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Abstract

Drugs are administered at a dosing schedule set by their therapeutic index and termination of
action is achieved by clearance and metabolism of the drug (hours to days for small molecules,
weeks to months for biologics). In some cases, it is important to achieve a fast reversal of the
drug’s action to overcome dangerous side effects or in response to unforeseen events. A case
in point is for anticoagulant drugs. Here we report a general strategy to achieve on-demand
reversibility by leveraging supramolecular assembly of drug fragments and showcase the
approach with thrombin-inhibiting anticoagulants. In our supramolecular drug design, the
action of the drug is reinforced by a dynamic hybridisation of peptide nucleic acids (PNAs)
between drug fragments. We show that this design enables the generation of very potent
bivalent direct thrombin inhibitors (K; 74 pM) and this inhibition can be reversed through the
use of a PNA antidote. We demonstrate that these supramolecular inhibitors exhibit potent
anticoagulant activity in vitro and in vivo and that this activity can also be reversed on demand.
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Anticoagulants are critically important therapies for the prevention or reversal of thrombotic
events in patients and achieve their effect by reducing fibrin deposition by inhibiting fibrinogen
proteolysis and/or platelet activation.' One of the key targets of anticoagulant therapy is the
protease thrombin (Factor Ila/Flla), however, blockade of thrombin with direct (e.g., hirudin
and argatroban) or indirect (heparins and warfarin) thrombin inhibitor therapy is
contraindicated for several thrombotic disorders, e.g. stroke, due to the high risk of bleeding
side effects that can be lethal. Indeed, many anticoagulants (particularly heparin and warfarin)?
require close clinical monitoring to prevent life threatening bleeding side effects. Despite this, it
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has been estimated that anticoagulant-related bleeding is responsible for 15% of all emergency
hospital visits.> Life threatening bleeding is the most concerning complication of anticoagulant
therapy and strategies for the reversal of anticoagulation are therefore essential.’ A common
strategy to reverse the effects of anticoagulants is the administration of non-specific reversal
agents that involves the infusion of coagulation factors designed to overwhelm the effects of
circulating anticoagulants.5 More recently monoclonal antibodies and recombinant FXa have
been developed, which bind to a specific small molecule anticoagulant with high affinity
(idarucizumab for dabigatran and andexanet alfa for apixaban, edoxaban, and rivaroxaban),
thus reversing the inhibition of factor Xa (FXa) or thrombin (FIIa).G’7 Whilst both of these
approaches are effective, there are limitations for their use and are associated with high cost.

Herein, we present a novel means to generate potent thrombin-inhibiting anticoagulants with
on-demand reversibility through programmed supramolecular molecular assembly.?
Supramolecular entities rely on labile non-covalent interactions, and by their very nature are
dynamic and reversible in response to specific environmental cues or stimuli by shifting
equilibria in the system.’ These features of supramolecular systems have been elegantly
applied to molecular recognition, catalysis, molecular motors, stimuli responsive polymers and
drug discovery and delivery, but to our knowledge has not been realised for applications in
medicinal chemistry and pharmacology (refs'®?). The strategy presented here is based on the
ability to link two fragments by a reversible supramolecular interaction that are able to interact
cooperatively with the target at two distinct sites (Fig. 1), with the formation of the active
inhibitor instructed by the target. Disruption of the supramolecular interaction linking the two
fragments results in a loss of cooperativity yielding a loss of inhibitory activity. Our design of
supramolecular thrombin inhibitors made use of binary interactions directed to the active site
of thrombin and to exosite Il (the so-called heparin binding site), joined together by hybridized
peptide nucleic acid (PNA) molecules.

