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Abstract 

Socioeconomic resources (SER) calibrate the developing brain to the current context, which can 

confer or attenuate risk for psychopathology across the lifespan. Recent multivariate work 

indicates that SER levels powerfully influence intrinsic functional connectivity patterns across 

the entire brain. Nevertheless, the neurobiological meaning of these widespread alterations 

remains poorly understood, despite its translational promise for early risk identification, targeted 

intervention, and policy reform. In the present study, we leverage the resources of graph theory 

to precisely characterize multivariate and univariate associations between household SER and 

the functional integration and segregation (i.e., participation coefficient, within-module degree) 

of brain regions across major cognitive, affective, and sensorimotor systems during the resting 

state in 5,821 youth (ages 9-10 years) from the Adolescent Brain Cognitive Development 

(ABCD) Study. First, we establish that decomposing the brain into profiles of integration and 

segregation captures more than half of the multivariate association between SER and functional 

connectivity with greater parsimony (100-fold reduction in number of features) and 

interpretability. Second, we show that the topological effects of SER are not uniform across the 

brain; rather, higher SER levels are related to greater integration of somatomotor and subcortical 

systems, but greater segregation of default mode, orbitofrontal, and cerebellar systems. Finally, 

we demonstrate that the effects of SER are spatially patterned along the unimodal-transmodal 

gradient of brain organization. These findings provide critical interpretive context for the 

established and widespread effects of SER on brain organization, indicating that SER levels 

differentially configure the intrinsic functional architecture of developing unimodal and 

transmodal systems. This study highlights both sensorimotor and higher-order networks that may 

serve as neural markers of environmental stress and opportunity, and which may guide efforts to 

scaffold healthy neurobehavioral development among disadvantaged communities of youth. 
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Introduction 

Socioeconomic resources (SER) powerfully influence concurrent and lifelong outcomes, 

especially during childhood and adolescence when environmental experiences have strong and 

cascading effects on health and functioning (134). For example, household SER levels in youth, 

typically measured through family income, parental education, and neighborhood resources, 

have been associated with disparities in educational and occupational attainment, cognitive and 

socioemotional functioning, and physical (e.g., cardiovascular disease, cancer) and mental health 

(e.g., anxiety, depression, suicide, criminality, substance use) (539). Elucidating the biological 

mechanisms through which SER levels instigate pathways of vulnerability and resilience can 

inform early risk identification, facilitate targeted intervention, and encourage reform of public 

policies implicated in socioeconomic and mental health inequities. 

  

Technological and computational advancements in non-invasive neuroimaging methods have 

allowed researchers to demonstrate that SER levels may influence behavior through their impact 

on brain function and development (10,11). Concurrently, there is increased recognition that the 

brain constitutes a complex network of interconnected regions (12,13). Task-free <resting-state= 

functional magnetic resonance imaging (fMRI) uses coherence in spontaneous activity across 

brain regions to yield maps of functional connectivity patterns that reflect neural communication 

within and between large-scale brain networks critical for cognition and mental health (14,15). 

  

Previous studies probing how SER levels influence resting-state functional connectivity have 

predominantly relied on individual, region-specific connections (e.g., amygdala-ventromedial 

prefrontal connectivity) (16). There is, however, convergent evidence demonstrating that 

socioemotional, cognitive, and psychiatric characteristics emerge from widespread profiles of 

tens of thousands of connections across the entire brain, rather than focal profiles involving 

connections between individual pairs of regions (17). 

  

Our group has therefore recently conducted the first multivariate predictive modeling study 

interrogating brain-wide connectivity changes associated with household SER (18) in the 

Adolescent Brain Cognitive Development (ABCD) Study, the largest neuroimaging study of 

youth to date (19,20). We identified robust and generalizable associations between SER and 

resting-state functional connectivity, with connectivity changes explaining 9% of the variance in 

SER out-of-sample 3 a relatively large effect size in the social sciences (21). These connectivity 

changes were widespread across most pairs of brain networks (72 out of 110 network pairs). A 

key limitation of this work, however, is in terms of interpretation. While we observed complex 

and widespread connectivity alterations associated with SER, the neurobiological meaning of 

these alterations remains elusive. 

