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Animals perform flexible goal-directed behaviours to satisfy their basic physiological
.However, little is known about how unitary behaviours are chosen under
conflicting needs. Here we reveal principles by which the brain resolves such conflicts
between needs across time. We developed an experimental paradigmin whicha
hungry and thirsty mouse is given free choices between equidistant food and water.

We found that mice collect need-appropriate rewards by structuring their choices
into persistent bouts with stochastic transitions. High-density electrophysiological
recordings during this behaviour revealed distributed single neuron and neuronal
population correlates of a persistent internal goal state guiding future choices of

the mouse. We captured these phenomena with a mathematical model describing
aglobal need state that noisily diffuses across a shifting energy landscape. Model
simulations successfully predicted behavioural and neural data, including population
neural dynamics before choice transitions and in response to optogenetic thirst
stimulation. These results provide a general framework for resolving conflicts between
needs across time, rooted in the emergent properties of need-dependent state
persistence and noise-driven shifts between behavioural goals.

Deviations from physiological homeostasis produce diverse needs,
suchasthirstand hunger, and drive profound changesinan animal’s
behaviour®*. These needs have historically been conceived as distinct
forces acting on animal behaviour, with effects gated by the availabil-
ity of appropriate rewards®. Recent studies have established neuro-
biological bases for detecting individual physiological imbalances
and for generating goal-directed behavioural®?and neural* states.
Animalsin nature often confront multiple co-occurring needs, yet still
exhibit discrete and coherent goal-directed actions. Precisely how
conflictsbetween needs are resolved, especially in the case of equally
available rewards, has been a subject of perplexity since the time of
Aristotle, who questioned whether an equally hungry and thirsty
person would remain stuck between equidistant food and water’s;
later philosophers replaced the person with adonkey and popularized
this quandary as ‘Buridan’s ass™®. Although neurobiological studies
have compared the circuit and behavioural properties of thirst and
hunger and their interactions, these needs have not been studied in
a conflicting, moment-by-moment context®’ 22, We reasoned that
the quandary of Buridan’s ass highlights an incomplete conceptual
framework relating needs to motivated behaviour—namely, alack of
neurobiological explanation for how conflicting needs could jointly
organize behaviour across time (Fig.1a). Amore complete framework
for resolving conflicting needs across time should: (1) relate the inten-
sity and salience of individual needs to behavioural choices at any
given moment; (2) identify a neural basis for behavioural choices;
and (3) explainthe dynamics of switching between need-appropriate
behaviours.

Choice assay for conflicting needs

We developed an experimental paradigm that we term Buridan’s assay,
inwhich simultaneously hungry and thirsty mice were repeatedly givena
free choice betweensatiating one need or the other, but not both atonce
(Fig. 1b,c). Mice were food- and water-restricted, head-restrained and
placedinfront of two equally accessible reward spouts delivering water
or salted liquid food (Fig. 1b). In a modified olfactory Go/No-Go para-
digm™?, a Go odour indicated that both food and water rewards were
available; however, whichreward was dispensed onagiventrialdepended
onthemouse’s free choice, determined by the direction of their first lick
(Fig.1c). ANo-Go odourindicated reward unavailability. Go-odour trials
(67% frequency) were randomly interleaved with No-Go-odour trials (33%
frequency).Micelearnedtochoose either food or waterinresponsetothe
Goodour, and towithhold licking during No-Go odours and the variable
inter-trialinterval (Fig. 1d). After training, food- and water-restricted mice
performed hundreds of trials across a behavioural session, collecting
incremental food and water rewards until sated. Trained mice made
need-appropriate reward choices: food-restricted mice mostly chose
food rewards; water-restricted mice mostly chose water rewards; and
food- and water-restricted mice chose both food and water rewards
within agiven session (Fig.1d and Extended Data Fig. 1a,b).

Persistent, stochastic choice behaviour

We nextinvestigated what strategy an animal might pursue to resolve
conflicting needs across a session. In a hierarchical needs model,
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Fig.1|Reward choice under conflicting needs is structured by persistent
behavioural states with stochastic transitions. a, The conceptual problem.
b, Buridan’s assay. A food- and water-restricted mouse is head-restrained with
two equally accessible reward spouts, delivering salted liquid food and water,
respectively. ¢, Trial structure. Go odour indicates reward availability and
No-Go odourindicates reward unavailability after avariable inter-trial interval
(ITI). After Go-odour onset, mice freely choose food or water reward by licking
rightor left, respectively.d, Licking behaviour during Buridan’s assay under
different restriction conditions. The y axis shows average lick rate at agiven
spout, multiplied by the fraction of licks to that spout per session. Dataare
mean +s.e.m.n=15mice, 22 sessions for food and water restriction; n = 3 mice,
3 sessions for water or food restriction only; n=2mice, 2 sessions for no
restrictions. e, Hypothetical reward-choice patterns under different strategies.
f,Behavioural session showing food and water licks across trials until satiation
(grey). g, Reward-choice persistence counts distribution for all behavioural
sessions with both food and water restriction. Dashed red line indicates
probability density for log[persistence counts] generated by a sticky Markov
process (geometric distribution fit to data, maximum likelihood shape
parameter P=0.061,95% confidence interval [0.05, 0.074]). h, Probability

of choosing awater reward onrewarded Go trials, fit by linear regression

mice would repeatedly choose one reward type until satiation, then
switch tosatiate the other need (Fig. 1e, left). Inarelative needs model,
mice would choose to reward the more deficient need until equality and
subsequently oscillate regularly between each reward choice, subject
to a fixed feedback delay to account for the time it takes for food or
water ingestion to affect behaviour”® (Fig. 1e, middle). In arandom
model, mice would choose rewards arbitrarily until both needs were
sated (Fig. 1e, right). None of these models matched our data; instead,
we found that food- and water-restricted mice made highly persistent
reward choices punctuated by sudden switches (Fig. 1f and Extended
DataFig.1c), forming spontaneous reward-choice bouts. This pattern
is characteristic of a Markov process, in which the identity of a given
choiceinasequence depends predominantly on the most recent previ-
ous choice outcome. Indeed, the distribution of bout lengths agreed
withaMarkov process (Fig.1g), and previous reward collection patterns
did not significantly influence subsequent choice timing and bout
lengths (Extended Data Fig. 1e,f).

Although these data are inconsistent with a deterministic model,
relative magnitudes of needs could still probabilistically influence
choice. To examine this, we operationally defined thirst and hunger at
any moment of a trial as the cumulative future food and water rewards
thatan animal would collect until satiation, and constructed ameasure
of normalized relative thirst and hunger ranging from-1to +1 (Extended
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(dashed line) to observed relative need (normalized (norm.) thirst — hunger).
R?*=0.92,slope =0.426. Dataare mean + 95% confidence interval. The firstand
last two data points lack confidence intervals owing to too few data points.

i, Prediction of current choice asafunction of current needs or the most recent
previouschoice,based onasupportvector machine model. AUC, receiver
operating characteristicarea under the curve. Dataare mean + 95% confidence
interval. Two-sided paired t-test; n =22 sessions, t = -5.89, P= 6.28 x107%. , Self-
transition probability fit by linear regression to normalized thirst — hunger. Data
are mean + 95% confidence interval. Water choice: R*=0.612, slope = 0.07; food
choice: R?=0.844, slope =—0.077.k, Go-trial transition probability between
reward choices. Probabilities are maximum likelihood estimates from trials
with normalized thirst — hunger between-0.25and 0.25. g-k, n=15mice, 22
sessions. 1, Schematic of optogenetic activation of osmotic thirst (RXFPI)
neuronsinthe subfornical organ (green) in10-s epochs during Buridan’s assay.
m,n, Probability density (kernel density estimate) of food and water choices
inGotrials as afunction of optogenetic thirst stimulation (purple bars), in
experimentsonsated mice (m; n=2mice, 63 stimepochs) or on hungry-only
mice (n; n=2mice, 69 stimepochs). o, Trial outcomes (colour-coded, right)
surrounding each optogenetic thirst-stimulation epoch (rows; n =27) froma
single session on a hungry-only mouse.

DataFig.1d). Considering each trialindependently, the probability of
choosing water onagiven trial correlated with the mouse’s relative need
(Fig. 1h). However, the most recent previous choice was significantly
more predictive of current choice than need magnitudes (Fig. 1i). We
next measured the probability of repeat choices across relative need
values. Although the repeat choice probability decreased as the rela-
tive level of the opposing need increased, it remained generally above
80% (Fig. 1j). For trials with approximately balanced needs (relative
need values between -0.25and +0.25), choice outcomes recurred with
greater than 90% probability (Fig. 1k).

These results suggest that transitions between persistent choices
occur probabilistically, rather than being determined on a moment-
to-moment basis by the exact balance of needs. To directly test this
persistence and stochasticity, we performed transient optogenetic
stimulation of channelrhodopsin-expressing RXFP1* neurons in the
subfornical organ (Fig.1l) in either sated (Fig. 1m) or hungry-only mice
(Fig.1n); these RXFP1" neurons (hereafter referred to as osmotic thirst
neurons) are activated by increased osmolarity and their optogenetic
activation produces anartificial thirst that drives drinking behaviour®.
Sated mice that were unresponsive to Go odours transiently transi-
tioned to choosing water upon thirst stimulation in a probabilistic
manner (Fig. 1m). Thirst stimulation also promoted hungry mice to tran-
sition from choosing food rewards to choosing water rewards (Fig. In



and Extended DataFig. 1g), but these transitions appeared stochastic
in any given stimulation epoch (Fig. 10) and were not influenced by
reward collection prior to stimulation (Extended Data Fig.1h).Inboth
cases, water choices persisted for at least 10 s after the termination of
optogenetic stimulation (Fig. Im,n and Extended Data Fig. 1g), sug-
gesting theinduction of abehavioural state that is partially uncoupled
from the immediate optogenetic stimulation period.

Insummary, in Buridan’s assay, mice autonomously organized their
reward collection into persistent choice states whose sudden transi-
tions occurred probabilistically and were modulated by relative needs.
Thisbehavioural strategy is not used only by head-restrained mice, as
food- and water-restricted mice in a freely moving setting exhibited
similar persistent food- or water-collection bouts with stochastic transi-
tions (Extended Data Fig. 1li-k). Optogenetic activation of osmotic thirst
neuronsin head-restrained mice supported anunderlying stochastic-
ity inthe behavioural response of animals to changing levels of need.

Large-scalerecording during behaviour

We next sought to explore neuralmechanisms underlying the observed
persistence and stochasticity in choice behaviour of mice facing
conflicting needs. Previous findings have suggested that the sensory
neurons underlying thirstand hunger areembedded inrecurrent net-
works that project throughout the brain® 3", We therefore performed
simultaneous extracellular electrophysiological recordings during
Buridan’s assay with four Neuropixels 1.0 probes® placed acutely
along distinct trajectories spanning the frontal and motor cortices,
basal ganglia, thalamus, hypothalamus and midbrain motor regions
(Fig.2a,b, Extended Data Fig. 2a,b and Extended Data Table 1). This
strategy enabled us to synchronously record from 1,536 distinct chan-
nels, resulting in many hundreds of well-isolated units per recording
session with anatomical locations recovered post hoc by atlas align-
ment' (Extended Data Fig. 2a-d). Visualization of aligned spiking
activities fromall simultaneously recorded neurons suggested coordi-
nated changes in spike rates spanning many regions, both during and
between task engagement (Extended DataFig. 2e). Unbiased clustering
oftrial-averaged neural activity revealed diverse functional properties,
including both persistent and phasic differences between choice out-
comes (Extended Data Fig. 3a). Whereas the activity of neuronsincer-
tain clusters correlated with a specific phase of the trial (for example,
odour oraction), other clusters were dominated by state-like neurons
with persistent (throughout each trial, including before odour onset)
firing rate differences between choices (Extended Data Fig. 3a). Neu-
rons belonging to most functional clusters, including the state-like
clusters, were widely distributed across brain regions (Extended Data
Fig.3b).

Neural activity predicts upcoming choice

Given the prevalence of state-like neurons, we hypothesized that the
persistence of behavioural choice is related to an underlying internal
brainstate of the animal. To avoid confounds with behavioural execu-
tion, we analysed neural activity at baseline (the 1s of activity before
odour onset) from all simultaneously recorded neurons across the
duration of a behavioural session; during this baseline period, mice
did not know when the next odour would be delivered (given the vari-
ableinter-trial intervals) or whether it would be a Go or No-Go odour.
Sorting neurons by their correlation with the upcoming food choice
revealed systematic changes in baseline firing rates that correlated
with behavioural choice or satiety states (Fig. 2c). The spike rasters of
individual upcoming-choice-correlated neurons across the duration
of atrial revealed persistent firing rate differences both at baseline
and after odour onsetindiverse brain regions; the firing rates of many
neurons were additionally modulated after odour onset (Fig. 2d and
Extended Data Fig. 4).
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Fig.2|Single-unitand populationneural correlates ofupcomingbehavioural
choice. a, Schematic of simultaneous recording from1,536 channels across
fouracute Neuropixels1.0 probes during Buridan’s assay. b, Locations of
neuronsinthe Allen Brain Atlas space. Units are colour-coded by brainregion
(Extended Data Table1).c, Anexamplerecording session showing per-trial
baselineactivity for each of 996 simultaneously recorded units, z-scored with
brainregions colour-coded asinb. Neurons are sorted by their correlation
coefficient to the upcoming behavioural choice (top row, cumulative food or
water licks per trial). d, Per-trial spike rasters from six example neurons (brain
regionsindicated on top), with spiking (ticks) shown for the first 50 food and
water choices withinasingle session. Dashed lines indicate odour onset.
Bottom, firing rate per trial. CP, caudoputamen; HY, hypothalamus; MRN,
midbrainreticular nucleus; SI, substantiainnominata; VTA, ventral tegmental
area.e, Firingrate variance explained by upcoming choice, averaged within
brainregion. Dashed lines, null distribution per region. Exact Pvaluesin
Methods. Barsindicate 95% confidenceinterval across cells. Dataare pooled
acrossrecording sessions. Numbersin parentheses are counts of recorded
cellsingivenregions; asterisksindicateregions presentin only asingle session.
See Extended Data Table 1for numbers of cells, mice and sessions per region.
ACB, nucleus accumbens; APN, anterior pretectal nucleus; FF, fields of Forel;
FS, fundus of striatum; LHA, lateral hypothalamic area; OLF, olfactory areas;
ORBIS, orbital area, lateral part, layer 5; PeF, perifornical nucleus; SCiw, superior
colliculus, motor related, intermediate white layer. f, Fraction of simultaneously
recorded neurons per session whose baseline firing rates are significantly
associated with upcoming reward choice, compared toacircularly permuted
null (dashedline). g, Predictiveness of upcoming choice for held-out trials
flanking switches, using population activity of simultaneously recorded
neuronsinthelsbefore odouronset. Dashed lines, null (circular permutation,
black; session permutation, red). h, Population predictiveness of upcoming
choiceasing, following either rewarded Go or unrewarded No-Go trials.
Two-sided paired t-test, t =-1.072, P=0.325. Mean across sessions, error bars
indicate 95% confidence interval; n =7 mice, 7 sessions (f-h). NS, not significant.

We measured how muchinformationindividual cellsin each region
contained in their baseline firing rates about upcoming choice using
aregression analysis (Extended Data Figs. 3c and 5b). A set of hypo-
thalamic, midbrain, striatal, and frontal cortical regions contained
significantly more informative cells compared to a conservative null
distribution (Methods), but with quantitative differences between
regions (Fig. 2e). For example, hypothalamic and midbrain regions
exhibited greater aggregate baseline firing rate information regarding
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upcoming choice than cortical regions (Fig. 2e and Extended Data
Fig.5a,b).

Regression analyses also revealed that most recorded neurons
exhibited mixed selectivity to multiple task variables (Extended Data
Fig.3c-j),ashasbeen previously observed inlarge-scale neural activity
recording in different behavioural contexts'*?$ %, Most cells with signifi-
cant information about upcoming choices at baseline also contained
significant information about multiple other regressors (Extended
Data Fig. 3d). Pairwise analysis and unbiased hierarchical clustering
of firing rate variance explained by each regressor revealed three
major groupings of information mixture in cells: information related
to cross-session satiety changes of the mouse (hit versus miss and early
versus late), to the odour response task (Go versus No-Go), and to the
choice of the mouse (food versus water) (Extended Data Fig. 3e-j).

Notably, about 20% of all recorded neurons per session contained
significant information about the upcoming choice of the mouse in
their baseline firing rate (Fig. 2f). The pervasiveness of this information
suggested that the collective baseline activity of neurons across the
brain could function as a distributed goal-like state. Indeed, we could
predict upcoming choice with high accuracy using the 1-s pre-odour
activity of all simultaneously recorded neurons (Fig. 2g). Whether
the previous trial was rewarded or not did not significantly affect the
prediction of upcoming choice (Fig. 2h), ruling out the possibility that
the predictiveness of future choice was merely a reflection of previ-
ous reward. Subtle movements of the mouse were also predictive of
upcoming choice (Extended Data Fig. 3k-m) and might account for
some variability in the population activity?**’; however, neural data
were significantly more predictive of upcoming choice than movement
data (Extended DataFig. 3n).

