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Abstract
Microbiome studies in animal science using 16S rRNA gene sequencing have become increasingly common in recent years as sequencing costs 
continue to fall and bioinformatic tools become more powerful and user-friendly. The combination of molecular biology, microbiology, microbial 
ecology, computer science, and bioinformatics—in addition to the traditional considerations when conducting an animal science study—makes 
microbiome studies sometimes intimidating due to the intersection of different fields. The objective of this review is to serve as a jumping-off 
point for those animal scientists less familiar with 16S rRNA gene sequencing and analyses and to bring up common issues and concerns that 
arise when planning an animal microbiome study from design through analysis. This review includes an overview of 16S rRNA gene sequencing, 
its advantages, and its limitations; experimental design considerations such as study design, sample size, sample pooling, and sample loca-
tions; wet lab considerations such as field handing, microbial cell lysis, low biomass samples, library preparation, and sequencing controls; and 
computational considerations such as identification of contamination, accounting for uneven sequencing depth, constructing diversity metrics, 
assigning taxonomy, differential abundance testing, and, finally, data availability. In addition to general considerations, we highlight some special 
considerations by species and sample type.

Key words:  16S rRNA gene, amplicon sequencing, bacteriome, bioinformatics, microbiome

Abbreviations: ASV, amplicon sequencing variant; GIT, gastrointestinal tract; GUI, graphical user interface; HACCP, Hazard Analysis and Critical Control Point; 
HPC, high-performance computing cluster; NGS, next-generation sequencing; NTC, no template control; OTU, operational taxonomic unit; TMM, trimmed mean 
of M-values; USDA-FSIS, U.S. Department of Agriculture’s Food Safety Inspection Service

Introduction

Nearly all environments on Earth are inhabited by complex 
communities of microorganisms. While these environments 
have traditionally been studied by obtaining and classify-
ing pure microbiological laboratory cultures, culture-based 
studies limit scienti�c discovery to the microbes that can be 
grown in laboratory conditions, thus constraining our ability 
to fully characterize these microbial communities. The dis-
crepancy between the viable colonies on an agar plate and 
the count of bacteria under a microscope has been termed 
the “great plate count anomaly” (Staley and Konopka, 1985) 
with some estimates approximating that only 1% of bacteria 
can be cultured with standard techniques (Hofer, 2018). The 
development of culture-independent technologies, speci�cally 

next-generation sequencing (NGS) coupled with bioinfor-
matic analyses, has enabled the comprehensive character-
ization of complex microbial communities or microbiomes. 
One example of the power of NGS paired with bioinfor-
matic advancements is when Nielsen et al. (2014) examined 
396 human gut microbiome samples and identi�ed that 181 
new microbial genomes corresponded to previously un-
described species. The parallel evolution of various “-omics” 
technologies has allowed us to answer key questions about 
microbiomes, including which microbes and genes are pre-
sent, what they are capable of doing, and what functions they 
are performing (Addis et al., 2016). The least �nancially and 
computationally expensive of these approaches is 16S ribo-
somal RNA gene sequencing (sometimes shortened to 16S 

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
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rRNA or just 16S). This approach targets speci�c genes that 
allow taxonomic classi�cation and diversity estimation of the 
bacterial and archaeal microbiome (this approach does not 
include all microorganisms in a sample; e.g., it cannot cap-
ture fungal, viral, protozoal, or eukaryotic organisms). Over 
the past 10 yr, the combination of lowered DNA sequencing 
costs and increased accessibility to bioinformatic tools has al-
lowed more animal scientists to incorporate 16S rRNA gene 
sequencing into their research programs. In fact, while in 
2010, the Journal of Animal Science only had four research 
articles that used the word “microbiome,” and by 2020, that 
number had climbed to 184 publications (72 full-length art-
icles and 112 abstracts) in just 1 yr. As more researchers in-
corporate 16S rRNA gene sequencing into their programs, 
they should be familiar with microbiome-speci�c vocabulary 
(Table 1) and experimental considerations (Figure 1) to prod-
uce high-quality, reproducible results. The purpose of this re-
view is to provide a brief tutorial on the use of 16S rRNA 
gene sequencing methods and analysis and also to remove 
barriers to performing microbiome studies in animal sciences.

Overview of the Method

What is 16S rRNA gene sequencing?

Using the ribosomal RNA gene as a marker for determining 
evolutionary relatedness was �rst proposed by Carl Woese 
due to its ubiquity in all organisms (Olsen and Woese, 1993). 
The 16S rRNA gene sequencing method involves targeting 
only a small fraction of microbial DNA, which provides use-
ful insights into the diversity and identi�cation of microbial 
communities. The 16S rRNA gene codes for the RNA compo-
nent of the 30S subunit of a prokaryotic ribosome (bacterial 
ribosomes are composed of a large [50S] and a small [30S] 
subunits). This gene, which is ubiquitous in bacteria and ar-
chaea, has been described as a “molecular clock” because it 
allows for phylogeny determination and species divergence 
due to its structure and activity in cellular function (Duchêne 
et al., 2016). The 16S rRNA gene is around ~1,550 base pairs 
(bp) long and is composed of eight highly conserved regions 
and nine hypervariable regions (with these regions named V1 
to V9; Figure 2) (Clarridge, 2004). When conducting a 16S 
rRNA gene sequencing study, one or several hypervariable re-
gions are ampli�ed using broad-range primers that each bind 
to a conserved region and are sequenced. Then, the informa-
tion in these regions is used to reconstruct the taxonomic 
composition (done by comparing the sequences to databases 
of known organisms) and diversity present within the sam-
ple. Depending on the application, appropriate phylogen-
etic classi�cations can sometimes be made from 16S rRNA 
hypervariable fragments as small as 100 bp, making popu-
lar and affordable short-read sequencing platforms (e.g., 
Illumina) suitable for microbiome analysis (Caporaso et al., 
2011). While it is possible to sequence the entire length of the 
16S rRNA gene for more information, this requires greater 
investments of time and money, which can undermine the ad-
vantages of this approach to high-throughput microbiome 
sequencing. Likewise, sequencing across rRNA genes to in-
clude intergenic regions has proven useful for strain typing 
bacterial species (Johnson et  al., 2019) but requires even 
greater investments of time and money. In summary, modern 
microbiome analysis using 16S rRNA gene sequencing is af-
fordable (often signi�cantly less than US $50 a sample) and 

can provide a culture-independent survey of the bacterial and 
archaeal community within a sample. 

Uses and limitations of 16S rRNA gene sequencing

Before pursuing a particular approach for microbiome ana-
lysis, it is important to consider your research questions and 
whether 16S rRNA gene sequencing will be able to answer 
them. For example,16S rRNA gene sequencing cannot de-
scribe metabolic potential or activity of a microbial commu-
nity. This is because 16S rRNA gene is a housekeeping gene 
found in all prokaryotes and any sequence variability only 
indicates phylogenetic divergence, which may or may not 
correlate with metabolic potential, virulence, antibiotic resist-
ance, etc. Additionally, the 16S rRNA region sequenced may 
not contain suf�cient sequence variability to distinguish spe-
cies or strains (e.g., a pathogenic vs. a commensal strain of 
Escherichia coli).

A further limitation of sequencing-based approaches is 
the arbitrary “total” imposed by the sequencer, such that the 
total absolute microbial load, or abundance, is not re�ected. 
A measurement of total bacterial load would require quan-
titative methods, such as quantitative polymerase chain re-
action (qPCR), and cannot be obtained by 16S rRNA gene 
sequencing alone (Gloor et  al., 2017; Ganda et  al., 2021). 
Data generated by 16S rRNA gene sequencing can be thought 
of as a survey or “taking attendance” as it provides infor-
mation on which microbes are present and in what relative 
abundance. This also allows the use of diversity estimates to 
describe the microbial ecology of a single sample and to com-
pare similarities and differences among many samples. One 
known shortcoming to this approach is that different organ-
isms have different copy numbers of the 16S rRNA gene in 
their genome, so relative abundance is biased toward those 
with higher copy numbers of the 16S rRNA genes in their 
genome; but while this is a known limitation, tools to correct 
this issue have not produced reproducible consistent results 
and the common practice is to not adjust for 16S rRNA gene 
copy number by bacterium (Louca et al., 2018). Also of note, 
if you are looking for a speci�c bacterium, it would be more 
advantageous to use speci�c primers as opposed to relying 
on the broad range primers, as low levels of the bacterium 
of interest could be missed with 16S rRNA gene sequencing 
alone, resulting in a false negative.

Another important caveat to DNA-based 16S rRNA gene 
sequencing is that it cannot distinguish whether microbes in 
a sample are dead or alive, which can be a relevant issue in 
agricultural sciences. For example, applying 16S rRNA gene 
sequencing to soil sterilized by steaming may suggest highly 
diverse microbial communities in these matrices, when in fact 
most of those microbes are dead. Researchers interested in 
microbial activity might prefer RNA-based or metabolomic 
approaches to answer those questions or the use of a different 
set of tools.