The designed supramolecular assembly was inspired by thrombin inhibitors produced naturally
by blood feeding (hematophagous) organisms such as leeches, ticks, mosquitoes and flies that
secrete small protein thrombin inhibitors in their salivary glands to facilitate acquisition and
digestion of a bloodmeal. These salivary proteins exhibit potent thrombin inhibition by
interacting with two distinct binding sites on thrombin but this activity cannot be easily
reversed due to their extremely high affinity for thrombin. At the outset we focused on
hyalomin 1 (Hyal), a 59-residue sulfated protein secreted by the tick Hyalomma marginatum
rufipes that shares sequence similarity to other tick anticoagulants proteins, but is the most
potent thrombin inhibitor in the family (K; = 5.4 pM). Analysis of the X-ray crystal structures of
several of these proteins complexed with thrombin (e.g., tick-derived madanin-1 (PDB 5L6N)*
and TTI from the tsetse fly (PDB 6TKG))'® together with the thrombin inhibitory data suggested
that the potent inhibition exhibited by these molecules was derived from interactions at two
loci of thrombin, the active site and exosite 1l, separated by 20-30 A (Extended Data, Fig. 1b).
We reasoned that we could leverage an established ketobenzothiazole-containing mechanism-
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based pan-serine protease inhibitor for active site targeting that forms reversible covalent
(hemiketal) intermediates with serine proteases, but is not selective for thrombin."” For the
peptide targeting exosite I, we investigated sequences from several salivary proteins from
hematophagous organisms that possess sulfotyrosine residues as a common post-translational
modification (PTM) that has been shown to enhance activity (Extended Data, Fig. 1c).">'**®
Considering the reported lability of the tyrosine sulfate PTM, we opted for a synthetic analogue
of the natural modification, namely (sulfono(difluoro)methyl-phenylalanine: F,Smp))."® For the
link between the two binding motifs in our supramolecular anticoagulant, we chose to employ
the synthetic DNA mimetic PNA,*® based on the tunability of the hybridisation dynamics of this
molecular class to provide anticoagulant reversibility, its metabolic stability, and the
compatibility of its chemistry with peptide synthesis.21

We first used solid-phase synthesis to prepare the mechanism-based active site
targeting peptide fragment A (Al: derived from Hyal fused to a ketobenzothiazole warhead)
linked to an 8-mer PNA sequence and fragment E (E1: derived from the exosite Il binding region
of TTI) linked to the complementary 8-mer PNA (Fig. 2a, see Extended Data, Fig. 2 for detailed
chemical structure of the main compounds used in the study). Given the known importance of
two native negatively charged sulfotyrosine residues for interaction with the heparin-binding
exosite Il in TTI, we incorporated two difluorosulfonomethylphenylalanine (F,Smp) residues as
stable mimics in fragment E1. Fragment Al showed moderate inhibitory activity against
thrombin (K; 58.7 nM) in a fluorogenic thrombin-activity assay, while E1 alone possessed no
inhibitory activity (Fig. 2b). However, an 800-fold enhancement of activity was observed when
both components were mixed together using the 8-mer PNA supramolecular connection, with
A1-E1 exhibiting a K; of 74 pM (Fig. 2b). Pleasingly, this supramolecular inhibitor also gained
selectivity for thrombin when tested against a panel of proteases present in the coagulation
pathway including FXa, FXla, FXlla and PK (> 1000-fold, Fig. 2c). It is noteworthy that, like
thrombin, the substrate specificity for factor FXa and FXla also strongly favour Arg at P1°>** but
only thrombin benefits from the binary interaction of the supramolecular drug, resulting in
>1000-fold selectivity. To further investigate the supramolecular connectivity between the two
fragments, we reduced the length of PNA from 8-mer to 6-mer or 4-mer, while keeping the
overall distance equal. This led to a progressive loss of activity (Fig. 2d). However, the assembly
composed of the shortest supramolecular linker (4-mer: A3-E3) was still 10-fold more potent
than the active site inhibitor alone (Al). Taken together, these data support a cooperative
interplay between the supramolecular interaction of the PNA and the inhibition of thrombin
through engagement with both the active site and exosite Il. The hybridisation Kp of the 4mer
PNA was measured by SPR to be 4.14 puM at 25 °C (Extended Data, Fig. 3), yet the
supramolecular tether still yields a benefit at concentrations well below its Kp. A cooperativity
in the inhibition is observed if the equilibrium re-binding of the active site ligand is faster in the
supramolecular assembly-enzyme complex than the dissociation of the supramolecular tether.
It stands to reason that the longer PNA with slower k. yields better cooperativity.