The predictiveness of upcoming choice improved as increasing num-
bers of simultaneously recorded neurons wereincludedin the decoder
(Extended Data Fig. 30), and this decoding activity explained about
10% of trial-by-trial population variance in the 1-s pre-odour period
(Extended DataFig.3p). Thus, the wide distribution of goal information
across cells and regions may allow individual neurons to fluctuate on
single trials because of mixed selectivity while the population together
maintains state. Furthermore, consistent with a distributed goal-like
network, neurons with significant goal information were more likely
to be functionally coupled than cells without goal information, both
withinand acrossregions (Extended Data Fig.3q,r). Together, these data
suggest that asubstantial fraction of neurons across the brain partici-
pateina‘goal’state predictive of future behavioural choice. Combined
with the findings of diverse phasic responses to the task and mixed
selectivity, these data suggest a possible mechanism for coordination
of goalinformation across the brain, in which fast-timescale activities
unrelated to goal are superimposed on a distributed, slow-timescale,
goal information carrying network.

Forward model for the resolution of needs

We next aimed to formulate a minimal generative model, integrating
our findings of behavioural state persistence, stochastic transitions,
probabilistic influences of needs, a widely distributed neural popula-
tion with goal-like information, and mixed functional selectivity of
individual neurons. We made an informed guess (ansatz) at a set of
governing equations inspired by the Langevin dynamics of molecu-
lar diffusion, which enables a formal description of slow dynamics in
non-equilibrium systems by capturing the contribution of fast dynam-
ics as noise®* (Extended Data Fig. 6a). We reasoned that Langevin
dynamics may similarly arise in neural networks in which an inter-
related set of neurons with slow-timescale dynamics (goal-related)
are widely embedded in diverse neural networks with fast-timescale
dynamics (Extended Data Fig. 6b). Notably, the noise that arisesin the
Langevin equationis akey driver of resulting macroscopic phenomena,
suchas Brownian motion or chemical state transitions across reaction
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energy landscapes™® (Fig. 3a). We thus formulated a set of stochastic
differential equations in which need-related population neural activ-
ity diffuses across an energy landscape with wells scaled by thirst and
hunger (Fig.3band Extended DataFig. 6¢-f). The state of need-related
neural activity is partitioned into zones that specify contexts for spe-
cific behavioural goals, such as pursuing food, water, or other needs
(Fig. 3b). As rewards are collected and a given need is quenched, the
depthofthe correspondinglandscape well is diminished. The diffusion
of neural activity across this needs landscapein time depends only on
thelocal gradient at the present positionin the landscape (influence of
needs) and a white noise contribution (stochastic dynamics) (Fig. 3b
and Extended DataFig. 6¢-f). This approachyielded agenerative, for-
ward mathematical model for need resolution.

We simulated Buridan’s assay with our model by inputting highinitial
values for hunger and thirst, aninitial position, and Go and No-Go trial
timepoints. Running the equations forward in time produced a shifting
need landscape and diffusive neural state dynamics with a resulting
pattern of choices approximating that of experimental observations
(Fig.3c,dand Extended Data Fig. 7aand Supplementary Video 1; com-
pare to Fig. 1f and Extended Data Fig. 1c). To match the experimental
data, we exploited results from non-equilibrium statistical mechanics
to derive from the model a set of theoretical equations for the state
equilibriumand transition probabilities. Using these equations, wefit to
the trial-by-trial behavioural data three fixed model parameters: scaling
factors on the relative contribution of landscape gradient and noise
to the dynamics, as well as a weight term on the relative scale of thirst
and hunger to other needs (Methods). We used these fit parameters
for the above and all subsequent behavioural simulation and analyses.

Model recapitulates behavioural data

Theoretical equations derived from the model and fit to the trial out-
come data matched the single-trial transition and choice probabilities
of the data as a function of needs (Extended Data Fig. 7b-f). We then
simulated each behavioural session of Buridan’s assay in our experi-
mental dataset by matching the initial hunger and thirst magnitudes
and running the generative model (Extended Data Fig. 6¢) forward
in time for 120 min per session. Owing to the stochastic nature of the
simulation, the same initial conditions will produce distinct outputs
over repeated simulation runs. Therefore, we repeated the simulation
128timesto generate distributions for allsummary analyses. Analyses
comparingtheoretical, experimental and simulated datasets revealed
both qualitative agreement and quantitative matches for key phenom-
ena (Fig. 3e-k and Extended Data Fig. 7f-I).

Superimposition of the experimental choice persistence-length
distribution onto the set of distributionsin simulated sessions revealed
close overlap, indicating similar underlying patterns of persistence and
stochastic transitions (Fig. 3e). The distribution of choice probabili-
ties as a function of relative need overlapped with experimental data
(Fig. 3fand Extended Data Fig. 7g) and the linear slope relating choice
probability to relative need was not significantly different between
simulation and experiment (Extended Data Fig. 7h). Similarly, the prob-
ability in simulation of repeating previous choices was modulated by
relative need in a manner that agreed with experimental data (Fig. 3g
and Extended Data Fig. 7f,i). Because of the underlying diffusive pro-
cess, the model predicts that without any change in need, the prob-
ability of switching choices should increase the longer an animal waits
between choices. Indeed, the transition probability across increasing
intervals of time between choices (using the random number of No-Go
trials intermixed with Go trials) in the experimental data matched the
theoretical prediction of the model (Fig. 3h).

We next simulated optogenetic activations of thirst in the context
of hungry-only mice by transiently adding additional thirst in the
model, with timing parameters matching those of experiment. This
perturbation had the effect of temporarily deepening the energy well
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behaviour. a, Langevin dynamics capture emergent molecular phenomena
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Brownian diffusion. Bottom, random diffusion along anenergy landscape
duringareversible chemical reaction drives spontaneous transitions between
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orange and bluelines. Bottom, recent hunger and thirst. Supplementary
Videolshowstheentire session.d, The simulated sessioninc, visualized
withlicking behaviourasinFig.1f. Lick timing and number arerandom.

in the water zone (Fig. 3i). The model predicts that some stimulation
epochs will result in a transition to water choices from food, whereas
other epochs will have no observable behavioural change (Fig. 3i),
resulting in a probabilistic effect of stimulation. Repeated simula-
tions of the optogenetic stimulation experiment closely matched
the experimental choice probabilities across the stimulation epoch
(Fig. 3j); notably, transiently added thirst resulted in switches from
food to water collection in some but not all epochs (Fig. 3j,k), and the
decay time course of water choices back to food following the end of
thirst stimulation (a phenomenon dominated by diffusion according
to the model) was not significantly different between simulation and
experiment (Extended DataFig. 7j-1). Together, these results suggest

Dashedline, odour onset.e-g, Outcomes from 128 dataset simulations

(22 sessions per dataset), analysed for and superimposed on summary statistics
from 22 experimental sessions shownin Fig.1g (e), Fig. 1h (f) and Fig. 1j (g).

e, Simulated reward-choice persistence-length distribution (median + 95%
confidenceinterval) superimposed on experimental sessions. f, Simulated
(sim.) probability of choosing water on rewarded trials as a function of relative
need (mean) superimposed on experimental data (mean + 95% confidence
interval). g, Simulated probability of repeating previous reward choice (point
estimates of water-to-water and food-to-food transitions) as a function of
normalized thirst - hunger, superimposed on experimental data (solid dots
and lines, binned self-transition probability, mean + 95% confidence interval).

h, Transition probability as afunction of time between choices, under balanced
needs. Red line, model-derived theoretical transition probability. Dots and
vertical lines, experimental binned transition probability (mean + 95%
confidenceinterval, R?=0.411for model and experiment; n =15 mice, 22
sessions).i-k, Model simulation of optogenetic experiment.i, Inahungry-
only state (highinitial hunger, low thirst), optogenetic thirst stimulation is
simulated by transiently deepening the thirst well. Top, example of no choice
transition despite stimulation; bottom, example of transition to water and
subsequent persistence after stimulation. j, Simulated and experimental
probability densities of food choices relative to stimulation onset (purple bar).
Lightlines show results from each of 128 simulated optogenetic experiment
datasets. Dark lines are the average experimental results (Fig. 1n). k, Trial
outcomes surrounding each stimulation epoch (n=30) from asimulated session.

that the landscape diffusion model captures the stochastic relation-
ship between the magnitude of conflicting needs and behaviour that
we observed experimentally, thus linking the contributions of state,
need and noise to generate need-appropriate behaviour.

Model predicts transition dynamics

We next addressed how behavioural state transitions could occur if
behaviour is persistent and the relative magnitude of needs does not
directly drive choices. In the landscape diffusion model, transitions
areemergent phenomena of the balance between landscape slope and
noise-driven random walks, and thus occur spontaneously. To assess
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the explanatory sufficiency of the model, we sought to compare neural
transition dynamics predicted by the model with those recorded experi-
mentally. Experimentally recorded neural activity and model-simulated
trajectories canbe directly compared via their dynamics along ashared
‘goal dimension’ that separates upcoming water choice-related activity
from upcoming food choice-related activity (Fig.4a,b).Intherecorded
neural data, the ‘goal dimension’—which we define as the difference
between average baseline population activity before water choices
and before food choices—was extracted with alinear classifier; neural
population activity along the goal dimension at a specific time was
measured by linear projection (Fig. 4a and Methods). In the model,
these dynamics were measured by taking the simulated positionin
time along the vector from the centre of the hunger well to the centre
of the thirst well (vertical axis in Fig. 4b).

We compared experimental neural dynamics with the model along
the goal dimension for eachtrialinagivenbehavioural session (Fig. 4c,d
and Extended Data Fig. 8a). In both experiment and model, we found
baseline population activity along the goal dimension to be persistent
within contiguous reward-choice outcomes, including theintermingled
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data (g) or simulation (h), using baseline population activity in the goal
dimension.i,j, Goal predictiveness of an upcoming switch of the population for
eachsessioninexperimental data (i) or as predicted by the model (j). Dashed
line, null. g-j, Data are mean + 95% confidence interval; n =7 mice, 7 sessions.
k, Schematic showing 20 epochs 0f 10-s,20-Hz optogenetic osmotic thirst
stimulation (purple bars) during Neuropixels recording without reward spout
orodour. Thisis followed by Buridan’s assay with spout access and odour
presentation. |, Changesinneuralactivity surrounding stimulation epochs
areprojected onto the goal dimension or the dimension separating Go versus
No-Go-odour activity as acontrol. Values scaled by the maximum along the
given dimensionduring subsequent behaviour. Positive values on the y axis are
aligned with water seeking (goal dimension) and Go odours (odour dimension)
duringbehaviour. n=2mice, 3 sessions, 61stimulation epochs. Projection
binnedby1-sintervals. Dataare mean +s.e.m. Dim., dimension.m, Simulation
of optogenetic thirst stimulation prior to Buridan’s assay in hungry and thirsty
mice. Solid lineand lighter areaindicate mean + s.e.m. of change in simulating
goal dimension projection over baseline (A projection). n =3 simulations, 75
perturbationepochs.n,0, Goal activity responses toindividual stimulation
epochs for simulation in m (n) and for the experimentink (0; n =20 for each).
Magnitudes of activity change along the goal dimension areindicated by
colour codes and scaled to the peak modulation.

No-Go trials, with minimal slow-timescale variation between behav-
ioural switches. Thus, neural population activity along the goal dimen-
sion atagiven point in time could function as an ‘internal goal state’
that underlies the persistent behavioural states that we observed. As
predicted by the model, we observed fast-timescale noise-like variation
inthe experimental per-trial neural activity along the goal dimension
(Fig.4cand Extended Data Fig. 8a). Moreover, the model predicts rapid
trajectories along the goal dimension during behavioural state tran-
sitions (owing to the landscape saddle between wells and pull of the
landscape gradient). These rapid transition dynamics along the goal
dimensionwere readily observable inboth experimental neural activity
(Fig.4cand Extended Data Fig. 8a) and simulated trajectories (Fig. 4d).

Despite the noisy trial-by-trial fluctuations in fast-timescale activ-
ity along the goal dimension, both the experimental neural data and
model remained highly predictive of upcoming choiceinthelsbefore
odour onset (Extended Data Fig. 8b,c). Although this was the case on
average, the model also suggests that alternative dynamics take place
before behavioural switches: the spontaneity of choice transitions with
respectto behavioural trial times and the proximity of noisy transition



trajectories to the decision boundary implies that activity just before
abehavioural switch should lose predictiveness for upcoming choice.
Indeed, this was apparent in analysis of baseline activity for trials sur-
rounding behavioural switches, for both experimental data (Fig. 4e) and
model simulations (Fig. 4f). We note that the loss of baseline predictive-
ness of choice just before switches also suggests that the population
goalstateis not merely persistently reflecting the identity of the most
recent reward (Fig. 2h and Extended Data Fig. 8d). Conversely, if the
population activity loses choice discriminability near switches, then
alack of choice discriminability in the neuronal population activity
atany moment in time should be predictive of an upcoming switch.
Indeed, for both experimental data (Fig. 4g) and model simulations
(Fig. 4h), the predicted probability of an upcoming switch, based
solely on the distance of activity along the goal dimension from the
midpoint (Extended Data Fig. 8e), increased just before behavioural
switches compared with all other trials. Furthermore, the magnitude
of goal dimension activity at baseline alone could predict upcoming
switchesinboththe experimental data (Fig. 4i) and the model simula-
tions (Fig. 4j). We additionally found that the transition dynamics of
experimental data agreed with the noise-driven transition model but
not with aforced-transition model (Extended Data Fig. 9).

Causal test of model predictions

Finally, we sought to test the causal link between thirst sensation
and internal goal state dynamics as described by the model. To avoid
behavioural confounds, we performed Neuropixels recordings while
optogenetically stimulating osmotic thirst neurons during a quiet
waiting period (stim epoch) without odour or reward spouts; this was
followed by our standard Buridan’s assay in the same session (Fig. 4k).
This experimental scheme enabled us to construct the goal dimension
oneachsession fromneuralactivity during the unperturbed Buridan’s
assay, while stillmeasuring changesin neural activity during the preced-
ing repeated thirst perturbations along the goal dimension.

Thelandscape diffusion model made several key predictions about
this experiment: (1) activity along the goal dimension should move, on
average, towards the water-seeking zone during optogenetic stimula-
tion; (2) even in the absence of behaviour, changes in activity along
the goal dimension should slowly decay after stimulation offset; and
(3) only asubset of stimulation epochs should result in achange of activ-
ity along the goal dimension towards the water-seeking zone (Fig. 3i).
We simulated the thirst stimulation experiment by initializing the model
with high values for thirst and hunger and then transiently adding
thirst magnitude with timing matched to the experimental stimulation
parameters. We found thatinboth experiment (Fig. 41) and simulation
(Fig. 4m), activity moved in the direction of the water-seeking zone
alongthe goal dimension during thirst stimulation and declined slowly
from its peak following the end of stimulation. As a control for the
experimental dataanalysis, activity did not significantly change alonga
similarly constructed dimension discriminating Go from No-Go odours
(Fig. 41). Cells significantly modulated by optogenetic stimulation were
distributed across multiple brain regions, with quantitative differences
infrequency (Extended DataFig.10a,b). Complementary analyses sup-
ported the causal link between thirst and internal goal state (Extended
DataFig.10c-e).Inboth simulation and experiment, individual epochs
of thirst stimulation exhibited stochastic dynamics as predicted by the
model, with some individual goal activity trajectories appearing to
transition to and persistin a goal state associated with water-seeking,
whereas others exhibited no obvious change (Fig. 4n,0 and Extended
DataFig.10f,g). For the experimental neural data, this variability within
ananimal occurred despite the same external experimental parameters
and internal homeostatic deficit states.

Collectively, these datademonstrate a causal link between increas-
ing osmotic thirst neuron activity and moving the internal goal state
towards water seeking. They lend support to the indirect effect of
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organization of brainstates across time. a, Previous framework in which
needs actdirectly as forces on behaviour, leading to behavioural conflict under
equalneeds atthe moment of choice. b, Inthe neural landscape diffusion model,
needsactindirectly onbehaviour by reshaping anunderlying energy landscape.
Anintermediate goal state diffuses across the landscape directed by landscape
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gradientresultsin unstable states with numerous transitions. Right, excess
gradient relative to noise resultsin overly persistent states that fail to
spontaneously transition and remain stuck. Middle, balanced noise and
gradient generate organized, sticky behavioural states with spontaneous
transitions.

homeostatic deficits on behaviour, as described by the landscape
diffusion model. These results further indicate that the stochastic
resolution of conflicts between needs is not only a behavioural phe-
nomenon but also aneural phenomenon that can be dissociated from
overt goal-seeking motor actions.

