Journal of Animal Science, 2022, 100, 1-18
https://doi.org/10.1093/jas/skab346
Advance access publication 1 February 2022

Board Invited Reviews

0%0

AMERICAN SOCIETY OF ANIMAL SCIENCE

Considerations and best practices in animal science 16S
ribosomal RNA gene sequencing microbiome studies

Margaret D. Weinroth,""(© Aeriel D. Belk,*!l Chris Dean,* Noelle Noyes,* Dana K. Dittoe,"
Michael J. Rothrock Jr," Steven C. Ricke," Phillip R. Myer,**(® Madison T. Henniger,**
Gustavo A. Ramirez,'> Brian B. Oakley,' Katie Lynn Summers,** Asha M. Miles,*
Taylor B. Ault-Seay,** Zhongtang Yu, !l Jessica L. Metcalf,* and James E. Wells®®

U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center (USNPRC), Athens, GA 30605, USA
*Department of Animal Sciences, Colorado State University, Fort Collins, CO 80524, USA

IJoint Institute of Food Safety and Applied Nutrition, University of Maryland, College Park, MD 20740, USA

$Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA

IMeat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI
53706, USA

**Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA

""College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA

#U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center (BARC), Beltsville, MD 20705, USA
liDepartment of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA

$SUSDA ARS US Meat Animal Research Center (USMARC), Clay Center, NE 68933, USA

'Corresponding author: maggie.weinroth@usda.gov

Abstract

Microbiome studies in animal science using 16S rRNA gene sequencing have become increasingly common in recent years as sequencing costs
continue to fall and bioinformatic tools become more powerful and userfriendly. The combination of molecular biology, microbiology, microbial
ecology, computer science, and bioinformatics—in addition to the traditional considerations when conducting an animal science study—makes
microbiome studies sometimes intimidating due to the intersection of different fields. The objective of this review is to serve as a jumping-off
point for those animal scientists less familiar with 16S rRNA gene sequencing and analyses and to bring up common issues and concerns that
arise when planning an animal microbiome study from design through analysis. This review includes an overview of 16S rRNA gene sequencing,
its advantages, and its limitations; experimental design considerations such as study design, sample size, sample pooling, and sample loca-
tions; wet lab considerations such as field handing, microbial cell lysis, low biomass samples, library preparation, and sequencing controls; and
computational considerations such as identification of contamination, accounting for uneven sequencing depth, constructing diversity metrics,
assigning taxonomy, differential abundance testing, and, finally, data availability. In addition to general considerations, we highlight some special
considerations by species and sample type.

Key words: 16S rRNA gene, amplicon sequencing, bacteriome, bioinformatics, microbiome

Abbreviations: ASV, amplicon sequencing variant; GIT, gastrointestinal tract; GUI, graphical user interface; HACCP, Hazard Analysis and Critical Control Point;
HPC, high-performance computing cluster; NGS, next-generation sequencing; NTC, no template control; 0TU, operational taxonomic unit; TMM, trimmed mean
of M-values; USDA-FSIS, U.S. Department of Agriculture’s Food Safety Inspection Service

Introduction next-generation sequencing (NGS) coupled with bioinfor-
matic analyses, has enabled the comprehensive character-
ization of complex microbial communities or microbiomes.
One example of the power of NGS paired with bioinfor-
matic advancements is when Nielsen et al. (2014) examined
396 human gut microbiome samples and identified that 181
new microbial genomes corresponded to previously un-
described species. The parallel evolution of various “-omics”
technologies has allowed us to answer key questions about
microbiomes, including which microbes and genes are pre-
sent, what they are capable of doing, and what functions they
are performing (Addis et al., 2016). The least financially and
computationally expensive of these approaches is 16S ribo-
somal RNA gene sequencing (sometimes shortened to 16S

Nearly all environments on Earth are inhabited by complex
communities of microorganisms. While these environments
have traditionally been studied by obtaining and classify-
ing pure microbiological laboratory cultures, culture-based
studies limit scientific discovery to the microbes that can be
grown in laboratory conditions, thus constraining our ability
to fully characterize these microbial communities. The dis-
crepancy between the viable colonies on an agar plate and
the count of bacteria under a microscope has been termed
the “great plate count anomaly” (Staley and Konopka, 1985)
with some estimates approximating that only 1% of bacteria
can be cultured with standard techniques (Hofer, 2018). The
development of culture-independent technologies, specifically
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rRNA or just 16S). This approach targets specific genes that
allow taxonomic classification and diversity estimation of the
bacterial and archaeal microbiome (this approach does not
include all microorganisms in a sample; e.g., it cannot cap-
ture fungal, viral, protozoal, or eukaryotic organisms). Over
the past 10 yr, the combination of lowered DNA sequencing
costs and increased accessibility to bioinformatic tools has al-
lowed more animal scientists to incorporate 16S rRNA gene
sequencing into their research programs. In fact, while in
2010, the Journal of Animal Science only had four research
articles that used the word “microbiome,” and by 2020, that
number had climbed to 184 publications (72 full-length art-
icles and 112 abstracts) in just 1 yr. As more researchers in-
corporate 16S rRNA gene sequencing into their programs,
they should be familiar with microbiome-specific vocabulary
(Table 1) and experimental considerations (Figure 1) to prod-
uce high-quality, reproducible results. The purpose of this re-
view is to provide a brief tutorial on the use of 16S rRNA
gene sequencing methods and analysis and also to remove
barriers to performing microbiome studies in animal sciences.

Overview of the Method
What is 16S rRNA gene sequencing?

Using the ribosomal RNA gene as a marker for determining
evolutionary relatedness was first proposed by Carl Woese
due to its ubiquity in all organisms (Olsen and Woese, 1993).
The 16S rRNA gene sequencing method involves targeting
only a small fraction of microbial DNA, which provides use-
ful insights into the diversity and identification of microbial
communities. The 16S rRNA gene codes for the RNA compo-
nent of the 30S subunit of a prokaryotic ribosome (bacterial
ribosomes are composed of a large [50S] and a small [30S]
subunits). This gene, which is ubiquitous in bacteria and ar-
chaea, has been described as a “molecular clock” because it
allows for phylogeny determination and species divergence
due to its structure and activity in cellular function (Duchéne
et al., 2016). The 16S rRNA gene is around ~1,550 base pairs
(bp) long and is composed of eight highly conserved regions
and nine hypervariable regions (with these regions named V1
to V9; Figure 2) (Clarridge, 2004). When conducting a 16S
rRNA gene sequencing study, one or several hypervariable re-
gions are amplified using broad-range primers that each bind
to a conserved region and are sequenced. Then, the informa-
tion in these regions is used to reconstruct the taxonomic
composition (done by comparing the sequences to databases
of known organisms) and diversity present within the sam-
ple. Depending on the application, appropriate phylogen-
etic classifications can sometimes be made from 16S rRNA
hypervariable fragments as small as 100 bp, making popu-
lar and affordable short-read sequencing platforms (e.g.,
[llumina) suitable for microbiome analysis (Caporaso et al.,
2011). While it is possible to sequence the entire length of the
16S rRNA gene for more information, this requires greater
investments of time and money, which can undermine the ad-
vantages of this approach to high-throughput microbiome
sequencing. Likewise, sequencing across rRNA genes to in-
clude intergenic regions has proven useful for strain typing
bacterial species (Johnson et al., 2019) but requires even
greater investments of time and money. In summary, modern
microbiome analysis using 16S rRNA gene sequencing is af-
fordable (often significantly less than US $50 a sample) and
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can provide a culture-independent survey of the bacterial and
archaeal community within a sample.

Uses and limitations of 16S rRNA gene sequencing

Before pursuing a particular approach for microbiome ana-
lysis, it is important to consider your research questions and
whether 16S rRNA gene sequencing will be able to answer
them. For example,16S rRNA gene sequencing cannot de-
scribe metabolic potential or activity of a microbial commu-
nity. This is because 16S rRNA gene is a housekeeping gene
found in all prokaryotes and any sequence variability only
indicates phylogenetic divergence, which may or may not
correlate with metabolic potential, virulence, antibiotic resist-
ance, etc. Additionally, the 16S rRNA region sequenced may
not contain sufficient sequence variability to distinguish spe-
cies or strains (e.g., a pathogenic vs. a commensal strain of
Escherichia coli).