The use of the PNA as a supramolecular tether also provides the opportunity to quickly
assemble analogues and perform structure-activity studies since new combinations can be
generated simply by mixing the binary ligands. We first explored other stable sulfotyrosine
mimics in the exosite Il binding fragment by incorporating disulfonic benzoate (DSB) in lieu to
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F.Smp into the E fragment to generate E4 (sY12->DSB), E5 (sY9O—>DSB) and E6 (sY9,12->DSB)
that could be used form supramolecular assemblies with active site binding fragment Al by
simple mixing (Fig 2e)."® Inclusion of DSB in place of F2Smp at position 12 led to a two-fold gain
of activity (A1-E4, Fig. 2e) but replacement of both F2Smp residues with DSB moieties led to a
decrease of inhibition (A1-E6, Fig. 2e). The position and number of sulfotyrosine mimics also
had a strong impact (A1-E1 vs A1-E7,8, Fig. 2e). We next performed an alanine scan of the
peptide sequence of E1 that targeted exosite II. This revealed an isoleucine residue at position 7
(lle7) as a hot spot (Extended Data, Fig. 4a), an observation consistent with the structure of the
TTI-thrombin complex (PDB 6TKG, Extended Data, Fig. 4b)"*°, which shows this isoleucine filling a
hydrophobic pocket. A moderate (ca. 2-fold) gain in activity could be achieved with substitution
for hydrophobic non-proteinogenic amino acids (e.g., t-Leu or Nle in A1-E15 or Al-E16,
respectively).

Having established the feasibility of the supramolecular inhibitor concept, we selected
A1l-E1 as a lead to profile in subsequent biochemical assays and for anticoagulant activity in
vitro. Towards this end, we first investigated the inhibition of fibrinogen proteolysis, whereby
A1-E1 exhibited complete inhibition at 100 nM (Extended Data, Fig. 5a) whilst Al or E1 alone
were comparable to no inhibitor. Having demonstrated A1-E1 was able to prevent fibrinogen
proteolysis in vitro we next turned our attention to an activated partial thromboplastin time
(aPTT) assay in both human and mouse plasma. aPTT assays are routine tests carried out by
physicians and is an indicator of the function of coagulation factors in the intrinsic and common
pathways, and effective inhibition of thrombin is expected to lengthen the time plasma takes to
clot. A clinically significant increase in clotting is said to be 2-fold. Pleasingly A1-E1 exhibited a
therapeutically significant prolongation of clotting time in both human and mouse plasma at a
concentration as low as 250 nM (Extended Data, Fig. 5b). We next investigated the effects of
A1-E1 on thrombin generation in a calibrated automated thrombogram (CAT). The CAT employs
a fluorogenic thrombin substrate, thus allowing measurement of thrombin formation in plasma
in real time. This is of particular importance since thrombin generation is a dynamic process,
the coagulation cascade has many feedback loops and inhibitory pathways that are all directly
or indirectly influenced by the developing thrombin concentration and thrombin plays a central
and pivotal role throughout the whole process. Additionally, and in contrast to aPTT assays, the
CAT allows for a large variation in the concentration and character of the trigger used and can
therefore be implemented to detect subtle differences between thrombin inhibitors. A1-E1
potently inhibited thrombin activity in both the initiation phase and propagation phase of
coagulation and was able to completely inhibit thrombin activity at 2.5 uM (Extended Data, Fig.
6).
Having determined that our supramolecular anticoagulant potently inhibited thrombin activity
and possessed anticoagulant activity in vitro, we next investigated whether A1-E1 would be
effective at inhibiting thrombus formation in vivo. To determine a suitable dose for our in vivo
efficacy study we utilised an ex vivo aPTT assay. Briefly, A1-E1 was administered intravenously
to mice at 2.5 or 5 mg/kg and blood samples were collected at 5, 15 and 45 mins respectively.
Clotting times were then measured using a standard aPTT protocol and showed that a single 5
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mg/kg bolus was effective at prolonging the aPTT >2 fold for 30 mins (Extended Data, Fig. 5c).
We next assessed the in vivo efficacy of the supramolecular anticoagulant A1-E1 compared to
standard of care argatroban in a localised needle injury model.”* The injury leads to both fibrin
formation and platelet aggregation in thrombus formation, which were visualized by Alexa-647
a-fibrin and Dylight-488 aGBP1bp, respectively.” Owing to its short half-life in vivo, argatroban
was dosed at 3.9 umol/kg (2 mg/kg) IV bolus followed by an infusion at 24 umol/kg over 60
minutes (12 mg/kg, total dose: 27.9 umol/kg). A1-E1 was dosed twice at 0.63 pmol/kg (5mg/kg)
IV bolus 30 minutes apart (total dose: 1.3 umol/kg). Both A1-E1 and argatroban showed
significant decrease in both fibrin formation and thrombus size (Fig. 3). Following treatment
with the supramolecular anticoagulant A1-E1, followed by injury, we observed near complete
inhibition of fibrin deposition at the site of injury when compared to control injuries (Fig. 3).
Pleasingly, we also observed that A1-E1 achieved a similar level of anticoagulation to a bolus
infusion of argatroban at the 5 mg/kg dosing regimen (Fig. 3). On a molarity basis, A1-E1
yielded comparable results to the standard of care (argatroban) at 24-fold lower drug loading
indicating that the potent inhibitory activity observed in vitro translates in vivo.