  

In the present study, we address this knowledge gap by leveraging the resources of graph theory 

(22). The human brain is organized into multiple intrinsic connectivity networks (ICNs) (23325). 

ICNs exhibit developmental refinements in profiles of segregation (i.e., the degree of neural 

communication within distinct, functionally specialized networks) and integration (i.e., the 

degree of neural communication across different networks) during sensitive developmental 

windows (26329). Integration and segregation are reflected in a pair of graph theoretic metrics 
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that describe between-network connectivity (participation coefficient) and within-network 

connectivity (within-module degree) (30). Profiles of higher participation coefficient and lower 

within-module degree reflect integration, while the reverse reflects segregation (31). 

  

ICNs are organized along a unimodal-transmodal gradient, which represents the degree to which 

networks are specialized for encoding specific sensory features versus integrating representations 

across modalities (32334). Motor and sensory processing networks anchor the unimodal end, 

heteromodal networks occupy the middle range, and association networks anchor the transmodal 

end (32334). Across development, unimodal networks become more integrated and transmodal 

networks become more segregated (27,29). SER levels have been previously associated with 

functional network integration/segregation in youth (35337). As different ICNs exhibit unique 

developmental refinements based on their position on the sensorimotor-association gradient, the 

topological effects of SER may differ along the transmodal axis, though this possibility currently 

remains unclear. 

  

Multiple ecological mechanisms associated with SER (e.g., parental stimulation, school quality, 

nutrition, neighborhood adversity) may influence coordinated patterns of ICN organization, 

especially in terms of integration and segregation (11,38). Thus, in the present study, we quantify 

multivariate and univariate associations between household SER and the within-module degree 

and participation coefficient of 418 nodes across 15 major ICNs throughout the brain. Moreover, 

we assess potential ICN-specific effects of SER (e.g., greater segregation and lower integration 

in certain networks; the reverse in others). Finally, we interrogate whether the effects of SER on 

network integration/segregation are spatially patterned along the sensorimotor-association axis. 

  

We performed our analyses in the ABCD Study, a population-based consortium study of 11,875 

9- and 10-year-olds with substantial sociodemographic diversity (39). As in our prior report (18), 

we constructed a latent factor of SER across household and neighborhood contexts. We establish 

that SER has robust relationships with network integration/segregation, which account for most 

of the association between SER and the entire functional connectome. Furthermore, we delineate 

network-specific effects, with higher SER related to greater integration of sensorimotor networks 

but greater segregation of association networks. Lastly, we demonstrate that the effects of SER 

strongly relate to the transmodal axis. These findings add valuable interpretive information by 

suggesting that the associations between SER and functional connectivity spatially conform to 

the sensorimotor-association axis during development. Such insights may elucidate neural 

markers of environmental stress and opportunity. Moreover, they may guide interventions that 

support patterns of brain organization linked to enhanced executive functioning and emotional 

wellbeing during early adolescence, a critical window when many psychosocial challenges 

emerge (26,28,40).  
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Materials and Methods 

1.      Sample and Data 

The ABCD Study is a multisite longitudinal study with 11,875 children between 9-10 years of 

age from 22 sites across the United States. The study conforms to the rules and procedures of 

each site9s Institutional Review Board, and all participants provide informed consent (parents) or 

assent (children). Data for this study are from ABCD Release 3.0. 

  

2.      Data Acquisition, fMRI Preprocessing, and Connectome Generation 

High spatial (2.4mm isotropic) and temporal resolution (TR = 800ms) resting-state fMRI was 

acquired in four separate runs (5min per run, 20min total). Preprocessing was performed using 

fMRIPrep v1.5.0 (41). Briefly, T1-weighted (T1w) and T2-weighted images were run through 

recon-all using FreeSurfer v6.0.1, spatially normalized, rigidly coregistered to the T1, motion 

corrected, normalized to standard space, and transformed to CIFTI space. 

  

Connectomes were generated for each functional run using the Gordon 333 parcel atlas (42), 

augmented with parcels from high-resolution subcortical (43) and cerebellar (44) atlases. 

