

library, which was sequenced twice using the NextSeq 500/550 system. 776 

 777 

The single-cell data were processed into digital gene expression matrices following James 778 

Nemesh, McCarrol’s lab Drop-seq Core Computational Protocol (version 1.0.1, 779 

http://mccarrolllab.com) using bcl2fastq Conversion and Picard software. To increase the read 780 

depth for the cells, each sample was sequenced multiple times (Table S2), and the fastq files 781 

for each sample were merged before further alignment steps. The indexed reference for 782 

alignment of reads was generated from GRCm38 (June 2017, Ensembl) using STAR software 783 

(2.5.3). Only primary alignments towards the reference genome were considered during 784 

downstream analyses, according to the mapping quality using STAR software. 785 

 786 

Sampling and sequencing of psoriatic arthritis patients 787 

Sampling. Psoriatic arthritis (PsA) patients and controls were recruited by the Immune-788 

Mediated Inflammatory Diseases Consortium (IMIDC) (54). PsA patients were recruited from 789 

different rheumatology departments from university hospitals belonging to the IMIDC. All PsA 790 

patients were diagnosed according to the CASPAR diagnostic criteria for PsA (55) with > 1 791 

year of disease evolution and > 18 years old at the time of recruitment. Exclusion criteria for 792 

PsA included the presence of any other form of inflammatory arthritis, rheumatoid factor levels 793 
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greater than twice the normality threshold or confirmed presence of an inflammatory bowel 794 

disease. PBMCs were sampled prior to treatment with anti-TNF or anti-IL17 and cryopreserved. 795 

Treatment response was classified at week 12 according to the EULAR response (25) (File 5). 796 

For the anti-TNF study, 6 males and 10 females were included. The corresponding figures for 797 

anti-IL-17 treatment were 3 males (2 responders) and 13 females (6 responders). 798 

Simultaneously, healthy age- and sex-matched control subjects (File 5) were recruited from 799 

healthy volunteers recruited through the Vall d’Hebron University Hospital in Barcelona 800 

(Spain). All the controls were screened for the presence of any autoimmune disorder, as well 801 

as for first-degree family occurrence of autoimmune diseases. None were found to be positive. 802 

Four males and four females were included. The study was approved by the Hospital 803 

Universitari Vall d’Hebron Clinical Research Ethics Committee. Protocols were reviewed and 804 

approved by the local institutional review board of each participating center. 805 

 806 

Cell thawing. PBMCs cryopreserved at -80°C were thawed in a 37°C water bath and transferred 807 

with a bored tip to a 15 ml Falcon tube containing 14 ml of 37°C prewarmed RPMI medium 808 

supplemented with 10% FBS (Thermo Fisher Scientific). Samples were centrifuged at 300x g 809 

for 10 min at (room temperature) RT, the supernatant was removed, and pellets were 810 

resuspended in 1 ml of 1X PBS (Thermo Fisher Scientific) supplemented with 1% BSA (PN 811 

130-091-376, Miltenyi Biotec) and 10 µL of DNase I (PN LS002007, Worthington-Biochem). 812 

After incubation at RT for 10 min with periodic shaking, the cells were filtered with a 20 µm 813 

strainer (PN 43-10020-70, Cell Strainer) into a new 15 ml falcon on ice, and the filter was 814 

washed by adding 9 mL of cold 1× PBS. Samples were concentrated afterwards by 815 

centrifugation at 300 × g for 10 min at 4°C and resuspended in 1 × PBS with 0,05% BSA for 816 

further assessment of cell numbers and viability with the TC20™ Automated Cell Counter (Bio-817 
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Rad). Samples balanced by responders and nonresponders for each treatment were mixed in 818 

pools of 8 patients at a 50:50 ratio and concentrated by centrifugation in an appropriate volume 819 

of 1 × PBS-0.05% BSA to obtain a final cell concentration > 4,000 cells/µL, suitable for 10× 820 

Genomics scRNA-sequencing. The suspension was filtered again with a 20 µm strainer, and 821 

the cell concentration was verified by counting with the TC20™ Automated Cell Counter. 822 

 823 

Cell encapsulation and library preparation. Cells were partitioned into Gel BeadInEmulsions 824 