Having established promising in vivo efficacy for our supramolecular inhibitor, we turned our
attention to investigate the ability to reverse the anticoagulant activity with an antidote. Given
the non-covalent nature of the supramolecular linker between the active site and exosite |l
binding entities, we rationalized that the inhibition could be disrupted by competing for the
hybridization. To favour the equilibrium towards the dissociation of the binary fragments, the
competitor PNA was designed to incorporate diaminoapurines (D) instead of adenine (A), since
oligomers containing D form more stable duplexes with their complementary strand than
oligomers containing A.”® While this competitor (AD1) functioned as an effective antidote by
reversing inhibition, the kinetics of the antidote were deemed too slow at low concentrations
(1-10 uM, Extended Data, Fig. 7). Mindful of the observed cooperativity between target
interaction and hybridization, we introduced a toehold sequence? on the supramolecular
connector (A8-E1) to achieve a larger equilibrium shift in the hybridization with AD2, a 12-mer
PNA (Fig. 4a-b). Following the kinetic progress of the reaction in real time with a fluorogenic
substrate, we observed the ability to switch from complete inhibition (15 nM of binary
inhibitor) to ca. 40% of the uninhibited thrombin activity within 30 min using 10 uM of antidote
(Fig. 4c). Using lower concentration of antidote resulted in more progressive restoration of
thrombin’s activity. Using just 1 equivalent of antidote was sufficient to restore ca. 20% of
thrombin catalytic activity within 90 minutes. These observations were also validated in the
fibrinogen clotting and CAT assays described above, with clotting restored using 5 equivalents
of antidote relative to the supramolecular inhibitor (Fig. 4d-e, A8-E1 + AD2). Based on these
promising in vitro data, we assessed the ability of our designed antidote to reverse
anticoagulation in the in vivo thrombosis model. In this experiment we first treated with
5mg/kg of our supramolecular construct (that provided effective anticoagulation in the needle
injury thrombosis model) followed by administration of 5 molar equivalents of the 12-mer PNA
antidote (9.4 mg/kg). Following addition of the antidote, anticoagulation was effectively
reversed as determined by the amount of fibrin deposition and thrombus volume compared to
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control injuries lacking the antidote (Fig. 4 f-g). These data support the potential of
supramolecular inhibitors as bona fide therapeutic leads and lays the foundation for targeting a
range of therapeutic targets with this approach in the future.