A further limitation of sequencing-based approaches is
the arbitrary “total” imposed by the sequencer, such that the
total absolute microbial load, or abundance, is not reflected.
A measurement of total bacterial load would require quan-
titative methods, such as quantitative polymerase chain re-
action (qPCR), and cannot be obtained by 16S rRNA gene
sequencing alone (Gloor et al., 2017; Ganda et al., 2021).
Data generated by 16S rRNA gene sequencing can be thought
of as a survey or “taking attendance” as it provides infor-
mation on which microbes are present and in what relative
abundance. This also allows the use of diversity estimates to
describe the microbial ecology of a single sample and to com-
pare similarities and differences among many samples. One
known shortcoming to this approach is that different organ-
isms have different copy numbers of the 16S rRNA gene in
their genome, so relative abundance is biased toward those
with higher copy numbers of the 16S rRNA genes in their
genome; but while this is a known limitation, tools to correct
this issue have not produced reproducible consistent results
and the common practice is to not adjust for 16S rRNA gene
copy number by bacterium (Louca et al., 2018). Also of note,
if you are looking for a specific bacterium, it would be more
advantageous to use specific primers as opposed to relying
on the broad range primers, as low levels of the bacterium
of interest could be missed with 16S rRNA gene sequencing
alone, resulting in a false negative.

Another important caveat to DNA-based 16S rRNA gene
sequencing is that it cannot distinguish whether microbes in
a sample are dead or alive, which can be a relevant issue in
agricultural sciences. For example, applying 16S rRNA gene
sequencing to soil sterilized by steaming may suggest highly
diverse microbial communities in these matrices, when in fact
most of those microbes are dead. Researchers interested in
microbial activity might prefer RNA-based or metabolomic
approaches to answer those questions or the use of a different
set of tools.

General Experimental Considerations

Sample size, statistical power, and

experimental unit

Although microbiome studies routinely analyze many de-
pendent variables simultaneously (e.g., all the bacterial taxa
present in a sample) as opposed to just one (such as rate of
gain and carcass size), many of the same experimental design
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Table 1. Glossary of commonly used microbiome terms

Term Definition

16S rRNA gene Gene encoding the RNA component of the 30S subunit of a prokaryotic ribosome; ubiquitous to bacteria and archaea

Alpha diversity The variance within a sample, used to evaluate the number of different species (usually represented by the number of ASVs) in each sample

Amplicon The fragment of DNA resulting from a primer set after amplification using PCR

ASV Amplicon Sequence Variant: individual sequence variants differing by as little as one nucleotide with no fixed dissimilarity threshold

Barcoding Unique DNA sequences attached to broad range primers before amplification. These unique barcodes allow different samples to be pooled and sequenced together

Beta diversity
Demultiplexing
Evenness
Extraction Controls

Feature Table

GUI

HPC

Library Controls
Library pooling
Long-read
Metadata
Metagenome
Mock Community
NTC
Normalization
OTU

Paired-end sequencing

Phylogenetic trees

Pipeline

Rarifying

Raw reads

Relative abundance
Richness

Sample pooling
Short read

Shotgun metagenomics

Single-end sequencing

Taxonomy

V1to V9
V4

in the same run and later separated during analysis (see demultiplexing)
The variance between samples, usually expressed as a distance matrix
Separation of sequencing reads from a sequenced pooled library by unique barcodes and assignment to the corresponding samples
Balance of the features (ASVs, species, etc.) within a sample
Blank or non-DNA samples (such as an empty sponge) added to a study to assess background laboratory contamination (see also library controls and NTC)

Also known as a count table (as when using OTUs, OTU Tables). Table that contains the number of sequences counted for each feature (ASV or OTU most com-
monly), per sample in a matrix

Graphical User Interface: Computer program that allows users to “point-and-click” as opposed to the command line

High-performance computing cluster: More powerful computer than a local system many universities have shared HPC for high computational jobs

Controls included with PCR libraries to assess primer performance and contamination (see NTC)

Combines barcoded DNA during library preparation to make one pooled sample of DNA for sequencing. Individual identity is maintained through barcoding
DNA fragments generated that range in length from 5 kb+, most commonly on a PacBio or Nanopore sequencer

Data that represent biological data collected, describing the information surrounding the data to provide context for analysis and interpretation

Refers to all the genomes represented in a biological mixture

A bacterial mixture (internally generated or commercially available) with known proportions of bacterial to assess sequencing quality and act as a positive control
No-template controls: Controls included with PCR libraries to assess primer performance and contamination (see Library control)

Transformation of raw read numbers to account for uneven read numbers— usually in this method, the ASV numbers are multiplied by a value or proportion.
Operational Taxonomic Unit: clusters of sequencing reads that differ by less than a fixed dissimilarity threshold (usually 3%) see also ASV

A DNA fragment is sequenced from both ends (usually 100- to 300-bp long)

Tree representative of the evolutionary relationship between sequences in the sample can be constructed de novo from only sequences in a dataset or compared
with a reference tree

A collection of tools, programs, and other codes that are run in succession to produce results (common pipelines include QIIME2, Mothur, and RCP)

Randomly subsampling ASVs or OTUs within a sample without replacement to a preselected depth

Number of reads generated from each sample; due to sequencing inefficiency, this number will not be the same across samples and thus normalization is needed
Percentage of a total population attributed to one taxon such as phyla or species in relation to other features in the community

Number of different species within a sample, regardless of how they are distributed

Combination of raw sample material (such as equal amounts of rumen fluid) or DNA (not to be confused with library pooling, here no individual identity is maintained)
DNA fragments generated that range in length from 75 to 300 bp, most commonly on an Illumina sequencer

All DNA within a mixed microbe environment, fragmented, and sequenced. Differs from the amplicon 16S approach as it is not amplifying one target but any
piece of the genome.

A fragment is sequenced only from one end to the other (usually ~75- to 100-bp long)

Represents the identification and classification of each microorganism, represented by an ASV, present in the community; this is distinct from phylogeny, which
represents evolutionary relatedness of the ASVs

Hypervariable regions studied on the 16S rRNA gene

A common hypervariable region for 16S studies, also the target for the Earth Microbiome Project
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Figure 1. Overview of considerations when conducting a 16S rRNA
gene sequencing study. Created with Biorender.com.

<@ Taxonomy

considerations must be evaluated, such as effect and sample
size, experimental unit, and study design. While some papers
report methods for power analysis for microbiome studies
(Kelly et al., 2015; Chen, 2020), these tools have limitations
such as the metrics of measurement or are only able to be
implemented for studies with a specific design (such as case—
control). Unfortunately, due to the complexity of microbiome
studies, such as sequencing depth, bioinformatic tools, rare
taxa, and unknown effect size, power analysis remains rare
in microbiome studies (Debelius et al., 2016). If previous
studies have been conducted similar to the study you wish
to conduct (unfortunately still uncommon for most animal
sciences questions), or if you have the ability to generate a
pilot sample set, a better idea of sample and effect size could
be obtained. It is likely that as more microbiome data are
acquired and publicly shared, sample size and power may be-
come more estimable (McDonald et al., 2015). The experi-
mental and sampling unit (i.e., one animal and one fecal grab)
should also be determined prior to the start of the study, with
special consideration to the pooling of samples (see below).
Finally, although a single sample may produce tens of thou-
sands of sequencing reads, it is still only one sample and best
practices in experimental design, and biological replication
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must still be followed. An investigator must still be aware of
limits of sample size and degrees of freedom and not subject
microbiome data to overly complex study design—this is es-
pecially important given that many microbiome studies have
smaller sample sizes due to cost restraints.

Sample pooling

A specific consideration that is directly tied to sample size
is pooling of samples. Samples can be pooled by raw mater-
ial (such as equal volumes of rumen fluid, feces, or meat) or
after DNA extraction such as in equal weights or volumes.
Pooling not only can have advantages such as experimental
units being more representative of a microbiome (such as 20
fecal grabs from a pen vs. one) and cost but also come with
the concern that pooling could mask differences among indi-
vidual animals or groups (Hamady and Knight, 2009). When
pooling samples, several considerations on animal homology
must be contemplated, such as production system, back-
ground, region, and husbandry. Production system vertical in-
tegration should be considered if appropriate—for example,
cattle in a feedlot are likely not from all the same stocker
sources, whereas chickens in different houses at the same loca-
tion could be from the same breeder. In fact, in a feedlot study
designed to evaluate a feed additive (Huebner et al., 2019),
cattle source explained the most of the observed microbiome
variations. Knowing the geographical history, diet, and veter-
inary treatment of animals can help to guide pooling strategy,
but oftentimes these host-level factors are unknown. Ideally,
pooling would be done across the most homologous group of
animals possible such as the same pen, barn, treatment group,
or pasture (though pooling across these variables should be
accounted for in an experimental design, such as a block). In
a best-case scenario, just like any animal science study, ap-
plying the treatment to the most homologous group possible
will reduce unpartitioned variance. If there is more variation
within the pool than between, type II error could be encoun-
tered. A tradeoff between smaller experimental units that are
more homologous in type vs. larger experimental units that
could be more reflective of an entire population needs to be
considered when pooling.

Additionally, when pooling, you lose the ability to determine
what microbes may be interacting in a single community. For
example, if you are interested in which organisms may be as-
sociated with the presence of pathogens in a fecal microbiome,
pooling across feedlot pen would limit your ability to address
that research question if there is a difference between pens.
Additionally, pooling may result in rare taxa not being de-
tected as well as possible alterations in alpha and beta diversity.
Therefore, like all suggestions made in this review, your choices
in designing the sampling scheme should be carefully weighed
against your research questions.