General Experimental Considerations

Sample size, statistical power, and 
experimental unit

Although microbiome studies routinely analyze many de-
pendent variables simultaneously (e.g., all the bacterial taxa 
present in a sample) as opposed to just one (such as rate of 
gain and carcass size), many of the same experimental design 
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Table 1. Glossary of commonly used microbiome terms

Term De�nition

16S rRNA gene Gene encoding the RNA component of the 30S subunit of a prokaryotic ribosome; ubiquitous to bacteria and archaea

Alpha diversity The variance within a sample, used to evaluate the number of different species (usually represented by the number of ASVs) in each sample

Amplicon The fragment of DNA resulting from a primer set after ampli�cation using PCR

ASV Amplicon Sequence Variant: individual sequence variants differing by as little as one nucleotide with no �xed dissimilarity threshold

Barcoding Unique DNA sequences attached to broad range primers before ampli�cation. These unique barcodes allow different samples to be pooled and sequenced together 
in the same run and later separated during analysis (see demultiplexing)

Beta diversity The variance between samples, usually expressed as a distance matrix

Demultiplexing Separation of sequencing reads from a sequenced pooled library by unique barcodes and assignment to the corresponding samples

Evenness Balance of the features (ASVs, species, etc.) within a sample

Extraction Controls Blank or non-DNA samples (such as an empty sponge) added to a study to assess background laboratory contamination (see also library controls and NTC)

Feature Table Also known as a count table (as when using OTUs, OTU Tables). Table that contains the number of sequences counted for each feature (ASV or OTU most com-
monly), per sample in a matrix

GUI Graphical User Interface: Computer program that allows users to “point-and-click” as opposed to the command line

HPC High-performance computing cluster: More powerful computer than a local system many universities have shared HPC for high computational jobs

Library Controls Controls included with PCR libraries to assess primer performance and contamination (see NTC)

Library pooling Combines barcoded DNA during library preparation to make one pooled sample of DNA for sequencing. Individual identity is maintained through barcoding

Long-read DNA fragments generated that range in length from 5 kb+, most commonly on a PacBio or Nanopore sequencer

Metadata Data that represent biological data collected, describing the information surrounding the data to provide context for analysis and interpretation

Metagenome Refers to all the genomes represented in a biological mixture

Mock Community A bacterial mixture (internally generated or commercially available) with known proportions of bacterial to assess sequencing quality and act as a positive control

NTC No-template controls: Controls included with PCR libraries to assess primer performance and contamination (see Library control)

Normalization Transformation of raw read numbers to account for uneven read numbers— usually in this method, the ASV numbers are multiplied by a value or proportion.

OTU Operational Taxonomic Unit: clusters of sequencing reads that differ by less than a �xed dissimilarity threshold (usually 3%) see also ASV

Paired-end sequencing A DNA fragment is sequenced from both ends (usually 100- to 300-bp long)

Phylogenetic trees Tree representative of the evolutionary relationship between sequences in the sample can be constructed de novo from only sequences in a dataset or compared 
with a reference tree

Pipeline A collection of tools, programs, and other codes that are run in succession to produce results (common pipelines include QIIME2, Mothur, and RCP)

Rarifying Randomly subsampling ASVs or OTUs within a sample without replacement to a preselected depth

Raw reads Number of reads generated from each sample; due to sequencing inef�ciency, this number will not be the same across samples and thus normalization is needed

Relative abundance Percentage of a total population attributed to one taxon such as phyla or species in relation to other features in the community

Richness Number of different species within a sample, regardless of how they are distributed

Sample pooling Combination of raw sample material (such as equal amounts of rumen �uid) or DNA (not to be confused with library pooling, here no individual identity is maintained)

Short read DNA fragments generated that range in length from 75 to 300 bp, most commonly on an Illumina sequencer

Shotgun metagenomics All DNA within a mixed microbe environment, fragmented, and sequenced. Differs from the amplicon 16S approach as it is not amplifying one target but any 
piece of the genome.

Single-end sequencing A fragment is sequenced only from one end to the other (usually ~75- to 100-bp long)

Taxonomy Represents the identi�cation and classi�cation of each microorganism, represented by an ASV, present in the community; this is distinct from phylogeny, which 
represents evolutionary relatedness of the ASVs

V1 to V9 Hypervariable regions studied on the 16S rRNA gene

V4 A common hypervariable region for 16S studies, also the target for the Earth Microbiome Project

Downloaded from https://academic.oup.com/jas/article/100/2/skab346/6519592 by guest on 13 November 2023
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considerations must be evaluated, such as effect and sample 
size, experimental unit, and study design. While some papers 
report methods for power analysis for microbiome studies 
(Kelly et al., 2015; Chen, 2020), these tools have limitations 
such as the metrics of measurement or are only able to be 
implemented for studies with a speci�c design (such as case–
control). Unfortunately, due to the complexity of microbiome 
studies, such as sequencing depth, bioinformatic tools, rare 
taxa, and unknown effect size, power analysis remains rare 
in microbiome studies (Debelius et  al., 2016). If previous 
studies have been conducted similar to the study you wish 
to conduct (unfortunately still uncommon for most animal 
sciences questions), or if you have the ability to generate a 
pilot sample set, a better idea of sample and effect size could 
be obtained. It is likely that as more microbiome data are 
acquired and publicly shared, sample size and power may be-
come more estimable (McDonald et  al., 2015). The experi-
mental and sampling unit (i.e., one animal and one fecal grab) 
should also be determined prior to the start of the study, with 
special consideration to the pooling of samples (see below). 
Finally, although a single sample may produce tens of thou-
sands of sequencing reads, it is still only one sample and best 
practices in experimental design, and biological replication 

must still be followed. An investigator must still be aware of 
limits of sample size and degrees of freedom and not subject 
microbiome data to overly complex study design—this is es-
pecially important given that many microbiome studies have 
smaller sample sizes due to cost restraints.

Sample pooling

A speci�c consideration that is directly tied to sample size 
is pooling of samples. Samples can be pooled by raw mater-
ial (such as equal volumes of rumen �uid, feces, or meat) or 
after DNA extraction such as in equal weights or volumes. 
Pooling not only can have advantages such as experimental 
units being more representative of a microbiome (such as 20 
fecal grabs from a pen vs. one) and cost but also come with 
the concern that pooling could mask differences among indi-
vidual animals or groups (Hamady and Knight, 2009). When 
pooling samples, several considerations on animal homology 
must be contemplated, such as production system, back-
ground, region, and husbandry. Production system vertical in-
tegration should be considered if appropriate—for example, 
cattle in a feedlot are likely not from all the same stocker 
sources, whereas chickens in different houses at the same loca-
tion could be from the same breeder. In fact, in a feedlot study 
designed to evaluate a feed additive (Huebner et al., 2019), 
cattle source explained the most of the observed microbiome 
variations. Knowing the geographical history, diet, and veter-
inary treatment of animals can help to guide pooling strategy, 
but oftentimes these host-level factors are unknown. Ideally, 
pooling would be done across the most homologous group of 
animals possible such as the same pen, barn, treatment group, 
or pasture (though pooling across these variables should be 
accounted for in an experimental design, such as a block). In 
a best-case scenario, just like any animal science study, ap-
plying the treatment to the most homologous group possible 
will reduce unpartitioned variance. If there is more variation 
within the pool than between, type II error could be encoun-
tered. A tradeoff between smaller experimental units that are 
more homologous in type vs. larger experimental units that 
could be more re�ective of an entire population needs to be 
considered when pooling.

Additionally, when pooling, you lose the ability to determine 
what microbes may be interacting in a single community. For 
example, if you are interested in which organisms may be as-
sociated with the presence of pathogens in a fecal microbiome, 
pooling across feedlot pen would limit your ability to address 
that research question if there is a difference between pens. 
Additionally, pooling may result in rare taxa not being de-
tected as well as possible alterations in alpha and beta diversity. 
Therefore, like all suggestions made in this review, your choices 
in designing the sampling scheme should be carefully weighed 
against your research questions.

Appropriate sampling location

There are numerous considerations for identifying the correct 
sampling locations and such considerations should be focused 
on satisfying the hypothesis or objective of a research project. 
When choosing a sampling location, the question of biological 
relevance must be considered; for example, is it appropriate 
to infer differences in the chicken gastrointestinal tract (GIT) 
microbiota from cloacal swabs, fecal collections, or poultry 
litter? For example, while there is an association between clo-
acal swabs and cecal content in broilers, rare taxa in the ceca 

Figure 1. Overview of considerations when conducting a 16S rRNA 

gene sequencing study. Created with Biorender.com.
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are not well represented in cloacal swabs (Andreani et  al., 
2020). Additionally, measuring individual animal phenotypes 
can be expensive and often impractical in some commercial 
production settings. Two examples from two different species 
on choosing a sampling location are 1) deciding which seg-
ment of a bovine GIT to sample and 2) determining which 
sample is the most appropriate representation of the poultry 
GIT in a broiler study.