(GEMs) by using the Chromium Controller system (10 × Genomics). Each pooled sample was 825 

loaded into two channels with a target recovery of 35,000 cells per channel to ensure a minimum 826 

final recovery of 2,000 cells per sample condition. After GEM-RT incubation, the resulting 827 

cDNAs were purified with SPRI beads. To ensure maximal cDNA recovery, a second Sylane 828 

bead purification was performed on the supernatant from the first purification, and both 829 

products were eluted together and preamplified for 13 cycles, following the 10 × Genomics 830 

protocol. cDNA was quantified on an Agilent Bioanalyzer High Sensitivity chip (Agilent 831 

Technologies), and 100 ng was used for library preparation. Gene Expression (GEX) libraries 832 

were indexed with 13 cycles of amplification using the Dual Index Plate TT Set A (10 × 833 

Genomics; PN-3000431). The size distribution and concentration of full-length GEX libraries 834 

were verified on an Agilent Bioanalyzer High Sensitivity chip. Finally, sequencing of GEX 835 

libraries was carried out on a NovaSeq 6000 sequencer (Illumina) using the following 836 

sequencing conditions: 28 bp (Read 1) + 10 bp (i7 index) + 10 bp (i5 index) + 90 bp (Read 2) 837 

to obtain approximately >20,000 paired-end reads per cell. 838 

 839 

3’ Single-cell RNA sequencing (scRNA-seq). PBMC samples from 32 patients and 8 healthy 840 

controls were evenly mixed in pools of 8 donors per library following a multiplexing approach 841 
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based on donor genotype, as in Kang et al. (56), for a more cost- and time-efficient strategy. 842 

Importantly, libraries were designed to pool samples together from the same treatment (anti-843 

TNF or anti-IL17) but mixing patients with a different response to treatment. With this 844 

approach, we aimed to avoid technical artifacts that could mask subtle biological differences 845 

between responders and nonresponders. To profile the cellular transcriptome, we processed the 846 

sequencing reads with 10X Genomics Inc. software package CellRanger v6.1.1 and mapped 847 

them against the human GRCh38 reference genome. 848 

 849 

Library demultiplexing. The donor’s genotypes (VCF format) were simplified by removing 850 

SNPs that were unannotated or located in the sexual Y, pseudoautosomal XY or mitochondrial 851 

chromosomes (chr 0, 24, 25 and 26, respectively). As genotypes were assembled using the 852 

human GRCh19 reference genome, we converted them to the same genome assembly used to 853 

map the sequencing reads, the human GRCh38 reference genome, using the USCS LiftOver 854 

(https://genome.ucsc.edu/cgi-bin/hgLiftOver) command line executable. To meet the LiftOver 855 

required format (BED format), we used an available wrapper script (liftOver_vcf.py) to support 856 

input/output from VCF format (57). The library demultiplexing by donor was performed with 857 

cellsnp-lite v1.2.2 in Mode 1a (57), which allows genotyping single-cell GEX libraries by 858 

piling-up the expressed alleles based on a list of given SNPs. To do so, we used a list of 7.4 859 

million common SNPs in the human population (MAF > 5%) published by the 10,00 Genome 860 

Project consortium and compiled by Huang et al. (57). Importantly, we used the default 861 

parameters, setting the MAF > 5% (--minMAF 0.05) and requesting genotyping in addition to 862 

counting (--genotype). Then, we performed donor deconvolution with vireo v0.5.6 (58), which 863 

assigns the deconvoluted samples to their donor identity using known genotypes while detecting 864 
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doublets and unassigned cells. Finally, we discarded detected doublets and unassigned cells 865 

before moving on to the downstream processing steps. 866 

 867 

scRNA-seq data sets and preprocessing 868 

Below, we describe all of the scRNA-seq data sets and the preprocessing steps of the current 869 

work as outlined in Fig. S1. As most preprocessing steps were applied to scRNA-seq expression 870 

matrices of all data sets, we will describe them jointly. 871 

 872 

Quality cut-offs. Starting from a raw scRNA-seq gene expression matrix, the quality of cells 873 

was assured by application of quality cut-offs that aimed to filter out low-quality cells (few 874 

genes, low read depth), dying cells (high expression of mitochondrial genes) and doublets 875 