Appropriate sampling location

There are numerous considerations for identifying the correct
sampling locations and such considerations should be focused
on satisfying the hypothesis or objective of a research project.
When choosing a sampling location, the question of biological
relevance must be considered; for example, is it appropriate
to infer differences in the chicken gastrointestinal tract (GIT)
microbiota from cloacal swabs, fecal collections, or poultry
litter? For example, while there is an association between clo-
acal swabs and cecal content in broilers, rare taxa in the ceca
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Figure 2. lllustration of conserved and variable regions of the 16S rRNA gene. Hypervariable regions are labeled in blue with conserved regions
indicated by low entropy. In red, four commonly used primer pairs are highlighted. The figure was made by using Shannon entropy data generated from
Johnson et al. (2019) (https://github.com/TheJacksonlLaboratory/weinstock_full_length_16s) and ggplot2 in R (v. 4.0.2).

are not well represented in cloacal swabs (Andreani et al.,
2020). Additionally, measuring individual animal phenotypes
can be expensive and often impractical in some commercial
production settings. Two examples from two different species
on choosing a sampling location are 1) deciding which seg-
ment of a bovine GIT to sample and 2) determining which
sample is the most appropriate representation of the poultry
GIT in a broiler study.

In the case of the bovine GIT, where many studies have
focused on the reticulorumen due to its primary role in nu-
trition and metabolism, it is common to use fecal and/or
ruminal sampling. Yet, while colorectal or fecal samples are
often considered as a proxy for rumen microbial activity, this
may be of concern depending on the objective of the study.
Using fecal samples maybe warranted if examining factors
such as nutrient degradability (Kaltenegger et al., 2021), the
impact of a nutritional supplement or diet on fecal pathogen
shedding (Jacob et al., 2009), or as an indicator of ruminal
acidotic status (Plaizier et al., 2017; Neubauer et al., 2020).
However, the rumen microbiome is quite distinct from the
lower GIT, and fecal sampling should not typically be con-
sidered as a proxy for the ruminal microbiome in many cases.
Indeed, researchers have demonstrated that the bacterial com-
munities in the rumen are distinct from those of the small and
large intestine, varying significantly in function, phylogenetic
diversity, richess, and evenness (Myer et al., 2017; Huang
et al., 2020). The absorption of amino acids and fatty acids,
digestive processes, post-ruminal degradation of cellulose and
starch, and the maturation of the mucosal immune system,
all highlight the differences among the segments of the lower
GIT in cattle.

This issue is not species specific, and many studies have
taken different approaches to understand the microbiome of
the chicken GIT. In the past, due to the price associated with
euthanizing poultry to obtain digesta samples within the GIT,
researchers did not use the GIT but other means such as fecal
samples to investigate the microbiota. This effort led to in-
correct assumptions of treatment effects on the microbiota
(Stanley et al., 2015; Locatelli et al., 2017; Schreuder et al.,
2020b; Schreuder et al., 2020a). For example, Schreuder
et al. (2020b) determined that it is not practical to use cloacal
swabs to infer the environmental impact on the poultry GIT;
instead, focus should be on investigating the environmental

impact on the GIT microbiota of commercial layers directly
over time. Additionally, fecal matter is commonly subjected
to sequencing analysis in place of poultry cecal contents as
it can be collected over time from the same bird and does
not require the bird to be euthanized in order for collection.
However, the microbiota of feces is not entirely representative
of the cecal microbiota. Stanley et al. (2015) determined that
the fecal microbiota of 163 birds across three trials had simi-
lar bacteria present within the feces and ceca but not in the
same relative abundances.

Therefore, when aiming to determine proxies for ease of
sampling, sampling from the feces or other easily accessible
matrices may not be appropriate for representing the loca-
tion of interest. Choosing the correct sample location for
these microbiome studies is an essential, and commonly
complicated, step in project and experimental design. When
determining the sample location for amplicon-based rRNA
research, the location must ultimately be based upon the hy-
pothesis and/or objective(s) of the study, as well as knowledge
regarding the physiology of the host species and/or target tis-
sue.

Importance of accurate metadata

The term “metadata” is used to indicate all of the various data
points that characterize the biological specimens collected.
These data can be used to provide a critical context for the ana-
lysis of 16S rRNA sequences obtained from host-associated or
environmental samples (National Research Council, 2007).
Organizing and creating metadata to accurately reflect the
data collected during an experiment are critical to bioinfor-
matic and downstream analyses. There are multiple benefits
to maintaining detailed metadata. Importantly, as much detail
should be collected as possible to obtain adequate/accurate
metadata, such as location of samples, dates, times, identifi-
cation of sample source, single or pooled sample, treatments,
or other observations made throughout the study. Once data
are collected, the information should be appropriately stored
in a consistent format, allowing for data to be easily under-
stood by outside parties or collaborators. Some standards for
metadata collection and formatting were described by Yilmaz
et al. (2011); these standards should be followed especially if
one intends to submit data to a publicly available database
as is often required before publication (Yilmaz et al., 2011).
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Collecting accurate metadata improves downstream analyses
in whichever bioinformatics program is used for diversity and
taxonomic assignment and statistical analyses. Bioinformatic
pipelines require consistency in titles and formats in meta-
data to appropriately input data, thus making accurate
metadata important for analyses. Additionally, these sequence-
processing pipelines often incorporate statistical analyses,
which makes organizing metadata integral to make multiple
comparisons among variables. While this can improve data
observations, accurate metadata can also improve the repro-
ducibility of collected data.

While not currently standardized across all fields, the push
for standardized metadata to allow meta-analysis across 16S
rRNA gene sequencing studies and reuse of sequenced data
in other studies has been of increased interest. When meta-
data are standardized and accurate, large meta-analyses can
more easily be conducted to detect underlying and large-scale
trends not possible with one study alone (Dundore-Arias
et al., 2020). In 16S rRNA gene sequencing studies, the best
practice is to report some degree of metadata (many reposi-
tories will specify what metadata are required) in a repository
with the published paper (typically along with raw data as
talked about below). Therefore, organized metadata also as-
sist researchers for publication purposes, reducing time spent
on reorganizing the previously collected data.

A special consideration when collecting metadata in ani-
mal science research is if you are collaborating with industry
partners (such as farms, pastures, processing facilities, or re-
tail locations) that do not want to be identified. For example,
some databases may ask for a geographical location of where
samples were collected. It is essential that proper communi-
cation and nondisclosures are considered prior to the start of
the study and what terminology can be used to describe the
sampling location. In a manuscript, this could be nonspecific
regional information (such as a commercial feedlot in the
Midwestern United States) and in your publicly available
metadata a geographic location that will not unblind a loca-
tion such as the latitude and longitude of the university lab
where it was processed.

Starting with organized and accurate metadata is critical
for bioinformatic analyses of the data. Care should be taken
in collecting data so that multiple sources may understand the
metadata when conducting analyses. Overall, accurate meta-
data allow for ease in finding data, using the data in analyses,
and then increasing the likelihood of data being used in future
studies.

Wet Lab Considerations

Field handling and storage

Many factors can alter sample integrity during sample col-
lection; thus, optimized sample preservation techniques for
16S rRNA gene sequencing are critical for accurate data
(Carruthers et al., 2019). Immediately freezing (at least at
-20 °C) a sample after field collection is the most ideal proto-
col, but in many cases, this is not possible for field studies. It
has been documented that the length of time from collection
to freezing can significantly alter 16S rRNA gene sequencing
results. For example, one fecal study (Carruthers et al., 2019)
investigated six different time periods between sample col-
lection and freezing (1 to 36 h) and found that time to freeze
was a significant factor affecting the results of microbiome
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composition. Additionally, a comparative storage study of
feces (Moossavi et al., 2019) found that samples immediately
frozen at —80 °C vs. those stored in 95% ethanol at room tem-
perature prior to freezing displayed stability for certain bac-
terial populations, wheres other bacterial populations, such
as Actinobacteria, were significantly altered. Nonetheless, in a
comprehensive study of over 1,200 samples (Song et al., 2016),
three different methods—95% ethanol, Flinders Technology
Associates cards, and the OMNIgene Gut kit—all preserve
samples sufficiently well at ambient temperatures. The effect
of long-term storage at -80 °C has also been assessed and
found that while changes will occur due to the length of stor-
age time, the changes are similar to those seen in inter- and
intra-subject variation and, therefore, remain acceptable for
microbiome studies (Tap et al., 2019). Based on studies such
as these, placing samples into sterile storage tubes and flash
freezing in liquid nitrogen followed by transfer to a -80 °C
freezer for immediate storage is likely to cause the least devi-
ation from the “true” microbiome population. In some field
work, liquid nitrogen or dry ice is not logistical possibilities,
but care must be taken to get samples frozen as soon as pos-
sible to reduce 16S rRNA gene sequencing alterations as the
bacterial community continues to live and change. In any
case, care must be taken to treat samples uniformly across
an experiment—that is, one day’s samples should not be left
on the counter for more than 6 h with the next day’s samples
being placed directly in the freezer.