Volumes exceeding a framewise displacement (FD) threshold of 0.5mm were marked to be 

censored. Covariates were regressed out of the time series in a single step, including: linear 

trend, 24 motion parameters (original translations/rotations + derivatives + quadratics), 

aCompCorr 5 CSF and 5 WM components and ICA-AROMA aggressive components, high-pass 

filtering at 0.008Hz, and censored volumes. Next, correlation matrices were calculated. Full 

details of preprocessing and connectome generation are reported in the Supplement and the 

automatically-generated fMRIPrep Supplement. 

  

3.      Inclusion/Exclusion 

There are 11,875 subjects in the ABCD Release 3.0 dataset. Subjects were excluded for: failing 

ABCD QC, insufficient number of runs each 4 minutes or greater, failing visual QC of 

registrations and normalizations, and missing data required for regression modeling. This left us 

with N = 5,821 subjects across 19 sites for the main analysis. Details of exclusions are provided 

in the Supplement. 

  

4.      Graph Theoretic Analysis 

Since most graph theory measures require unsigned edge weights, each subject9s connectome 

resulted in two separate sets of graphs 3 one for the collection of positive edges and another for 

the negatively weighted edges (45,46). We focused on positive graphs consistent with previous 

graph theoretical investigations (45,46), though supplementary analyses revealed that negative 

graphs did not add meaningful predictive information (see Supplement). 

  

Within-Module Degree is a node-wise measure which captures each node9s degree (i.e., the 

magnitude of summed connectivity weights) specifically within the node9s own network. This 

measure is a modification of the <module degree z-score= metric (30), but without within-

network z-scoring of node degree to better capture differences across participants, rather than 

differences across nodes within each network. Formally, the within-module degree of a node i is 

given by: 
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where �!" is the edge weight between nodes i and �, and �! is the set of nodes incident to node i 

that are in the same network as i. 

Participation Coefficient is a node-wise measure that captures the diversity of a node9s 

connections with other nodes outside of its own network (30). Intuitively, if a node distributes its 

connectivity evenly across all networks, its participation coefficient will be 1, while departures 

from equality yield commensurately lower scores. Formally, the participation coefficient of a 

node i is given by: 
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where � is the set of networks, �!(�) is the sum of edge weights between node � and all nodes 

in network � and �! is the sum of edge weights between node � and all other nodes. 

For both metrics, we used the community structure defined by the applied parcellation schemes 

to determine network boundaries. Within-module degree (MDP) and participation coefficient 

(PCP) for positive edges were calculated for 418 nodes, yielding 836 node-wise graph theoretic 

features per participant. 

  

To quantify the multivariate relationship between these 836 graph theoretic metrics and SER, we 

used principal component regression (PCR) predictive modeling (47,48) (Figure S2). Briefly, 

this method performs dimensionality reduction on the set of predictive features (i.e., graph 

theoretic metrics), fits a regression model on the resulting components (where the number of 

components is determined in nested cross-validation), and applies this model out-of-sample in a 

leave-one-site-out cross-validation framework. We control for multiple nuisance covariates, 

including sex assigned at birth, parent-reported race/ethnicity, age, age-squared, mean FD, and 

mean FD-squared. We controlled for race/ethnicity, a social construct, to account for differences 

in exposure to personal/systemic racism, disadvantage, and opportunity among people of color 

(49,50). We assessed statistical significance with non-parametric permutation tests, using the 

procedure of Freedman and Lane (51) to account for covariates. Exchangeability blocks were 

used to account for twin, family, and site structure and were entered into Permutation Analysis of 

Linear Models (PALM) (52) to produce permutation orderings. Details on these analyses are 

provided in the Supplement. 

  

5.      Latent Variable Modeling 

We constructed a latent variable for SER by applying exploratory factor analysis to household 

income-to-needs, parental education, and neighborhood disadvantage (18). Household income-

to-needs represents the ratio of a household9s income relative to its need based on family size 

(details provided in the Supplement). Parental education was the average educational 

achievement of parents or caregivers. Neighborhood disadvantage scores reflect an ABCD 
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consortium-supplied variable (reshist_addr1_adi_wsum). In brief, participants9 primary home 

address was used to generate Area Deprivation Index (ADI) values (53), which were weighted 

based on results from Kind et al. (54) to create an aggregate measure. Additional details on 

construction of this latent variable are provided in the Supplement. 