Conclusion

In summary, we have designed highly potent direct bivalent thrombin inhibitors that display
800-fold gain in activity relative to individual fragments by leveraging the constitutional
dynamic properties of supramolecular binary fragments. The supramolecular pairing was
achieved with PNA allowing simple tuning of the dissociation kinetics of the supramolecular
complex. An important point of difference of these molecules compared to classical inhibitors is
that the dynamic equilibrium can be modulated by external factors, yielding a simple strategy
for reversing inhibition. This feature is highly pertinent for direct thrombin inhibition due to the
risk of adverse bleeding side effects in anticoagulation therapy. These known side effects has
stimulated the development of a number of antidotes to clinically approved anticoagulant
drugs28 that centre on the use of expensive monoclonal antibodies and cocktails of competitive
coagulation proteins. Our designed supramolecular anticoagulants showed potent thrombin
inhibition and anticoagulation activities in vitro that could be rapidly reversed using small PNA-
based antidotes. Importantly, this potent anticoagulant activity with on-demand reversibility
was also demonstrated in an in vivo thrombosis model thus providing a starting point for the
future use of this new therapeutic modality for bona fide anticoagulant drug candidates.

Importantly, the strategy adopted here offers a general mechanism to turn therapeutic activity
on or off rapidly and is therefore not limited to applications in thrombosis. For example, the
supramolecular concept would be amenable to the emerging area of immunotherapy where an
antidote to a CAR-T response is highly desirable, or to immunomodulators where reversal of
action is important in case of severe infection. The fact that assembly can be encoded by
different sequences of low cost PNA should make it possible to multiplex programmable
supramolecular drug candidates in the future. The strategy requires the identification of two
fragments that bind synergistically to a protein of interest. DNA-encoded libraries making use of
dual-display are poised to deliver such fragments for new targets lacking prior information.?
The same approach can also be considered with Fab fragments of antibodies.*°
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Figure 1. Supramolecular drug with on-demand reversibility. a. The assembly of the supramolecular drug is catalysed by the
binding to thrombin which creates a highly potent and highly selective inhibitor from two compounds with low potency and

selectivity. The inhibition of thrombin can be rapidly reversed by addition of an antidote. b. Legend of components represented
ina.
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Figure 2. Inhibitor development. a. Schematic representation of the cooperative dynamic drug assembly. The inhibitors disclosed
in this study are comprised of two fragments: the active site-directed fragments numbered Al to A8 and the exosite II-directed
fragment which are numbered E1 to E23. The combination of the two fragments yields a potent inhibitor named as the
combination of the two assembled fragments (e.g., A1-E1 is the combination of active site fragment Al and exosite Il fragment
E1). b. Thrombin inhibition data for the combined inhibitor versus the two fragments alone. c. Selectivity data for A1-E1 against
a panel of common proteases. d. Effect of PNA length on inhibition. e. SAR data of the exosite Il binder by varying charge. f. SAR
data of the exosite Il binder by varying hydrophobic amino acids instead of isoleucine.
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Figure 3. In-vivo inhibition of thrombin. a. Time course of fibrin fluorescence intensity and total thrombus volume (left), and
average fibrin intensity and average thrombus volume for control group (n=7), argatroban treated cohort (n=4, 2mg/mL bolus
followed by 12 mg/kg infusion) and A1-E1 treated cohort (n=5, 5 mg/kg bolus). b. Exemplar image of thrombus 15 minutes after
needle injury without inhibitor (left), with argatroban (centre) and with A1-E1 (right). Platelets are shown in red, fibrin in green
and collagen in the background in white, scale bar is 10 um.
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Figure 4. Reversal of thrombin inhibition. a. Schematic representation of antidote addition and reversal of inhibition. b. Chemical
structures of adenine and diaminopurine forming hydrogen bonds with thymine. c. Fluorogenic assay data showing the reversal
of thrombin inhibition by addition of different concentrations of antidote after 30 minutes of inhibition. d. Fibrinogen assay data
showing the reversal of thrombin inhibition by addition of antidote (1eq.) after 30 minutes of inhibition. e. Calibrated Automated
Thrombogram (CAT) of A8-E1 with and without antidote. f. Average fibrin intensity and average thrombus volume for control
group (n=7), argatroban treated cohort (n=4, 2mg/mL bolus followed by 12 mg/kg infusion), A8-E1 treated cohort (n=3, 5 mg/kg
bolus) and A8-E1+AD1 treated cohort (n=3, 5mg/kg + 5 molar eq. antidote). g. Exemplar image of thrombus 15 minutes after
needle injury without inhibitor (left), with A8-E1 (centre) and with A8-E1+AD1 (right). Platelets are shown in red, fibrin in green
and collagen in white, scale bar is 10 um.
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Extended Data
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Mad1 HZN*COOH
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Hyal .\ +-_CO0H
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TTI HZNHCOOH
E1-Al1 HZN*IDIDIE*BT