Another critical factor that is often overlooked in 16S
rRNA gene sequencing studies is the importance of a clean
work area. Environmental contamination is a significant risk
in agricultural settings and care must be taken to sterilize work
areas. Surfaces areas in barns should be cleaned with ethanol
or 10% bleach solution prior to sampling, and care should
be taken to clean between samples to reduce cross-contam-
ination. For example, soil samples left on a table surface can
contaminate the next sample. While time consuming, the time
taken to create a clean or sterile work area prior to sampling
is important to reduce potential microbial contaminants. One
of the elements of a clean sampling environment is the use of
sterile sample swabs or collection bins. Not every brand or
style is suitable for 16S rRNA gene sequencing work and care
must be taken to purchase DNA-free, sterile swabs, bins, and
tubes. Sterilization of workspace and timely uniform freezing
practices will result in accurate, high-quality, 16S rRNA gene
sequencing results.

Lysis of cells

To obtain representative quality genomic DNA to amplify
the 16S rRNA gene and subsequently sequence the targeted
region, the outer boundary, or cell wall and/or membrane,
must be disrupted or lysed effectively. Cell lysis is the process
in which the cell wall and/or membrane is disrupted or des-
troyed to release the inter-cellular material such as the DNA,
RNA, protein, or organelles from the cell (Islam et al., 2017).
There are currently multiple methods to disrupt the cell wall
and/or membrane, including mechanical, physical, chemical,
and enzymatic lysis (Figure 3). Mechanical lysis is common
in animal science and is achieved through bead beating. Bead
beating is often done using glass or zirconia beads with a
commercial bead mill or vortex prior to employing a com-
mercially available DNA extraction kit (Yu and Morrison,
2004; Qu et al., 2008; Danzeisen et al., 2011). Physical
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lysis can include freeze-thaw (Shao et al., 2012), heat, cavi-
tation (Liu et al., 2020), and ultrasonic (Han et al., 2019)
methods. Chemical lysis uses ionic alkali solutions or deter-
gents to disrupt the bacterial cell membrane (Chapela et al.,
2007; Martzy et al., 2019). Enzymatic lysis is accomplished
through the application of enzymes such as proteinase k and
lysozyme (Gill et al., 2016). These methods can be introduced
individually, but most commercial DNA extraction kits such
as the QIAamp PowerFecal Pro Kit (Qiagen, Valencia, CA,
USA) utilize a combination of the aforementioned techniques
to maximize lysis efficacy.

When considering which lysis technique, it is important
to consider all sample types being compared in the study
and what lysis steps will be appropriate to utilize through-
out the study. There are two critical components to focus on
when selecting a uniform lysis method: 1) will this method
work on all of the cell types within the sample and 2) will
this method work across all the sample types in the current
study. Because some cells are more resistant to cell lysis, such
as Gram-positive bacteria and bacterial endospores, the lysis
technique selected could result in DNA that does not represent
the true diversity or composition of the microbiome. As such,
the mechanical bead beating step has been shown to im-
prove DNA yield, increase observed bacterial diversity, and
improve recovery of genomic DNA from Gram-positive and
endospore-forming bacteria (Salonen et al., 2010; Maukonen
et al., 2012; Guo and Zhang, 2013; Henderson et al., 2013;
Walker et al., 2015). While not currently a concern for 16S
rRNA gene sequencing studies on only one variable region, in
the future, lysis methodologies capable of disrupting the cell
wall and/or membrane without over fragmenting the genomic
DNA will become more important as long-read sequencing
technologies are more widely adopted.

To compare sample types properly, it is critical to consider
all sample types and determine a standard lysis methodology,
whether that be a single method or a combination of proced-

ures. With inhibitors such as humic acid, bile salts, and poly-
saccharides being more prevalent among specific matrices
(e.g., litter, feces, and feed), lysis procedures must account for
these nuances. Furthermore, utilizing varying lysis methods
between sample types could introduce bias into the analyses
and result in differences in the subsequent microbiota popu-
lations that are not necessarily due to treatment or sample
types (Henderson et al., 2013; Wesolowska-Andersen et al.,
2014; Gerasimidis et al., 2016). Ma et al. (2020) investigated
the effect of two chemical and two mechanical lysis methods
on the 16S rRNA gene of the ruminal contents of goats and
determined that the chemical lysis improved the DNA yield
from fibrolytic bacteria such as Ruminococcaceae. However,
they did note that chemical lysis methodology did not im-
pact the number of unique bacteria detected. Ultimately, lysis
methodology is an important parameter to consider when
developing a study utilizing 16S rRNA gene sequencing.
Depending on sampling type, there may be a need for op-
timization of lysis for DNA quality and quantity; this is es-
pecially true if you are working with a less common matrix
in which case benchmarking DNA quality and output from
different methods might be needed. Therefore, succinctly
detailing the methodology utilized during the onset of a par-
ticular study is increasingly important as this can drive the
differences seen between publications employing different
lysis techniques.

Low biomass samples

Certain agricultural samples, such as meat rinsates, water, en-
vironmental air, meconium, respiratory tract samples, repro-
ductive tract samples, lavages, nasal swabs, or skin swabs,
can be low in bacterial biomass, resulting in complications in
DNA extraction and sequencing. Bacterial biomass is a crit-
ical determinant of sequencing output in amplicon datasets,
and special care must be taken to optimize DNA extraction to
prevent biased microbial profiles. Recent studies (Eisenhofer
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et al., 2019; Karstens et al., 2019) have investigated low
biomass samples and found that lysing methods, DNA ex-
traction, and PCR protocols could greatly influence results.
An important first step in any 16S rRNA gene sequencing
investigation is to read the literature on similar samples of
interest to determine the best DNA extraction techniques for
that specific sample type. A trial run on representative or pilot
samples will ensure that DNA extraction methods are appro-
priate and yield reproducible results. Changes in protocols
for DNA extraction are often needed, such as prolongment
of lysing. A caveat of harsh mechanical or chemical lysing
steps is the added concern of the quality of the DNA output
as low-quality DNA can produce spurious PCR results, con-
founding data interpretation. While a larger quantity of DNA
makes downstream processes easier, it should be noted that
a suitable DNA extraction method can yield enough qual-
ity DNA from low bacterial biomass samples for 16S rRNA
gene sequencing studies. One study has demonstrated that the
bacteria present in single rumen protozoal cells could be taxo-
nomically characterized using 16S rRNA gene sequencing
(Park and Yu, 2018).

Other concerns with low biomass samples include intro-
duction of outside microbes and low bacterial DNA yields.
When sampling in a low biomass environment, sampling
could introduce foreign microbes into the environment being
sampled, such as exterior environmental microorganisms or
resident vaginal microorganisms from a vaginal microbiome
(Garcia-Grau et al., 2019). Future samplings may also be im-
pacted due to colonization of the newly introduced micro-
organisms. Some microbiome sampling techniques have been
developed specifically for this issue (see special considerations
below). An additional issue may arise when you are sampling
an environment with a low microbial load in relation to high
host animal DNA presence—such as a meat rinsate. In this
case, larger sampling amounts of pooling of several samples
may be needed to obtain enough bacterial DNA (this is es-
pecially true for meat samples taken after interventions in
processing facilities).

Once DNA extraction methods are optimized, PCR amplifi-
cation can remain a complicating factor as low DNA levels can
result in poor quality amplification or amplification of potential
contaminants. Contamination becomes a greater concern in low
biomass samples as low levels of pertinent microbes increase the
potential for contaminating microbes to amplify significantly
during the PCR step. The inclusion of controls, as discussed
below, such as buffers or PCR-grade water, can help assess any
potential contamination (Claassen-Weitz et al., 2020). Finally,
if low biomass samples will not amplify efficiently, semi-nested
PCR protocol instead of typical PCR may be used to increase
PCR products. Increased PCR cycle numbers can also be used
to increase amplicon yield but are associated with increased
sequencing error rates and bias. Overall, low biomass samples
can complicate 16S rRNA gene sequencing studies, but with
careful experimental design and controls, these studies can yield
reproducible results.