(unexpectedly high reads and large number of genes). While arbitrary, these specific cut-offs 876 

were adapted to the corresponding data set and reported in File 1-5 (59). Genes that were 877 

expressed in less than three cells were excluded from further analysis. 878 

 879 

Batch correction. In case a high degree of interindividual expression differences existed, batch 880 

correction was performed according to a previously established pipeline (60). In short, we used 881 

Seurat’s function findIntegrationAnchors() (61) for the list of objects that corresponded to each 882 

individual. These anchors were later used by IntegrateData() (61) to integrate the data from 883 

individuals to correct for patient-specific differences as suggested in (62). 884 

 885 

Denoising. Next, data for all cells were processed by a deep count autoencoder (DCA) model 886 

(18), which is a neural network performing a nonlinear principal component analysis (PCA). 887 

The DCA method is initiated by computing a library size, log- and z-score normalised 888 
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expression matrix, which is taken as an input to the neural network, and the output of the neural 889 

network log10 transformed), and denoised single-cell expression matrix D, which has the same 890 

features as the original data but is corrected for various sources of noise in the data. The DCA 891 

method also outputs a representation of the original single-cell data in a latent space. This 892 

representation has many fewer features than the original data, which is particularly important 893 

for performing accurate cluster analyses. The intercellular expression differences are generally 894 

better represented in this latent space than in purely linear PCA models, and the latent space 895 

representation is also corrected for single-cell data artefacts such as dropouts and varying 896 

library sizes. 897 

 898 

Clustering analysis was performed using the Seurat v3.1 package (61) on the DCA-derived 899 

latent representation. A shared nearest neighbor graph was constructed, and neighborhood 900 

overlap between every cell and its k-nearest neighbors was calculated based on the Jaccard 901 

index using the FindNeighbors() function on all supplied latent features. Next, clusters were 902 

identified through application of the Louvain algorithm to the shared nearest neighbor graph 903 

using the FindClusters() function along with a specified resolution setting. The resolution 904 

parameter and k for k-nearest neighbor analysis were tailored to each data set and are reported 905 

below. Clusters were visualised through RunTSNE (). 906 

 907 

Analyses of interindividual molecular heterogeneity. After denoising and clustering, 908 

heterogeneity among samples was determined. For this, we trained a flexible machine learning 909 

model that attempts to find a decision boundary between the given groups of cells. If this model 910 

results in a high misclassification rate for test data, it indicates that groups are highly mixed. 911 

More specifically, the data were randomly divided in half and used for training and testing the 912 
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model. A random forest classifier (63) was used to classify cells from sick samples based on 913 

what patient the sample was derived from. Cross-validation with 10-fold and grid search (64) 914 

was used to find the most appropriate hyperparameters of the random forest. The bootstrap 915 

(65)percentile method (65) was used to construct the 95% confidence intervals for training and 916 

test misclassification rates. The Scikit package (66) from Python (3.7.9) was used to perform 917 

the analysis. 918 

 919 

Furthermore, patient heterogeneity was explored through comparison of cell type proportions 920 

and examination of latent features of the non-batch-corrected data. Interindividual differences 921 

in cell type proportions were explored by the application of the chi-square test to the proportions 922 

of cell types in sick samples. Latent feature comparison was conducted visually through tSNE 923 

visualisation of the latent features of each patient. The results for these analyses are found in 924 

the Supplementary Results. 925 

 926 

Cell typing. While cell typing is not crucial for scDrugPrio (which might be performed on 927 

unlabelled clusters), we cell typed clusters to enhance biological interpretation. Cell types were 928 

assigned to each cluster based on the relative coexpression of several known cell type marker 929 

genes. For AIA data, each gene’s expression was expressed as a fraction of a cell’s total gene 930 

expression score. For visualisation of gene expression differences between clusters, z-scores 931 

were calculated. Z-scores for single cells were derived by comparison of one cell’s gene fraction 932 

to all other cells’ gene fractions. Z-scores for gene expression of clusters were derived by 933 

comparison of the average gene fraction in a cluster to the cluster-averaged gene fractions of 934 

cells in other clusters. Murine cell type-specific marker genes for the RA data were derived 935 

from the online resources of the R&D systems (www.rndsystems.com/research-area; accessed 936 
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July 2020). Cell typing of the human data sets was performed using DCA denoised gene 937 

fractions and utilised combinations of marker genes (File 2 & 3). 938 

 939 

Differentially expressed genes. For each cell type separately, differentially expressed genes 940 