In the case of the bovine GIT, where many studies have 
focused on the reticulorumen due to its primary role in nu-
trition and metabolism, it is common to use fecal and/or 
ruminal sampling. Yet, while colorectal or fecal samples are 
often considered as a proxy for rumen microbial activity, this 
may be of concern depending on the objective of the study. 
Using fecal samples maybe warranted if examining factors 
such as nutrient degradability (Kaltenegger et al., 2021), the 
impact of a nutritional supplement or diet on fecal pathogen 
shedding (Jacob et al., 2009), or as an indicator of ruminal 
acidotic status (Plaizier et al., 2017; Neubauer et al., 2020). 
However, the rumen microbiome is quite distinct from the 
lower GIT, and fecal sampling should not typically be con-
sidered as a proxy for the ruminal microbiome in many cases. 
Indeed, researchers have demonstrated that the bacterial com-
munities in the rumen are distinct from those of the small and 
large intestine, varying signi�cantly in function, phylogenetic 
diversity, richess, and evenness (Myer et  al., 2017; Huang 
et al., 2020). The absorption of amino acids and fatty acids, 
digestive processes, post-ruminal degradation of cellulose and 
starch, and the maturation of the mucosal immune system, 
all highlight the differences among the segments of the lower 
GIT in cattle.

This issue is not species speci�c, and many studies have 
taken different approaches to understand the microbiome of 
the chicken GIT. In the past, due to the price associated with 
euthanizing poultry to obtain digesta samples within the GIT, 
researchers did not use the GIT but other means such as fecal 
samples to investigate the microbiota. This effort led to in-
correct assumptions of treatment effects on the microbiota 
(Stanley et al., 2015; Locatelli et al., 2017; Schreuder et al., 
2020b; Schreuder et  al., 2020a). For example, Schreuder 
et al. (2020b) determined that it is not practical to use cloacal 
swabs to infer the environmental impact on the poultry GIT; 
instead, focus should be on investigating the environmental 

impact on the GIT microbiota of commercial layers directly 
over time. Additionally, fecal matter is commonly subjected 
to sequencing analysis in place of poultry cecal contents as 
it can be collected over time from the same bird and does 
not require the bird to be euthanized in order for collection. 
However, the microbiota of feces is not entirely representative 
of the cecal microbiota. Stanley et al. (2015) determined that 
the fecal microbiota of 163 birds across three trials had simi-
lar bacteria present within the feces and ceca but not in the 
same relative abundances.

Therefore, when aiming to determine proxies for ease of 
sampling, sampling from the feces or other easily accessible 
matrices may not be appropriate for representing the loca-
tion of interest. Choosing the correct sample location for 
these microbiome studies is an essential, and commonly 
complicated, step in project and experimental design. When 
determining the sample location for amplicon-based rRNA 
research, the location must ultimately be based upon the hy-
pothesis and/or objective(s) of the study, as well as knowledge 
regarding the physiology of the host species and/or target tis-
sue.

Importance of accurate metadata

The term “metadata” is used to indicate all of the various data 
points that characterize the biological specimens collected. 
These data can be used to provide a critical context for the ana-
lysis of 16S rRNA sequences obtained from host-associated or 
environmental samples (National Research Council, 2007). 
Organizing and creating metadata to accurately re�ect the 
data collected during an experiment are critical to bioinfor-
matic and downstream analyses. There are multiple bene�ts 
to maintaining detailed metadata. Importantly, as much detail 
should be collected as possible to obtain adequate/accurate 
metadata, such as location of samples, dates, times, identi�-
cation of sample source, single or pooled sample, treatments, 
or other observations made throughout the study. Once data 
are collected, the information should be appropriately stored 
in a consistent format, allowing for data to be easily under-
stood by outside parties or collaborators. Some standards for 
metadata collection and formatting were described by Yilmaz 
et al. (2011); these standards should be followed especially if 
one intends to submit data to a publicly available database 
as is often required before publication (Yilmaz et al., 2011). 

Figure 2. Illustration of conserved and variable regions of the 16S rRNA gene. Hypervariable regions are labeled in blue with conserved regions 

indicated by low entropy. In red, four commonly used primer pairs are highlighted. The figure was made by using Shannon entropy data generated from 

Johnson et al. (2019) (https://github.com/TheJacksonLaboratory/weinstock_full_length_16s) and ggplot2 in R (v. 4.0.2).
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Collecting accurate metadata improves downstream analyses 
in whichever bioinformatics program is used for diversity and 
taxonomic assignment and statistical analyses. Bioinformatic 
pipelines require consistency in titles and formats in meta-
data to appropriately input data, thus making accurate  
metadata important for analyses. Additionally, these sequence-
processing pipelines often incorporate statistical analyses, 
which makes organizing metadata integral to make multiple 
comparisons among variables. While this can improve data 
observations, accurate metadata can also improve the repro-
ducibility of collected data.

While not currently standardized across all �elds, the push 
for standardized metadata to allow meta-analysis across 16S 
rRNA gene sequencing studies and reuse of sequenced data 
in other studies has been of increased interest. When meta-
data are standardized and accurate, large meta-analyses can 
more easily be conducted to detect underlying and large-scale 
trends not possible with one study alone (Dundore-Arias 
et al., 2020). In 16S rRNA gene sequencing studies, the best 
practice is to report some degree of metadata (many reposi-
tories will specify what metadata are required) in a repository 
with the published paper (typically along with raw data as 
talked about below). Therefore, organized metadata also as-
sist researchers for publication purposes, reducing time spent 
on reorganizing the previously collected data.

A special consideration when collecting metadata in ani-
mal science research is if you are collaborating with industry 
partners (such as farms, pastures, processing facilities, or re-
tail locations) that do not want to be identi�ed. For example, 
some databases may ask for a geographical location of where 
samples were collected. It is essential that proper communi-
cation and nondisclosures are considered prior to the start of 
the study and what terminology can be used to describe the 
sampling location. In a manuscript, this could be nonspeci�c 
regional information (such as a commercial feedlot in the 
Midwestern United States) and in your publicly available 
metadata a geographic location that will not unblind a loca-
tion such as the latitude and longitude of the university lab 
where it was processed.

Starting with organized and accurate metadata is critical 
for bioinformatic analyses of the data. Care should be taken 
in collecting data so that multiple sources may understand the 
metadata when conducting analyses. Overall, accurate meta-
data allow for ease in �nding data, using the data in analyses, 
and then increasing the likelihood of data being used in future 
studies.

Wet Lab Considerations

Field handling and storage

Many factors can alter sample integrity during sample col-
lection; thus, optimized sample preservation techniques for 
16S rRNA gene sequencing are critical for accurate data 
(Carruthers et  al., 2019). Immediately freezing (at least at 
−20 °C) a sample after �eld collection is the most ideal proto-
col, but in many cases, this is not possible for �eld studies. It 
has been documented that the length of time from collection 
to freezing can signi�cantly alter 16S rRNA gene sequencing 
results. For example, one fecal study (Carruthers et al., 2019) 
investigated six different time periods between sample col-
lection and freezing (1 to 36 h) and found that time to freeze 
was a signi�cant factor affecting the results of microbiome 

composition. Additionally, a comparative storage study of 
feces (Moossavi et al., 2019) found that samples immediately  
frozen at −80 °C vs. those stored in 95% ethanol at room tem-
perature prior to freezing displayed stability for certain bac-
terial populations, wheres other bacterial populations, such 
as Actinobacteria, were signi�cantly altered. Nonetheless, in a 
comprehensive study of over 1,200 samples (Song et al., 2016), 
three different methods—95% ethanol, Flinders Technology 
Associates cards, and the OMNIgene Gut kit—all preserve 
samples suf�ciently well at ambient temperatures. The effect 
of long-term storage at −80  °C has also been assessed and 
found that while changes will occur due to the length of stor-
age time, the changes are similar to those seen in inter- and 
intra-subject variation and, therefore, remain acceptable for 
microbiome studies (Tap et al., 2019). Based on studies such 
as these, placing samples into sterile storage tubes and �ash 
freezing in liquid nitrogen followed by transfer to a −80 °C 
freezer for immediate storage is likely to cause the least devi-
ation from the “true” microbiome population. In some �eld 
work, liquid nitrogen or dry ice is not logistical possibilities, 
but care must be taken to get samples frozen as soon as pos-
sible to reduce 16S rRNA gene sequencing alterations as the 
bacterial community continues to live and change. In any 
case, care must be taken to treat samples uniformly across 
an experiment—that is, one day’s samples should not be left 
on the counter for more than 6 h with the next day’s samples 
being placed directly in the freezer.

Another critical factor that is often overlooked in 16S 
rRNA gene sequencing studies is the importance of a clean 
work area. Environmental contamination is a signi�cant risk 
in agricultural settings and care must be taken to sterilize work 
areas. Surfaces areas in barns should be cleaned with ethanol 
or 10% bleach solution prior to sampling, and care should 
be taken to clean between samples to reduce cross-contam-
ination. For example, soil samples left on a table surface can 
contaminate the next sample. While time consuming, the time 
taken to create a clean or sterile work area prior to sampling 
is important to reduce potential microbial contaminants. One 
of the elements of a clean sampling environment is the use of 
sterile sample swabs or collection bins. Not every brand or 
style is suitable for 16S rRNA gene sequencing work and care 
must be taken to purchase DNA-free, sterile swabs, bins, and 
tubes. Sterilization of workspace and timely uniform freezing 
practices will result in accurate, high-quality, 16S rRNA gene 
sequencing results.