Discussion

Using thirst and hunger in mice, we explored the behavioural and neural
dynamics of conflicting needs to reveal principles of an underlying
neural control system that organizes behaviour across time. Unexpect-
edly, similarly hungry and thirsty mice made persistent choices to seek
food or water and transitioned between choice bouts in a stochastic
manner. Quantitative analyses indicate that the relative magnitude of
needs modulates behavioural choices in a probabilistic manner. The
persistence of behaviour despite shifting needs suggested aninternal
mechanism that maintains a goal state guiding upcoming choices.
We found widely distributed neural correlates of this goal state in
simultaneous recordings performed during behaviour, most notably
the persistent baseline population activity along the goal dimension
that coincides with reward-choice outcomes (Fig. 4c). Neurons that
contained significant goal information also exhibited mixed selectiv-
ity for other fast-timescale features of the behaviour. We proposed a
conceptual modelin which goal-related neural activity diffuses across
anenergy landscape of needs to organize behaviour across time. Theo-
retical predictions and simulations from a mathematical realization
of the model captured behavioural phenomena and neural dynamics
with minimal free variables. Thus, rather than acting as a direct force
on behaviour (Fig. 5a), our experimental data and modelling suggest
that thirst and hunger indirectly drive shifts in behaviour by reshap-
ing an underlying energy landscape and thus biasing the stochastic
movements of an internal goal state (Fig. 5b).
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Our data and model resolve the quandary of Buridan’s ass via a
goal-like brain state whose position in neural space determines behav-
iour, rather than a direct comparison of relative needs. According to
this framework, the donkey’s mind is made up beforeitis givenachoice;
and if the donkey is made to wait, then its choice may spontaneously
switch. Evenin the case where the goal state lies at a decision boundary
between behavioural outcomes and the magnitudes of hunger and
thirst are equal, our model and experimental results suggest that this
symmetry is spontaneously broken® by random fluctuations in the
internal state near the saddle between energy wells.

We next consider how the global goal-like contextinfluences subse-
quentbehaviouralchoice. Prior work has suggested thatinterconnected
groups of neurons may implement actions via shared dynamics®*.In
this conceptual framework, sensory inputs®?®, inter-regional com-
munications, neuromodulatory tone*°, or other features of internal
state may create initial conditions that resultin distinct behavioural
outcomes. Indeed, we observed that baseline goal-related activity influ-
encesregional choice activity after odour onset (Extended DataFig.11),
suggesting that the broadly distributed goal state activity could func-
tion as a shared initial condition to coordinate the population neural
dynamics of distinct regions in the production of specific behavioural
outcomes. Inthis way, goal-related activity in alarge fraction of neurons
could have no direct effect on action at baseline, while nonetheless
specifying neural dynamics* that generate action following the odour
cue. The separation of longer-term plans from the implementation of
behavioural actions enables more hierarchical motor planning, more
robust learning and simplified reward assignment*2.

Our recordings did not reveal the primacy of any one region in con-
trolling transitions between choices given balanced needs. Although
we recorded activity from many regions, our samplingincluded only a
smallfraction of the brain, and it remains possible that our recordings
missed key effectors or modulators of transitions. Nonetheless, we note
thatthe Langevin-like model we propose here explains both natural and
optogenetically induced transitions that agree with experimentally
observed statistics without requiring any transition controller input.
Moreover, computational analysis of the goal state dynamics wasincon-
sistent with an external driver of transitions (Extended Data Fig. 9).

Key properties of our proposed modelinclude: (1) the remodelling
of the underlying energy landscape; (2) maintenance and update of
positioninthe need subspace; and (3) scaling terms for both the land-
scape gradient and noise. The remodelling of the energy landscape
could be physically realized by the broad release of state-related neuro-
modulators**** by synaptic reweighting®, or by other network activity
mechanisms*, Identifying the neurobiological mechanisms tuning
the gradient and noise scaling factors may be an important aim for
future studies. The balance between these scale factors determines
the rate of transition in the model: a high noise scale factor leads to
frequent transitions with short dwell times, and a high gradient scale
factor keeps subspace activity stuck in one well (Fig. 5c and Extended
Data Fig. 7m,n).

The qualities of persistence and sudden transitionsininternal state
that we found in our assay shareimportant features with the adaptive
and maladaptive transitions of emotional and psychological statesin
humans. Intriguingly, major morbidity in schizophrenia arises from
disorganized thought processes and behaviours, characterized by
the abnormal persistence of, and transitions between, cognitive and
behavioural states**%, These debilitating symptomslead to disruption
of daily life activities including self-care, eating and drinking, as well
asunstable emotional states and thought processes; this behavioural
disorganization in time is evocative of an excess in the noise term of
our model (Fig. 5¢c, left). On the other extreme, certain maladaptive
conditions could arise from minimizing this noise term (Fig. 5c, right);
for example, reduced ease of brain-state shifting could contribute
to stereotyped and restricted behavioural patterns for those on the
autism spectrum, and to behavioural symptoms in other disorders
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characterized by reduced exploration of available action space (such
as major depression). Future work will elucidate to what extent our
results generalize to diverse homeostatic needs and affective statesin
miceandinhumans, and whether the model we describe may ultimately
help to frame our understanding and treatment of psychiatric diseases.
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Methods

Experimental model and subject details

Female wild-type (C57BL6/J, Jax 000664) or Rxfplem€oNedi (Rxfp1-
P2A-cre, agift from). Ngai) mice were used for experiments. Experimen-
tal procedures were conducted on mice beginning at age 6-12 weeks.
Allanimal procedures were conducted following guidelines approved
by Stanford University’s Administrative Panel on Laboratory Animal
Care (APLAC) and guidelines of the National Institutes of Health.

Surgical procedures

Sterile techniques were used throughout the duration of surgical pro-
cedures. Mice were anaesthetized with1-2% isofluorane and given sus-
tained release buprenorphine (0.5 mg kg™) prior to surgery. Following
stereotaxic affixation, the head was cleaned with betadine antiseptic
solution (Betadine) and 70% isopropanol wipes. The scalp and perios-
teumwere removed and the skull cleaned thoroughly with 3% hydrogen
peroxide solution and saline. Once the skull had dried completely and
was level, acustom stainless steel headbar was affixed over the cerebel-
lumwith clear dental cement, and a thinlayer of clear dental cement was
appliedto the surface of the skull, forming abowl with the headbar. The
position of bregmawas marked for later reference. Inthe case of subjects
used for optogenetic experiments, RxfpI-P2A-cre mice were prepared
as described above. Additionally, AAV5-Efla-DIO-hChR2(H134R)-
eYFP* (350 nl of 5 x 10® viral genomes per ml titre) was injected into the
subfornical organ (SFO,-0.65A/P,0 M/L,-2.75D/V relative to bregma;
unit for all stereotactic coordinates is mm) at 100 nl min™ usinga Ham-
iltonsyringe. Theinjection bolus was allowed 10 min for diffusion prior
to withdrawing the syringe. Following the injection, a 400-um fibre
optic with a 1.25-mm cannula was implanted at a 30° angle from the
dorsal-ventral axisabove the SFO (-0.65 A/P, +1.4 M/L,-2.76 D/V) and
affixed to the skull with dental cement.

One day prior to Neuropixels recordings, mice were anaesthetized
with isofluorane as described above and craniotomies were drilled in
4 locations on the skull: frontal cortex: 2.25-2.5 A/P, 1.5 M/L; dorsal
striatum: 0.3-0.5 A/P, 3.15 M/L; hypothalamus: 2.2 A/P, 2.2 M/L;
midbrain: 3.05-3.3 A/P, 1.5 M/L. The Neuropixels insertion trajecto-
ries were initially chosen to sample regions previously reported to be
involved in stimulus-value association (frontal cortex), homeostatic
needs and consumption (hypothalamus, especially lateral hypothala-
mus), action selection and behaviour initiation (striatum), and motor
executionand reward (midbrain). Given these regions, werefined coor-
dinates based on long-range axon projection data between regions
(Allen Brain Institute anterograde projection dataset*®) to maximize
our chances of recording simultaneously from multiple interconnected
nodes ofacircuit. Craniotomies were cleaned with saline and covered
with Kwik-Cast (World Precision Instruments) until recordings. A
reference electrode (platinum-iridiumwire, 0.002-mm diameter, A-M
Systems) wasinserted over visual cortex and affixed with dental cement.

Behavioural training for Buridan’s assay
Mice were allowed at least one week to recover following surgical pro-
cedures. Mice were maintained on a reverse light-dark schedule and
experiments were performedindark periods or early light periods. Mice
were placed on afood and water restriction schedule approximately
1week prior to behavioural training. Mice received approximately 3 g
of dry food and 1 ml of water at the same time each day, with amounts
adjusted tomaintain mice above 80% baseline body weight. Once mice
werereliably performing behavioural tasks, daily water allotment was
obtained during behavioural sessions, and additional dryfood (0.5-2 g)
was supplemented depending on body weight and the amount of food
collected during abehavioural session.

Mice were trained on a custom behavioural rig consisting of a
two-odour olfactometer, ahead-fixation apparatus, two reward deliv-
eryspouts—one delivering salted (0.5 M NaClfinal concentration) liquid

vanillaEnsure (Abbott), the other delivering drinking water—and ahigh
speed (200 fps) colour camera (Basler Ace acA1300-200uc USB3) used
for tongue detection (custom detection code, implemented using
BonsaiRx®, withameasured detection latency of 5-10 ms (1-2 camera
frames)). Behavioural protocols were controlled by an Arduino (Bpod
Generation 2 and associated code in Matlab 2019). Odorants (ethyl
acetate, 2-pentanone) were diluted into approximately 4% v/v mineral
oil and were delivered to mice via a Teflon odour tube placed in front
ofthe nose of the mouse. Clean air was flowed through the odour tube
continuously and odorants were delivered by programmatically mixing
agivenodorantinto theairstream foraduration ofupto1.5s.Mice were
head-restrained to the behavioural apparatus and placed viaamagnetic
base such that the two reward delivery spouts lay equidistant below
and in front of their mouths. Spout positions were finely adjusted to
maintain equidistance for each mouse.

Once established on food and water restriction, mice began
behavioural training across two phases. In the first phase, food- and
water-restricted mice learned to voluntarily lick spouts to receive
either afood or water reward, with both rewards equally available. A
lick detected at the food spout resulted in a-5-pl food reward, and alick
detected at the water spout resulted ina~5-pl water reward. Each trial
was followed by an inter-trial interval (ITI) of 1-3 s, with a maximum
trial time of 10 s (in the event that no lick occurred). Mice performed
this simplified two-reward collection task until they proficiently
(within1h) collected sufficient food and water rewards to reach satia-
tion. During this first training phase, the ITI was gradually increased
from1sto 3s. Following proficiency in the first training phase, mice
wereintroduced to the full task structure as the second training phase.
FollowingavariableITI period (minimum 2 s, maximum 8 s, uniformly
distributed), eithera Go or No-Go odour was presented to the mouse
foramaximum of1.5 s; odours were terminated immediately following
adetected lick to either spout. Mice that licked during the Go-odour
period to either the food or water spout were rewarded with food or
water from that spout (-5 pl). Licks made during the No-Go-odour
period resulted in alonger ITI period and were not rewarded. Mice
were trained until they consistently obtained sufficient food and water
rewards to satiate both needs, reliably responded to the Go odour
when hungry or thirsty, withheld licking during the baseline pre-odour
period, and correctly rejected responses to the No-Go odour (>90%
correctrejectionrate). Datawere collected from mice with behaviour
sessions following the same task structure as that described for the
second training phase.

We empirically chose the food (liquid Ensure with added salt) and
water rewards to reduce cross-talk between needs by minimizing the
extent to which a food reward would decrease thirst. The added salt
additionally reduces the hedonic value of the food reward, as mice
will not consume it when not hungry (Extended Data Fig. 1b) but will
consume plain Ensure in the absence of hunger (datanot shown). Itis
possible that the extra salt content of the liquid food reward leads to
anincreaseinthirst over time. However, on the timescales of Buridan’s
assay, there does not appear to be a link between the amount of food
rewards collected and the subsequent collection of water rewards:
there was no significant timing relationship between food choices and
water choices (Extended Data Fig. 1e), nor any relationship between
the amount of salted liquid food rewards collected in a bout and the
amount of water collected in the subsequent bout (Extended Data
Fig.1f). This suggests that the switching behaviour we observe cannot
be simply accounted for by fast-timescale induction of thirst from
the salty food.

We note that at the start of the assay, our mice are not usually exactly
equally thirsty and hungry. However, while performing the assay, the
mice often encounter being approximately ‘equally thirsty and hun-
gry’according to our quantitative behavioural definition of thirstand
hunger. That is, they will experience as many food-collecting trials as
water-collecting trials until they reach satiation for both (see Extended



DataFig.1d foranexample). Notealso thatour Buridan’s assay is distinct
from‘Buridan’s paradigm’, a visuomotor task in Drosophila mimicking
astate of indecision not involving a choice between needs*>.

Optogenetics behavioural experiments

RxfpI-P2A-cre mice maintained with ad lib food and water access were
screened after at least 2 weeks of viral expression for optogenetically
induced drinking behaviour in their home cages (stimulus paradigm:
30-son, 30-s off, 20-Hz stimulation with a450-nm laser (Doric), pulse
width 20 ms, measured at 15 mW at the end of the fibre optic cable).
Mice with clear optogenetically induced drinking behaviour were used
for subsequent experiments in Buridan’s assay; mice with no clear
optogenetically induced drinking (probably owing to a lack of suf-
ficient transduced cells or a misalignment of the optogenetic fibre
with transduced cells) were discontinued from further study. Follow-
ing behavioural training, mice were returned to ad lib food and water
(sated condition) prior to optogenetic experiments. Mice performed
Buridan’s assay while sated (Fig. 1m) or food-restricted (Fig. 1n) and
received 20 stimulation epochs, each lasting 10 s at 20 Hz with 2-ms
pulse widths of 450-nm, 15-mW laser light; epochs were repeated
approximately every 2 min. Stimulation epochs were pseudorandomly
triggered during the ITI phase of the assay.

Freely moving behaviour for food versus water choice

Inafreely moving version of Buridan’s assay, mice were food and water
restricted, then placedin afour-sided custom operant chamber (Pan-
lab, Harvard Apparatus) containing two levers and two corresponding
reward ports delivering incremental salted liquid food (in the freely
moving assay, liquid food was Soylent salted to 0.5 M NaCl concentra-
tion) or water. The levers and reward ports were arranged diagonally on
opposite walls and mice were required to collect reward from a given
portbefore more reward could be triggered at the same port (Extended
DataFig.1i). Thus, to repeatedly collect rewards of a given type, mice
had to run diagonally back and forth across the chamber, triggering
reward (-5 pl) withalever press and collecting itat the corresponding
reward port. Unlike the head-fixed olfactory Go/No-Gotask, the freely
moving assay was conducted without any cue-based instrumental
conditioning so that mice made free choices both for which reward to
collectaswellaswhento collectareward. Because mice passed through
the centre of the arenaafter each reward collection, they were repeat-
edly equidistant fromboth food and water manipulanda. Behavioural
session data (Extended Data Fig. 1j,k) were collected following several
days of training in which mice became proficient at triggering and
rapidly collecting reward for both reward types. Behavioural sessions
typically lasted 1 h before satiation.

Electrophysiological recordings

Allrecordings were acquired using Neuropixels 1.0 probes and asso-
ciated hardware. Electrodes were cleaned prior to recordings with
saturated Tergazyme detergent solution (Alconox), washed with pure
water, and allowed to dry completely. Before each recording, electrode
tips were coated in the fixable dye CM-Dil (Thermo Fisher) and dried.
The Kwik-Cast coating over each craniotomy was removed and crani-
otomies were flushed with sterile saline prior to placing the mouse on
the experimental apparatus. Once onthe experimental apparatus, the
reference and ground contacts of each probe were connected in circuit
to each other and to the mouse’s reference electrode and headbar. In
the case of optogeneticrecording experiments, a fibre optic cable was
connected to the fibre optic cannulaon the mouse’s cranium. A circular
positioning apparatus (Multi-Probe Manipulator, New Scale Technolo-
gies) was used to place four Neuropixels 1.0 probes above the mouse’s
skull. Probes were positioned radially around the anterior-posterior
axis (front left probe, -30°; front right probe, +30°; back left probe,
-150°; back right probe, +150°). All probes were positioned at a +15°
angle from the dorsal-ventral axis. Micromanipulators (New Scale

Technologies) were used to finely position probe tips at the surface of
the brain for each craniotomy. The four probes were simultaneously
insertedinto the brainataspeed of3.33 pms™. Insertion depths ranged
from 3.85 mmto 6 mmbut were generally between4 and 5 mm fromthe
brain surface. Following the completion of probe insertions, ~10 min
were allowed to elapse beforerecording started to allow for any residual
brainmotion around the probesto settle. Data was acquired and writ-
ten to disk using SpikeGLX (B. Karsh) using default settings (AP gain
=500, recordings acquired from the bottom 384 electrode sites per
probe). Acquisitions across probes were synchronized using a square
wave 0.5-s duration pulse witha1-s period. The probe synchronization
signal, behavioural signals, and any optogenetic stimulation signals
were concurrently acquired on a Nidaq (Texas Instruments) and later
aligned to the probe synchronization signal (TPrime, B. Karsh). Videos
of the mouse’s face, head, and body were acquired during recordings
and synchronized usinginfrared LEDs coupled to atrial-start TTL pulse
recorded onthe Nidagq.

