bioRxiv preprint doi: https://doi.org/10.1101/2023.11.11.566695; this version posted November 13, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Pre-processing of paleogenomes: Mitigating reference bias and postmortem damage
in ancient genome data

Dilek Koptekin'2, Etka Yapar'®, Kivilcim Basak Vural', Ekin Saglican'#, N. Ezgi Altinigik®,
Anna-Sapfo Malaspinas?®, Can Alkan’, Mehmet Somel’

1. Department of Biological Sciences, Middle East Technical University, Ankara, Turkey

2. Department of Computational Biology, University of Lausanne, Lausanne,
Switzerland

3. Department of Biology, Lund University, Lund, Sweden

4. Department of Health Informatics, Graduate School of Informatics, Middle East
Technical University, Ankara, Turkey

5. Human-G Laboratory, Department of Anthropology, Hacettepe University, Beytepe,
Ankara, Turkey

6. Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland

7. Department of Computer Engineering, Bilkent University, Ankara, Turkey

ABSTRACT

Ancient DNA analysis is subject to various technical challenges, including bias towards the
reference allele ("reference bias"), postmortem damage (PMD) that confounds real variants,
and limited coverage. Here, we conduct a systematic comparison of alternative approaches
against reference bias and against PMD. To reduce reference bias, we either (a) mask
variable sites before alignment or (b) align the data to a graph genome representing all
variable sites. Compared to alignment to the linear reference genome, both masking and
graph alignment effectively remove allelic bias when using simulated or real ancient human
genome data, but only if sequencing data is available in FASTQ or unfiltered BAM format.
Reference bias remains indelible in quality-filtered BAM files and in 1240K-capture data. We
next study three approaches to overcome postmortem damage: (a) trimming, (b) rescaling
base qualities, and (c) a new algorithm we present here, bamRefine, which masks only
PMD-vulnerable polymorphic sites. We find that bamRefine is optimal in increasing the
number of genotyped loci up to 20% compared to trimming and in improving accuracy
compared to rescaling. We propose graph alignment coupled with bamRefine to minimise
data loss and bias. We also urge the paleogenomics community to publish FASTQ files.

INTRODUCTION

Ancient DNA (aDNA) has become today a major information source for studies of evolution
or the human past. However, paleogenomic data has its specific challenges, being
characterised by short fragment lengths, post-mortem damage (PMD) in the form of
transitions at the ends of DNA molecules, and a low abundance of endogenous DNA
resulting in low coverage genomes. Standard aDNA data processing pipelines typically
involve (i) alignment of reads to a linear reference genome, (ii) quality filtering of reads, (iii)
modifications to the read data to avoid PMD confounding with true genetic variation, such as
trimming or rescaling, (iv) genotyping at known polymorphic loci (as low coverage generally
precludes de novo genotyping), (v) pseudohaploidization, i.e., randomly choosing one allele
per variant site (a strategy to overcome biases related to heterogeneous coverage among
studied genomes). These procedures are susceptible to various biases and shortcomings
that can eventually lead to inaccurate interpretations of genetic relationships, population
history, or evolutionary processes. We will tackle two of such issues in this study: reference
bias, and biased and/or low-efficiency genotyping in the face of PMD.

Although biases against divergent ancient DNA reads had been noted earlier (1), the
reference bias phenomenon in ancient genomes was first coined and explained by Ginther
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and Nettelblad (2019). These authors described how read alignment to a linear reference
genome with low-coverage and short read-based sequencing data can lead to a higher
frequency of reference allele calls over alternative allele calls at heterozygous sites when a
1:1 ratio would be expected. Reference bias arises due to the read alignment quality score
calculation: reads with mismatches receive lower scores than perfectly matched reads.
Hence non-reference allele-carrying reads tend to be either unmapped or assigned lower
alignment quality scores than the reference allele-carrying reads, and thus removed by
filtering reads for by a minimal alignment quality score. Consequently, reference allele-
carrying reads are overrepresented in the aligned and filtered data. Reference biases have
been observed to impact population genetic and phylogenetic analyses of present-day taxa
when evolutionarily distant linear reference genomes are used for alignment (2,3).
Meanwhile, ancient DNA sequencing data is particularly prone to such bias, because when
reads are short and/or have higher residual PMD, mismatches caused by alternative alleles
can have a disproportionate impact on quality scores. The overrepresentation of reference
allele-carrying reads may render ancient genome profiles more similar to the reference
genome than they actually are. This effect can then lead to biased results in downstream
inferences on phylogenetics, demographic history or kinship.