Lysis of cells

To obtain representative quality genomic DNA to amplify 
the 16S rRNA gene and subsequently sequence the targeted 
region, the outer boundary, or cell wall and/or membrane, 
must be disrupted or lysed effectively. Cell lysis is the process 
in which the cell wall and/or membrane is disrupted or des-
troyed to release the inter-cellular material such as the DNA, 
RNA, protein, or organelles from the cell (Islam et al., 2017). 
There are currently multiple methods to disrupt the cell wall 
and/or membrane, including mechanical, physical, chemical, 
and enzymatic lysis (Figure 3). Mechanical lysis is common 
in animal science and is achieved through bead beating. Bead 
beating is often done using glass or zirconia beads with a 
commercial bead mill or vortex prior to employing a com-
mercially available DNA extraction kit (Yu and Morrison, 
2004; Qu et  al., 2008; Danzeisen et  al., 2011). Physical 
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Weinroth et al. 7

lysis can include freeze-thaw (Shao et al., 2012), heat, cavi-
tation (Liu et  al., 2020), and ultrasonic (Han et  al., 2019) 
methods. Chemical lysis uses ionic alkali solutions or deter-
gents to disrupt the bacterial cell membrane (Chapela et al., 
2007; Martzy et al., 2019). Enzymatic lysis is accomplished 
through the application of enzymes such as proteinase k and 
lysozyme (Gill et al., 2016). These methods can be introduced 
individually, but most commercial DNA extraction kits such 
as the QIAamp PowerFecal Pro Kit (Qiagen, Valencia, CA, 
USA) utilize a combination of the aforementioned techniques 
to maximize lysis ef�cacy.

When considering which lysis technique, it is important 
to consider all sample types being compared in the study 
and what lysis steps will be appropriate to utilize through-
out the study. There are two critical components to focus on 
when selecting a uniform lysis method: 1)  will this method 
work on all of the cell types within the sample and 2) will 
this method work across all the sample types in the current 
study. Because some cells are more resistant to cell lysis, such 
as Gram-positive bacteria and bacterial endospores, the lysis 
technique selected could result in DNA that does not  represent 
the true diversity or composition of the microbiome. As such, 
the mechanical bead beating step has been shown to im-
prove DNA yield, increase observed bacterial diversity, and 
improve recovery of genomic DNA from Gram-positive and 
endospore-forming bacteria (Salonen et al., 2010; Maukonen 
et al., 2012; Guo and Zhang, 2013; Henderson et al., 2013; 
Walker et al., 2015). While not currently a concern for 16S 
rRNA gene sequencing studies on only one variable region, in 
the future, lysis methodologies capable of disrupting the cell 
wall and/or membrane without over fragmenting the genomic 
DNA will become more important as long-read sequencing 
technologies are more widely adopted.

To compare sample types properly, it is critical to consider 
all sample types and determine a standard lysis methodology, 
whether that be a single method or a combination of proced-

ures. With inhibitors such as humic acid, bile salts, and poly-
saccharides being more prevalent among speci�c matrices 
(e.g., litter, feces, and feed), lysis procedures must account for 
these nuances. Furthermore, utilizing varying lysis methods 
between sample types could introduce bias into the analyses 
and result in differences in the subsequent microbiota popu-
lations that are not necessarily due to treatment or sample 
types (Henderson et al., 2013; Wesolowska-Andersen et al., 
2014; Gerasimidis et al., 2016). Ma et al. (2020) investigated 
the effect of two chemical and two mechanical lysis methods 
on the 16S rRNA gene of the ruminal contents of goats and 
determined that the chemical lysis improved the DNA yield 
from �brolytic bacteria such as Ruminococcaceae. However, 
they did note that chemical lysis methodology did not im-
pact the number of unique bacteria detected. Ultimately, lysis 
methodology is an important parameter to consider when 
developing a study utilizing 16S rRNA gene sequencing. 
Depending on sampling type, there may be a need for op-
timization of lysis for DNA quality and quantity; this is es-
pecially true if you are working with a less common matrix 
in which case benchmarking DNA quality and output from 
different methods might be needed. Therefore, succinctly 
detailing the methodology utilized during the onset of a par-
ticular study is increasingly important as this can drive the 
differences seen between publications employing different 
lysis techniques.

Low biomass samples

Certain agricultural samples, such as meat rinsates, water, en-
vironmental air, meconium, respiratory tract samples, repro-
ductive tract samples, lavages, nasal swabs, or skin swabs, 
can be low in bacterial biomass, resulting in complications in 
DNA extraction and sequencing. Bacterial biomass is a crit-
ical determinant of sequencing output in amplicon datasets, 
and special care must be taken to optimize DNA extraction to 
prevent biased microbial pro�les. Recent studies (Eisenhofer 

Figure 3. The common types of mechanical and nonmechanical lysis procedures utilized in animal science research applications. Created with 

Biorender.com.
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et  al., 2019; Karstens et  al., 2019) have investigated low 
biomass samples and found that lysing methods, DNA ex-
traction, and PCR protocols could greatly in�uence results. 
An important �rst step in any 16S rRNA gene sequencing 
investigation is to read the literature on similar samples of 
interest to determine the best DNA extraction techniques for 
that speci�c sample type. A trial run on representative or pilot 
samples will ensure that DNA extraction methods are appro-
priate and yield reproducible results. Changes in protocols 
for DNA extraction are often needed, such as prolongment 
of lysing. A  caveat of harsh mechanical or chemical lysing 
steps is the added concern of the quality of the DNA output 
as low-quality DNA can produce spurious PCR results, con-
founding data interpretation. While a larger quantity of DNA 
makes downstream processes easier, it should be noted that 
a suitable DNA extraction method can yield enough qual-
ity DNA from low bacterial biomass samples for 16S rRNA 
gene sequencing studies. One study has demonstrated that the 
bacteria present in single rumen protozoal cells could be taxo-
nomically characterized using 16S rRNA gene sequencing 
(Park and Yu, 2018).

Other concerns with low biomass samples include intro-
duction of outside microbes and low bacterial DNA yields. 
When sampling in a low biomass environment, sampling 
could introduce foreign microbes into the environment being 
sampled, such as exterior environmental microorganisms or 
resident vaginal microorganisms from a vaginal microbiome 
(Garcia-Grau et al., 2019). Future samplings may also be im-
pacted due to colonization of the newly introduced micro-
organisms. Some microbiome sampling techniques have been 
developed speci�cally for this issue (see special considerations 
below). An additional issue may arise when you are sampling 
an environment with a low microbial load in relation to high 
host animal DNA presence—such as a meat rinsate. In this 
case, larger sampling amounts of pooling of several samples 
may be needed to obtain enough bacterial DNA (this is es-
pecially true for meat samples taken after interventions in 
processing facilities).

Once DNA extraction methods are optimized, PCR ampli�-
cation can remain a complicating factor as low DNA levels can 
result in poor quality ampli�cation or ampli�cation of potential 
contaminants. Contamination becomes a greater concern in low 
biomass samples as low levels of pertinent microbes increase the 
potential for contaminating microbes to amplify signi�cantly 
during the PCR step. The inclusion of controls, as discussed 
below, such as buffers or PCR-grade water, can help assess any 
potential contamination (Claassen-Weitz et al., 2020). Finally, 
if low biomass samples will not amplify ef�ciently, semi-nested 
PCR protocol instead of typical PCR may be used to increase 
PCR products. Increased PCR cycle numbers can also be used 
to increase amplicon yield but are associated with increased 
sequencing error rates and bias. Overall, low biomass samples 
can complicate 16S rRNA gene sequencing studies, but with 
careful experimental design and controls, these studies can yield 
reproducible results.

A �nal concern when sequencing DNA extracted from low 
biomass samples on an Illumina machine is that the low bac-
terial load and subsequent low GC content generated from 
these matrices generally impact the amount of Phi X (>10%) 
needed to produce a quality sequencing run and may also re-
quire that other samples with a more robust bacterial load be 
sequenced within the same library (Illumina Inc., 2021). 