(DEGs) were calculated by comparing denoised gene expression of cells derived from healthy 941 

samples vs. cells from sick samples. For this purpose, the FindMarkers() function in Seurat (61) 942 

was used to deploy a scRNA-seq-tailored hurdle model supplied by the MAST package (67). 943 

Genes were considered significantly differentially expressed when they showed an absolute log 944 

fold change greater than or equal to 1.5 and a Bonferroni-adjusted P < 0.05. The fold change 945 

cut-off was motivated by previous studies (68) and aimed to decrease the number of DEGs for 946 

later network calculations. 947 

 948 

Antigen-induced arthritis. Quality cut-offs resulted in a total of 16,751 cells (File 1). Genes 949 

were annotated as murine NCBI Gene Symbols. Following denoising, clustering using k = 20 950 

and a resolution of 0.6 resulted in the identification of 20 clusters that were cell typed. 951 

Heterogeneity analysis used n_estimators = 1,500, max_depth = 15, min_samples_split = 50, 952 

and min_samples_leaf = 50 and showed no significant heterogeneity. DEGs and the denoised 953 

expression matrix were translated to human Entrez gene IDs using human-mouse orthologues 954 

downloaded from NCBI (August 2019). 955 

 956 

Multiple sclerosis. A unique molecular identifier (UMI) matrix (22) for cerebrospinal fluid 957 

(CSF) of five human multiple sclerosis (MS) patients and five human patients with idiopathic 958 

intracerebral hypertension (IIH) were downloaded from the Gene Expression Omnibus (GEO) 959 

database (GSE138266). Gene annotation was translated from human Ensembl gene IDs to 960 
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human Entrez gene IDs and symbols using the HUGO Gene Nomenclature Committee (HGNC) 961 

database (69) (downloaded November 2020). After the application of quality cut-offs (File 2), 962 

we derived 33,848 cells. Initial preprocessing was performed without batch correction using 963 

cluster parameters k = 10 and resolution = 0.2 after DCA denoising to derive 17 clusters. 964 

Interindividual heterogeneity was assessed as described below using the following 965 

hyperparameters: n_estimators = 500, max_depth = 30, min_samples_split = 50, 966 

min_samples_leaf = 25. Since we noticed substantial patient-related heterogeneity (Fig. S5a), 967 

preprocessing was repeated, including batch correction, DCA denoising, and clustering using k 968 

= 15 and resolution = 0.35 to derive 21 clusters that were cell typed using known marker genes 969 

derived from the original publication (22) (File 2). The number of DEGs ranged from 0 to 970 

10,076. 971 

 972 

Crohn’s disease. A unique molecular identifier (UMI) matrix (24) for eleven human Crohn’s 973 

disease (CD) patients was downloaded from GEO (GSE134809). Data for each patient included 974 

intestinal biopsies from one inflamed site and one uninflamed site. After application of quality 975 

cut-offs (File 3), we derived 77,416 cells. Gene annotation was translated from human Ensembl 976 

gene IDs to human Entrez gene IDs and symbols using the HGNC database (2020-11-08) (69). 977 

Initially, data were DCA denoised without applying batch correction. Clustering was performed 978 

using k = 15 and resolution = 0.8. Interindividual molecular heterogeneity was assessed as 979 

described below using the following hyperparameters: n_estimators = 1,000, max_depth = 20, 980 

min_samples_split = 50, min_samples_leaf = 25. Since there was substantial interindividual 981 

heterogeneity (Fig. S8a), preprocessing was repeated now batch-correcting before DCA 982 

denoising. Clustering was again performed using k = 15 and resolution = 0.8. 983 

 984 
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Individual Crohn’s patients. For individual patient predictions, we used the same quality cut-985 

offs as for the pooled analysis of CD patients. As interindividual heterogeneity does not affect 986 

the predictions made for individual patients, these calculations were performed on non-batch-987 

corrected data. DCA denoising was applied to the joint data, and gene annotation was translated 988 

to Entrez gene IDs. Thereafter, scRNA-seq data were separated by patient, and cells from each 989 

patient were clustered individually. An individual patient cluster was assigned a cell type based 990 

on which cluster it most resembled in the joined CD analysis, as measured by the number of 991 

shared cell identifiers. DEGs were then calculated between cells from sick and healthy samples. 992 