Inallexperiments, the experimental setup period (prior torecording
start) was conducted with spouts lowered away from the mouse’s mouth
and odour airflow turned off. Just prior to the start of the behavioural
assay, spouts were raised to an accessible position and odour airflow
was turned on. Mice performed Buridan’s assay during recordings
until satiation; subsequently, behavioural sessions were terminated
and recording completed. In the case of optogenetic stimulation
experiments performed during recording (Fig. 4k-o and Extended
DataFig.10), spouts remained lowered and airflow remained off after
the start of recording until the completion of optogenetic stimulation
epochs (10-s stimulation at 20 Hz with 2-ms pulse widths of 15-mW
405-nm laser light, 20 stimulation epochs per session spaced 1 min
apart); following a 5-min rest period, spouts were raised, airflow was
turned on, and mice performed Buridan’s assay with no further optoge-
netic stimulation.

Brainregistration and electrode tracks reconstruction

Mice were euthanized following the completion of experiments and
perfused with ice-cold phosphate buffered saline (1x PBS, Thermo
Fisher) and 4% paraformaldehyde (PFA, Electron Microscopy Sciences).
Brains were dissected from the skull and postfixed overnight in 4%
PFA at 4 °C. Brains were cleared as previously described™. Following
clearing, brains were imaged across both hemispheresinthe horizon-
tal plane on a LaVision light-sheet microscope in dibenzyl ether. Two
image volumes were collected: a 488-nm autofluorescence volume
and a 532-nm CM-Dil volume. Volumes were each collected at a 4-pm
step sizein the zaxis and a 4-pm pixel size at 0.8x magnification using
asingle light-sheet horizontal focus.

Both resulting volumes were down-sampled to 25 um. The 488-nm
autofluorescent volume was registered using an affine transform
followed by a warping b-spline transform (Elastix) to the Allen Brain
Atlas CCFv3® (available at https://allensdk.readthedocs.io/en/latest/).
The resulting transformation was used to deform the 532-nm CM-Dil
volume onto the reference atlas. Alignments between the reference
atlas and both the autofluorescent volume and the CM-Dil volume
were visually inspected for good agreement between structures. The
Python image volume viewer Napari** was used to label points along
electrode tracts; each set of points per track was given a unique name
and saved per brain. Custom Python code was used to transform probe
point sets to insertion tracks and to map electrode locations to brain
regions (see coderepository on GitHub, https://github.com/erichamc/
brainwide-npix). Using custom code, local field potential (LFP) data
fromeach probe was extracted and plotted against colour-coded (fol-
lowing the Allen Institute Brain Atlas colour map) regional annotations,
and fine adjustments were made to the position of the lowest point
labelling a given trajectory until a satisfactory qualitative alignment
between LFP activity and regional boundaries was observed (Extended
DataFig. 2d).
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Spike sorting and preprocessing

Allrecordings were pre-processed using the CatGT tool (B.Karsh, https://
billkarsh.github.io/SpikeGLX/#catgt) to common average reference
(CAR) recorded voltage traces per-probe and to zero out any tran-
sient electrical artifacts remaining after CAR (command-line option:
-gfix=0.40,0.10,0.02). Following preprocessing with CatGT, data was
spike sorted usingKilosort3 (https://github.com/MouseLand/Kilosort).
Cluster spike times (output from Kilosort3) and Nidaq events (detected
viaCatGT)werealigned to the reference probe sync signal using TPrime
(Karsh, https://billkarsh.github.io/SpikeGLX/#tprime). Cluster wave-
form averages were calculated using C_Waves (B. Karsh). Code from
the ecephys_spike_sorting pipeline (J. Colonell, https://github.com/
jenniferColonell/ecephys_spike_sorting) was used to organize pipeline
executables and input/output files, and was further used to calculate
QC metrics on Kilosort3 clusters and to tag candidate electrical noise
clusters. Followingall preprocessing, spike sorting, and postprocessing
steps, all clusters were manually examined using Phy2 (https://github.
com/cortex-lab/phy)* and re-labelled as noise or non-noise clusters as
necessary. Anautomated threshold was set for well-isolated units based
on manual noise cluster labelling and QC metrics (inter-spike interval
violations <0.1, signal-to-noise ratio >2, number of spikes per cluster
>500). The combination of these thresholds qualitatively agreed well with
manual annotation of well-isolated versus multi-unit activity clusters. All
clusters that did not pass these thresholds were excluded from analysis.

Analysis software

Alldata analysis was carried out using Python code in Jupyter IPython®
Notebooks. These analyses relied heavily on Numpy¥, Scipy*®, Pandas®,
and Scikit-learn®. Computational simulations were composed using
Jax®. Seaborn®*was used for bar plots, box-and-whisker plots and KDE
plots. Matplotlib® was used for all other plots. Statsmodels®* and Scipy
were used for all statistical analyses that were not carried out using
bootstrapping.

Behavioural data analysis

Selectivity index. We calculated the selectivity index as a per-session
average of reward choices (no. of cumulative water choices — no. of
cumulative food choices)/(no. of cumulative water choices + no. of
cumulative food choices) (Extended Data Fig. 1a).

Markov process choice persistence counts. The persistence count
distribution of atwo-state Markov process follows ageometric distri-
bution. We fit geometric distributions to the persistence counts data
using Scipy (Fig. 1g and Extended Data Fig. 1k).

Definition of behavioural thirst, hunger and relative need. We defined
aper-trial measurement of behavioural thirst or hunger, respectively,
asthe totalnumber of water or food rewards the mouse would collectin
the entire session minus the current number of collected water or food
rewards. We further normalized these ‘behavioural thirst’ or ‘behavioural
hunger’ values by the median number of total water or food rewards,
respectively, that mice on food and water restriction collectin Buridan’s
assay. For example, behavioural thirst = (no. of total water rewardsin the
session — no. of water rewards collected up to the current trial)/(median
of no. of total water rewards collected by aninitially hungry and thirsty
mouseinasession, calculated across all sessions). We then further defined
the relative level of behavioural thirst and hunger as an index ranging
from -1 (maximally hungry versus minimally thirsty) to +1 (minimally
hungry versus maximally thirsty), which we refer to as the relative need of
the mouse and calculated as [(behavioural thirst — behavioural hunger)/
(behavioural thirst + behavioural hunger)] (Extended Data Fig. 1d).

Marginal and conditional per-trial probabilities. To analyse the mar-
ginal or conditional probabilities of per-trial choices, we first collated all

trials frombehavioural sessions into a per-trial outcome table, in which
each Go-trial was tagged with the position in session, previous Go-trial
choice, subsequent Go-trial choice, cumulative rewards per session,
and current number of food and water rewards collected. The marginal
probability of choosing water on any given trial was fit using linear
regression to predict rewarded Go-trial outcomes from the relative
need value, for trials of sessions in which the mouse was under both
food and water restriction (Fig.1h). 95% confidence intervals on these
fits were estimated by bootstrapping. We also calculated maximum like-
lihood estimates (MLE) for the marginal probability of choosing water
onarewarded trial as the fraction of rewarded trialsin which the mouse
chose water, evaluated for trials falling within a given 5-percentile-wide
binofrelative need values (Fig. 1h, black dots). 95% confidence intervals
onthe MLE estimates were bootstrapped and plotted as vertical lines.

Using the tabulated trial choice outcomes and their associated previ-
ous trial or subsequent trial choice outcomes, we calculated an MLE
Markov transition matrix for trials fromall behavioural sessions. For the
transition matrix given relatively balanced needs (Fig.1k), we used only
trialswith arelative need value between -0.25 and +0.25. We excluded
sessions from these analyses in which mice were only under a single
restriction paradigm (food only or water only), and we excluded trials
inwhich the mouse had fewer than 10 remaining rewards to collect of
agiventype (toavoid sampling issues). The self-transition probability
for food choices and water choices (Fig. 1j) was also estimated by fitting
alinear regression onrelative need values per trial to predict whether
afood choice would follow a previous food choice; an equivalent pro-
cedurewas applied for water trials. The 95% confidence intervals were
estimated for each self-transition probability fit by bootstrapping. MLE
values for the probability of self-transition were calculated as the frac-
tion of self-transitions for agiven choice type, restricted to trials whose
relative need value fell within a given 5-percentile-wide bucket, with
95% confidence intervals for MLE values estimated by bootstrapping.

Comparison between behavioural features predicting upcoming
choice. We compared the upcoming-choice predictiveness of needs
and of previous choice by fitting and evaluating a support vector
machine with a radial basis kernel (L2 regularization weight C=1.0
and gamma scaled according to the feature variance; Scikit-Learn
defaults withgamma=‘scale’). When evaluating the predictiveness of
needs, wefit atwo-feature model using only the behavioural thirstand
behavioural hunger (see above) values of trials in a 50% training split
ofthe data. When evaluating the predictiveness of previous choice, we
fit the support vector machine using only the binary outcome of the
previous choice to predict the present choicein a 50% training split of
the data. Predictiveness (AUC) was evaluated on test data for models
fit separately on each session, yielding median and 95th percentile
confidence interval values for each parameter set across all sessions
(n=15mice, 22 sessions).

Optogenetic behavioural experiments. For all optogenetic stimu-
lation epochs, nearby Go-trial start times were tagged by the choice
outcome (food, water, miss) and the start time relative to the near-
est optogenetic stimulation epoch onset time. These food and water
choice trial times, relative to stimulation epoch onset, were smoothed
across time using a kernel density estimator (KDE) (Seaborn, Scipy) to
yield a probability density estimate of afood or water choice response
as a function of time relative to optogenetic stimulation onset. For
sated mice, no food choices were made, therefore the KDE analysis
was omitted.

Electrophysiological data analysis

Firing rates. Spikes for each neuron were binned at 10-ms resolution
and the binned counts were divided by the bin width and causally
smoothed using aforward moving average window of 100-ms to yield
smoothed firingrates at al0-msresolution. These rates were z-scored
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across the duration of a session within neuron. For trial-timing relative
analyses, the z-scored rates were concatenated into a per-trial vector
410 binslong (4.1s,the minimum trial time) and aligned to a trial-start
trigger signal (recorded on the Nidaq and corrected into the refer-
ence probe synchronization time) such that the first bin per trial cor-
responded to the 10 ms adjacent to the trial-start trigger time. The
baseline activity rate per trial was defined as the average number of
spikes for a given neuronin the1sbefore odour onset.

Regional analyses. All analyses of single neurons used well-isolated
clustersidentified by Kilosort3 and postprocessing analyses (see ‘Spike
sorting and preprocessing’). Each neuron was tagged with a corre-
sponding anatomical location using the atlas-aligned location of the
electrode at which the neuron’s detected waveform had the greatest
amplitude. These anatomical locations were used to extract from the
AllenInstitute CCFv3 annotation volume and associated structure tree
acorresponding region name. Depending on the level of analysis, the
region name used was either the leaf node of the structure tree or a
higher order structure. Inallfigures, regions are colour-coded follow-
ing the colormap convention set by the Allen Institute’s Mouse Brain
Atlas and were extracted using the AllenSDK.

Significantly modulated cells. The following analyses of single neu-
rons used only significantly task- and state-modulated cells: Fig. 2e,f
and Extended Data Figs. 3-5. Significant modulation was defined as a
logical OR operation over five measures each assessed by two-sided
t-tests: difference in average firing rate in the 1 s before odour onset
(baseline firing rate) between food choice trials and water choice
trials; difference in baseline firing rate between Go trial responses
(hit trials) and Go trial non-responses (miss trials); and differences
between baseline firing rate and the average firing rate 0-1,1-2, and
2-3 safter odour onset. Pvalues for each measure of modulation were
Benjamini-Hochberg false-discovery rate corrected for the total num-
ber of cells. This measure of significance was used as a pre-filter on cells;
subsequent analyses used additional measures of significance against
relevant null distributions (see below on null distributions).

Visualization of baseline firing rates. Neurons were sorted by the
correlation of the upcoming choice identity and their average baseline
firing rate in the 1s prior to odour onset and visualized with average
firingratesinthelsbefore eachtrial concatenated together (Fig. 2c).

Agglomerative clustering. For significantly modulated cells, per-trial
firing rates were averaged within condition (food choice, water choice,
miss/sated) and condition-averaged firing rate vectors were concat-
enated. These concatenated, per-cell condition-averaged rates were
treated as multidimensional measurements where each concatenated
firing rate bin was a feature. Using the library Scanpy®, the cell by fea-
ture matrix was first reduced in dimension using principal components
analysis, then aneighbourhood graph of observations was computed
using n = 5 neighbours, then a uniform manifold approximation and
projection®® manifold was computed, and finally clusters were identi-
fied on this manifold using Leiden clustering®. Cells were ordered by
these cluster identities and their condition-averaged z-scored firing
rates were visualized (Extended Data Fig. 3a,b).

Variance explained by regressors. Aseries of binary regressors were
constructed frombehavioural variables for each trial: choice outcome
(food versus water); early (first third of trials in a session) versus late
(last third) of food choices; early (first third) versus late (last third) of
water choices; hit versus miss; Go-odour trial versus No-Go-odour trial.
Fromthese regressors, aset of 8 measurements of firing rate variance
explained were made from each cell’s per-trial activity: average baseline
activity (1s pre-odour) compared to choice outcome, early versus late
foodtrials, early versus late water trials, and hit versus miss regressors;

average odour activity (300-ms window following odour onset) com-
pared to Go versus No-Go and choice outcome regressors; and average
response activity (1-s activity window starting 1 s post-odour) compared
to choice outcome and Go versus No-Go regressors (Extended Data
Fig. 3c). For regional analyses of variance explained, distributions of
variance explained by neuron within a region were visualized for a
givenregressor. Regions were sorted by the average value of firing rate
variance explained per neuronrecordedinthat region, for regions with
greater than30 recorded neurons.

Null distributions for single-cell analyses. For all single-cell regres-
sion analyses, a per-cell null distribution was constructed, and true
measurements for each cell (for example, variance explained for agiven
regressor) was compared to the corresponding null, with significance
determined by the resulting one-sided tail statistic with P < 0.05 as the
threshold. For the variance explained measurements, each cell’s null
distribution was constructed by circularly permuting the firing rate
time series with respect to the regressor time series. We note that sig-
nificance tests against null distributions with random (unstructured)
permutation of the time series failed to remove spurious long-timescale
correlations, though we also note that long-timescale correlations
may be relevant to some of the state phenomena we are interested
in and therefore circular permutation may be overly conservative;
future studies that enable tracking the same neurons across multiple
sessions should increase the statistical power of the corresponding
null distributions. For analyses that considered the average variance
explained per region, an additional null distribution bootstrapping
mean values from the circularly permuted null for cellsineach region
was used (dashed lines in Fig. 2e and Extended Data Fig. 5).

Thefollowing Pvalues for regional means of variance explained are
associated with Fig. 2e and Extended Data Fig. 5c and were obtained by
bootstrapping (10,000 samples) the mean per-cell variance explained
value within region and comparing the one-sided tail statistic to a
similarly bootstrapped regional null using the per-cell null distribu-
tion variance explained values (obtained as described above). These
Pvalues were then FDR-corrected for multiple comparisons across
brainregions: MRN, 0.000; SCiw, 0.000; APN, 0.000; CP,0.000; OLF,
0.000; FF,0.000;FS,0.000; ORBI5, 0.000; VTA, 0.006; ACB, 0.008; PeF,
0.010; LHA, 0.016; ORBI1, 0.124; Alv5, 0.127; ORBI2/3,0.130; SSp-mé6a,
0.130; ORBI6a,0.130; Z1,0.130; AON, 0.272; PO, 0.279; VPM, 0.279; VAL,
0.279; RN, 0.279; S1, 0.279; AAA, 0.327; EPd, 0.336; VM, 0.417; Ald6a,
0.520; SCig, 0.603; CAl, 0.748; MOs6a, 0.828; POST, 0.834; LP, 0.834;
PRNr, 0.955; PPN, 1.000 (brain region abbreviations are provided in
Extended Data Table1).

Null distributions for population predictions. For analysis of popu-
lation predictiveness of the upcoming choice, which is potentially
confounded by long-timescale correlations in the neural activity, we
took two approaches: (1) we compared all analyses to both a circularly
permuted null distributionand to asession-permuted null distribution
(the two dashed lines in Fig. 2g; both gave similar results); and (2) we
evaluated predictiveness on a set of held-out test trial data flanking
behavioural switches (reward trials -5 to -2 and reward trials +2 to +5
relative tothefirst trial with an altered reward choice as trial 0); because
this test set paired choices of each reward type to an equivalent
set nearby in time, it helped to eliminate the confound of spurious
long-timescale correlations with the choice.