A final concern when sequencing DNA extracted from low
biomass samples on an Illumina machine is that the low bac-
terial load and subsequent low GC content generated from
these matrices generally impact the amount of Phi X (>10%)
needed to produce a quality sequencing run and may also re-
quire that other samples with a more robust bacterial load be
sequenced within the same library (Illumina Inc., 2021).
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Library preparation and sequencing depth

An important decision one must make prior to the amplicon
library preparation is which of the nine hypervariable re-
gions of the rRNA gene will be amplified; common regions
for analysis include V1-V3, V3-V4, or V4 (Figure 2). The V4
hypervariable region has been shown to allow adequate reso-
lution and has been demonstrated to generate optimal com-
munity clustering with short-length reads (Caporaso et al.,
2011) and has also gained popularity due to its use in the Earth
Microbiome Project (Thompson et al., 2017). Regardless of
variable region, sequencing instruments can produce single-
or paired-end reads that allow for sequencing of the desired
amplicons. Recent advancements in the sequencing chemistry
used to produce short reads have been developed to allow
for read lengths up to 300 base pairs (and around 500 bp if
used paired-end reads), motivating researchers to sequence a
combination of neighboring hypervariable regions. The ad-
vantage of doing this is that longer amplicons contain add-
itional phylogenetic information that aids to resolve the
taxonomic ambiguities present when assigning sequences to
a taxon. The choice of hypervariable region(s) to sequence
can be somewhat arbitrary but should ideally be driven by
field- or research-specific reasons. For example, in arctic mi-
crobial communities, the V4-VS$ hypervariable region is pre-
ferred because it provides superior taxonomic coverage and
resolution of archaeal groups, which comprise a small, but
an integral component of the arctic marine environment
(Fadeev et al., 2021); in the female genital tract, the V3-V4
hypervariable region is preferred because it has the power to
identify bacterial species associated with vaginal health and
disease (Graspeuntner et al., 2018); in human skin, the V1-V3
hypervariable region is preferred because the microbial com-
munities recovered approximate those reported from deep
shotgun metagenomic assays (Meisel et al., 2016). In some
cases, the choice of hypervariable region(s) may not be clear;
in these cases, we recommend selecting a hypervariable region
that is similar to those used in previous studies to which you
may wish to compare your results.

Following amplicon primer pair selection to use for the li-
brary preparation, it is imperative that best practices in PCR
preparation and handling should be conducted to minim-
ize the occurrence of carry-over and cross-contaminations.
While different steps of the library preparation process can
have different locations in the laboratory, at minimum dif-
ferent pre- and post-amplification areas are needed, ideally in
two different rooms or in PCR workstations/hoods. In add-
ition to different workspaces, each area should be supplied
with its own equipment (pipettes, tube racks, etc.) with items
(including gloves and lab coat) not moving between the lo-
cations.

Another important decision to make in designing your 16S
rRNA gene sequencing study is how many reads per sample
you will aim for. Depending if the sequencing is occurring
in-house or out-sourced, this could be as easy as specifying on
a form the requested depth (such as 10,000 reads per sample)
or may require a more complex calculation involving sample
number, read length, and expected sequencing output. Some
studies indicate as few as 2,000 reads allow characterization
of a bacterial community (Caporaso et al., 2011), whereas
others argue the number is closer to 10,000 to 15,000 (Bukin
et al., 2019). The most appropriate method to find a mini-
mum sequencing number target would be to construct a rar-
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efaction curve (see the Diversity section for more on this) on
a set of pilot samples. In the absence of any data on your mat-
rix, 10,000 reads per sample would be a good starting point
for a raw read number target.

Inclusion of positive and negative controls

When preparing samples to sequence, the inclusion of positive
and negative controls can identify any contamination in your
wet-lab workflow and help in bioinformatic analysis. There
are two types of negative control samples most commonly
used in microbiome experiments: extraction controls and li-
brary controls. Extraction controls are employed during the
extraction of nucleic acids and are typically composed of a
lysis buffer, in the absence of any biological material. In the
absence of any competing bacteria, these samples should have
no cell to lyse; however, recent research into reagent and con-
sumable contamination would indicate that this is not always
true (Salter et al., 2014). The kits used to extract nucleic acids
from biological samples also have their own microbiomes
(termed the “kitome”) (Salter et al., 2014). In some cases, es-
pecially in low microbial biomass environments, these nucleic
acids can outnumber those present in samples with real bio-
logical material. In extreme occasions, they can represent the
entirety of the biological material being sequenced (de Goffau
et al., 2019). Negative controls, when extracted alongside
biological samples, allow the differentiation of meaningful
biological differences from laboratory-acquired microbes.
These can also be used to bioinformatically remove contam-
ination sequences from the true samples, although this must
be done carefully (Davis et al., 2018). Library controls (also
known as no-template controls) are employed during the
PCR amplification of the selected hypervariable region(s) and
molecular-grade water, instead of DNA, is added. In the ab-
sence of any competing DNA, these samples should yield no
or very little amplification. In many cases, this will likely hold
true, as these samples are not exposed to the same conditions
as extraction controls. Extraction and library controls should
be included throughout the entire laboratory workflow and
sequenced alongside samples containing the biological mater-
ial being analyzed, even when they result in DNA quantifica-
tion or amplification failures. Although the number and types
of negative controls in a microbiome experiment can be vast,
it will be up to the investigator to gauge which are most ap-
propriate for ensuring the internal validity and confidence of
study findings (Lipsitch et al., 2010).

There are many types of positive controls (i.e., mock com-
munities) which are samples containing a known concentra-
tion and taxonomy of bacterial species. These controls, which
can be made in-house in a lab or ordered commercially, can
serve a wide range of applications, including as internal
controls, measures of extraction efficiency, and measures of
sequencing efficiency. Internal controls provide the technician
with an assurance that the experiment was performed prop-
erly and that the original placement of samples was main-
tained throughout the entire laboratory workflow. Extraction
efficiency can be measured using commercial mock commu-
nities containing a mixture of bacterial cells with both tough
and easy-to-lyse cell walls (e.g., ZymoBIOMICS Microbial
Community Standard, Cat No. D6300). These communi-
ties can provide an opportunity to measure the sensitivity of
the extraction workflow, for example, the parameters used
for mechanical cell disruption. Sequencing efficiency can be

measured using commercial mock communities containing a
mixture of bacterial cells present in various distributions, for
example, a log distributed mock community, where the abun-
dance of each bacterial species decreases by a power of 10
(e.g., ZymoBIOMICS Microbial Community Standard, Cat
No. D6310). These communities can provide an opportunity
to measure the sensitivity of the chosen sequencing depth to
capture low abundant bacteria.

Post Wet Lab Bioinformatics and Statistics

Data and computational consideration

A computational analysis and data integrity plan should be
in place prior to starting a 16S rRNA gene sequencing study.
Computational considerations include the type of computer
to be used, where data will be stored, how you will document
your analysis, and how you will be doing the analysis (pipe-
line, web server, graphical user interface [GUI], etc.). The first
consideration is if you will be performing the analysis on your
local computer or remotely such as on a high-performance
computing (HPC) cluster. Although it is possible to conduct a
smaller study completely on a moderately equipped desktop
or laptop, some of the more computational taxing steps (such
as amplicon sequence variant [ASV] grouping and phylogen-
etic classification) might be limited to a larger machine. It is
important to note that, after the initial steps of tree and fea-
ture table creation, it is likely that most downstream analysis
can be conducted on a personal computer. Therefore, access
to a moderately sized HCP for 3 to 5 d would be ideal (many
universities now have HPC resources available to their stu-
dents and staff for nominal fees or free and other resources
exist such as Amazon Web Server).

Short-term data storage should also be considered. While
long-term options for storage may be on a publicly available
database (as described below), short-term storage is also im-
portant. Besides having enough room on a device, other con-
siderations are the stability of the location (an external hard
drive can be used but cloud storage is more reliable) and the
accessibility. If you are using a shared server, make sure raw
data are in a directory not easily editable. A good practice is
to NEVER alter raw data files and have them stored in more
than one location or on a mirrored drive. Documentation of
your analysis is another facet that should be considered prior
to the start of the experiment. Jupyter Notebook or GitHub
provides a method to share analysis code and specifications
which include important information such as versions of the
tools used.

Finally, choosing the actual pipeline you will be using for
your analysis is important. For 16S rRNA gene sequencing
analysis, several different programs and tools will be used to
generate your results, and all these tools together are called a
pipeline. There are several well-developed pipelines for 16S
rRNA gene sequencing analysis that allow the use of sev-
eral tools wrapped into one either on the command line or
through GUIs. When choosing what pipeline is best for you,
price, user support, stability of the release, and your famil-
iarity with the coding language (i.e., many of these require
a basic familiarity with either Linux or Python languages)
should all be considered. Popular 16S rRNA gene sequencing
command line pipelines include QIIME2 (Bolyen et al.,2019),
Mothur (Schloss et al., 2009), and RDP (Cole et al., 2014)
(which are all free), whereas GUI options include Geneious
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and QIAGEN’s CLC Genomics Workbench (which both have
a cost associated with them). As with any research tool, there
are many technical and biological nuances to these analyses,
and we strongly advise against using results without a cursory
understanding of the methods used to come to your conclu-
sions.