Visualisations of data were in part created using BioRender.com. 993 

 994 

Psoriatic arthritis. Data sets were divided into one anti-TNF and one anti-IL17 data set, 995 

including responders (R), nonresponders (NR) and healthy controls. We filtered out the doublet 996 

and unassigned cells as well as those that did not meet the quality cut-off criteria (File 5) and 997 

derived 78,610 cells with 5,088 mean reads for the anti-TNF data set and 72,472 cells with 998 

5,343 mean reads for the anti-IL17 data set. In both data sets, 19,415 cells were derived from 999 

healthy controls. Data sets were batch-corrected, and DCA was performed. For anti-TNF, 1000 

clustering was performed using k = 25 and resolution = 0.25. The corresponding parameters for 1001 

anti-IL17 were k = 15 and resolution = 0.45. The remaining downstream analysis was performed 1002 

for responders and nonresponders separately, which meant that DEGs were calculated between 1003 

responders and healthy controls and between nonresponders and healthy controls. For the anti-1004 

TNF data set, the number of DEGs ranged from 0 to 5,989 for R and from 0 to 5,877 for NR. 1005 

The corresponding figures for anti-IL17 were 0 to 3,097 and 0 to 3,284. Next, scDrugPrio was 1006 

applied to DEGS from anti-TNF R and NR as well as anti-IL17 R and NR separately. 1007 
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 1008 

In vitro validation of potential novel drugs 1009 

To validate the predicted novel drugs, in vitro culture of murine and human B cells upon 1010 

activation with the indicated stimuli was employed to assess the effects of the predicted drugs 1011 

on B-cell survival, activation, proliferation, and antibody production. Three doses for each 1012 

predicted drug were used to challenge in vitro cultured B cells (Table S1). For the assessment 1013 

of potential novel drugs on murine B-cell survival and activation, 300,000 murine naïve B cells 1014 

(Lin-B220+CD43-) were enriched by flow cytometric sorting and cultured in the presence of 1015 

AffiniPure F(ab')₂ Fragment goat anti-mouse anti-IgM (10 μg/mL, CAT: 115-006-075, Jackson 1016 

ImmunoResearch), anti-mouse CD40 (10 μg/mL, Clone:1C10, Biolegend), or LPS (10 μg/mL) 1017 

for 24 hours. B-cell survival was determined by flow cytometric analysis of propidium iodide 1018 

(PI)+ cells. Surface CD69, CD86, and MHC-II were used as readouts for assaying B-cell 1019 

activation. For the analysis of B-cell proliferation, purified B cells were stained with 1020 

carboxyfluorescein succinimidyl ester (CFSE) (1 μM) before in vitro culture for three days. To 1021 

determine the effects of the predicted drugs on antibody production, 200,000 purified murine 1022 

naïve B cells were stimulated with anti-CD40 (10 μg/mL) + IL-4 (10 ng/mL), LPS (10 μg/mL) 1023 

+ IL-4 (10 ng/mL), or LPS (10 μg/mL) + IFN-γ (10 ng/mL) for six days. 1024 

 1025 

For the analysis of novel drugs predicted to regulate the biology of human B cells, peripheral 1026 

blood mononuclear cells (PBMCs) were isolated from the buffy coat as previously described 1027 

(70, 71). Human naïve B cells were subsequently preenriched by MACS sorting using a B-Cell 1028 

Isolation Kit II (Miltenyi) and further purified by flow cytometric sorting of CD19+CD27- B 1029 

cells. Purified human naïve B cells were cultured in 96-well plates in the presence of AffiniPure 1030 

F(ab')₂ Fragment goat anti-human IgG + IgM (5 μg/mL, CAT: 109-006-127, Jackson 1031 
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ImmunoResearch), anti-human CD40 (5 μg/mL, Clone: G28.5, Bio X Cell), and IL-21 (10 1032 

ng/mL, PeproTech). 1033 

 1034 

B-cell survival was determined by flow cytometric analysis of propidium iodide (PI)+- cells. 1035 

Surface CD69, CD86, and MHC-II were used as readouts for assaying murine B-cell activation. 1036 