Library preparation and sequencing depth

An important decision one must make prior to the amplicon 
library preparation is which of the nine hypervariable re-
gions of the rRNA gene will be ampli�ed; common regions 
for analysis include V1-V3, V3-V4, or V4 (Figure 2). The V4 
hypervariable region has been shown to allow adequate reso-
lution and has been demonstrated to generate optimal com-
munity clustering with short-length reads (Caporaso et  al., 
2011) and has also gained popularity due to its use in the Earth 
Microbiome Project (Thompson et al., 2017). Regardless of 
variable region, sequencing instruments can produce single- 
or paired-end reads that allow for sequencing of the desired 
amplicons. Recent advancements in the sequencing chemistry 
used to produce short reads have been developed to allow 
for read lengths up to 300 base pairs (and around 500 bp if 
used paired-end reads), motivating researchers to sequence a 
combination of neighboring hypervariable regions. The ad-
vantage of doing this is that longer amplicons contain add-
itional phylogenetic information that aids to resolve the 
taxonomic ambiguities present when assigning sequences to 
a taxon. The choice of hypervariable region(s) to sequence 
can be somewhat arbitrary but should ideally be driven by 
�eld- or research-speci�c reasons. For example, in arctic mi-
crobial communities, the V4-V5 hypervariable region is pre-
ferred because it provides superior taxonomic coverage and 
resolution of archaeal groups, which comprise a small, but 
an integral component of the arctic marine environment 
(Fadeev et al., 2021); in the female genital tract, the V3-V4 
hypervariable region is preferred because it has the power to 
identify bacterial species associated with vaginal health and 
disease (Graspeuntner et al., 2018); in human skin, the V1-V3 
hypervariable region is preferred because the microbial com-
munities recovered approximate those reported from deep 
shotgun metagenomic assays (Meisel et  al., 2016). In some 
cases, the choice of hypervariable region(s) may not be clear; 
in these cases, we recommend selecting a hypervariable region 
that is similar to those used in previous studies to which you 
may wish to compare your results.

Following amplicon primer pair selection to use for the li-
brary preparation, it is imperative that best practices in PCR 
preparation and handling should be conducted to minim-
ize the occurrence of carry-over and cross-contaminations. 
While different steps of the library preparation process can 
have different locations in the laboratory, at minimum dif-
ferent pre- and post-ampli�cation areas are needed, ideally in 
two different rooms or in PCR workstations/hoods. In add-
ition to different workspaces, each area should be supplied 
with its own equipment (pipettes, tube racks, etc.) with items 
(including gloves and lab coat) not moving between the lo-
cations.

Another important decision to make in designing your 16S 
rRNA gene sequencing study is how many reads per sample 
you will aim for. Depending if the sequencing is occurring 
in-house or out-sourced, this could be as easy as specifying on 
a form the requested depth (such as 10,000 reads per sample) 
or may require a more complex calculation involving sample 
number, read length, and expected sequencing output. Some 
studies indicate as few as 2,000 reads allow characterization 
of a bacterial community (Caporaso et  al., 2011), whereas 
others argue the number is closer to 10,000 to 15,000 (Bukin 
et  al., 2019). The most appropriate method to �nd a mini-
mum sequencing number target would be to construct a rar-
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efaction curve (see the Diversity section for more on this) on 
a set of pilot samples. In the absence of any data on your mat-
rix, 10,000 reads per sample would be a good starting point 
for a raw read number target.

Inclusion of positive and negative controls

When preparing samples to sequence, the inclusion of positive 
and negative controls can identify any contamination in your 
wet-lab work�ow and help in bioinformatic analysis. There 
are two types of negative control samples most commonly 
used in microbiome experiments: extraction controls and li-
brary controls. Extraction controls are employed during the 
extraction of nucleic acids and are typically composed of a 
lysis buffer, in the absence of any biological material. In the 
absence of any competing bacteria, these samples should have 
no cell to lyse; however, recent research into reagent and con-
sumable contamination would indicate that this is not always 
true (Salter et al., 2014). The kits used to extract nucleic acids 
from biological samples also have their own microbiomes 
(termed the “kitome”) (Salter et al., 2014). In some cases, es-
pecially in low microbial biomass environments, these nucleic 
acids can outnumber those present in samples with real bio-
logical material. In extreme occasions, they can represent the 
entirety of the biological material being sequenced (de Goffau 
et  al., 2019). Negative controls, when extracted alongside 
biological samples, allow the differentiation of meaningful 
biological differences from laboratory-acquired microbes. 
These can also be used to bioinformatically remove contam-
ination sequences from the true samples, although this must 
be done carefully (Davis et al., 2018). Library controls (also 
known as no-template controls) are employed during the 
PCR ampli�cation of the selected hypervariable region(s) and 
molecular-grade water, instead of DNA, is added. In the ab-
sence of any competing DNA, these samples should yield no 
or very little ampli�cation. In many cases, this will likely hold 
true, as these samples are not exposed to the same conditions 
as extraction controls. Extraction and library controls should 
be included throughout the entire laboratory work�ow and 
sequenced alongside samples containing the biological mater-
ial being analyzed, even when they result in DNA quanti�ca-
tion or ampli�cation failures. Although the number and types 
of negative controls in a microbiome experiment can be vast, 
it will be up to the investigator to gauge which are most ap-
propriate for ensuring the internal validity and con�dence of 
study �ndings (Lipsitch et al., 2010).

There are many types of positive controls (i.e., mock com-
munities) which are samples containing a known concentra-
tion and taxonomy of bacterial species. These controls, which 
can be made in-house in a lab or ordered commercially, can 
serve a wide range of applications, including as internal 
controls, measures of extraction ef�ciency, and measures of 
sequencing ef�ciency. Internal controls provide the technician 
with an assurance that the experiment was performed prop-
erly and that the original placement of samples was main-
tained throughout the entire laboratory work�ow. Extraction 
ef�ciency can be measured using commercial mock commu-
nities containing a mixture of bacterial cells with both tough 
and easy-to-lyse cell walls (e.g., ZymoBIOMICS Microbial 
Community Standard, Cat No. D6300). These communi-
ties can provide an opportunity to measure the sensitivity of 
the extraction work�ow, for example, the parameters used 
for mechanical cell disruption. Sequencing ef�ciency can be 

measured using commercial mock communities containing a 
mixture of bacterial cells present in various distributions, for 
example, a log distributed mock community, where the abun-
dance of each bacterial species decreases by a power of 10 
(e.g., ZymoBIOMICS Microbial Community Standard, Cat 
No. D6310). These communities can provide an opportunity 
to measure the sensitivity of the chosen sequencing depth to 
capture low abundant bacteria.

Post Wet Lab Bioinformatics and Statistics

Data and computational consideration

A computational analysis and data integrity plan should be 
in place prior to starting a 16S rRNA gene sequencing study. 
Computational considerations include the type of computer 
to be used, where data will be stored, how you will document 
your analysis, and how you will be doing the analysis (pipe-
line, web server, graphical user interface [GUI], etc.). The �rst 
consideration is if you will be performing the analysis on your 
local computer or remotely such as on a high-performance 
computing (HPC) cluster. Although it is possible to conduct a 
smaller study completely on a moderately equipped desktop 
or laptop, some of the more computational taxing steps (such 
as amplicon sequence variant [ASV] grouping and phylogen-
etic classi�cation) might be limited to a larger machine. It is 
important to note that, after the initial steps of tree and fea-
ture table creation, it is likely that most downstream analysis 
can be conducted on a personal computer. Therefore, access 
to a moderately sized HCP for 3 to 5 d would be ideal (many 
universities now have HPC resources available to their stu-
dents and staff for nominal fees or free and other resources 
exist such as Amazon Web Server).

Short-term data storage should also be considered. While 
long-term options for storage may be on a publicly available 
database (as described below), short-term storage is also im-
portant. Besides having enough room on a device, other con-
siderations are the stability of the location (an external hard 
drive can be used but cloud storage is more reliable) and the 
accessibility. If you are using a shared server, make sure raw 
data are in a directory not easily editable. A good practice is 
to NEVER alter raw data �les and have them stored in more 
than one location or on a mirrored drive. Documentation of 
your analysis is another facet that should be considered prior 
to the start of the experiment. Jupyter Notebook or GitHub 
provides a method to share analysis code and speci�cations 
which include important information such as versions of the 
tools used.

Finally, choosing the actual pipeline you will be using for 
your analysis is important. For 16S rRNA gene sequencing 
analysis, several different programs and tools will be used to 
generate your results, and all these tools together are called a 
pipeline. There are several well-developed pipelines for 16S 
rRNA gene sequencing analysis that allow the use of sev-
eral tools wrapped into one either on the command line or 
through GUIs. When choosing what pipeline is best for you, 
price, user support, stability of the release, and your famil-
iarity with the coding language (i.e., many of these require 
a basic familiarity with either Linux or Python languages) 
should all be considered. Popular 16S rRNA gene sequencing 
command line pipelines include QIIME2 (Bolyen et al., 2019), 
Mothur (Schloss et al., 2009), and RDP (Cole et al., 2014) 
(which are all free), whereas GUI options include Geneious 
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and QIAGEN’s CLC Genomics Workbench (which both have 
a cost associated with them). As with any research tool, there 
are many technical and biological nuances to these analyses, 
and we strongly advise against using results without a cursory 
understanding of the methods used to come to your conclu-
sions.

Identifying contamination

Contamination, in the context of 16S rRNA gene amplicon 
sequencing, may be broadly de�ned as the detection of 
sequences not represented by microbial DNA in the originating 
sample. External contaminants may arise from laboratory 
workers (Adams et al., 2015), surfaces (Knights et al., 2011), 
and/or reagents (Salter et al., 2014). Despite the rigorous im-
plementation of best practices, including aseptic technique, 
lab equipment sterilization, and reagent ultrapuri�cation, the 
ubiquity of bacterial DNA in the environment can result in 
some, potentially nontrivial, level of external contaminant 
sequencing (Salter et  al., 2014). Thus, in silico (performed 
on a computer) contaminant identi�cation and removal ap-
proaches are important (Davis et al., 2018). Assuming no in-
ternal (i.e., cross-sample) contamination, the degree of primer 
speci�city and template quantity are important considerations 
for in silico identi�cation of potential contaminant sequences. 
Additionally, particularly for low biomass samples, the par-
allel ampli�cation and sequencing of no-template controls 
(NTCs) are crucial for discriminating target sequences from 
nucleic acid extraction and PCR reagent contaminants.