Previous studies have suggested several methods to reduce reference bias in ancient DNA
studies: (a) Statistically accounting for possible reference bias during variant calling (4),
which can be effective but only on high-coverage genomes; (b) aligning reads to a modified
version of the linear reference genome, e.g. by representing both alleles or a third allele at
variable sites (5-7); (c) modifying ancient reads at variable sites by converting them to ‘N’
(5); (d) using a graph reference genome that represents the variants in large genomic
variation datasets such as the 1000 Genomes Project (8).

A second challenge in paleogenome data pre-processing involves ensuring that PMD on
molecules does not impact inferred genotypes. One correction strategy is experimentally
removing PMD after DNA extraction using uracil-DNA glycosylase (UDG) treatment (9). The
majority of researchers who use UDG employ the half-UDG protocol, which still leaves a
slight excess of transitions at molecule ends (10). PMD may also be accounted for using
post-alignment in silico approaches. One solution involves limiting analyses transversions
alone, which are much less (only indirectly) affected by PMD (1). However, this approach
leads to the loss of approximately 60% of polymorphism data in humans and other
mammals, as transition polymorphisms are about twice more numerous than transversions.
An alternative, and currently the most prevalent method is trimming, or masking the end of
the reads in a BAM file. This involves changing bases at read ends of a specific length to ‘N’
and their quality to ‘I’ (corresponding to zero in Phred+33 encoding), e.g. using the tool
trimBAM (11). Most researchers remove two to three bases at read termini of half-UDG-
treated libraries, or 8-10 bases of non-UDG-treated libraries (12). This trimming process also
leads to data loss, especially for the latter type of libraries. For instance, in a non-UDG-
treated and paired-end library, 10 bp are masked from both ends (2x10=20bp in total) per
standard 60 bp aDNA read, which means ¢.30% data loss. Other methods, such as
mapDamage (13) and ATLAS (14), have attempted to reduce the effect of PMD by rescaling
the base quality of possible PMD-driven misincorporations, but such approaches are rarely
used as they could alter genotype frequencies, which has not yet been systematically
investigated. Yet an alternative approach could be masking only PMD-sensitive regions on
read ends, thus retaining more genetic information and enabling more comprehensive
analysis of low-coverage ancient genomes.

In this work, we study solutions to reduce the effect of reference bias and PMD. We first
investigate the degree of reference bias using linear mapping, mapping to a masked
genome, and using a graph genome on simulated as well as real paleogenomic data of
various types. We then study genotyping efficiency under PMD using standard trimming,
using mapDamage, and masking read ends that overlap with genomic positions that are
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sensitive to PMD-related false positive variant calls using a new algorithm, bamRefine. Our
results show that using alternative reference genomes (either graph or masked) together
with bamRefine results in more accurate genotypes and reduces data loss.

MATERIALS AND METHODS
Simulating ancient genomes

We used chromosome 1 of the human reference genome (version hs37d5) as a template to
generate the simulated ancient genome data. We chose bi-allelic SNPs on chromosome 1 of
the individual 06A010111 of the Turkish Genome Project dataset (15), which consisted of
182,515 homozygous reference, 53,391 homozygous alternative, 77,841 heterozygous
positions (313,747 positions in total) (see Table S1). We then inserted these into the
chromosome 1 template with “vcftools/vef-consensus (v.0.1.6)” (16).

We generated ancient DNA data using “gargammel’ (17), using the template chromosome 1
data with polymorphism inserted. Five “gargammel’ simulations were performed for five
target coverages: 0.05X, 0.1X, 1X, 5X and 10X. We used a normal distribution with a mean
of 65 bp for the read size distribution. The parameter “-damage 0.024,0.36,0.0097,0.55” was
used to introduce PMD to simulated ancient genomes (see Figure S1). We did not include
bacterial or modern contamination in the data by using the “-comp 0,0, 1” parameter.