Variance explained co-occurrence. An 8 x 8 regressor information
correlation coefficient matrix was calculated from the Regressor
variance explained x Cell matrix. Euclidean pairwise distances were
evaluated between the resulting correlation coefficient values and a
linkage between distances was subsequently estimated. Entries of the
correlation coefficient matrix were reordered according to the leaves
of the hierarchical linkage (Extended Data Fig. 3e).
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Coupling analyses. Cells were pooled across all recordings (n=7
miceor recordings, number of cells per region givenin Extended Data
Table1). For each cell, firing rates binned at 10 msin the 1s pre-odour
baseline period of each Go-trial were baseline-subtracted by the
cross-session mean firing rate in the given choice outcome and then
concatenated together for trials across the session. A matrix of pair-
wise noise correlations between cells was then calculated using these
concatenated firing rates. Cells were categorized as goal-significant
or non-goal-significant as described above (null distributions for
single-cell analyses), and the noise correlation matrix was sliced
according to the categories given in Extended Data Fig. 3q,r to yield
the distributions plotted.

Population decoding. All population choice prediction analyses were
performed using a linear discriminant analysis (LDA) classifier with
shrinkage of the covariance matrix determined analytically. All quantifi-
cations of model predictive accuracy (receiver operating characteristic
(ROC) AUC) were evaluated on held-out test data. Feature vectors for
population decoding used either single-time bin activity vectors for
simultaneously recorded neurons (Fig. 4e and Extended Data Fig. 8b)
or activity vectors averaging activity per-neuron in the 1-s pre-odour
baseline period (Figs. 2g and 4c and Extended Data Fig. 8a). For upcom-
ing choice classifiers (‘goal dimension’ classifiers), trials in which licking
occurred during the pre-odour baseline period were excluded to avoid
behavioural contamination. Visualizations of neural activity along the
discriminating axis used the decision function of alogistic regression
classifier withinverse regularization strength set to 0.02. In the case of
optogeneticexperiments,agoal dimension was constructed using the
difference of average water and food trial baseline activity during the
behavioural assay, with weights normalized by the summed standard
deviation within trials of each outcome®. One-second-binned neural
activity surrounding each optogenetic stimulation epoch (-10 s to
+20 s) was projected onto this goal dimension (Fig. 4i-o and Extended
DataFig.10f,g). Alternatively (Extended Data Fig.10c-e), a ‘thirst-stim’
classifier was constructed using average activity during optogenetic
stimulation (averaged across 10 s of stimulation) or average activ-
ity in the 3 s prior to stimulation onset to predict stimulation versus
non-stimulation periods, respectively. Projection of neural activity
during behaviour onto this ‘thirst-stim’ dimension was used to meas-
ure activity along this optogenetic thirst dimension during different
behavioural epochs.

Prediction of upcoming switches. An upcoming choice classifier using
simultaneously recorded population activity was constructed using
logistic regression with linear features consisting of the average neural
activity per cellin the 1s before odour onset. Regularization strength
wasset to 0.05. The classifier was trained on 70% of rewarded trials, with
30% held out. The decision function of this classifier was then evaluated
onalltrialsacross each session toyield a population activity projection
along the goal dimension. To predict the probability of switching on
agiven trial, the distance from zero of the magnitude of the upcom-
ing choice decision function, evaluated on1s pre-odour activity, was
linearly rescaled into a probability using a unidimensional LDA classi-
fier fit on the switch outcomes of all trials (Fig. 4g,h). To measure the
performance of the goal activity projection in predicting upcoming
switches across a session, the receiver operating characteristic AUC
was measured directly using the distance from zero of the magnitude
ofthe upcoming choice decision function as evaluated on1-s pre-odour
activity across all rewarded trials (Fig. 4i,j).

Post-odour choice-selection activity analyses. To assess infor-
mation about choice gained following odour onset, population
decoders of choice were constructed on a per time bin basis using
baseline-subtracted firing rate activity in that time bin (Extended Data
Fig. 11a). The baseline activity removed from each time bin consisted

of the average activity in the 1 s before odour onset, evaluated on a
per-trial basis. Removing the baseline activity per cell removes the
average baseline predictiveness of upcoming choice, such that pre-
dictiveness increases can only come from changes in neural activity
beyond the average baseline rate per trial. Classifiers for each region
were constructed using the simultaneously recorded population activ-
ity vector within a givenregion (Extended Data Fig. 11a). The visualized
baseline-subtracted post-odour predictiveness used the AUC as evalu-
ated first within session on held-out test trials, then averaged across
sessionreplicates. Regions without multiple session replicates or less
than 30 neurons are marked with an asterisk.

To assess whether fluctuations of the baseline goal activity modu-
lated post-odour choice-selection dynamics, we constructed clas-
sifiers of choice using simultaneously recorded firing rate activity
during the 1-2 s post-odour period from all simultaneously recorded
neurons (Extended Data Fig. 11b,c) or from neurons in a given region
(Extended Data Fig. 11f). For these analyses, we used a logistic regression
classifier with linear features and a regularization factor of 0.1 (Scikit
Learn). Classifiers were trained on a training dataset of 50% of trials and
subsequent projections were evaluated on the 50% test set of trials.
Projections to the discriminating choice-selection dimension were
constructed using the per-region classifier decision function, which
we further baseline-subtracted using the per-trial projection values
in the 100 ms prior to odour onset. For each corresponding choice
trial in the behavioural session, we computed baseline activity in the
goal dimension (using the decision function of a logistic regression
classifier trained to predict upcoming choice from the 1s pre-odour
neural activity of all simultaneously recorded neurons across regions).
Bothactivity in the goal dimension and activity in the choice-selection
dimension were normalized from -1to1using asecondarylinear clas-
sifier function to remove systematic differences in decision function
magnitudes between behavioural sessions. For the analyses presented
in Extended Data Fig. 11b,d,f, projections onto the choice-selection
dimension werebinnedinto 0-33,34-66,and 67-100 percentile groups
using the per-trial baseline goal dimension activity, with percentiles
calculated within sessionand within choice. Linear regression analyses
(Extended DataFig.11c,e) used per-trial goal dimension activity magni-
tudedirectly, not percentiles. For the regression analysis of the modula-
tion of post-odour choice-selection activity dynamics by within-choice
baseline goal activity, choice-selectionactivity was summed from 0.1 s
post-odourto 0.9 s post-odour.

Video decoding analysis

Videos of the face and body, acquired at 100 frames per second each,
were cropped toregions of interest (ROIs) and converted to greyscale
from RGB. ROIs were converted to motion energy (change in pixel
intensity from frame to frame) and the top 500 principal components
were extracted for each ROI by singular value decomposition using
FaceMap®, Principal component video datawas synchronized to behav-
iour data using asmallin-frame LED trigger signal at the beginning of
each behavioural trial. Behavioural decoding and decoding perfor-
mance evaluation was performed using LDA with receiver operator
characteristicareaunder the curve (ROC AUC) quantification using an
equivalent approach to that used for decoding of neural data.

Mathematical modelling

The mathematical model consists of several coupled differential and
stochastic differential equations. These equations describe the shape
of anenergy landscape of needs as a function of thirst and hunger mag-
nitudes; the Langevin dynamics of motion across the landscape as a
function of time; and the update dynamics for thirst and hunger mag-
nitudes as a function of odour presentation (sampling times) and the
current position onthelandscape (behavioural choice events) (Fig. 3b
and Extended Data Fig. 6¢—f). We chose a simple three-dimensional
energy landscape shape (a two-dimensional space with a landscape



depth defined at every position) that placed harmonic wells centred
at three locations at equilateral distance to each other; these loca-
tionsrepresent the means of thirst-related, hunger-related, and other
needs-related neural activity. To give smooth saddles between wells we
expressed the landscape as the log-sum of Gaussian probability density
functions (Extended DataFig. 6e,f) according to the following equation:

Ux, t) =log(s x T(£) x Dy, (x) +5x H(t)xDe(x)+ D, (X)) 1

where the shape of each well is defined by the following negative prob-
ability density functions of multivariate normal distributions:

O, (0)=0x;u,,2)
Or(x) =D (x; pe, X)
O (x) = O (x; 1, X)

and where p,, is the centre of the well for the thirst-related space; yi;is
the centre of the well for the hunger-related space; 1, is the centre of
the well for the ‘other needs’-related space; £ = 6% x I is the covariance
matrix of each normal distribution and is equivalent between all wells;
T(t)isthe magnitude of thirst at time ¢; H(t) is the magnitude of hunger
attime ¢; and sis a scaling factor that aligns experimentally observed
normalized thirst and hunger magnitudes to the appropriate
scale within the model. Thus, as the thirst and hunger magnitudes
change over time, the depth of the respective wells inthe energy land-
scape are scaled, leading to varying gradients on the landscape over
time as afunction of each need (Fig. 3b,c, Extended Data Fig. 6¢c-fand
Supplementary Video 1). For simplicity, we assumed a constant scale
of other needs, such that thirst and hunger are given as relative mag-
nitudes to other needs.

Behaviour of neural activity on this simplified two-dimensional
subspace is approximated by overdamped Langevin dynamics in the
following equation (see also Extended Data Fig. 6¢,d):

x(t+1)=x(t) +dex gx - VU(x, t) + /dt x nx N(0; 1) ()

Atevery discretized time step, we add to the current position x(¢) the
negative gradient of the present energy landscape, scaled by the factor
g,and atime-independent white noise N (zero-centred normal distribu-
tionwith covariance/the identity matrix, indicating zero dependence
between noisein each dimension) scaled by anoise factor n. Behaviour
of motion on the landscape is heavily dependent on the relationship
between g and n and their magnitudes with respect to the distances
between well centres and the scale on the well shapes. Higher values
of ndrive more frequent transitions between spaces on the landscape
andinthelimitoverwhelm the contribution of the energy landscape to
the dynamics; higher values of gincrease the dominance of the energy
landscape over the dynamics contributed by noise and decrease the
transition frequency, as movementon the landscape tends to be pulled
towards the closest energy well. The scale factor sin U(x, £) modifies
the propensity of the system to stay in the food or water seeking zones
instead of the ‘other needs’ zone. Increasing magnitudes of both sand
gincrease the rapidity of transitions between zones.

Behavioural emissions fromthese dynamics are given by a partition-
ing of the subspace into zones according to which unscaled negative
probability density function ¢ has greater magnitude at every position,
yielding astandard maximum likelihood decision function. We choose
this maximuma likelihood partition for simplicity, but we propose that
learning in a particular environment or context can shape more arbi-
trarily complicated partitions of this subspace with respect to behav-
iour. Thus, behavioural choice emissions are defined by position x(t)
and a sampling-cue at time ¢’ with the following equation:

miss, @, (x; t) < D, (x; t") and O, (x; ") < De(x; t")
b(x,t’) = {food, not miss and ®¢(x;t") <D, (x;t’) 3)
water, not miss and @, (x; t') < ®¢(x; t")

The magnitude of the thirst 7(¢) and hunger H(t) are decremented
by a fixed amount r,, and r;, respectively, and fixed feedback delay [
after food or water choices are made, according to the following
equations:
dT _|0,b(x,t-1)#water 4
dt |r,, b(x,t-1)=water @

dH |0,b(x,t-1)=food
_{ (x,t- 1) #foo )

dt  |r, b(x,t-1)=food

r,andrecorrespondto the reward size givento the mouse and approxi-
mate the incremental changes in needs upon reward collection; we
set these values based on high initial thirst T, and hunger H, values
such that simulated behaviour in Buridan’s assay resulted in similar
numbers of cumulative rewards collected until satiation (predomi-
nantly ‘miss’ outcomes) as experimental behaviour. We set the feed-
back delay /to 2 min in simulation time based on a rough review of
the literature’ but did not fine-tune the value based on experimental
data. For simplicity, we did notinclude any hysteresisin the update to
the thirst and hunger magnitudes, excepting a fixed delay time in the
update. We note that a more detailed model may include hysteresis,
accounting, forinstance, for the rate at which rewards are collected or
characteristicdynamics to the rate at which the landscape can change;
possible anticipatory dynamics in the sensation of homeostatic defi-
cits; and more complex interactions between the rewards and needs
(for example, if areward decreases one need but increases the other
on longer timescales, as may be the case for the salted ensure). All
visualizations or measurements of simulated activity along the goal
dimension use the projection of the current position onto the unit
vector given by

”w _”f
llge,, — gl

whichinthe case of our parameters is simply {ﬂ

Modelfitting and derivations

The mathematical model described above has several interrelated
fixed parameters whose values alter the system behaviour across a
simulated behavioural session. We sought a set of parameters whose
values best produce simulations with summary statistics matching
those of the behavioural experiments. We chose to fit the model to
the behavioural data, rather than the neural data, for two reasons:
(1) so that we could evaluate the extent to which the model matches
and predicts behavioural results, independent of the constraints of
the neural data (Fig. 3); and (2) so that we could evaluate the extent
to which this class of model, tuned to the behavioural outcomes,
would anticipate aspects of the neural data (Fig. 4). Since the model
we present is an equation of motion that enables a discretized, sto-
chastic forward simulation of behavioural sessions from an initial
position and initial thirst and hunger magnitudes, and any given
session simulation for a set of parameters will differ across repeated
simulation runs, the output of the model cannot be directly tuned to
match the trajectories of behavioural sessions. Fitting is addition-
ally complicated from a computational perspective by the fact that
the modelis discretized to a fine temporal time step (1/100th of a
second), so that -1,000 model steps are evaluated between every
simulated trial.
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Anoptimal modelfitting procedure maximizes the likelihood of the
observed data given predictions from the model and its parameters,
subject to any constraints. To perform this optimization, we exploited
several aspects of the experimental data and model:

First, recognizing that the behavioural sessions exhibited a strong
Markov property (conditional independence), we transformed behav-
ioural sessions (chains of 100 s of trials) into a collection of pairs of
sequential rewarded trial outcomes, for example, food-to-food,
food-to-water, water-to-food, and water-to-water, and we tagged
each trial by their current thirst and hunger magnitudes and the time
elapsed betweenreward choices. We then considered each pair of trials
independent from all other pairs of trials. The problem of optimizing
the model parameters then becomes a problem of jointly optimizing
the probability of each trial pair given the model and parameter set.

Second, while the stochastic differential equation described above
does not give a probability estimate for this trial-pair data, results from
thefield of non-equilibrium statistical mechanics and transition state
theory give approximate equations related to the transition prob-
ability rate between states for Langevin equations with a form similar
to what we describe above. Specifically, we adapted Kramers’ first
passage problem®*, which describes the escape rate over an energy
barrier for a diffusive particle inaharmonic well, to give atheoretical
expression for the transition probabilities between choices as a func-
tionof thirst, hunger, and time between trials. This theoretical expres-
sion utilizes the same model parameters and energy landscape as the
forward equation of motionand thus links the model parameters to the
observed behavioural events. We additionally exploited equilibrium
relationships between the landscape and noise to constrain the fitting.
We provide the derivation of these theoretical expressions as follows.

Derivation of the state transition probability equation. Following
transition state theory, we can write down a set of general time-
dependent differential equations for the probability that the system
will be in one state or another (in our case, the zone around the food
well or the zone around the water well):

d
apw(t)zpfxwfw_wawwf (6)
d
apf(t) :PW X wwf_Pf>< Wiy @)

where P, is the probability of being in the water zone; P;is the prob-
ability of being in the food zone; wy, is a transition probability rate from
thefood zone to the water zone; and w,,¢is a transition probability rate
fromthe water zone to the food zone. As a simplifying assumption we
ignore transitionsto the ‘other needs’ zone and will consider only trials
with no misses between rewards. Therefore,

d

d
dtPW(t) =- an(t), (8)

and
P () +P() =1 9)
Conditioning on an observation of a previous food or water choice
astime ¢t =0 gives the boundary conditions:

P,(0)=1and P;(0) = O (previous choice of water) (10)

P,(0) =0and P;(0) =1 (previous choice of food) (11)

and therefore P,(t) becomes a self-transition probability P,,,(t), the
probability of being in the water zone at time ¢ following being in the

water zone at time ¢ = 0, and equivalently for P (¢) as self-transition
probability Pg(¢) for the probability of being in the food zone at time ¢
following being in the food zone at time ¢ = 0. Using equation (9) and
substituting yields:

d
apww(t): (l_wa ®) X Wpy =~ Pyy X Dy 12)
d
apff(t):(I_Pff(t))xwwf_PffXQ)fw (13)
and the transition probabilities for switching are:
P.¢(t)=1-PR,,(¢) for a water to food transition, (14)
and
P;,(t) =1- Py(¢) for a food to water transition. (15)

Integrating equations (12) and (13) and solving the initial value prob-
lem gives:

— _ Wry f(wwf+wfw)><t+ Wry
wa (t) (1 wa ¥ (l)fwj Xe rwf +wp, y (16)
and
_ Wyt — (@ wft+@ey) Xt Wyf
P, (t)—[l— W jxe e 17)
fr Wy + Wiy Wyt + Wiy
Thisyields the full time-dependent transition matrix:
Pi(0) Pry ()
Prrans(8) = (18)
trans [ow (f) wa (f)

Toevaluate these probability expressions, we need to specify therate
equations for w;, and w,,.. Kramers’ first passage problem describes the
average time it takes for a particle residing within a harmonic poten-
tial well to first escape over an energy barrier; if the other side of the
barrier is asecond potential well with high barriers®, then the inverse
of this first escape time is approximately the transition rate w. For a
one-dimensional Smoluchowski equation satisfying the fluctuation
dissipation theorem®, this transition rate fromstate A to B has the form:

[Vp X V4 _Ut-ut
e

wABN[m KT -, (19)

where U* is the potential evaluated at the transition state (saddle
between wells); U* is the potential evaluated at the minimum (well
centre) of the source state; K, T is the Boltzmann constant multiplied
by temperature, yis the frictionterm, v, is the approximated frequency
oftheharmonicwell atits centre, and v, is the approximated frequency
of the transition state. To utilize this equation, we construe the equa-
tion of motion of our model as a one-dimensional Smoluchowski equa-
tion along the y axis (line between food and water wells). We set the
frictiontermy=1,thenoisetermn= JKb—T, andwe consider the gradi-
entscalegasascalefactorontheenergylandscape, rather thanascale
factor on the gradient of the landscape in the equation of motion
(yielding an equivalent effect on the gradient as it would have in the
equation of motion, but avoiding construing it with y in the Smolu-
chowskiequation). Thus, we take the needs landscape as the potential,
with U*and U* becoming functions of thirst and hunger evaluated at
the time of the previous reward collection t=t,: U*(T, Hlg, s) and
UNT, H\g,s), where the landscape U(x) specified in equation (1)



dependsinternally onsandis scaled by multiplication with g. Follow-
ing the harmonic approximation in (19) we approximate the well cen-
tres of our landscape as the log of the probability density function of
the Gaussian at its mean (u,, or y¢) and take the second derivative to
get the frequencies v:

VA:*2 (20)
o
and
2
Vim— 21
£~ 52 20

(note that we approximate the frequency of the transition state as
double that of the source state well, a value approximately consistent
with numerical evaluations).