Narrow taxonomic-range primers (e.g., genus- or species-
speci�c probes) used to survey high-biomass samples provide 
the simplest scenario for in silico contamination detection 
and elimination. Following initial quality control steps (e.g., 
size selection, quality �ltering, adaptor trimming, and chi-
mera checking), single reads or contigs may be assigned taxo-
nomically by alignment against a taxonomy database such as 
Silva, Greengenes, and RDP. Sequences with taxonomic as-
signments that fall out of the expected taxonomic range for 
the primer set may be discarded from further processing as 
nontarget. Accordingly, taxonomy-based contaminant iden-
ti�cation steps are common in popular amplicon analysis 
pipelines, including QIIME2 (Bolyen et  al., 2019), Mothur 
(Schloss et  al., 2009), and DADA2 (Callahan et  al., 2016). 
The user, based on probe speci�city, may de�ne a taxonomic 
range for sequence retention and further analysis. For ex-
ample, even when using broad range “prokaryotic universal” 
16S rRNA gene primers, any sequence classi�ed as Eukaryotic 
may be culled as nontarget.

A more complex scenario for contaminant identi�cation 
emerges when low-biomass samples are surveyed with broad 
taxonomy primers. Here, the combined effects of 1)  low 
biomass, resulting in a lower number of target genes; 2) the 
presence of contaminant chromosomal DNA, ubiquitous in 
nucleic acid extraction and PCR regents; and 3)  the poten-
tial for true overlap in the expected taxonomy of target and 
nontarget sequences are all confounding factors for in silico 
contaminant identi�cation and removal (Salter et al., 2014). 
The common practice of removal of all overlapping sequences 
between NTCs and samples carries the risk of abundant 
true sequence removal due to the chance of legitimate taxo-
nomic overlap between lineages commonly reported as kit 
contaminants and hardy survivors in low biomass environ-
ments (e.g., members of the spore-forming Firmicutes). This 

issue has been previously addressed by implementing custom 
analysis scripts that conservatively assess the probability of 
each taxon representing contaminants (Inagaki et al., 2015; 
Ramírez et al., 2019). Saliently, the decontam package, a fre-
quency- and prevalence-based in silico contamination iden-
ti�cation model for sequence features including 16S rRNA 
gene ASVs and operational taxonomic units (OTUs), ac-
curately discriminated contaminants from the oral human 
microbiome and signi�cantly reduced batch effects from a kit 
reagent- and sequencing center-driven contamination study 
(Davis et al., 2018). Designed on the dual assumptions that 
1)  contaminant DNA varies inversely with total DNA con-
centration in a sample and 2) contaminant sequences should 
be more common in NTCs relative to samples, decontam rep-
resents a signi�cant, minimal or no cost, improvement for in 
silico contaminant identi�cation. Due to decontam’s poten-
tial to signi�cantly improve data quality and, consequently, 
biological interpretation based solely on a sequence feature 
frequency table, we strongly recommend its implementation 
as a standard practice in 16S rRNA gene sequencing of agri-
cultural samples.

Operational taxonomic units vs. amplicon 
sequence variants

For downstream analysis (both for taxonomy classi�ca-
tion and diversity metrics), similar sequences are sorted 
into groups used as OTUs. Traditionally, 16S rRNA gene 
sequences have been clustered into OTUs differing by an ar-
bitrary (often 3%) pairwise alignment dissimilarity threshold 
against all other sequences recovered from a single sample 
(de novo clustering) or against a set of reference sequences 
of an external sequence database (closed-reference clustering; 
Westcott and Schloss, 2015). Recently, however, the use of 
OTUs as the standard unit of 16S rRNA gene sequencing re-
porting has been challenged (Callahan et al., 2017). The clus-
tering step of OTUs generation has important consequences 
for their biological interpretation and cross-study applica-
tions. There is no innate biological meaning to OTUs, that is, 
they are a “cloud” of similar sequences rather than a single 
species or genus. More speci�cally, OTUs are literal artifacts 
of 1) subjective dissimilarity threshold parameters in de novo 
clustering or 2) the database against which they are aligned 
in closed-reference clustering. Consequently, de novo OTUs 
cannot be compared between studies, and, in closed-reference 
clustering, biological information outside of the database is 
lost from the sequencing data.

Recently, the use of ASVs (also described in literature as 
Exact Sequence Variants) has been proposed as an alternative 
to OTUs (Callahan et al., 2016). ASV-based analyses distin-
guish sequencing errors from bona �de biological variation 
among 16S rRNA gene sequences using a model-based ap-
proach for correcting amplicon errors without constructing 
OTUs. Therefore, ASVs signi�cantly reduce clustering artifacts 
and associated shortcomings of OTUs, thereby enabling valid 
comparison of ASVs independently generated from different 
samples (Callahan et al., 2016). Furthermore, ASV generation 
ef�ciently captures unique biological sequence variation, 
permitting exploration of signatures from all phylogenetic 
lineages in the dataset unrestricted by the limited variation 
present in even the most comprehensive closed-reference 
databases. Consequently, the replacement of OTUs by ASVs 
as the taxonomic unit for marker gene data analysis has been 
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proposed (Callahan et al., 2017). One concern that has been 
brought up regarding ASV is the possibility of diversity in�a-
tion by the generation of multiple ASVs from a single bacter-
ial genome (Schloss, 2021). Nonetheless, using ASVs allows 
cross-study tractability and database-independent biological 
veracity of AVSs, as discussed above, in addition to technical 
advantages in computational time and memory requirements. 
Speci�cally, as NGS technologies continue to improve and 
are applied to more large-scale agricultural and food safety 
monitoring, concomitant increases in the size of datasets are 
expected. By circumventing the need for sequence clustering 
(a computationally intensive step), ASVs can further enable 
routine large-scale microbial monitoring with relatively light 
and linearly scaled computational time and memory require-
ments.

Accounting for uneven sampling depth

Despite best practices during amplicon library preparation 
and sequencing, the numbers of raw reads generated from 
each sequencing run can vary widely among samples. This 
presents a problem for subsequent analysis, as uneven 
 sampling can lead to arti�cially different diversity measure-
ments between samples. Figure 4A demonstrates a hypo-
thetical example of this problem, in which two samples 
that should appear similar because one sample has twice as 
many reads as another, which lets it capture more of the less 
abundant (“rare”) features. To combat this issue, normal-
ization methods should be applied to the data before diver-
sity analysis. Several normalization methods can be applied 
to amplicon sequence data, each with distinct advantages 
and disadvantages. Weiss et  al. (2017) demonstrated that 
most methods result in correct clustering of samples in prin-
cipal components analysis (see below for more information 
on this method), which indicates that all methods are valid 
tools and the researcher’s choice should depend on the spe-
ci�c circumstances of the dataset.

One commonly used method is to rarefy the data; that is, 
ASVs or OTUs within a sample are randomly subsampled 
without replacement to a preselected depth that is the same 
across all samples. The outcome of this is that all samples 
will have the same number of ASVs and any samples with 
fewer ASVs than the rarefaction level will be removed from 
the dataset. The level for rarefaction can be decided using 
a rarefaction curve, a method in which each sample is sub-
sampled at multiple levels (e.g. 1,000 reads, 2,000 reads, 
3,000 reads...), and the number of unique features or an-
other metric of individual sample diversity of each sample 
at each level is measured and plotted. When the plot begins 
to level off after an initial climb up, the corresponding num-
ber of sequences indicates an appropriate sampling depth. 
The appropriate number to rarefy must then be balanced 
with the number of samples that may be dropped from the 
dataset which do not meet that minimum. An advantage of 
rarefaction is that it may be a more appropriate measure of 
very low-abundance (“rare”) ASVs. This can in turn increase 
the accuracy of the data, as low biomass samples often have 
contamination and quality concerns (Kennedy et al., 2014). 
There are also disadvantages to this method, the most obvi-
ous of which is the discarding of valuable data. Clearly, this is 
less than ideal as the researcher must pay for the samples and 
sequences, and in cases where the samples are very valuable 
or dif�cult to obtain the loss of data may be destructive to the 
overall experimental integrity. Additionally, the loss of statis-
tical power by removing sequences from a sample could lead 
to a loss of differences between two samples (McMurdie and 
Holmes, 2014). The statistical consequences extend beyond 
this, as rarefying equalizes sample variance by adding arti�-
cial uncertainty (McMurdie and Holmes, 2014).