Real ancient genomes

We selected 17 published ancient genomes, either shotgun-sequenced, whole-genome
captured or 1240K SNP-captured, all from human skeletal material originating from different
geographic regions (12,18-31). The coverage of samples ranges from low to medium
coverage to high coverage. The dataset includes both damage-repaired and non-damage-
repaired samples (see Table S2).

The raw FASTQ files of 7 out of 17 samples were available. Others were downloaded as
BAM files and converted to FASTQ files using “Picard SamToFastq (version 2.23.8)
(http://broadinstitute.github.io/picard/). A number of FASTQ files were not publicly available
(Table S2) and were provided by the research teams upon request.

Alignment strategies

We removed the residual adapter sequences in raw FASTQ files for each sample using the
software “Adapter Removal (version 2.3.1)” (32) using “—qualitybase 33 —gzip —trimns”
parameters. The reads in paired-end libraries were merged after removing residual adapter
sequences, requiring at least 11 bp overlap between the pairs using the additional parameter
“—collapse —minalignmentlength 11”.

We aligned FASTQ files to three different reference genomes:

(i) Linear Reference Genome (version hs37d5): We used the program “BWA aln/samse
(version 0.7.15)" (33) with parameters “-n 0.01, -o 2” and disabled the seed with -/ 16500'.

(ii) Masked Linear Reference Genome (masked version of hs37d5): We masked the
positions we wanted to genotype on the linear reference genome using “bedtools maskfasta
(v. 2.29.1)" (34) by converting the nucleotides to ‘N’. After masking, we aligned samples
using “BWA aln/samse (version 0.7.15)” (33) with the same parameters above.

(iii) Graph Reference Genome: We obtained a published graph genome version from Seven
Bridges Inc. (SBG.Graph.B37.V6.rc6.vct.gz), which included variants from 1000 Genomes
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(1000G) Phase 3 (with alternate allele frequency greater than 0.01) (35), the Simons
Genome Diversity Panel (alternate allele occurrence of 10 or greater) (36), and other INDEL
variant datasets to construct a graph genome. We used the “GRAF tool (version 0.12.5)
(87) to align the reads to this graph genome annotation together with the baseline reference
genome GRCh37. See (37) and https://www.sevenbridges.com/graph-genome-academic-
release/ for more details.

After alignment, we removed PCR duplicates using “FilterUnique SAMCons.py” (38) and
removed reads <35 bp, with >10% mismatches to the reference genome, or with <30
mapping quality (MAPQ) from all BAM files.

We added read group information to final BAM files by using “picard
AddOrReplaceReadGroups (version 2.23.8)” (http://broadinstitute.github.io/picard/).

bamRefine

Here, we present a new variant-aware PMD-correction algorithm called bamRefine.
bamRefine is an efficient tool to prevent possible PMD-affected bases at the read ends from
being included in the variant calling process based on a given variant list. It has a simple
algorithm with two main steps: First, the variant list to be used in downstream analyses is
parsed and classified into 5' and 3' “suspect” lists, which in this context corresponds to
variants with “C” and “G” alleles, respectively. “Suspects” here refer to the genomic positions
that carry the risk of “C->T” or “G->A” false-positive variant calls if PMD-affected bases at
read ends were to be used without any form of masking in downstream steps of a pipeline.
Then, the BAM file is processed read by read, masking bases that overlap with 5' (3)
suspects within a user-specified nucleotide lookup range from the 5' (3') end of each read.
The lookup range is determined based on the PMD signature in the library. The program
allows the 5’ and 3’ end lookup ranges to be asymmetrical to properly process reads from
single-stranded library protocols. The masking is confined to the positions that overlap with
the 5'/3' variant tables within the user-specified lookup range from 5'/3' ends of reads and is
implemented regardless of the allele an individual read carries (Figure 1). This results in less
data loss when compared to trimming the entire lookup range (e.g. T/G variants are retained
at 5’ ends) and ensures non-biased masking (e.g. PMD can shift allele frequencies at C/G
variants at both ends and masking these avoids this effect). The job of flagging and masking
positions of interest for each chromosome in a BAM file is parallelized by multiprocessing,
allowing the program to rapidly refine millions of reads. More detailed information regarding
usage and installation instructions can be found at https://github.com/etkayapar/bamRefine.
bamRefine is also implemented in the Mapache ancient DNA pre-processing pipeline (39)
(https://github.com/sneuensc/mapache).
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Figure 1: Graphical representation of the bamRefine workflow run with a BAM file with 6
reads, a variant list with 5 variants, and using the “--pomd-length-threshold 7” parameter (i.e.
a lookup range of 7 bp at each read end). A) A cartoon genome browser view of all the
reads mapped to the genomic region, and the input variant list shown as a table. B) The
classification of the provided variant list into 5’ and 3’ suspects. C) Masking of the 6 different
reads according to the specified options and input variant list. Masking happens regardless
of the alleles the reads carry and only depends on a base within the lookup range
overlapped with the variant table of the respective read end.