Thus, we get the following expressions for the transition rates from
food and from water, as a function of thirst and hunger:
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Wy(T, H) = “oxm |¥© n , (22)
and
'oiz X a% U H)-US (T, H)
wfw(T' H) = W xXe n? (23)

Plugging these equationsinto (18) and its corresponding expressions
yields an equation for the transition probability of each behavioural
trial pair, as a function of time, thirst magnitude, hunger magnitude,
and the model parameters utilized in our equation of motion. This
equation was used to evaluate theoretical predictions for Fig. 3h and
Extended Data Fig. 7f. We note that this equation is only approximate
andrequires (1) that the potential well of the source state is deep rela-
tive to the transition state and (2) that the system follows a Boltzmann
distribution at equilibrium®*. Following requirement (2), we constrain
the optimization by jointly optimizing both the transition probability
of eachreward pair observed in the experimental behavioural dataset,
aswell as the probability of all individual reward-choice trials derived
from the Boltzmann distribution:

_UW,T,H)
e n?
— Xw
P(W| T' H) - _U,T,H) _UKX,T,H)’ (24)
e 2 t] e n?
Xw Xf
and
_UT,H)
e n?
f = i
P( |T' H) - UK, T,H) U, T,H)’ (25)
e 2 t] e n?
Xw Xf

where x,,and x;are the water and food zones of the landscape, respec-
tively. These equations were used to evaluate theoretical predictions
for Extended Data Fig. 7b,d. Finally, to additionally constrain the for-
aging weight parameter s, which scales the thirst and hunger mag-
nitudes relative to ‘other needs’, we add to the joint optimization
a Boltzmann-derived equation specifically for trials surrounding

satiation, including misses (equations (24) and (25) do not consider
misses and are evaluated on reward trials without flanking misses):

_UK,T,H)
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P(fIT,H) =

where the denominator is an integration over the entire landscape
space and x, is the ‘other needs’ zone of the landscape.

Loss function and model fitting computation. The above derivations
yielded three sets of expressions for the probability of the experimental
data as a function of the model and its parameters: (i) an expression
for the transition probability between two sequential rewarded tri-
als, dependent on time, thirst, hunger, and previous choice identity;
(ii) an expression for the probability of a given reward, independent
of time or previous choice but dependent on thirst and hunger; and
(iii) an expressionas in (i) but for trials near or during satiation, includ-
ing misses. We then minimized the negative log-likelihood of the data
across allexperimental sessions under these theoretical model-derived
equations by fitting the scale parameters n, gand s while leaving as fixed
parameters the well centres and shapes for simplicity of interpretation
(well centres are placed on an equilateral triangle and the standard
deviation of each Gaussian well is the same). The datawere partitioned
intothree sets, correspondingto (i), (ii) and (iii): sequential reward trial
pairs as described above; individual rewarded trial outcomes and the
thirstand hunger magnitudes at the time of each trial, excluding trials
adjacent to misses; and individual Go-trial outcomes including misses
near satiation (thirst and hunger <0.5). We separated the evaluation of
non-sated (i, ii) and sated (iii) trials to avoid overfitting to early misses,
whichmay alsobe dueto errorsinthe behavioural task, as opposed to
the mouse’s needs or goal. The joint loss function used was the aver-
age negative log-likelihood per trial in each of the three sets, added
together. Because computing the Boltzmann-derived expressions
used in (ii) and (iii) involved more computationally expensive numeri-
cal integrations, the trial data for (ii) and (iii) were batched to 1/50th
thessize of the entire dataset (8,000 and ~11,000 trials, respectively).
Allequations were expressed using custom Python code utilizing the
Jax®°library, enabling auto-differentiation, just-in-time compilation,
auto-vectorization, and use of a corresponding optimization library
Optax® and the AdaBelief optimizer™ (with learning rate 10™), which
consumed the gradient of the joint loss function calculated with
respectton,gands. Minimization of the loss function was performed
until convergence.

ForFig.3 and Extended DataFig. 7, parameters for all analyses were
fit using the procedure above on the entire behavioural dataset that
was analysed in Fig. 1. For the optogenetic simulation experiment, an
additional scale factor of 3.3 (obtained by grid search) was added to
the gradient termgfor best overlap with the experimental optogenetic
stimulationresults. We note that, since this experiment utilized a small
subset of mice, the additional tuning of the gradient scale may account
for animal-to-animal differences in these parameters not accounted
for in the average values. For Fig. 4 and Extended Data Figs. 9 and 10,
parameters were fit using the procedure above on the subset of mice
used for Neuropixels recordings, and these same fit parameters were
then used for all analyses, excluding the optogenetic analyses, in which
the additional scaling factor of 3.3 obtained above was used.
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Simulations

Simulations of the mathematical model described above were imple-
mented in custom Python code using the Jax library® for just-in-time
compilation (expediting simulations) and automatic differentiation
(for landscape gradient calculations). The following fixed parameter

set was used for all simulations: y_= [‘08} = [755} = L; 5} )

0%=20, =180, initial position Xo= o (asaddle point between thirst

and hunger wells), dt = 0.01, r,, = 0.006, and r;= 0.004. For the analyses
of Fig.3c-h and Extended Data Fig. 7a-i, the g, nand s parameters were
fit as described above to trial data from all behavioural sessions ana-
lysed in Fig. 1and this single set of parameter values (g =2.4383774,
n=2.74393, and s = 6.4874935) was used. For the behavioural optoge-
netic simulation analyses (Fig. 3j,k and Extended Data Fig. 7j-1), the
same fit parameter values as above were used, except g was multiplied
by afactor of 3.3 as described above. For the analyses of Fig. 4d-jand
Extended Data Fig. 9¢,h, parameters g and n were fit to trial data
from the set of behavioural sessions of the Neuropixels recordings,
as described above, and the single resulting set of parameters
(8=2.5563507, n=2.807799, and s = 6.4874935) was used. For the
optogenetic simulation analyses comparing simulated trajectories
and neural data (Fig. 4m,o and Extended Data Fig. 10f), we used the
same set of parameters as those used for Fig. 4d-j and Extended Data
Fig. 9e,h, with g multiplied by a factor of 3.3 as described above. We
note thatinboth sets of optogenetic analyses (behavioural and neural),
qualitatively similar phenomena were observed with the base set of
parameters (data not shown), but a closer quantitative match was
observed with the additional scaling factor.

Each simulated run of an experiment with behavioural trials used a
distinct randomly generated series of Go and No-Go trial times whose
distribution in time matched the trial time distribution used in the
actual behavioural assay. Simulations of Buridan’s assay (Fig. 3 and
Extended DataFig.7) were run for 2 h of simulated time (720,000 steps
with d¢=0.015s). For visualization, simulations were run until a thresh-
old of consecutive misses were observed, at which point the simulation
was terminated; this threshold was set variably between 30-50 misses
forvisualization purposes. Simulations were initialized with ‘high thirst’
T, values and ‘high hunger’ H, values matching the initial values of
experiment. Simulated sessions were run autonomously according
to the above dynamics equations, parameters, initial conditions
(xo, To, Hy) and trial times. A simulated dataset was composed of a set of
simulated behavioural sessions matching the size of the corresponding
experimental dataset. For analyses comparing the distribution of sum-
mary statistics in simulation to the summary statistics of experiment
(Fig. 3), each dataset simulation was repeated 128 times with differ-
ent random number generator keys, such that all simulated sessions
contained aunique set of trial times and aunique session trajectory.In
the case of model predictions of neural data, simulations of sessions
were run for 1.5 h of simulated time (Fig. 4 and Extended Data Fig. 8)
or 2 h or simulated time (Extended Data Fig. 9). For these analyses of
model predictions, the number of simulated sessions was matched to
the number of experimental sessions.

Simulations of behaviour with unbalanced noise to gradient scaling
ratios. Toillustrate the how the scaling terms on the gradient and the
noise (g and n) alter behavioural stickiness (Extended Data Fig. 7m,n),
we ran model simulations with either a ‘too decoherent’ set of param-
eters (g=2.0, n=38.0 and s = 6.4874935) or a ‘too persistent’ set of
parameters (g=38.0,n=0.5and s = 6.4874935).

Simulations of optogenetic perturbation of behaviour. Simulations
of hungry-only behaviour with optogenetic thirst perturbations were
performed as described above, with the exception that theinitial value
of hunger H, was set to 0.5 and the initial value of thirst T, was set to

0.05 (Fig. 3i-kand Extended Data Fig. 7j-1). We note that the non-zero
value of thirst tends to stochastically drive persistent water choices
long after thirst perturbation as the systemis more likely to remainin
the water zone. Optogenetic thirst perturbations were modelled as a
transient square wave, increasing the current value of T(t)for the dura-
tion of the perturbation time (10 s, or 1,000 simulation steps) by a fixed
‘stimulation’ factor of 18 (modelling the detected thirst magnitude
from optogenetic stimulation of osmotic thirst neurons as 4x that of
a daily water restriction schedule; note however that hunger, thirst,
and optogenetic thirstinputare logarithmically related to the resulting
landscape gradient magnitude). The effect of the simulated thirst per-
turbation on the energy landscape along the line between the centre
ofthefood and water energy wells is shown in Fig. 3i. Optogenetic thirst
stimulation in the context of hungry mice was simulated for 25 stimu-
lation epochs across al-h-long simulated session with reward feedback
set to O for simplicity of analysis. Simulated sessions were repeated
to match the number of behavioural sessions in the corresponding
experimental dataset.

Simulations of optogenetic perturbation prior to behaviour. We
simulated optogenetic thirst perturbation experiments in hungry and
thirsty mice in the absence of behaviour (Fig. 4k,m,o0 and Extended
DataFig.10f). These simulations were performed as described above,
but with initial values of hunger H, set to 2.25 and thirst 7, set to 0.8
withadditional optogenetic thirstinputat18 with duration10 s. These
simulated optogenetic perturbations were repeated 25 times with the
same timing as actual experiments (optogenetic pulse onset every
1min). The parameters were simulated for 3 simulation runs yielding
75 simulated thirst stimulation epochs.

Simulations of the forced-transition model. To assess an alternative
model of choice dynamics (Extended Data Fig. 9) in which switches are
driven by an external forcing function (as opposed to autonomously
viathe balance between noise and gradient), we preserved the energy
landscape structure but modified the noise scale such that no switch-
es occurred spontaneously over the duration of the simulation. This
change has the effect of reducing our model to a multi-stable attractor
system in which transitions wholly depend on external inputs to the
system. We then incorporated a randomly occurring input force with
magnitude sufficient to push the system from one landscape well to
the other. We did not add noise to this force as it would reduce the
number of successful transitions below that of the experimental data.
Ingeneral, increasing the noise on the added force requiresincreasing
the frequency of external-force events, such that this alternative model
becomes less distinguishable from the diffusion landscape model we
seek to compareit to.

Phase portraits. Phase portraits (Extended Data Fig. 9) for all simulated
or experimental rewarded trials were generated using the current trial
value of position along the goal dimension (simulated or measuredin
experimental data by projection of baseline activity onto a goal dimen-
sionfit by ridge regression, with regularization alpha parameter=20)
and the change in position along the goal dimension from trial to trial
(whichwe define to be the velocity of activity along the goal dimension
overadtequaltothe average time between trials). Trials were assigned
to either stay or switch categories depending on whether the reward
choice wasthesame as the previous reward (stay) or different (switch).
Densities for stay and switch trials in the transition zone were quanti-
fied as described in the legend for Extended DataFig. 9 and normalized
to sum to 1. For model density quantifications, the simulated dataset
trial data were resampled 1,000 times such that the number of stay
and switch trials (across all simulated sessions) matched the fraction
in the experimental dataset. This resampling controls for systematic
biasinthe quantified densities (Extended DataFig. 9g,h) generated by
stochastic differences in dataset switch rate.



Statistics and reproducibility

Statistical parameters are described in legends. Box plots span lower
and upper quartiles; lines indicate median values; whiskers, range of
values within 1.5 times the interquartile range. Unless otherwise speci-
fied, confidence intervals were generated by bootstrapping.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The data from this study are available at https://doi.org/10.6084/
m9.figshare.24153348.

Code availability

Our Python code for working with datasets of multiple Neuropixels
probes, pre-processed as described in the Methods, is available at
https://github.com/erichamc/brainwide-npix and can be used to
load the deposited data. Code for the neural landscape diffusion
model and simulation is available at https://github.com/erichamc/
neural-landscape-diffusion.
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Extended DataFig.1|Quantification of behavior inBuridan’s assay.

a, Choiceselectivity [(water choices - food choices)/(food choices + water
choices)]in Buridan’s assay under different restriction conditions. b, Cumulative
food and water rewards collected for each restriction condition. Boxplotsina,
bshow dataranging from the lower quartile to the upper quartile, whiskers
extendtol.5-times theinter-quartile range. n=15mice, 22 sessions for food
and water restriction, n =3 mice, 3 sessions for both water restriction only and
food restriction only; n =2 mice, 2 sessions for norestrictions. ¢, Additional
example behavior sessions. Each row shows licking behavior (food licks, orange
dots; water licks, blue dots) during atrial. Grey region, sated non-responses.

d, Example calculation of behavioral thirst, behavioral hunger, and relative need
[Thirst - Hunger (norm.) = (thirst - hunger)/(thirst + hunger)] for abehavioral
session. Behavioral thirstand hunger are normalized by their median values
acrossallsessions. e, f, Food choices do not significantly induce water choices
onthetimescale of Buridan’s assay. e, Normalized cross-correlation plot
indicatinglag time between water choices and food choices. The normalized
cross correlationis notsignificantly different froma zero lag-time (1-sample
two-sided T-test, t=-1.45, P=0.16). A significant positive or negative lag time
wouldindicate thatfood choicesinduce water choices or water choicesinduce
food choices, respectively. Mean + 95% confidence interval, n =15 mice,
22sessions. f, Number of water rewards collected in agiven bout (y-axis) vs. the

number of food rewards collected in the previous bout (x-axis), both log-scaled.