An alternative to subsampling data is to apply different 
types of transformation called normalizing, which is com-
monly used in other sequencing-based experiments such as 
RNA-seq and shotgun metagenomics. In this method, the 

Figure 4. Illustration of considerations for diversity analysis. (A) Example of differences in sample composition based on sampling depth showing that 

different sampling depths between samples within an experiment can lead to false differences in diversity. This demonstrates the importance of using a 

normalization method before diversity analysis. (B) Illustration of communities that represent different features included in diversity metrics, specifically 

the relationship between richness and evenness in how diversity is calculated. (C) Demonstration of the differences in alpha and beta diversity. Alpha 

diversity represents the diversity within a sample and could be similar even in samples with different taxonomic compositions. Beta diversity describes 

the differences between samples and can only be calculated by comparing communities. This also demonstrates how samples can have similar alpha 

diversities but different beta dissimilarities.
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ASV numbers are multiplied by a value or proportion, which 
can be determined through several speci�c methods. While 
early methods were less robust (Bullard et al., 2010; Dillies 
et al., 2013) (such as scaling by total count), more sophisti-
cated normalization methods have emerged. Most are found 
within R packages built speci�cally for sequencing data. Some 
common methods include a median of ratios normalization 
from the DESeq2’s R package, Trimmed Mean of M-values 
(TMM) from EdgeR, and Cumulative Sum Scaling from the 
Metagenomeseq R package. In DEseq2, a scaling factor is 
computed as the median ratio of the count of an ASV over 
its geometric mean across all samples (Anders and Huber, 
2010). In the TMM method, a sample is used as a reference 
and the weighted mean of log ratios of an ASV within a sam-
ple is compared with the reference (Robinson and Oshlack, 
2010). Finally, in cumulative sum scaling, raw counts are div-
ided by the cumulative sum of counts up to a percentile de-
termined by the dataset (Paulson et al., 2013). These methods 
have been shown to be robust to differences between samples 
and maintain the differences in relative abundance (Dillies 
et al., 2013; McMurdie and Holmes, 2014). However, some 
transformations have been demonstrated to ignore or under-
measure rare ASVs due to the impacts of the log transform-
ation and can negatively impact the calculations of branch 
length in phylogenetic trees (Kennedy et al., 2014). Therefore, 
the choice between rarefying or using another transformation 
to normalize should depend on the value of individual sam-
ples and the importance of rare ASVs in a dataset; as such, a 
researcher should carefully consider the options for their par-
ticular dataset before selecting one.

Alpha and beta diversity metrics

Diversity, either within one sample or compared between 
samples, is the measurement of how similar or dissimilar 
two measurements are. Calculating the diversity of bacteria 
within samples and comparing diversity between samples and 
treatment groups can be used to identify the changes that a 
treatment has caused to a microbial community or to under-
stand why two microbial communities are inherently differ-
ent. There are numerous methods by which to calculate and 
compare diversity metrics which can make approaching these 
analyses a formidable task for a new researcher. However, the 
methods can be readily categorized, which should enable a re-
searcher to select the best options for their experiment (Figure 
4B and C).

There are two overarching methods for evaluating di-
versity: alpha and beta diversity. Alpha diversity, or within-
sample diversity, is used to evaluate the number of different 
species (usually represented by the number of ASVs) in each 
sample. The alpha diversity of a sample is �xed and does not 
change based on other samples to which it may be compared. 
This is different from beta diversity, or between-sample di-
versity, which is calculated as the dissimilarity between two 
samples and changes based on which samples are compared. 
To better understand the differences between alpha and beta 
diversity, it may help to consider the structure of the data. The 
alpha diversity can be added as a column to sample meta-
data and further analyzed the same as any other experimental 
condition. The beta diversity is structured as a distance or 
dissimilarity matrix, with the value of differences in diversity 
between each sample populating the cells.

Within both alpha and beta diversity, the methods for cal-
culating the metric can be further subdivided depending on 
whether it is richness or evenness that are being evaluated 
(Figure 4B). Richness refers to the number of different species 
detected within a sample, regardless of how they are distrib-
uted. In Figure 4B, the �rst frame would have a richness of 
4, as there are 4 distinct organisms present, even though the 
orange species is represented more frequently compared with 
the others. This distribution can be captured by measuring 
the evenness, or how balanced the species are within a sam-
ple. The second panel of the �gure only has a richness of 2, 
but it is very even as the sample contains an equal of both 
species. The third panel represents a sample that is both rich 
and even, as the richness is again 4, but this time each spe-
cies is equally represented. In alpha diversity calculations, the 
richness is captured by the observed OTUs/ASVs metric, even-
ness by Pielou’s evenness index, and both can be captured by 
Shannon’s diversity metric (Shannon, 1948; Pielou, 1966). In 
beta diversity, the richness is determined by a presence/ab-
sence metric, Jaccard distance, which calculates the number 
of shared species between two samples (Jaccard, 1901). The 
evenness in beta diversity is represented by the Bray–Curtis 
dissimilarity, which measures the fraction of overabundant 
counts between samples (Bray and Curtis, 1957). These 
methods are summarized in Table 2.

Another feature that can be incorporated into diversity met-
rics is phylogeny. Phylogenetic trees are representative of the 
evolutionary relationship between sequences in a sample and 
can be constructed de novo from only sequences in a dataset 
or compared with a reference tree via a fragment insertion 
method (Price et al., 2010; Eddy, 2011; Matsen et al., 2012; 
Janssen et al., 2018). The inclusion of phylogeny into a diver-
sity metric allows a researcher to further investigate not only 
differences in diversity between samples but also how those 
differences are distributed evolutionarily, which may provide 
some insight into functional diversity. Phylogeny can be in-
corporated into alpha diversity using the Faith’s phylogenetic 
diversity index, which is a phylogenetic measurement of rich-
ness, and into beta diversity using the UniFrac dissimilarity, 
which can include just richness or richness and evenness de-
pending on whether the unweighted or weighted method is 
used, respectively (Faith, 1992; Lozupone and Knight, 2005).

After diversity metrics are calculated, treatment groups can be 
statistically compared. Microbiome data are compositional and 

Table 2. Summary of the classifications and features of commonly used 

alpha and beta diversity metrics1

Metric Alpha 

or Beta

Richness Evenness Phylogenetic

Observed features Alpha X   

Pielou’s Evenness Alpha  X  

Shannon’s Index Alpha X X  

Faith’s Phylogenetic 
Diversity

Alpha X  X

Jaccard’s Distance Beta X   

Bray–Curtis Distance Beta  X  

Unweighted UniFrac Beta X  X

Weighted Unifrac Beta X X X

1X indicates the metric includes this feature.
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generally violate many assumptions in statistical analyses, espe-
cially that of normality, so nonparametric tests are used often. 
Moreover, given the number of pairwise comparisons that must 
be made to compare the samples, a multiple-testing correction 
should be applied to the P-value. There are several methods 
by which alpha diversity metrics can be compared, but most 
frequently the Kruskal–Wallis test is used to compare groups 
in discrete data and Spearman correlation is used to compare 
with continuous data (Spearman, 1904; Kruskal and Wallis, 
1952). Alpha diversity comparisons are most frequently visual-
ized using box plots (discrete) or scatter plots (continuous). In 
beta diversity, the statistics are slightly more complicated as they 
must be applied to the distance matrices. The permutational 
multivariate analysis of variance (PERMANOVA) test is fre-
quently used when the data are univariate and categorical, and 
the Mantel test when it is univariate and continuous (Mantel, 
1967; Anderson, 2017). Multivariate comparisons are also pos-
sible using the Adonis test (McArdle and Anderson, 2001). Beta 
diversity is also frequently evaluated using a clustering analysis, 
in which the dissimilarity between samples is reduced in dimen-
sionality and plotted in either 2 or 3 dimensions using princi-
pal components analysis or principal coordinates analysis. In 
these plots, each point represents the entire microbiome of a 
sample, and the closer two samples are to each other the more 
similar their microbiome are. In Figure 4C, it is demonstrated 
how two samples with similar diversities, or a greater number 
of overlapping species, would reside close to each other in the 
space, while a sample with different species would reside sep-
arately. This �gure also demonstrates how samples could have 
similar alpha diversities but a high dissimilarity when the beta 
diversity is calculated. This type of analysis is very useful for 
detecting trends in the data, but it is important to remember 
that it is not inherently representing any statistical signi�cance. 
Overall, these tests are a very useful �rst step in analyzing the 
overall trends and differences in microbial communities, and, 
paired with other analyses, researchers can examine important 
aspects of the community and answer the driving research ques-
tions rather than just explore the community.