PMD-correction strategies

We processed the data using three alternative strategies for avoiding the impact of PMD on
genotypes.

(i) TRIMMING: We applied trimming (clipping) to the sequencing data using the “trimBam’
algorithm implemented in “bamUltil (version 1.0.14)” (11). We trimmed (a) 10 bases from the
ends of each read in non-UDG-treated samples as well as in simulated ancient genomes,
and (b) 2 bases from the ends of each read in UDG-treated samples.

(i) RESCALING: We applied rescaling to the sequencing data using the “mapDamage2”
software (13). We rescaled 10 bases from the ends of each read in simulated data using “--
rescale --seq-length 10" parameters. We were unable to execute mapDamage analysis on
UDG-treated real ancient samples, so we opted not to incorporate a mapDamage
comparison in our analysis of real ancient data.

(iii) REFINING: We applied refining to the sequencing data using “bamRefine”. Similar to
TRIMMING, we refined (a) 10 bases (using “--pmd-length-threshold 10”) from the ends of
each read in non-UDG-treated samples as well as the simulated ancient genomes, and (b) 2
bases (using “--pomd-length-threshold 2”) from the ends of each read in UDG-treated
samples. Regardless of the samples being treated with UDG or not, we used our SNP
dataset generated from the Turkish Genome Project for refining the simulated ancient reads
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(using “--snps <TGP-SNPS-FILE> parameter”) and the 1000G sub-Saharan African dataset
for the real ancient reads (using “--snps <AFR-SNPS-FILE>" parameter).

Dataset

In previous work we had created a 1000 Genomes sub-Saharan African SNP diversity panel
as a high-quality and relatively unbiased SNP dataset to use in demographic inference in
Eurasian genomes (12). The dataset includes 4,771,930 (4.7M) bi-allelic autosomal SNPs
ascertained in five sub-Saharan African populations in phase 3 of the 1000 Genomes project
(85). We used this dataset for genotyping the real ancient genomes included in the analysis.

Genotyping

We genotyped only targeted SNP positions; for simulated ancient genomes these were the
313,747 positions defined from one individual of the TGP dataset (15), and for real ancient
genomes these were the 4.7M positions from 1000 Genomes sub-Saharan African dataset
(12). We called both diploid and pseudohaploid genotypes.

Diploid genotypes: These were obtained using “GATK HaplotypeCaller (version 4.0.11.0)"
(40) by using the “--min-base-quality-score 30, --minimum-mapping-quality 30, --genotyping-
mode GENOTYPE_GIVEN_ALLELES, --output-mode EMIT_ALL SITES’” parameters as
well as the “--alleles” parameter to genotype the list of targeted SNP positions.

Pseudo-haploid genotypes: These were obtained by using “pileupCaller (version 1.4.0)”
(https://github.com/stschiff/sequenceTools) by selecting one allele for each of the targeted
SNP positions from the “samtools mpileup” (41) output file, which was generated by using
the “R -B -q30 -Q30” and the “I” parameters to genotype the list of targeted SNP positions.

f, statistics

We calculated fs-statistics by using “qpDstat (version: 980)" algorithm implemented in
“AdmixTools (version 7.0.2)"(42). We used tests of the form f4(Human Reference Genome,
Outgroup; Ind1_MappingStrategy1, Ind1_MappingStrategy?2) or f4(Human Reference
Genome, Outgroup; Ind1_MappingStrategy1_PMDCorrectionStrategy1,
Ind1_MappingStrategy1_PMDCorrectionStrategy?2) using the Chimp Reference Genome
(version panTro6) as an outgroup and with the “f4mode: YES” option. We used >10,000
overlapping SNPs as cut-off for reporting fs-test calculations.