C

Madl YPERDSAKEGNQEQERALHVKVQ EEDGTTPTPD--PT LRGNKP

Hyal KPNLQSRS PDDNNDDSGERNGG LPVPGSGRDSERIPVPVD
TTI GDSSEEVGGT--PL L
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Extended Data Figure 1. Sequence alignment of inhibitor from a range of blood-feeding insects alongside the supramolecular
drug. a. Schematic representation of sequences of Madanin1, Hyalominl and Tsetse fly thrombin inhibitors alongside A1-E1. b.
Crystal structure of the tsetse thrombin inhibitor (PDB 6TKG) showing the distance between the active site and exosite Il binding
components. c. Full sequences aligned. The exosite Il sequence alighment is shown in blue with the sulphated tyrosine residues
highlighted in purple. The active site sequence alignment is shown in red with the scissile bond represented by an arrow. The
PNA is written in italics and the benzothiazole reversible covalent warhead is shorted to ‘BT’.
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Extended Data Figure 2. Chemical Structures of main compounds of the study. a. Active site-directed inhibitor A1, b. Exosite II-
directed inhibitor E1, c. Active site-directed inhibitor with 4-mer toehold PNA A8, d. 8-mer antidote AD1 and e. 12-mer antidote
AD2.
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Extended Data Figure 3. Kp of binding between PNAs of different lengths. a. Inhibition data for inhibitors with different length
of PNA. b. SPR data for the binding between 4-, 6-, and 8-mer PNA strands with ACAACTGC immobilised via a biotin on a
streptavidin coated SPR chip. The PNA sequences are written N to C, with serine-modified monomers underlined. c. SPR kinetic

curves.
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Extended Data Figure 4. Additional SAR. a. Exosite Il ala scan - fluorogenic inhibition assay data for A1 combined with E17 to
E22. b. Crystal structure (PDB 6TKG) of the Tsetse thrombin inhibitor (TTI) complexed with thrombin. The zoom shows the
hydrophobic pocket in which isoleucine is situated. c. ICso values for active site binders with modifications in the P3 positions. d.
Comparison between inhibitors inspired from the exosite Il sequence of the Tsetse Thrombin inhibitor (TTI) and Madaninl (Mad1,

from the Haemaphysalis longicornis species) at 15 nM.
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Extended Data Figure 5. Additional Assays. a. Fibrinogen inhibition assay of compounds A1-E1 and Al and E1 alone. b. In vitro
aPTT of A1-E1 in human (top) and mouse (bottom) plasma. c. Ex-vivo aPTT of A1-E1 at 0.314 umol/kg (2.5 mg/kg) and 0.627

umol/kg (5 mg/kg) versus Argatroban at 1.966 umol/kg (1 mg/kg).
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Extended Data Figure 6. Calibrated Automated Thrombogram (CAT). a. A1, E1, AD1, and AD2 tested alone at a range of
concentrations. b. Combined inhibitors A1-E1 and A8-E1 tested at a range of concentrations. c. Combined inhibitors with antidote

A1-E1+AD1 and A8-E1+AD2 tested at 2.5 uM with a range of antidote concentrations.
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Extended Data Figure 7. Reversal of thrombin inhibition with an 8 mer PNA antidote. a. Schematic representation of antidote
addition and reversal of inhibition. b. Fluorogenic assay data showing the reversal of thrombin inhibition by addition of different

concentrations of antidote (AD1) after 30 minutes of inhibition. c. Calibrated Automated Thrombogram (CAT) of A1-E1 with and
without antidote (AD1).
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