Identifying contamination

Contamination, in the context of 16S rRNA gene amplicon
sequencing, may be broadly defined as the detection of
sequences not represented by microbial DNA in the originating
sample. External contaminants may arise from laboratory
workers (Adams et al., 2015), surfaces (Knights et al., 2011),
and/or reagents (Salter et al., 2014). Despite the rigorous im-
plementation of best practices, including aseptic technique,
lab equipment sterilization, and reagent ultrapurification, the
ubiquity of bacterial DNA in the environment can result in
some, potentially nontrivial, level of external contaminant
sequencing (Salter et al., 2014). Thus, in silico (performed
on a computer) contaminant identification and removal ap-
proaches are important (Davis et al., 2018). Assuming no in-
ternal (i.e., cross-sample) contamination, the degree of primer
specificity and template quantity are important considerations
for in silico identification of potential contaminant sequences.
Additionally, particularly for low biomass samples, the par-
allel amplification and sequencing of no-template controls
(NTGCs) are crucial for discriminating target sequences from
nucleic acid extraction and PCR reagent contaminants.

Narrow taxonomic-range primers (e.g., genus- or species-
specific probes) used to survey high-biomass samples provide
the simplest scenario for in silico contamination detection
and elimination. Following initial quality control steps (e.g.,
size selection, quality filtering, adaptor trimming, and chi-
mera checking), single reads or contigs may be assigned taxo-
nomically by alignment against a taxonomy database such as
Silva, Greengenes, and RDP. Sequences with taxonomic as-
signments that fall out of the expected taxonomic range for
the primer set may be discarded from further processing as
nontarget. Accordingly, taxonomy-based contaminant iden-
tification steps are common in popular amplicon analysis
pipelines, including QIIME2 (Bolyen et al., 2019), Mothur
(Schloss et al., 2009), and DADA2 (Callahan et al., 2016).
The user, based on probe specificity, may define a taxonomic
range for sequence retention and further analysis. For ex-
ample, even when using broad range “prokaryotic universal”
16S rRNA gene primers, any sequence classified as Eukaryotic
may be culled as nontarget.

A more complex scenario for contaminant identification
emerges when low-biomass samples are surveyed with broad
taxonomy primers. Here, the combined effects of 1) low
biomass, resulting in a lower number of target genes; 2) the
presence of contaminant chromosomal DNA, ubiquitous in
nucleic acid extraction and PCR regents; and 3) the poten-
tial for true overlap in the expected taxonomy of target and
nontarget sequences are all confounding factors for in silico
contaminant identification and removal (Salter et al., 2014).
The common practice of removal of all overlapping sequences
between NTCs and samples carries the risk of abundant
true sequence removal due to the chance of legitimate taxo-
nomic overlap between lineages commonly reported as kit
contaminants and hardy survivors in low biomass environ-
ments (e.g., members of the spore-forming Firmicutes). This
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issue has been previously addressed by implementing custom
analysis scripts that conservatively assess the probability of
each taxon representing contaminants (Inagaki et al., 2015;
Ramirez et al., 2019). Saliently, the decontam package, a fre-
quency- and prevalence-based in silico contamination iden-
tification model for sequence features including 16S rRNA
gene ASVs and operational taxonomic units (OTUs), ac-
curately discriminated contaminants from the oral human
microbiome and significantly reduced batch effects from a kit
reagent- and sequencing center-driven contamination study
(Davis et al., 2018). Designed on the dual assumptions that
1) contaminant DNA varies inversely with total DNA con-
centration in a sample and 2) contaminant sequences should
be more common in NTCs relative to samples, decontam rep-
resents a significant, minimal or no cost, improvement for in
silico contaminant identification. Due to decontam’s poten-
tial to significantly improve data quality and, consequently,
biological interpretation based solely on a sequence feature
frequency table, we strongly recommend its implementation
as a standard practice in 16S rRNA gene sequencing of agri-
cultural samples.

Operational taxonomic units vs. amplicon
sequence variants

For downstream analysis (both for taxonomy classifica-
tion and diversity metrics), similar sequences are sorted
into groups used as OTUs. Traditionally, 16S rRNA gene
sequences have been clustered into OTUs differing by an ar-
bitrary (often 3%) pairwise alignment dissimilarity threshold
against all other sequences recovered from a single sample
(de novo clustering) or against a set of reference sequences
of an external sequence database (closed-reference clustering;
Westcott and Schloss, 2015). Recently, however, the use of
OTUs as the standard unit of 16S rRNA gene sequencing re-
porting has been challenged (Callahan et al., 2017). The clus-
tering step of OTUs generation has important consequences
for their biological interpretation and cross-study applica-
tions. There is no innate biological meaning to OTUs, that is,
they are a “cloud” of similar sequences rather than a single
species or genus. More specifically, OTUs are literal artifacts
of 1) subjective dissimilarity threshold parameters in de novo
clustering or 2) the database against which they are aligned
in closed-reference clustering. Consequently, de novo OTUs
cannot be compared between studies, and, in closed-reference
clustering, biological information outside of the database is
lost from the sequencing data.

Recently, the use of ASVs (also described in literature as
Exact Sequence Variants) has been proposed as an alternative
to OTUs (Callahan et al., 2016). ASV-based analyses distin-
guish sequencing errors from bona fide biological variation
among 16S rRNA gene sequences using a model-based ap-
proach for correcting amplicon errors without constructing
OTUs. Therefore, ASVs significantly reduce clustering artifacts
and associated shortcomings of OTUs, thereby enabling valid
comparison of ASVs independently generated from different
samples (Callahan et al., 2016). Furthermore, ASV generation
efficiently captures unique biological sequence variation,
permitting exploration of signatures from all phylogenetic
lineages in the dataset unrestricted by the limited variation
present in even the most comprehensive closed-reference
databases. Consequently, the replacement of OTUs by ASVs
as the taxonomic unit for marker gene data analysis has been
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Figure 4. lllustration of considerations for diversity analysis. (A) Example of differences in sample composition based on sampling depth showing that
different sampling depths between samples within an experiment can lead to false differences in diversity. This demonstrates the importance of using a
normalization method before diversity analysis. (B) lllustration of communities that represent different features included in diversity metrics, specifically
the relationship between richness and evenness in how diversity is calculated. (C) Demonstration of the differences in alpha and beta diversity. Alpha
diversity represents the diversity within a sample and could be similar even in samples with different taxonomic compositions. Beta diversity describes
the differences between samples and can only be calculated by comparing communities. This also demonstrates how samples can have similar alpha

diversities but different beta dissimilarities.

proposed (Callahan et al., 2017). One concern that has been
brought up regarding ASV is the possibility of diversity infla-
tion by the generation of multiple ASVs from a single bacter-
ial genome (Schloss, 2021). Nonetheless, using ASVs allows
cross-study tractability and database-independent biological
veracity of AVSs, as discussed above, in addition to technical
advantages in computational time and memory requirements.
Specifically, as NGS technologies continue to improve and
are applied to more large-scale agricultural and food safety
monitoring, concomitant increases in the size of datasets are
expected. By circumventing the need for sequence clustering
(a computationally intensive step), ASVs can further enable
routine large-scale microbial monitoring with relatively light
and linearly scaled computational time and memory require-
ments.

Accounting for uneven sampling depth

Despite best practices during amplicon library preparation
and sequencing, the numbers of raw reads generated from
each sequencing run can vary widely among samples. This
presents a problem for subsequent analysis, as uneven
sampling can lead to artificially different diversity measure-
ments between samples. Figure 4A demonstrates a hypo-
thetical example of this problem, in which two samples
that should appear similar because one sample has twice as
many reads as another, which lets it capture more of the less
abundant (“rare”) features. To combat this issue, normal-
ization methods should be applied to the data before diver-
sity analysis. Several normalization methods can be applied
to amplicon sequence data, each with distinct advantages
and disadvantages. Weiss et al. (2017) demonstrated that
most methods result in correct clustering of samples in prin-
cipal components analysis (see below for more information
on this method), which indicates that all methods are valid
tools and the researcher’s choice should depend on the spe-
cific circumstances of the dataset.