Surface CD69 was assayed for the measurement of human B-cell activation. For the analysis 1037 

of B-cell proliferation, purified B cells were prestained with carboxyfluorescein succinimidyl 1038 

ester (CFSE) (1 μM) before in vitro culture for three days. Murine IgG2a and IgG1, as well as 1039 

human IgG in the supernatant, were determined by enzyme-linked immunosorbent assay 1040 

(ELISA) using goat anti-mouse Ig, goat-anti-mouse IgG1-HRP and goat-anti-human IgG2a-1041 

HRP, goat anti-human Ig, and goat-anti-human IgG-HRP (SouthernBiotech) as previously 1042 

described (72). 1043 

 1044 

In vivo validation of predicted drugs 1045 

Amrinone was tested for treating collagen-induced arthritis (CIA). For this, male DBA1/J mice 1046 

purchased from GemPharmatech (China) were immunised intradermally with 100 μg of 1047 

chicken type II collagen (2 mg/mL, Chondrex, USA) emulsified with complete Freund’s 1048 

adjuvant (CFA, 1 mg/mL) and boosted on day 21 with 100 μg of chicken type II collagen 1049 

emulsified with incomplete Freund’s adjuvant (IFA). Mice were i.g. given with diluent (n = 5) 1050 

or amrinone (30 mg/kg, n = 5) daily from day 21 for 3 weeks. The rear paw thickness and the 1051 

clinical arthritis score for each limb were recorded every other day from 0 to 4 with a maximal 1052 

score of 16 for each mouse according to the previous protocol (73). Mice were maintained in a 1053 

specific pathogen-free animal facility at Xuzhou Medical University, and all animal studies 1054 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 13, 2023. ; https://doi.org/10.1101/2023.11.08.566249doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.08.566249
http://creativecommons.org/licenses/by-nd/4.0/


   

 

52 

 

were performed in accordance with protocols approved by the Animal Experimental Ethics 1055 

Committee of Xuzhou Medical University (202012A162). 1056 

 1057 

Mice were sacrificed on day 21 post drug intervention. Serum was collected for the analysis of 1058 

collagen-specific autoantibodies by enzyme-linked immunosorbent assay (ELISA) as 1059 

previously described (74). Briefly, diluted serum was incubated in a 96-well ELISA plate 1060 

precoated with chicken type II collagen (5 μg/mL). Goat-anti-mouse IgG1-HRP, goat-anti-1061 

mouse IgG2a-HRP, and goat-anti-mouse IgG-HRP (SouthernBiotech) were used as detection 1062 

antibodies. Knee joints were fixed in 4% formaldehyde and subsequently decalcified with 1063 

decalcification solution (ServiceBio, China) for one week. The specimens were next embedded 1064 

in paraffin, and sagittal sections (4 µm) were cut. The sections were stained with hematoxylin 1065 

and eosin (H&E) for the histological analysis of immune cell infiltration and Safranin-O for the 1066 

analysis of bone erosion as previously described (72, 74). 1067 

 1068 

Comparison of scRNA-seq-based screening outcomes for rheumatoid arthritis to other data 1069 

types and prediction methods 1070 

Briefly, we benchmarked outcomes based on the scRNA-seq-derived DEGs against microarray 1071 

data (GSE55235 & GSE93272) (75, 76), GWAS Catalog (77) genes and OMIM (78) genes as 1072 

well as combinations of these data sets. scDrugPrio was compared to previous methods such as 1073 

1) identifying druggable DEGs, targeting key enriched pathways (79), CMAP (33) drug 1074 

predictions and the empirical drug selection of Kim et al. (14). Predictions were also replicated 1075 

using the smaller, unbiased HuRI PPIN (80) (8,236 proteins, 52,150 interactions) to ensure the 1076 

absence of knowledge bias. More information can be found in the Supplementary Results. 1077 

 1078 
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Data and code availability 1079 

scRNA-seq data that support the findings of this study are openly available at Gene Expression 1080 

Omnibus (GEO), reference number GSE193536. Unless otherwise stated, analysis was 1081 

performed in R 3.6.3. The code for data cleaning and analysis associated with the current 1082 

submission is available at https://github.com/SDTC-CPMed/scDrugPrio. 1083 

1084 
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