  

6.      Code Availability 

The ABCD data used in this report came from NDA Study 901, 10.15154/1520591, which can 

be found at https://nda.nih.gov/study.html?id=901. The subsample used for this study can be 

found at NDA DOI: 10.15154/ebhq-f780. Code for running analyses can be found at 

https://github.com/SripadaLab/ABCD_Resting_SER_GraphTheory.  
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Results 

1. Within-module degree and participation coefficient are strongly related to household 

socioeconomic resources 

  

As reported in our previous study (18), using leave-one-site-out cross-validation (LOSO-CV), 

the out-of-sample multivariate relationship between SER and the whole connectome (reflecting 

87,153 connections) was rcv = 0.274, pPERM < 0.0001. Against this benchmark result, we found 

that the LOSO-CV out-of-sample multivariate relationship between SER and these 836 node-

wise graph theoretic measures (i.e., MDP, PCP) was rcv = 0.162, pPERM < 0.0001. Thus, the linear 

MDP/PCP-SER relationship is 59.1% as strong as the whole connectome-SER relationship. 

  

We next examined whether the 836 MDP/PCP features reflect distinct or overlapping variance in 

predicting SER relative to the 87,153 connections of the entire functional connectome. To assess 

this, we built a stacked model by taking the SER predictions from the full connectome predictive 

model, and the MDP/PCP predictive model, and entering them as predictors of SER in a new 

regression. This stacked model9s LOSO-CV out-of-sample performance was rcv= 0.268; that is, 

the stacked model with the addition of graph theory features performed no better than the full 

connectome model by itself. 

  

These results suggest two conclusions. First, the graph theoretic features represent a subset of the 

variance explained by the whole connectome. Second, there is strong concentration of SER 

predictivity in the graph theoretic features, wherein these 836 graph theoretic features account 

for the majority of the multivariate relationship between the functional connectome and SER. 
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2. Associations between household socioeconomic resources and patterns of 

integration/segregation differ across intrinsic connectivity networks 

  

 
 

Figure 1: Profile Plot Showing Relation Between Within-Module Degree and Participation 

Coefficient Beta Weights When Predicting Socioeconomic Resources by Network Affiliation. 

We computed beta weights from 836 regression models in which socioeconomic resource (SER) 

scores were the outcome variable predicted by 418 metrics of within-module degree for positive 

edges (MDP) and 418 metrics of participation coefficient for positive edges (PCP). Each node9s 

pair of SER-predictive betas (for MDP and PCP) is shown in the above <profile plot=, with 

nodes shaded by network affiliation. Orange lines represent the thresholds for statistically 

significant univariate relationships between SER and MDP/PCP metrics. Four zones are 

noteworthy. Zone 0 contains the majority of nodes that lack statistically significant relations with 

SER. Zone 1 nodes exhibit positive SER-predictive betas for MDP, consistent with greater 

segregation of these nodes with higher SER. Zones 2 and 3 exhibit higher SER-predictive betas 

for PCP (Zone 2 and 3) and lower SER-predictive betas for MDP (Zone 3), consistent with 

greater integration of these nodes with higher SER. Somatomotor-hand, in the upper left, stands 

out as exhibiting particularly extensive integration with higher SER. CinguloOperc = Cingulo-

Opercular Network. DorsalAttn = Dorsal Attention Network. SMhand = Somatomotor Hand 

Network. SMmouth = Somatomotor Mouth Network. VentralAttn = Ventral Attention Network. 

 

 

In Figure 1, we display standardized regression weights for 418 node-wise MDP metrics and 418 

PCP metrics, each regression weight arising from separate regression models predicting SER 

from the respective metric (with controls for nuisance covariates). The plot highlights strongly 
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divergent relationships with SER across different ICNs, with four notable zones. Zone 0 contains 

the majority of nodes that lack statistically significant relations with SER. In Zone 1, we observe 

large, positive SER-predictive betas for MDP in default mode network, an unlabeled network 