Dots, rewards in bout; dashed line, linear fit. No significant (NS) relationship
was found between water rewardsinabout and the number of food rewards
inapreviousbout (R*=0.0063, P=0.185). g, h, Additional quantification of
optogenetic thirst stimulation in hungry animals during Buridan’s assay.

g, Probability of water choices before (-20 sto -10 s before stimulation onset),
during (0.5 sto10 s after stimulation onset), or after (30 s to 40 s after stimulation
onset) optogenetic stimulation, plotted for each of the three sessions.

h, Comparison of the water-choice probability during stimulation for epochs
following food choices or No-Go trials. No significant influence of previous
trial outcomeis found on the subsequent stimulation epoch water-choice
probability (two-sided paired t-test, t=0.37, P= 0.747). Blue and black markers
indicate datafrom one animal; the red marker indicates datafrom asecond
animal. Each session contains 30 optogenetic stimulation epochs.i-k, A freely
moving version of Buridan’s assay. i, Schematic. Hungry and thirsty mice are
placedinabehavioral chamberin whichincrementalsalted liquid food or water
rewards are dispensed from spouts upon pressing of the corresponding food
orwater lever on the opposite wall of the chamber. Rewards must be collected
fromagivenspoutbeforesubsequentlever presses dispense additional
rewards. Spouts and their corresponding reward levers are placed diagonally
across fromeachotherinthechamber, such that the mouse must pass through
the center of the chamber (equidistant from both food and water levers). There
areno choice-cuesinthis assay:the mice are free toinitiate or stop lever pressing
andreward collection at any time. Mice were trained in the arena until proficient
at collecting corresponding rewards following lever presses. j, Food (orange)
and water (blue) reward collection sequences for 6 mice across 10 sessions
(rows). k, Choice persistencelength (# repeated rewards of the same kind before
switching) distribution across the 10 sessions. Dashed red line and shaded
region, fit geometric distribution corresponding to asticky Markov process,
mean shape parameter P=0.097 + 95% confidence interval [0.086, 0.108].
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Extended DataFig.2|Unitanatomy and additional datain Neuropixels-
based extracellular electrophysiological recordings. a, All well-isolated
single unitlocations plotted onto nearby coronal sections of the Allen Institute
CCF32017 reference atlas. Units are color coded by the identity of the region
they were assigned to accordingto the Allen Atlas reference colormap
(Extended DataTable 1; see also panel e, right). b, Well-isolated unitlocations
color-coded by region assignment and plotted onto coronal (top) and horizontal
(bottom) atlas projections. ¢, Counts of well-isolated units (passing quality

mmm Somatosensory cortex

. Orbital frontal cortex

control thresholds) that were simultaneously recorded per session. Each
sessionis collected fromadifferent mouse. d, Depth of electrodes along the
insertion axis of an example probe mapped toregion (color bars on the left) and
aligned tolocalfield potential (LFP) dataina400-mstime window. e, Spiking
activity from asingle session over two 12-s time windows. Panel tops, licking
for food (orange) and water (blue). Colorbars, region assignments aligned to
individual neurons. Regions and region labels are color coded accordingto the
Allen Brain Atlas colormap.
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Extended DataFig. 3 | Further analyses of single neuron and neuronal
populationactivity. a, Unsupervised agglomerative clustering of task- or
satiety-modulated neuronal dynamics surrounding Go trials. Clusters are
manually color-coded approximating the predominantinformationin the
cluster: orange, food choice; blue, water choice; gray, satiety states; purple,
odor; green, food-related action activity; red, water-related action activity.
Clusters are shown separated by horizontal lines. Neurons are individually
trial-averaged by condition (Go-odor food choices, Go-odor water choices,
Go-odor non-responsive/sated) and Z-scored across condition. Vertical dashed
line, Go-odor onset.s.d., standard deviation. Leftmost column, brainregion
assignments for each neuron, color coded according to the Allen Brain Atlas
colormap (see Extended Data Table1). b, Single-cell cluster distribution by
brainregion, with clusters (color coded asina) plotted asanormalized fraction
of cellsinagivenregion (parenthesis: total cellnumbers per region). Regions
areordered by hierarchical clustering of the regional cluster distributions.

¢, Schematic of regression analysis for functional properties of individual
neuronsrelated to task or satiety. d, Quantification of mixed selectivity per
neuronwithsignificantinformation about upcoming choiceinbaseline
activity. The histogram shows the distribution of counts of additionally
significant regressors (describedin c) per cell. A cellis counted as significant
foragivenregressorifthefiring rate variance explained by the regressor is
greater thanthatofaper-cell circularly permuted null distribution, with
threshold P=0.05; per-cell P-values are not adjusted for multiple comparisons.
e, Co-occurrence of regressors for all task- or satiety-modulated cells is shown
asthe pairwise correlation coefficient of variance explained by each regressor,
sorted for visualization by unsupervised hierarchical clustering. The three
clusters group regressors for cross-session satiety (regressors 4, 2,3), Govs.
No-Gotrial type (regressors 5, 8), and reward choice (regressors 7,1, 6).

f-j, Per-cell visualization of pairwise association between goal-information
(xaxes) and other regressors (y axes). Cells are color-coded according to their
assignedbrainregion, following the Allen Brain Atlas colormap. Information
atbaseline about upcoming choice tended to co-occur withall regressors
except Govs.No-Goregressors. Dataina-jpooled fromn=7mice, 7 sessions.
k-n, Video decoding analyses. Decoding analysis from video motion data of
upcoming choice. Videos of the animal’s face or body were collected at 100 Hz
and the principal components (PCs) of the video motion energy were used for
prediction of behavioral choice (Methods). k, Predictiveness (AUC) of choice
by video data of the body or face (x-axis) during the1s pre-odor (blue bars) or
theresponse period (1-2 s post-odor onset, green bars). Mean + 95% confidence
interval. Dashed lines, session permuted null distribution. Test trials are taken
fromtrials flanking behavioral switches (4 trials before the penultimate trial
priorto eachswitch, and 4 trials following the 1** trial after a switch) to remove
any spurious contribution of slow timescale motion covariates with choice.

1, Facevideo predictiveness (AUC, y-axis) of upcoming choice during the1s
pre-odor epoch, with variable numbers of motion principal components (PCs)
used for prediction. Mean +95% confidence interval.k, l,n=7 mice, 7 sessions.
m, Visualization of the most predictive PC for food and water choices,
superimposed onthe average image of the animal. Pixels with high positive
weightsinthe PCare colored red and pixels with high negative weights are

colored blue. The pattern of PC weights does not indicate any obvious
distinguishing motion feature of the animal, suggesting that the predictiveness
ofthe video motion comes from more subtle “tells” of the animal’s facial motion.
n, Predictiveness (AUC, y-axis) of the face video motion PCs (gray) or neural
data(green) asafunction of time, with decoders trained on each10-ms time bin
acrossatrial. Mean +95% confidence interval (n =7 mice, 7 sessions). Dashed
horizontallines, circular permutation null distributions for binsinthels
pre-odor period. Vertical dashed line, odor onset. Insummary, we can predict
behavioral choice from pre-odor videos of the animal (indeed, we expect that
neuralactivity should be reflected by animal behavior). However, predictiveness
does notcome from one or afew dominant motions, as the decoder requires
dozens of PCs at least. Moreover, pre-odor prediction fromvideos of the animal’s
poseisnotasgood as prediction from neural population activity. o, Analysis

of redundancy of information for upcoming choice across simultaneously
recorded cells. Alinear decoderis trained to predict upcoming choice from
thelsofsimultaneously recorded population neural activity preceding food
orwater choices. The size of the population used for decodingis randomly
subsampled to examine the effect on decoder performance of increasing
numbers of simultaneously recorded cells, agnostic to brainregion. Decoding
performance (receiver operator characteristic area under the curve, AUC) is
assessed for test trials flanking behavioral transitions, such that test trials
withdifferent classesoccur close to each otherintime and the contribution

of spurious long-timescale correlations are largely removed. Mean + 95%
confidenceinterval (n =7 mice, 7 sessions). Dashed lines, circularly permuted
nulldistribution for each decoder. p, Percentage simultaneously recorded
population variance explained by coding dimensions across task period.
Baseline period, 1s pre-odor activity preceding food or water choices (hit trials).
Choiceperiod,1sto2spost-odor during hit trials. Response period,1sto2s
post-odor for all trials (including No-Go trials). Coding dimensions are
calculated as the variance-normalized average firing rate difference between
periodsintrials correspondingtoagivenregressor (Methods). Goal regressor,
1spre-odor period preceding water vs. food choices. Choice regressor,1sto2s
post-odor for water vs. food choices. Response regressor, 1sto 2 s post-odor for
Govs.No-Go trials. Mean + 95% confidence interval across recording sessions.
Variance explained by each coding dimensionis consistent across mice/sessions
(n=7)and largely distinct across regressors and their corresponding task
periods. The amount of baseline period population variance explained by the
goalregressoris comparabletotheresponse period variance explained by the
choice andresponseregressors.q, r, Cells significant for goal information have
significantly higher noise covariance (covariance between firing ratesin the
1spre-odor, withtheaverage activity before food or water trials removed from
the trial-by-trial firing rates, and evaluated at a10-ms temporal resolution) than
non-goalsignificant cells, suggesting that goal cells may shareacommon
source of fluctuations or tend to influence each other’s activity more frequently
than non-goal cells. Comparison for cells within the same region, q, and across
regions, r.**** two-sided t-test, P<1x107°(q, t=11.52, P=1.11x 107%°, n = 7 mice,
21,496 pairwise correlations; r,t =52.08,P=0.0,n =7 mice, 2,720,269 pairwise
correlations). Y-axisis truncated. Dashed lines, means.
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Extended DataFig. 4 |Firing patterns of example single neurons whose (blueline) areshown at the bottom. Vertical dashed line, odor onset. Each unit
baselineactivity correlates with upcomingbehavioral choice. Examplesingle  islabeled by theregionacronym (Extended Data Table1) towhich it wasassigned.
unitspike rasters and peristimulus spike timing histograms (PSTHs). Spiking is Units are sorted alphabetically according toregion acronymto reflect the lack
plotted over the first 50 food-choice trials (orange, top) and the first 50 water- of apparent spatial organization for units with specific properties.

choicetrials (blue, middle). PSTHs for food trials (orange line) and water trials
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Extended DataFig. 5| Regional distribution of regressor information.
a, Average variance explained per-cell by upcoming choice at baseline
(1spre-odor average) for high-level brain regions. CTXsp, cortical subplate;
HB, hindbrain; OLF, olfactory areas; STR, striatum; TH, thalamus; HPF,
hippocampal formation; MB, midbrain; HY, hypothalamus. b, Variance
explained per-cell by upcoming choice at baseline; each dot represents the
variance explained forasinglecellinagivenregion. c-j, Average variance
explained per-cell for regressors described in Extended DataFig. 3c. For all

Firing rate variance explained Firing rate variance explained

panels, bars are averages across neurons withinagivenregion; black lines give
the 95% distribution of information per cellinaregion. Numbersin parentheses
areunit counts per region. Color codes areaccording to the Allen Institute
Mouse Brain Atlas colormap. Dashed lines indicate the circular permutation
nulldistribution foragivenregressor andregion. Regions are ordered by variance
explained. Note that Fig. 2e shows asubset (only regions with average variance
explainedsignificantly greater than the null) of datashowninpanel c here.
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Extended DataFig. 6 | Conceptual similarities between molecular Langevin
dynamics and intermixed neural networks. a, The Langevin equation
describes the dynamics of adiffusing particle in water by transforming the
unobserved, deterministic, Newtonian dynamics of water molecule collisions
(greenarrows) with the particle (purple) into a noise contributionto the
particle’s position (bottom). This results inastochastic description of the
Brownian motion of the particle (purple arrow). A key feature of this formalism
inthe study of complex phenomenais the separation of unobserved fast-
timescale dynamics (for example, the motion of water molecules) from the
observed slow-timescale dynamics of the much larger particle. b, Conceptual
application of the Langevin formalism to intermixed neural networks with

fast and slow dynamics. Neuronsinvolvedin adistributed network with slow-
timescale (for example, need-related) dynamics (purple dots) are embedded
viamixed functional selectivity into additional networks of neurons (black,
red, green dots) with ongoing, unobserved fast-timescale dynamics (gray, pink,
lightgreen cycles). By analogy to the Langevin picture of molecular dynamics,
theactivities of networks with disparate fast time-scale dynamics collide
withinindividual mixed-selective need-related neurons to produce a stochastic
noise influence on the slow-timescale dynamics of the need-related network

of neurons (bottom), yielding observable diffusive goal dynamics. ¢, Equation
of motion for the forward stimulation of the resolution of needs, following
Langevin dynamics. x(t), position of neural activity across the needs subspace
attimet.U(x), theenergy landscape function. The new positionis the current

thirst hunger other needs
magnitude magnitude well center
Landscape
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scaled Gaussian wells
Wat Gaussian scale

sets well widths
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magnitude
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magnitude ~ foraging
weight

water reward current position is in water well

update lag
Tt+l)=T@k) - {

Model thirst/hunger
update equations:

Ty if Go-odor and @, (z) < ®¢(z) and @y (x) < Po(z),
0  otherwise

food reward current position is in food well

H(t+1) = H(t) - ry if Go—o-dor and ®¢(z) < @, (z) and ®y(z) < Bo(2z),
0 otherwise

position plus asmall differential contribution by the landscape gradient
(scaled by the gradient scale g) and Gaussian white noise (scaled by the noise
scale n).dt, the discretized time step. d, Graphical depiction ofhowthenand g
terms contribute to the dynamics. Left, high noise scale nrelative to gradient
scale g resultsin noise-dominated dynamics. Middle, balanced scalesand
dynamics. Right, low noise scale nrelative to gradient scale g resultsin
dynamics dominated by the landscape shape. e, Equation for the shape of the
time-varyingneedslandscapeU(x, t). Thelandscape consists of alog-sum of
scaled Gaussian wells. Gaussian wells, ®(x), are defined as the negative of the
multivariate probability density function. For simplicity, well centers Hyplp
and p corresponding to the wells for water, food, and other needs aresetonan
equilateral triangle, and the Gaussian scale parameter controlling the Gaussian
widths are settoacommon parameter o. The water and food well depths are
scaled by the time-varying thirst magnitude 7 (¢)and hunger magnitude H(t),
respectively, aswell as by a “foraging” scale factor sthat linearly relates the
experimental normalized need measurements to the model need magnitude
values.f,U (x, t)changes across time through changesin thirst and hunger
magnitudes. Thirstand hunger magnitudes are decremented after a fixed delay
by factorsr,and ryuponrespective water or food reward collection; reward
choices are determined upon Go-cue at time ¢’ by the location x(¢) within a fixed
segmentation of the need spaceinto food, water, or other zones. See Methods
for fullimplementation details.
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Extended DataFig.7|Theoretical and simulated behavioral statistics
generated by the landscape diffusion model. a, Additional examples of
behavioral simulations from the landscape diffusion model with parameters
used for the analyses of Fig. 3. Simulated sessions visualized as licking behavior
(orange dots, food licks; blue dots, water licks) over the course of asession

until satiation (grey region) from top (session start) to bottom (session end).
Lick timingand number are drawn from a uniform distribution for visualization
purposes. Vertical dashed line, odor onset. b-e, Binned probability of choosing
food (b, c¢) or water (d, e),independent of previous reward choice, as afunction
of Thirstand Hunger. b, d, Theoretical predictions (Boltzmann equation)
derived from the model using parametersfit to trial data (Methods). c, e, Binned
experimental point probability estimates. f, Theoretical prediction of probability
of repeating previous reward choice (water-to-water, blue; food-to-food,
orange) as afunction of normalized Thirst - Hunger. Solid dark dots and lines,
binned point estimates of the self-transition probability for normalized Thirst
-Hunger values, mean = 95% confidence interval, based on experimental data
(n=15mice, 22 sessions). Light lines, model-derived theoretical prediction of
self-transition probabilities, using parametersfit to trial data (Methods). The
derived equationsinb, d, and fare used in the forward model parameter fitting
procedure to maximize the probability of all observed trial outcomes (Methods).
g, Probability of choosing food on rewarded trials, independent of previous
reward choice, asafunction of observedrelative need (normalized Thirst -
Hunger; Methods), for experimental data (n =15 mice, 22 sessions) and simulation
(128 simulations of 22-session datasets). Solid blue dots and vertical lines, data
mean +95% confidenceinterval, superimposed on open gray dots, means of
simulated sessions. h, i, Quantitative agreement between simulated session
statistics and experimental data. Summary statistics quantified from repeatedly
performing stochastic simulations (128 times) of a22-session dataset forma
distribution of summary statistic values (gray bars), against which two-sided
tail statistics can be calculated using the experimentally-observed summary
statistic values (red lines). h, Distribution of slope magnitudes given by linear
fits between the probability of reward choice and normalized relative needs.
Redline, observed slope magnitude given by linear fitbetween experimental
choice probability and normalized relative need (slope magnitude averaged

betweenfood and water choice probability fits). The experimentally-observed
slope magnitudeis not significantly different from the slopes computed from
simulated data (gray bars), P= 0.664.1i, Distribution of slope magnitudes given
by linear fitsbetween the probability of repeating the previous choice on the
subsequent trial (self-transition probabilities) and the normalized relative
need. Self-transition probabilities as a function of normalized relative need are
linearized over the range [-1, O] for food-to-food and [0, 1] for water-to-water,
where there are greater numbers of experimental observations. Slope
magnitudes for food-to-food and water-to-water are averaged together. The
experimentally observed self-transition probability slope magnitude (red line)
isnotsignificantly different from those observedin repeated simulation