One commonly used method is to rarefy the data; that is,
ASVs or OTUs within a sample are randomly subsampled
without replacement to a preselected depth that is the same
across all samples. The outcome of this is that all samples
will have the same number of ASVs and any samples with
fewer ASVs than the rarefaction level will be removed from
the dataset. The level for rarefaction can be decided using
a rarefaction curve, a method in which each sample is sub-
sampled at multiple levels (e.g. 1,000 reads, 2,000 reads,
3,000 reads...), and the number of unique features or an-
other metric of individual sample diversity of each sample
at each level is measured and plotted. When the plot begins
to level off after an initial climb up, the corresponding num-
ber of sequences indicates an appropriate sampling depth.
The appropriate number to rarefy must then be balanced
with the number of samples that may be dropped from the
dataset which do not meet that minimum. An advantage of
rarefaction is that it may be a more appropriate measure of
very low-abundance (“rare”) ASVs. This can in turn increase
the accuracy of the data, as low biomass samples often have
contamination and quality concerns (Kennedy et al., 2014).
There are also disadvantages to this method, the most obvi-
ous of which is the discarding of valuable data. Clearly, this is
less than ideal as the researcher must pay for the samples and
sequences, and in cases where the samples are very valuable
or difficult to obtain the loss of data may be destructive to the
overall experimental integrity. Additionally, the loss of statis-
tical power by removing sequences from a sample could lead
to a loss of differences between two samples (McMurdie and
Holmes, 2014). The statistical consequences extend beyond
this, as rarefying equalizes sample variance by adding artifi-
cial uncertainty (McMurdie and Holmes, 2014).

An alternative to subsampling data is to apply different
types of transformation called normalizing, which is com-
monly used in other sequencing-based experiments such as
RNA-seq and shotgun metagenomics. In this method, the
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ASV numbers are multiplied by a value or proportion, which
can be determined through several specific methods. While
early methods were less robust (Bullard et al., 2010; Dillies
et al., 2013) (such as scaling by total count), more sophisti-
cated normalization methods have emerged. Most are found
within R packages built specifically for sequencing data. Some
common methods include a median of ratios normalization
from the DESeq2’s R package, Trimmed Mean of M-values
(TMM) from EdgeR, and Cumulative Sum Scaling from the
Metagenomeseq R package. In DEseq2, a scaling factor is
computed as the median ratio of the count of an ASV over
its geometric mean across all samples (Anders and Huber,
2010). In the TMM method, a sample is used as a reference
and the weighted mean of log ratios of an ASV within a sam-
ple is compared with the reference (Robinson and Oshlack,
2010). Finally, in cumulative sum scaling, raw counts are div-
ided by the cumulative sum of counts up to a percentile de-
termined by the dataset (Paulson et al., 2013). These methods
have been shown to be robust to differences between samples
and maintain the differences in relative abundance (Dillies
et al., 2013; McMurdie and Holmes, 2014). However, some
transformations have been demonstrated to ignore or under-
measure rare ASVs due to the impacts of the log transform-
ation and can negatively impact the calculations of branch
length in phylogenetic trees (Kennedy et al., 2014). Therefore,
the choice between rarefying or using another transformation
to normalize should depend on the value of individual sam-
ples and the importance of rare ASVs in a dataset; as such, a
researcher should carefully consider the options for their par-
ticular dataset before selecting one.

Alpha and beta diversity metrics

Diversity, either within one sample or compared between
samples, is the measurement of how similar or dissimilar
two measurements are. Calculating the diversity of bacteria
within samples and comparing diversity between samples and
treatment groups can be used to identify the changes that a
treatment has caused to a microbial community or to under-
stand why two microbial communities are inherently differ-
ent. There are numerous methods by which to calculate and
compare diversity metrics which can make approaching these
analyses a formidable task for a new researcher. However, the
methods can be readily categorized, which should enable a re-
searcher to select the best options for their experiment (Figure
4B and C).

There are two overarching methods for evaluating di-
versity: alpha and beta diversity. Alpha diversity, or within-
sample diversity, is used to evaluate the number of different
species (usually represented by the number of ASVs) in each
sample. The alpha diversity of a sample is fixed and does not
change based on other samples to which it may be compared.
This is different from beta diversity, or between-sample di-
versity, which is calculated as the dissimilarity between two
samples and changes based on which samples are compared.
To better understand the differences between alpha and beta
diversity, it may help to consider the structure of the data. The
alpha diversity can be added as a column to sample meta-
data and further analyzed the same as any other experimental
condition. The beta diversity is structured as a distance or
dissimilarity matrix, with the value of differences in diversity
between each sample populating the cells.
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Within both alpha and beta diversity, the methods for cal-
culating the metric can be further subdivided depending on
whether it is richness or evenness that are being evaluated
(Figure 4B). Richness refers to the number of different species
detected within a sample, regardless of how they are distrib-
uted. In Figure 4B, the first frame would have a richness of
4, as there are 4 distinct organisms present, even though the
orange species is represented more frequently compared with
the others. This distribution can be captured by measuring
the evenness, or how balanced the species are within a sam-
ple. The second panel of the figure only has a richness of 2,
but it is very even as the sample contains an equal of both
species. The third panel represents a sample that is both rich
and even, as the richness is again 4, but this time each spe-
cies is equally represented. In alpha diversity calculations, the
richness is captured by the observed OTUs/ASVs metric, even-
ness by Pielou’s evenness index, and both can be captured by
Shannon’s diversity metric (Shannon, 1948; Pielou, 1966). In
beta diversity, the richness is determined by a presence/ab-
sence metric, Jaccard distance, which calculates the number
of shared species between two samples (Jaccard, 1901). The
evenness in beta diversity is represented by the Bray—Curtis
dissimilarity, which measures the fraction of overabundant
counts between samples (Bray and Curtis, 1957). These
methods are summarized in Table 2.

Another feature that can be incorporated into diversity met-
rics is phylogeny. Phylogenetic trees are representative of the
evolutionary relationship between sequences in a sample and
can be constructed de novo from only sequences in a dataset
or compared with a reference tree via a fragment insertion
method (Price et al., 2010; Eddy, 2011; Matsen et al., 2012;
Janssen et al., 2018). The inclusion of phylogeny into a diver-
sity metric allows a researcher to further investigate not only
differences in diversity between samples but also how those
differences are distributed evolutionarily, which may provide
some insight into functional diversity. Phylogeny can be in-
corporated into alpha diversity using the Faith’s phylogenetic
diversity index, which is a phylogenetic measurement of rich-
ness, and into beta diversity using the UniFrac dissimilarity,
which can include just richness or richness and evenness de-
pending on whether the unweighted or weighted method is
used, respectively (Faith, 1992; Lozupone and Knight, 2005).

After diversity metrics are calculated, treatment groups can be
statistically compared. Microbiome data are compositional and

Table 2. Summary of the classifications and features of commonly used
alpha and beta diversity metrics’

Metric Alpha  Richness Evenness Phylogenetic
or Beta

Observed features Alpha X

Pielou’s Evenness Alpha X

Shannon’s Index Alpha X X

Faith’s Phylogenetic ~ Alpha X X

Diversity

Jaccard’s Distance Beta X

Bray—Curtis Distance  Beta X

Unweighted UniFrac ~ Beta X X

Weighted Unifrac Beta X X X

X indicates the metric includes this feature.
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generally violate many assumptions in statistical analyses, espe-
cially that of normality, so nonparametric tests are used often.
Moreover, given the number of pairwise comparisons that must
be made to compare the samples, a multiple-testing correction
should be applied to the P-value. There are several methods
by which alpha diversity metrics can be compared, but most
frequently the Kruskal-Wallis test is used to compare groups
in discrete data and Spearman correlation is used to compare
with continuous data (Spearman, 1904; Kruskal and Wallis,
1952). Alpha diversity comparisons are most frequently visual-
ized using box plots (discrete) or scatter plots (continuous). In
beta diversity, the statistics are slightly more complicated as they
must be applied to the distance matrices. The permutational
multivariate analysis of variance (PERMANOVA) test is fre-
quently used when the data are univariate and categorical, and
the Mantel test when it is univariate and continuous (Mantel,
1967; Anderson, 2017). Multivariate comparisons are also pos-
sible using the Adonis test (McArdle and Anderson, 2001). Beta
diversity is also frequently evaluated using a clustering analysis,
in which the dissimilarity between samples is reduced in dimen-
sionality and plotted in either 2 or 3 dimensions using princi-
pal components analysis or principal coordinates analysis. In
these plots, each point represents the entire microbiome of a
sample, and the closer two samples are to each other the more
similar their microbiome are. In Figure 4C, it is demonstrated
how two samples with similar diversities, or a greater number
of overlapping species, would reside close to each other in the
space, while a sample with different species would reside sep-
arately. This figure also demonstrates how samples could have
similar alpha diversities but a high dissimilarity when the beta
diversity is calculated. This type of analysis is very useful for
detecting trends in the data, but it is important to remember
that it is not inherently representing any statistical significance.
Overall, these tests are a very useful first step in analyzing the
overall trends and differences in microbial communities, and,
paired with other analyses, researchers can examine important
aspects of the community and answer the driving research ques-
tions rather than just explore the community.