(dubbed <None=) primarily anchored in orbitofrontal cortex, and cerebellum, indicating greater 

segregation of nodes within these networks with higher SER. In Zone 2, we observe large, 

positive SER-predictive betas for PCP primarily in subcortical networks, indicating greater 

integration of nodes within this network with higher SER. In Zone 3, we observe large SER-

predictive betas for both MDP (negative betas) and PCP (positive betas) primarily with nodes in 

the somatomotor network, indicating greater integration of nodes within this network with higher 

SER.  
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3. Household socioeconomic resource levels exhibit divergent relationships with network 

integration/segregation across the brain9s unimodal-transmodal gradient 

  

  

 
Figure 2: Scatter Plots Showing Relationships between Within-Module Degree and 

Participation Coefficient Beta Weights When Predicting Socioeconomic Resources with 

Transmodality Scores. Top Figure: We obtained transmodality scores from 418 nodes from a 

previous report by Margulies and colleagues (34), which locates nodes along a gradient with 
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sensory processing networks at one end (lowest transmodality scores) and higher-order 

association networks at the other end (highest transmodality scores). In addition, we calculated 

associations between within-module degree for positive edges (MDP) scores for each of these 

nodes and socioeconomic resources (SER) (<SER-predictive betas for MDP=). We found a 

strong positive association between transmodality scores and SER-predictive betas for MDP. 

Bottom Figure: We performed this same analysis, but this time with participation coefficient for 

positive edges (PCP) scores. We found a moderate negative association between transmodality 

scores and SER-predictive betas for PCP. Nodes shaded by network affiliation. CinguloOperc = 

Cingulo-Opercular Network. DorsalAttn = Dorsal Attention Network. SMhand = Somatomotor 

Hand Network. SMmouth = Somatomotor Mouth Network. VentralAttn = Ventral Attention 

Network. 

 

 

Given differences in the segregation/integration profiles of different ICNs in relation to SER, we 

next examined whether these differences are associated with the transmodality axis. We used 

transmodality scores from a previous report by Margulies and colleagues (34), which locates 

nodes along a gradient with sensory processing networks at one end (lowest transmodality 

scores) and higher-order association networks at the other end (highest transmodality scores). 

We found that transmodality scores exhibited a strong positive relationship with SER-predictive 

betas for MDP (r = 0.42, pPERM < 0.007), and a moderate negative relationship with SER-

predictive betas for PCP (r = 0.21) that only trended toward significance (pPERM < 0.09). These 

results provide quantitative support for divergent SER effects across the transmodality gradient, 

with SER yielding greater integration (lower MDP regression weights, higher PCP regression 

weights) at the sensorimotor processing pole and greater segregation (higher MDP regression 

weights, lower PCP regression weights) at the higher-order processing pole.  
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Discussion 

Household SER levels across childhood and adolescence calibrate structural and functional 

neurodevelopment, with potent implications for physical health, occupational attainment, and 

emotional wellbeing across the lifespan (10,11,55). In the present report, we leverage graph 

theory and the largest neuroimaging cohort of youth to date to delineate how variation in 

household SER becomes biologically expressed along the developing functional architecture of 

cognitive, affective, and sensorimotor brain systems. We found that SER was robustly associated 

with two graph theoretic metrics that decompose brain organization in terms of integration and 

segregation. Importantly, the topological effects of SER were not uniform across the brain; 

rather, higher SER levels were related to greater integration of somatomotor and subcortical 

systems, but greater segregation of default mode, orbitofrontal, and cerebellar systems. Finally, 

we demonstrate that SER-related network reconfiguration was spatially patterned along the 

brain9s transmodal axis. These findings provide critical interpretive context for the established 

and widespread effects of SER on the intrinsic functional architecture of the developing brain. 

 

Previous studies characterizing the neurobiological embedding of SER have primarily examined 

connections between individual pairs of regions (e.g., frontolimbic connectivity) (16). Given the 

brain-wide effects of SER (36,37,56), and the thousands of connections that undergird complex 

and clinically relevant phenotypes (17), our group recently conducted the first multivariate 

predictive modeling study of household SER in the ABCD Study (18). We revealed that the 

correlation between actual SER and SER predicted from 87,153 functional connections at rest 

was 0.27, yet the neuroscientific meaning of these findings remained unclear. In this study, we 

applied graph theory to distill these 87,153 connections into only 836 features that describe the 

effects of SER with greater neurobiological interpretability in terms of intra- and inter-network 

relationships. Specifically, we assessed node-level integration and segregation using 

participation coefficient (between-network connectivity) and within-module degree (within-

network connectivity), and we demonstrate that these two metrics capture more than half of the 

original association with SER (r = 0.16). These findings indicate that these two nodal graph 

properties largely capture the backbone of functional brain architecture, particularly in relation to 

SER. 