(gray bars), tail statistic P= 0.734. j-1, Quantitative agreement between the
simulated optogenetic experiment and the experimental dataset, focusing on
the decay of water choice probability following the end of thirst stimulationin
hungry animals. This statistic is not sensitive to the magnitude of thirstadded
during the stimulation epochin simulations (since the landscape isassumed to
havereturnedtoits previous shape following the end of thirst stimulation) and
therefore depends strongly on the diffusion dynamics. j, Probability density of
water choices following the termination of optogenetic stimulation. Solid blue
line, water choice probability in hungry animals performing Buridan’s assay
based on experimental data. Solid black line, median water choice probability
acrossrepeated simulated optogenetic stimulation sessions with high hunger
and low thirst. Exponential decay functions (ae™™+c)fitto the experimental
data, red dashedline, or to each simulation of the experimental dataset,
lightgray lines. Each dataset with 3 sessions and 75 stimulation epochs was
simulated 128times. k, I, Distribution of exponential decay function parameters
a(scale, k), and b (decay, I), fit to the simulated water choice probability data
(gray bars) with the parameter values from experimental fits superimposedin
red.Scale and decay parameters two-sided fit from experimental dataare not
significantly different from those fit from simulation, tail statistics P= 0.492
and P=0.602, respectively.m, n, Additional examples of behavioral simulations
fromthe model as above, except theratio of the scale parameters on noise and
gradientinthe model has been skewed too high (m) or too low (n), resultingin
disorganized behavior (m) or overly persistent behavior (n).
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Extended DataFig. 8| Additional experimental examples on goal activity
and decodinganalyses. a, Activity along the goal dimension in simultaneously
recorded neural activity for three additional sessions. Measurements (baseline
populationactivities projected onto the goal dimension) are shown per-trial
for 0-1s prior to water choices (blue dots), food choices (orange dots), and
No-Go trials (black dots). Projection magnitude showninarbitrary units (A.U.).
Maroonline, projection smoothed by aButterworth filter for visualization.
Left, session start; right, session end. Top, corresponding cumulative licks per
trial for food (orange) and water (blue). b, Predictiveness for upcoming choice
from population neuronal activity in experiments, fit on a10-msresolution.
Mean, solidline; +s.e.m., gray area.n =7 mice, 7 sessions. ¢, Model prediction
for baseline persistence of population upcoming-choice predictiveness

(AUC, receiver operator characteristic areaunder the curve) on afast timescale
(10 msbins, Methods). n =7 simulated sessions.d, Decoding performance
(AUC, y-axis) of current reward from average population firing rates1-2s
post-odor onset surrounding hit trials with behavioral switches (x-axis, trial
positionrelative to switch-trial labeled 0). AUC values for all trials for each trial

positionrelative to switches are averaged within session.n =7 mice, 7 sessions.
Boxplots spanlower and upper quartiles of distributions; linesindicate median
values; whiskers indicate the range of values within1.5 times the interquartile
range. Firing rates following reward choice remain highly predictive of recent
reward identity surrounding behavioral switches. This contrasts with Fig. 4e, in
which decoding performance of the upcoming choice from baseline activity is
diminishedintrialsboth before, during, and following behavioral switches.

e, Schematicillustrating the transformation of population goal activityintoa
probability of upcoming switch. Top, schematized populationactivity along
the goal dimension (blackline) near aswitch (dashed vertical line). As observed
inFig.4e,activity along the goal dimensionloses discriminability (AUC towards
0.5) for reward choices near switches. The magnitude of the distance of the
goal-activity fromthe center line (purple arrows) is linearly rescaled intoa
probability of upcoming switch (bottom). Thus, upcoming switches become
more predictable than chance (Fig. 4i) by transforming the degree of
indeterminacy of the current population activity (regarding whether the
upcoming choice willbe food or water) into a probability that a switch will occur.
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Extended DataFig.9|Comparisonbetween forced and noise-driven
transitionmodels. Here, we consider whether state transitions could be
explained by analternative landscape model in which transitions are forced by
externalinput (e.g., fromanunobserved neuronal population with distinct
dynamics), rather thandriven by internally noisy dynamics. Near the decision
boundary, trajectories of amodel with forced transitions are different from
trajectories ofamodel with noise-driven transitions; non-transition trajectories
thatapproachtheboundary should only occurin the noise-driven model but
notintheforced-transition model. We quantified these trajectories in simulations
ofeachmodel andinthe experimental neural data. a, b, Schematics contrasting
thebehavior of goal state trajectories near the boundary of food and water
zones, under alandscape model with (a) externally-forced transitions or

(b) noise-driven transitions. Green lines, trajectories resulting inaswitch
between food and water zones; purplelines, trajectories that stay in their initial
zone. Greyregion, zone adjacent to the boundary. ¢, Schematicillustrating the
analysis approach to differentiate models. d-f, Phase portraits of simulated or
experimental neural data. The projection onto the goal dimension (position) is
plotted on the y-axis and the trial-to-trial difference of the projection onto the
goaldimensionis plotted on the x-axis. The trial-by-trial difference in position
alongthe goal dimension can be considered as the rate of change of the position
acrosstheaverage interval of time between trials, which we denote the velocity.
Datais plotted as ajoint density (2D histogram) of position and velocity values
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foralltrials. Purple marks, density of trials with the same reward choice as the
previous (stay); green marks, density of trials with areward choice switch. Blue
area, kernel density estimate (KDE) for transitions to water; orange area, KDE
for transitions to food. These areas highlight the phase space in which transition
dynamicsoccur.d, Simulation results fromthe forced-transition landscape
model. Force magnitude was set to be minimally sufficient to cross the decision
boundaryinthe average time between two trials, resulting ina state transition.
Noise magnitude was set to be insufficient to generate spontaneous transitions.
e, Simulation results from the noise-drivenlandscape model. d, e, 21 simulation
runs for each model. f, Phase portrait generated from experimental neural data
acrossallrecording sessions (n=7).g-i, Normalized densities of stay (purple)
and switch (green) trials were quantified in the transition zones (gray squares
ind-f) through which switch trajectories pass. These zones were defined as the
boundaryregionsinthe transition trial phase space, lying between the average
stay-trial food and water densities (at[-0.5, +0.5] with velocity [-0.5, -1.5] for
transitions tofood; and at[-0.5, +0.5] with velocity [+0.5, +1.5] for transitions
towater). Normalized density quantificationin these regions for the forced-
transition model (g), noise-driven transition model (h) and experimental data
(i, n=7mice, 7 sessions). Mean density in the zone + 95% confidence interval. In
bothanalyses, experimental data (f, i) are consistent with simulations based on
the noise-driven transition model (e, h) but not consistent with simulations
based onthe forced transition model (d, g).
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Extended DataFig.10|Additional analyses of optogenetic perturbations
duringrecording. a, b, Modulation of brain regions by optogenetic stimulation
of SFO Rxfpl+osmotic thirst neurons. Neurons were defined as significant if
their meanfiring rates during optogenetic stimulation were different from
their mean firing rates prior to stimulation, two-sided t-test with significance
threshold P<0.05,n =20 stimulationepochs per cell.a, Fraction of cells within
eachregionthat were significantly modulated by thirst stimulation. Mean + 95%
confidenceinterval. Region labels are color coded by the Allen Brain Atlas
colormap. b, Modulation of individual neurons (dots) in each region, neurons
color coded by significance of modulation across multiple stimulation epochs.
Y-axis, changeinfiring rates (z-scored across the entire recording session).c, In
acomplementary analysis of the thirst perturbation prior to Buridan’s assay,
showninFig.4l-o0, athirst-stimaxis (difference between average activity during
and before optogenetic stimulation) is constructed and neural activity from
the subsequentbehavior periodis projected ontoitindande.d, Projection
onto the thirst-stim axis of baseline population activity preceding water choices,
for early rewards (first third), middle rewards (middle third), or late rewards (last
third) inasession.***, one-sided t-test; early versus mid, t=21.47,P=1.21x 1075¢;
early versuslate, t=11.82,P=3.96 x1072*; n= 674 early trials, 511 mid trials, 103
late trials. Mean + 95% confidence intervals. e, Projection onto the thirst stim
axis of baseline population activity preceding food trials (orange) or water
trials (blue).**, one-sided t-test, t=-2.33, P=0.01; mean + 95% confidence

A Projection (AU) A Projection (AU)

intervals.Insummary (c-e), neural activity characteristic of thirst stimulation
correlates with behavioral satiety (d) and increases more before water choices
thanbefore food choices (e). f, g, Analysis of the variability in neural responses
along the goal dimension upon simulated (f) or experimental (g) optogenetic
stimulation epochs, related to Fig. 4n,0. Change inactivity along the goal
dimensionwas averaged in the last two seconds of each stimulationepoch
acrossallsimulated or experimental sessions. The distribution of these changes
inactivity were visualized as normalized histograms. f, The statefulness and
indirectinfluence of needs inthe model predict abimodal distribution (dashed
lines, two Gaussians fit by amixture model) of activity changes along the goal
dimension, with many simulated stimulation epochs not resulting in significant
change along the goal dimension (left Gaussian).g, Inline with the model
predictions, activity changes along the goal dimension across all experimental
epochs (n=61) also followed abimodal distribution (dashed lines, Gaussians fit
by mixture model to the experimental data) with many optogenetic stimulation
epochsyielding no change in goal dimension activity. Arrowheads indicate the
mean locations of the Gaussians fit to the simulated data. For both simulated
and experimental data, model comparison (Bayes’ Information Criteria, BIC)
favored abimodal distribution over aunimodal distribution (unimodal Gaussian
fittosimulated data, BIC =47.966; bimodal Gaussian mixture fit to simulated
data, BIC =13.223; unimodal Gaussian fit to experimental data, BIC = 48.374;
bimodal Gaussian fit to experimental data, BIC = 45.042).
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Extended DataFig.11|Goal-related activity at baseline influences regional
choiceactivity after Go-odor onset. We found that persistent goal-related
informationis widely distributed across the brainand precedes external cues
of reward availability. However, after odor onset, distinct population activity
patternsarise that further differentiate Go vs. No-Go odors and choices of food
vs.water (Extended Data Fig. 3). Here, we explore the relationship between
distributed goal-related neural activity and regional odor-evoked activity
dynamics by 1) examiningactivity that distinguishes food vs. water choices
after Go-odor onset (we term hereafter as “current choice activity”) across
different brainregions and2) interrogating whether current choice activity
mightbeinfluenced by the baseline goal-related activity prior to odor onset.

a, Performance of baseline-subtracted regional population activity for predicting
choice after Go-odor onset, evaluated per time-bin (AUC). Brainregions are
sorted accordingto the first time-binin which AUC reached half-max (0.75).
Top, averagelick rate across all trials and sessions post-odor onset. Mean, solid
line; £ 95% confidence interval, shaded area. Region labels are color-coded
accordingtothe Allen Brain Atlas regional taxonomy and colormap (Extended
Data Table1). Note that we used baseline-subtracted regional population
activity to predict choice after Go-odor onsetin order toremove theinfluence
caused by the fact that baseline populationactivities in different regions
containdifferentamount of information about upcoming choice (Fig. 2e).
Theearliest regions gained increased predictiveness over baseline atleast

100 msbefore the average onset of licking; these regions could play a functional
roleinfinalizing behavioral choices or ininitiating choice-specific motor plans.
Some of the earliest regions, including the orbital frontal cortex (OFC) and
caudoputamen (CP), have been previously described as playing roles in
value-guided decision making”"7>. Cellnumbers are in parentheses. Regions
with fewer than15 cells were excluded from the analysis. b, Because individual
cellshave mixed selectivity between goal-, odor-, and action-related factors
(Extended DataFig. 3), we hypothesized that population variation along the
goal axisatbaseline (pre-odor) could predict variationin baseline-subtracted
current choiceactivity dynamics. We therefore analyzed within choice variation
inthe projection of baseline-subtracted population neural activityontoa
dimension that separates food from water choicesin the response period

(1-2 s post-odor), asafunction of the magnitude of the population projection
alongthe goalaxis (1s pre-odor epoch, predictive of upcoming choice).
Projections for water choices (blue lines) and food choices (orange lines) are
binned into percentile subsets based on per-trial baseline variation along the

goal dimension. Binmean, solid line; £ 95% confidence interval, shaded area.
Vertical dashed line, odor onset. ¢, Per-reward-trial relationship between
condition mean-subtracted, baseline goal-related activity and baseline-
subtracted current choice activity magnitudes. Baseline-subtracted activity
projected along the current choice dimensionissummed from100 ms -900 ms
after odor onset (y-axis). Dots, individual trials. Dashed red line, linear fit,
indicatingasignificant correlation between fluctuations along the goal
dimension atbaseline and subsequent choice dynamics.d, e, Unlike the current
choice activity, within-choice variationin baseline goal activity had no effect
onthe timing or intensity of licking towards food or water. This suggests that,
while variationin the baseline goal-activity within choices may alter odor-evoked
neuraldynamicsinthebrain, the behavior that ultimately resultsis categorical
and has consistent timing regardless of variation in population goal activity.
n=7mice,7sessions (b-e).Since different brain regions have different upcoming
and current choice activity time-courses and dynamics (a), we next analyzed
whether individual regions might exhibit distinct patterns of modulation by
baseline goal activity. f, Projections of baseline-subtracted neural activity onto
the current choice dimension following odor onset (vertical dashed line) for 8
selectedregions, analyzed and visualized asin (b). Top row, example regions
whosebaseline-subtracted current choiceactivity has faster onset dynamics
foreither food or water choices with high baseline goal activity magnitude vs.
trials with low baseline goal activity magnitude. Notably, these regions had
some of the earliest onset of choice predictiveness beyond baseline (a). Bottom
row, example regions whose baseline-subtracted current choice activity is
modulated by baseline goal activity latein the response period. Regions with
fewer than10 recorded cells per session were excluded from the analysis. The
different time courses of modulation of regional current choice activities
suggest that baseline goal-related information may influence distinct brain
functionsrelated to choice—for instance, combining goal state with information
about reward availability to finalize response selection (occurring rapidly after
odor onset), oradding goal context to execution and reward-related activities
(occurringduring licking and reward collection). g, In summary, ongoing
baseline goal-related population activity (top) may function as aninitial
condition that shapes odor-evoked dynamics (bottom left), coordinating
regional dynamics such thatappropriate behaviorsemerge (bottomright)
despite conflicting needs. For all regional analyses (a, f), see Extended Data
Table1for number of animals and sessions used.



Extended Data Table 1| Allen Brain Atlas colors/abbreviations of brain regions and cell count for Neuropixels recordings

Acronym Full name Unit count Session count
Anterior amygdalar area 29 1
Nucleus accumbens 338 3
AHN Anterior hypothalamic nucleus 2 1
Ald6a Agranular insular area, dorsal part, layer 6a 74 2
AlVS Agranular insular area, ventral part, layer 5 29 1
Alv6a Agranular insular area, ventral part, layer 6a 1 1
AON Anterior olfactory nucleus 126 1
Anterior pretectal nucleus 85 2
Field CA1 86 1
Field CA3 2 1
Caudoputamen 1361 7
Dentate gyrus, molecular layer 20 2]
DG-sg Dentate gyrus, granule cell layer 1 1
Endopiriform nucleus, dorsal part 31 1
FF Fields of Forel 45 1
FRP1 Frontal pole, layer 1 4 1
Fundus of striatum Kl 4
HY Hypothalamus 109 6
LHA Lateral hypothalamic area 175 5
Lateral posterior nucleus of the thalamus 41 1
MB Midbrain 17 7
MOs1 Secondary motor area, layer 1 3 1
MOs2/3 Secondary motor area, layer 2/3 17 1
MOs5 Secondary motor area, layer 5 10 2
MOs6a Secondary motor area, layer 6a 34 2
Midbrain reticular nucleus 364 7
Olfactory areas 238 5
ORBI1 Orbital area, lateral part, layer 1 55 2
ORBI2/3 Orbital area, lateral part, layer 2/3 68 2,
ORBI5 Orbital area, lateral part, layer 5 271 3
ORBI6a Orbital area, lateral part, layer 6a 48 2
PAL Pallidum 7 1
Posterior complex of the thalamus 128 1
POST Postsubiculum 39 3
Pedunculopontine nucleus 29 1
Pontine reticular nucleus 59 1
PVHd Paraventricular hypothalamic nucleus, descending division 22 2
PeF Perifornical nucleus 69 5
ProS Prosubiculum 24 1
Red nucleus 125 4
Reticular nucleus of the thalamus 18 3
Superior colliculus, motor related, deep gray layer 8 1
Superior colliculus, motor related, intermediate gray layer 80 4
Superior colliculus, motor related, intermediate white layer 167 6
Superior colliculus, superficial gray layer 3 1
Substantia innominata 59 3
Substantia nigra, compact part 7 2
Subparafascicular nucleus, parvicellular part 18 1
SSp-m4 Primary somatosensory area, mouth, layer 4 2 1
SSp-m5 Primary somatosensory area, mouth, layer 5 8 4
SSp-m6a Primary somatosensory area, mouth, layer 6a 153 6
SSp-méb Primary somatosensory area, mouth, layer 6b 16 6
Striatum 66 6
TH Thalamus 21 2
TU Tuberal nucleus 22 1
Ventral anterior-lateral complex of the thalamus 160 5
Ventral medial nucleus of the thalamus 198 5
VMH Ventromedial hypothalamic nucleus 15 1
Ventral posterolateral nucleus of the thalamus 2 1
1 Ventral posteromedial nucleus of the thalamus 129 1
Ventral tegmental area 39 4
Zl Zona incerta 115 5
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Laboratory animals C57BL/6J mice aged 6-24 weeks; C57BL/6J mice aged 6-24 weeks; Rxfpl em1(cre)Ngai (Rxfpl-2A-Cre) mice aged 6-24 weeks. Animals
were maintained on a reverse light-dark cycle and standard housing conditions (18-232C, 40-60% humidity).

Wild animals The study did not involve wild animals.
Reporting on sex Only female mice were used in this study.
Field-collected samples  The study did not involve samples collected in the field.

Ethics oversight All procedures involving mice followed the animal care guidelines approved by Stanford University’s Administrative Panel on
Laboratory Animal Care.
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