Taxonomy

Another step in characterizing a microbiome is to determine its 
membership, which is traditionally done through a taxonomic 
analysis. Diversity metrics answer questions of how diverse a 
microbiome is and how microbiomes may be similar to each 
other, while taxonomy answers the question of who is there. 
Speci�cally, the taxonomy represents the identi�cation and classi-
�cation of each microorganism, represented by an ASV, present in 
the community. This is distinct from phylogeny, which represents 
evolutionary relatedness of the ASVs. In a typical taxonomic ana-
lysis, the representative sequences identi�ed in the study are com-
pared with a reference database that contains genome sequences 
and taxonomic information. This can be done simplistically by 
simply searching for the sequence in the database (McGinnis and 
Madden, 2004) or in a more complex manner, using machine 
learning algorithms to classify ASVs that may not be exactly repre-
sented by the database into a taxon (Bokulich et al., 2018). There 
are several well-curated databases available for researchers. The 
most popular include RDP (Cole et al., 2014), BLAST (McGinnis 
and Madden, 2004), SILVA (Quast et al., 2013), and GreenGenes 
(DeSantis et al., 2006). The choice of which is best for a given 
study should depend on how well represented the environment 
of interest is (e.g., the human gut is much more well described 

than the marine microbiome in GreenGenes) and how recently the 
database has been updated. When �rst deciding on which data-
base to use, you can consider multiple databases and see which has 
a higher number of classi�ed reads. The outcome of this analysis 
is a list that associates each ASV with a taxonomic label. These 
labels represent the highest-resolution level of taxonomy that can 
be achieved with con�dence; in 16S gene sequencing, this often 
means that an ASV can only be classi�ed to the family or genus 
level and not the species. The taxonomy in a study is generally rep-
resented with a stacked bar plot or a heatmap showing the relative 
abundance of an organism in each sample or group of samples.

Differential abundance testing

Differential abundance testing is a statistical test used to 
identify speci�c taxonomic features that differ between two 
or more experimental groups. This is dif�cult to achieve in 
microbiome data as these data violate the statistical assump-
tion of independence because all taxonomic features are ex-
pressed as relative abundance and a decrease in the abundance 
of one feature is accompanied by the increase in abundance 
of another to keep the sum as 100%. This means that, in a 
traditional statistical test, it would be impossible to deter-
mine whether the abundance of a feature was decreasing, or 
another was increasing. However, several methods can be 
employed to resolve this issue. If other analytical techniques, 
such as qPCR or �ow cytometry, are used, the absolute abun-
dance of one taxon can be determined (Vandeputte et al., 2017; 
Tkacz et al., 2018). However, in most cases, other analytical 
methods are not conducted in tandem with 16S rRNA gene 
sequencing; thus, this issue is addressed through downstream 
statistics. Several parametric statistical tests that were initially 
developed for RNA-sequencing analyses have been applied to 
microbiome studies, including DESeq2 and EdgeR, but they 
often fail to accurately represent microbiome communities 
as 16S rRNA gene sequencing data are sparse, meaning there 
are too many zeros in a dataset (Robinson et al., 2010; Love 
et al., 2014). More recent methods resolve the sparsity issue by 
including pseudocounts (i.e., adding 1 to every sample so there 
are no 0’s) and use speci�c normalization methods (e.g., log 
ratio normalization) to resolve the issues with feature distribu-
tion (Mandal et al., 2015). Some commonly used methods for 
differential abundance analysis include �tZIG, a zero-in�ated 
Gaussian (ZIG) distribution mixture model (Paulson et  al., 
2013), ANCOM (Analysis of Composition of Microbiomes) 
which compares log ratios of abundance from each taxon to 
all the other taxa individually (Mandal et  al., 2015), and a 
negative binomial model implemented in DeSeq2 (Love et al., 
2014). In summary, a statistical comparison of the difference in 
relative abundance of individual taxa (e.g., genera or ASVs) be-
tween samples is statistically dif�cult, but ultimately bioinfor-
matic tools speci�c to microbiome analysis have made this a 
useful analysis to include in microbiome studies.

Data availability

Central to the reproducibility of an experiment is making the 
raw sequence data and other relevant metadata publicly avail-
able upon publication (Langille et al., 2018). In many cases, the 
bulk of the results and underlying conclusions are drawn dir-
ectly from these data, so on-demand access should be expected 
(Langille et al., 2018). In fact, most journals now require raw 
data public availability, which we recommend as a best prac-
tice. Numerous online databases such as SRA (Leinonen et al., 
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2011) and EMBL (Hingamp et  al., 1999) exist for this very 
purpose and even include standardized packages to describe 
and contextualize the submitted data. Taking advantage of 
these resources is paramount to ensure reproducibility of study 
�ndings, allowing quantitative comparisons across multiple 
studies and enabling the discovery of new �ndings. This is espe-
cially true for research �elds that are just beginning to integrate 
these new tools into their research program. Equally important 
is the availability of the code used to derive meaning from these 
complex datasets. Numerous version control platforms (e.g., 
Github, GitLab, and BitBucket) exist for this very purpose and 
provide a convenient way for others to access, reproduce, and 
validate published study �ndings. However, the utility of these 
repositories is likely to be a function of the care and time used 
to produce them.

Special Considerations

Poultry

There are several poultry-speci�c caveats to consider before 
conducting 16S rRNA gene sequencing studies from poultry 
whether that be during production or processing. Speci�cally, 
the sample type used must be considered as these matrices can 
have a direct downstream effect on the 1) sequencing run and 
2) the biological interpretations. In the past 10 yr, there have 
been numerous efforts to elucidate the microbiome of poultry 
samples representative of those typically collected by the U.S. 
Department of Agriculture’s Food Safety Inspection Service 
(USDA-FSIS) and Hazard Analysis and Critical Control Point 
(HACCP) personnel for process control and biomapping 
(Rothrock et al., 2016; Kim et al., 2017; Handley et al., 2018). 
As the sampling methods utilized by USDA-FSIS and HACCP 
personnel are not aimed at 16S rRNA gene sequencing but 
rather traditional con�rmation techniques, the direct extrac-
tion of the genomic DNA from these matrices can be dif�cult 
and may require additional lysing steps such as mechanical 
bead beating (Feye and Ricke, 2019). Low biomass samples, 
such as whole bird carcass rinses (Kim et al., 2017; Handley 
et al., 2018), scalder and tank water (Rothrock et al., 2016), 
skin and feather rinses (Rothrock et al., 2019), can not only 
be hard to isolate suf�cient quantities of DNA from, but, due 
to the insuf�cient bacterial load, can also result in additional 
�ltration and lysing steps to maximize DNA recovery.

Additionally, the area within the poultry house or envir-
onment must be considered as there are distinct differences 
in the litter and feces due to the house structure (feeders, 
drinkers, evaporative cool pads, ventilation fans). Locatelli 
et  al. (2017) demonstrated that location within poultry 
houses does matter in terms of the microbiota collected from 
the feces and litter at the fans, cooling pads, waterer/feed 
lines, and the bulk litter areas, as well as manually and in 
silico pooling of these samples did not yield equivalent fecal 
microbiota compositions. As such, research must consider 
the differences between matrices to appropriately identify 
which matrix is most appropriate for their hypothesis.

Bovine reproduction tract microbiomes (uterine/
vaginal)

A recent implementation of 16S rRNA gene sequencing in 
bovine research has been focused on reproductive ef�ciency 
due to the discovery of the reproductive tract microbiome. 

Previously, the presence of microorganisms in the reproduct-
ive tract was believed to only indicate disease and repro-
ductive failure in humans and animals. However, 16S rRNA 
gene sequencing has provided the opportunity to detect a 
microbiome within the uterus and vagina, which is largely 
dominated by the presence of unculturable microorganisms. 
The uterine and vaginal microbiome have a signi�cantly lower 
microbial biomass than other body locations across multiple 
species, such as the GIT (Huttenhower et al., 2012; Swartz 
et  al., 2014). Nonetheless, by the use of 16S rRNA gene 
sequencing, the Human Microbiome Project reported that the 
urogenital microbiome contains only 9% of the body’s total 
microorganisms (NIH HMP Working Group et  al., 2009). 
As a low biomass environment, best practices for low bio-
mass sampling like discussed previously must be followed. 
Common methods for microbial sampling of the reproduct-
ive tract include the use of protected sterile swabs or �ushing 
saline through a sterile catheter. Insertion of the catheter or 
swab through a sheath or speculum-like guard will reduce the 
potential of introducing exterior or vaginal microorganisms 
into the uterus, or accidental collection of these microorgan-
isms in the sample. The inclusion extraction controls such as 
collected open-air tubes can help determine the potential con-
taminant microorganisms that may be present in the sample 
(Eisenhofer et al., 2019; Karstens et al., 2019). Best practices 
in sampling to reduce contaminants and the inclusion of con-
trols will help ensure reproducible and reliable study results 
for the reproductive microbiome.

Conclusion

When best practices are followed, 16S rRNA gene sequencing 
can provide ecological insights not afforded by traditional 
microbiology methods alone. There are microbiome-speci�c 
concerns in all phases of a study including planning, wet lab, 
bioinformatics, and statistical analysis, but with proper plan-
ning, these concerns can be addressed, and issues mitigated. 
When questions do arise regarding any speci�c portion of an 
experiment, the �rst question should be how it relates to your 
speci�c hypothesis as no answer is one size �ts all; reviews 
of the literature closely related to your study or other scien-
tists doing similar work are appropriate sources of solutions. 
When beginning to study a new ecological niche with little-
to-no background information, a small pilot study of a few 
samples will answer many questions on sequencing depth and 
sampling location. Nonetheless, following the outlined best 
practices included here will set a solid foundation to build 
your microbiome research on.
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