 

Segregation gives rise to differentiated networks that execute specialized cognitive functions, 

whereas integration efficiently coordinates these processing streams across the brain (57,58). A 

combination of high segregation and high integration represents an <optimized= small-world 

architecture that rapidly integrates specialized, multimodal information at low wiring and energy 

costs (59,60). Our multivariate findings therefore suggest that the developmental construction of 

an <optimal= small-world-like configuration may be impacted by SER. 

 

To spatially localize the topological effects of SER, we next conducted univariate analyses 

probing the within-module degree and participation coefficient of brain regions within 15 major 

ICNs. First, we found that higher SER levels were associated with greater segregation (higher 

within-module degree) of the default mode network, an unlabeled network (dubbed <None=) 

primarily anchored in orbitofrontal cortex, and the cerebellum. These systems are respectively 

purported to support self-referential and introspective cognition, reward processing and decision-
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making, and cognitive and motor control (25,61363) and have been previously linked with SER, 

despite some inconsistencies in directionality (36,37,56,64,65). As segregation of these systems 

is associated with attention, cognitive control, and impulsivity (62,66,67), these alterations may 

represent a mechanistic pathway from socioeconomic gradients to goal-directed, regulatory 

behavior in youth. 

 

Second, we found that higher SER scores were associated with greater functional integration 

(higher participation coefficient) of the subcortical network implicated in motor planning, threat 

and safety learning, and emotion processing (68371). These findings converge with extensive 

evidence linking SER to structural, functional, and connectivity profiles of subcortical regions, 

such as the amygdala and hippocampus (72374). Given their dense expression of glucocorticoid 

receptors (75,76), these structures may be particularly sensitive to both nurturing and stressful 

experiences often associated with SER (11,77). Integration of subcortical regions with cortical 

systems subserves adaptive emotional learning and regulation (71,78), indicating a plausible 

network-level neural basis for documented links between poverty and psychopathology (3,6,8). 

 

Lastly, higher SER levels were strongly associated with greater functional integration (lower 

within-module degree, higher participation coefficient) of the somatomotor hand network. This 

network is not commonly considered in theoretical accounts linking SER to brain development 

(10,11,79,80), despite being consistently implicated in SER and transdiagnostic psychopathology 

in individual studies (36,56,81,82). The somatomotor network supports motor planning and 

execution (25), and recent data point to its potential involvement in a <somato-cognitive action= 

network that integrates motoric function with goal-directed planning (83). One possibility is that 

SER levels not only calibrate association systems that generate and evaluate abstract cognitive 

representations, but also somatomotor systems that translate these abstract representations into 

goal-relevant behavior. These findings highlight the need for theoretical accounts and empirical 

studies to further delineate how adversity constrains or reconfigures somatomotor development 

to confer vulnerability and resilience. 

 

Since SER displayed divergent associations with the integration/segregation of different ICNs, 

we investigated whether this heterogeneity could be explained by considering how ICNs are 

organized along the brain9s unimodal-transmodal axis. This evolutionarily rooted, hierarchical 

axis of brain organization is anchored by sensory and motor networks on one end and association 

networks on the other (32334). This sensorimotor-association gradient captures developmental 

sequences of multiple neurobiological properties, from structure and myelination to plasticity 

and gene expression (26,84). In the present investigation, we hypothesized that this axis may also 

provide a unifying framework for characterizing the network-specific effects of household SER. 

Consistent with this hypothesis, we found that associations between SER and functional network 

integration/segregation were indeed spatially patterned along the transmodal axis, with higher 

SER levels associated with greater integration at the unimodal/somatosensory pole and greater 

segregation at the transmodal/association pole. 