Taxonomy

Another step in characterizing a microbiome is to determine its
membership, which is traditionally done through a taxonomic
analysis. Diversity metrics answer questions of how diverse a
microbiome is and how microbiomes may be similar to each
other, while taxonomy answers the question of who is there.
Specifically, the taxonomy represents the identification and classi-
fication of each microorganism, represented by an ASV, present in
the community. This is distinct from phylogeny, which represents
evolutionary relatedness of the ASVs. In a typical taxonomic ana-
lysis, the representative sequences identified in the study are com-
pared with a reference database that contains genome sequences
and taxonomic information. This can be done simplistically by
simply searching for the sequence in the database (McGinnis and
Madden, 2004) or in a more complex manner, using machine
learning algorithms to classify ASVs that may not be exactly repre-
sented by the database into a taxon (Bokulich et al., 2018). There
are several well-curated databases available for researchers. The
most popular include RDP (Cole et al., 2014), BLAST (McGinnis
and Madden, 2004), SILVA (Quast et al., 2013), and GreenGenes
(DeSantis et al., 2006). The choice of which is best for a given
study should depend on how well represented the environment
of interest is (e.g., the human gut is much more well described
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than the marine microbiome in GreenGenes) and how recently the
database has been updated. When first deciding on which data-
base to use, you can consider multiple databases and see which has
a higher number of classified reads. The outcome of this analysis
is a list that associates each ASV with a taxonomic label. These
labels represent the highest-resolution level of taxonomy that can
be achieved with confidence; in 16S gene sequencing, this often
means that an ASV can only be classified to the family or genus
level and not the species. The taxonomy in a study is generally rep-
resented with a stacked bar plot or a heatmap showing the relative
abundance of an organism in each sample or group of samples.

Differential abundance testing

Differential abundance testing is a statistical test used to
identify specific taxonomic features that differ between two
or more experimental groups. This is difficult to achieve in
microbiome data as these data violate the statistical assump-
tion of independence because all taxonomic features are ex-
pressed as relative abundance and a decrease in the abundance
of one feature is accompanied by the increase in abundance
of another to keep the sum as 100%. This means that, in a
traditional statistical test, it would be impossible to deter-
mine whether the abundance of a feature was decreasing, or
another was increasing. However, several methods can be
employed to resolve this issue. If other analytical techniques,
such as qPCR or flow cytometry, are used, the absolute abun-
dance of one taxon can be determined (Vandeputte et al., 2017;
Tkacz et al., 2018). However, in most cases, other analytical
methods are not conducted in tandem with 16S rRNA gene
sequencing; thus, this issue is addressed through downstream
statistics. Several parametric statistical tests that were initially
developed for RNA-sequencing analyses have been applied to
microbiome studies, including DESeq2 and EdgeR, but they
often fail to accurately represent microbiome communities
as 16S rRNA gene sequencing data are sparse, meaning there
are too many zeros in a dataset (Robinson et al., 2010; Love
et al., 2014). More recent methods resolve the sparsity issue by
including pseudocounts (i.e., adding 1 to every sample so there
are no 0’s) and use specific normalization methods (e.g., log
ratio normalization) to resolve the issues with feature distribu-
tion (Mandal et al., 2015). Some commonly used methods for
differential abundance analysis include fitZIG, a zero-inflated
Gaussian (ZIG) distribution mixture model (Paulson et al.,
2013), ANCOM (Analysis of Composition of Microbiomes)
which compares log ratios of abundance from each taxon to
all the other taxa individually (Mandal et al., 2015), and a
negative binomial model implemented in DeSeq2 (Love et al.,
2014). In summary, a statistical comparison of the difference in
relative abundance of individual taxa (e.g., genera or ASVs) be-
tween samples is statistically difficult, but ultimately bioinfor-
matic tools specific to microbiome analysis have made this a
useful analysis to include in microbiome studies.

Data availability

Central to the reproducibility of an experiment is making the
raw sequence data and other relevant metadata publicly avail-
able upon publication (Langille et al., 2018). In many cases, the
bulk of the results and underlying conclusions are drawn dir-
ectly from these data, so on-demand access should be expected
(Langille et al., 2018). In fact, most journals now require raw
data public availability, which we recommend as a best prac-
tice. Numerous online databases such as SRA (Leinonen et al.,
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2011) and EMBL (Hingamp et al., 1999) exist for this very
purpose and even include standardized packages to describe
and contextualize the submitted data. Taking advantage of
these resources is paramount to ensure reproducibility of study
findings, allowing quantitative comparisons across multiple
studies and enabling the discovery of new findings. This is espe-
cially true for research fields that are just beginning to integrate
these new tools into their research program. Equally important
is the availability of the code used to derive meaning from these
complex datasets. Numerous version control platforms (e.g.,
Github, GitLab, and BitBucket) exist for this very purpose and
provide a convenient way for others to access, reproduce, and
validate published study findings. However, the utility of these
repositories is likely to be a function of the care and time used
to produce them.

Special Considerations

Poultry

There are several poultry-specific caveats to consider before
conducting 16S rRNA gene sequencing studies from poultry
whether that be during production or processing. Specifically,
the sample type used must be considered as these matrices can
have a direct downstream effect on the 1) sequencing run and
2) the biological interpretations. In the past 10 yr, there have
been numerous efforts to elucidate the microbiome of poultry
samples representative of those typically collected by the U.S.
Department of Agriculture’s Food Safety Inspection Service
(USDA-FSIS) and Hazard Analysis and Critical Control Point
(HACCP) personnel for process control and biomapping
(Rothrock et al., 2016; Kim et al., 2017; Handley et al., 2018).
As the sampling methods utilized by USDA-FSIS and HACCP
personnel are not aimed at 16S rRNA gene sequencing but
rather traditional confirmation techniques, the direct extrac-
tion of the genomic DNA from these matrices can be difficult
and may require additional lysing steps such as mechanical
bead beating (Feye and Ricke, 2019). Low biomass samples,
such as whole bird carcass rinses (Kim et al., 2017; Handley
et al., 2018), scalder and tank water (Rothrock et al., 2016),
skin and feather rinses (Rothrock et al., 2019), can not only
be hard to isolate sufficient quantities of DNA from, but, due
to the insufficient bacterial load, can also result in additional
filtration and lysing steps to maximize DNA recovery.
Additionally, the area within the poultry house or envir-
onment must be considered as there are distinct differences
in the litter and feces due to the house structure (feeders,
drinkers, evaporative cool pads, ventilation fans). Locatelli
et al. (2017) demonstrated that location within poultry
houses does matter in terms of the microbiota collected from
the feces and litter at the fans, cooling pads, waterer/feed
lines, and the bulk litter areas, as well as manually and in
silico pooling of these samples did not yield equivalent fecal
microbiota compositions. As such, research must consider
the differences between matrices to appropriately identify
which matrix is most appropriate for their hypothesis.

Bovine reproduction tract microbiomes (uterine/
vaginal)

A recent implementation of 16S rRNA gene sequencing in
bovine research has been focused on reproductive efficiency
due to the discovery of the reproductive tract microbiome.
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Previously, the presence of microorganisms in the reproduct-
ive tract was believed to only indicate disease and repro-
ductive failure in humans and animals. However, 16S rRNA
gene sequencing has provided the opportunity to detect a
microbiome within the uterus and vagina, which is largely
dominated by the presence of unculturable microorganisms.
The uterine and vaginal microbiome have a significantly lower
microbial biomass than other body locations across multiple
species, such as the GIT (Huttenhower et al., 2012; Swartz
et al., 2014). Nonetheless, by the use of 16S rRNA gene
sequencing, the Human Microbiome Project reported that the
urogenital microbiome contains only 9% of the body’s total
microorganisms (NIH HMP Working Group et al., 2009).
As a low biomass environment, best practices for low bio-
mass sampling like discussed previously must be followed.
Common methods for microbial sampling of the reproduct-
ive tract include the use of protected sterile swabs or flushing
saline through a sterile catheter. Insertion of the catheter or
swab through a sheath or speculum-like guard will reduce the
potential of introducing exterior or vaginal microorganisms
into the uterus, or accidental collection of these microorgan-
isms in the sample. The inclusion extraction controls such as
collected open-air tubes can help determine the potential con-
taminant microorganisms that may be present in the sample
(Eisenhofer et al., 2019; Karstens et al., 2019). Best practices
in sampling to reduce contaminants and the inclusion of con-
trols will help ensure reproducible and reliable study results
for the reproductive microbiome.

Conclusion

When best practices are followed, 16S rRNA gene sequencing
can provide ecological insights not afforded by traditional
microbiology methods alone. There are microbiome-specific
concerns in all phases of a study including planning, wet lab,
bioinformatics, and statistical analysis, but with proper plan-
ning, these concerns can be addressed, and issues mitigated.
When questions do arise regarding any specific portion of an
experiment, the first question should be how it relates to your
specific hypothesis as no answer is one size fits all; reviews
of the literature closely related to your study or other scien-
tists doing similar work are appropriate sources of solutions.
When beginning to study a new ecological niche with little-
to-no background information, a small pilot study of a few
samples will answer many questions on sequencing depth and
sampling location. Nonetheless, following the outlined best
practices included here will set a solid foundation to build
your microbiome research on.
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