 

Over the course of neurodevelopment from childhood to young adulthood, lower-order unimodal 

networks (e.g., somatomotor network) become more integrated, whereas higher-order association 

networks (e.g., default mode network) become more segregated (27,29). Thus, the construction 

of integrated somatomotor systems and segregated association systems may represent a universal 
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milestone of functional neurodevelopment. Against this backdrop, our findings suggest that 

higher SER may facilitate the emergence of this sensorimotor-association hierarchy. Conversely, 

lower SER may predict developmental lags in the emergence of this configuration, consistent 

with cross-sectional and longitudinal findings suggesting disadvantage-related delays in the pace 

of neurodevelopment (37,74,85388). Candidate mechanisms for protracted brain development 

following disadvantage include material hardship (e.g., resource access, lower-quality nutrition), 

less complex social and cognitive stimulation (e.g., under-resourced schools, complex reading 

materials), and toxicant exposure (e.g., lead, particulate matter) (11,86). These exposures may 

alter synaptic proliferation and pruning, and ultimately maturational refinements in functional 

network communication (integration) and specialization (segregation) (89391), 

 

Nevertheless, an alternative interpretation of our findings is that developmental trajectories and 

milestones of brain organization may differ as a function of household SER. In other words, the 

trajectory and outcome of neurodevelopment may be qualitatively different depending on SER. 

While higher-SER youth may establish an integrated unimodal and segregated transmodal pole 

with development, lower-SER youth may develop distinct profiles of integration/segregation. 

These distinct neural profiles may allow youth to successfully navigate the unique demands of 

disadvantaged environments but may also manifest in cognitive and socioemotional challenges 

across the lifespan. The former hypothesis is consistent with data indicating that functional 

connectivity patterns that optimize cognition differ in high- versus low-SER contexts (92), as 

well as a recent review of longitudinal studies concluding that disadvantage may engender 

unique, rather than temporally shifted, trajectories of structural brain development (91). 

 

In a separate report (in preparation), we repeated our analyses evaluating associations between 

sleep duration, rather than SER, with the functional integration/segregation of the same 15 ICNs 

in the ABCD Study. Strikingly, we found that sleep duration displayed similar but even stronger 

associations with functional network architecture. Consistent with the reported effects of SER, 

these associations were strongest for the organization of the somatomotor network, such that 

youth who sleep for a longer duration exhibit a more integrated somatomotor network. These 

findings accord with recent studies linking sleep quality to somatomotor connectivity (93395) 

and suggest that somatomotor architecture may represent a robust neural marker associated with 

multiple forms of environmental stress, adversity, and opportunity during development. 

 

Our study has several limitations that will be important to address in future research. First, our 

analyses are cross-sectional and thus do not support inferences about the direction of causality of 

associations or about patterns of neurodevelopment. As neuroimaging data from future ABCD 

waves are released, future studies should disentangle causal effects and assess how the spatially 

divergent effects of SER unfold longitudinally across development. Second, SER scores in the 

ABCD Study are overall higher compared to the national population, an issue that is further 

exacerbated by our exclusion criteria (e.g., cutoffs for excessive head motion) (96,97); thus, 

caution should be exercised when attempting to generalize our findings to the broader population 

in the United States and worldwide. Lastly, in our previous multivariate study of SER (18), 

granular analyses demarcated that parental education was the primary factor related to functional 

connectivity (compared to family income-to-needs and neighborhood disadvantage). Here, our 

focus is on interpreting and spatially localizing these multivariate effects. This focus introduces 
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challenges in dissecting the unique role of each SER component, which constitutes an important 

future direction to inform priorities for policy, prevention, and intervention. 

 

In sum, the present study provides essential neuroscientific meaning to the established and 

widespread effects of household SER on intrinsic functional connectivity. By integrating 

methodological advancements in network neuroscience with theoretical frameworks of brain 

organization, we demonstrate that associations between SER and profiles of network 

integration/segregation in youth unfold differentially along the brain9s transmodal axis, with 

stronger effects on default mode, cerebellar, subcortical, and somatomotor networks. Our 

findings illustrate that SER levels may calibrate the intrinsic graphical architecture of the 

developing brain, highlighting the importance of prevention and intervention efforts that 

facilitate the development of cognitive, affective, and sensorimotor processes underlying risk and 

resilience within disadvantaged communities of youth. 
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