Visualisation

We produced all graphs in R (43) after reading and manipulating data using “gsheet” (44)
and “tidyverse” (45) packages. All figures were produced by using "ggplot2' (46) and its
extension packages "ggpubr' (47), “ggh4x” (48) and “ggpattern” (49). The multiple panel
figures are combined by using the "patchwork" package (50). In some figures, colours were
assigned by using “MetBrewer’ package (51).

RESULTS

Simulated genomes: mapping to masked or graph genomes mitigates reference bias
We first simulated ancient human-like sequencing data to gauge reference bias under
various alignment strategies. We used the human chromosome 1 (version hs37d5)

reference sequence and 77,841 heterozygous sites chosen from a bi-allelic SNP set from
the Turkish Genome Project dataset (15) (see Table S1). We created aDNA-like read data
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with the gargammel tool (17) such that reads would carry either allele at heterozygous sites
with equal probability. We produced five such datasets with coverages from 0.05X to 10X
with PMD damage (Figure S1). We then aligned this data to reference genomes using three
different strategies: (i) the “LINEAR” strategy, which is the standard procedure of mapping to
a linear reference genome using bwa aln with “-/ 16500 -n 0.01 -o 27; (ii) the “MASKED”
strategy, where, before alignment with bwa aln, we masked the linear reference genome
sequence at variable positions to be genotyped by converting those bases to ‘N’; and (iii) the
“GRAPH’ strategy, where we used a graph reference genome representing both reference
and alternative alleles at known variable sites and used GRAF aligner for mapping (37). We
then randomly called pseudohaploid genotypes at the 77,841 heterozygous sites and
calculated the alternative allele proportion. We repeated these last steps 100 times.

In the absence of reference bias, we expect ~50% of pseudohaploid genotypes at
heterozygous positions to represent the alternative allele. However, using the “LINEAR”
strategy, we observed consistently lower match rates to the alternative allele across all
coverages, i.e. reference bias (48.2-50.4%; on average ~1% lower than expected; binomial
test p<0.0001) (Figure 2A, Tables S3-4). Using the “MASKED” or “GRAPH” strategies
instead, we observed either slight or no bias towards either allele: the average fraction of
alternative alleles was 50.1-50.3% with the former and 49.8-50.1% with the latter (Figure 2A,
Tables S3-4). The deviations from 50% using the latter two strategies were also
systematically lower than using the “LINEAR” strategy (Mann-Whitney U test p<0.0001;
Figure 2A, Figure S2).

Real ancient genomes: reference bias mitigated using FASTQ files but not using BAM
files

We next studied reference bias in real paleogenomic data. For this, we started by collecting
seven published genomes for which we could obtain raw data as FASTQ files (Table S2).
These were derived from diverse geographic regions, produced with or without UDG-
treatment, shotgun-sequenced or whole-genome captured, and had variable coverages
(Table S2).

We first defined heterozygous sites for each ancient genome as those with 25-75% of reads
representing the alternative allele, covered at least by 10X depth and no greater than two
times the genome mean coverage (Methods, Table S1). We mapped reads using the three
strategies and randomly sampled reads 100 times at these presumed heterozygous sites.
We found salient reference bias using the “LINEAR” strategy, with the fraction of alternative
alleles ranging between 46.4-49.4% (binomial test p<0.0001) (Figure 2B, Table S5-6).
Consistent with the simulated data results, the fraction of alternative alleles was ~50% when
using either the “MASKED” (49.8-51.1%) or “GRAPH?” strategies (49.4-50.2%) (Mann-
Whitney U test p<0.0001; Figure 2B, Figure S3A, Tables S5-6). However, we also noted
slight differences between these two approaches: three genomes (Mota, mfo001, GOR001)
processed using the “GRAPH?” strategy still exhibited a bias against the alternative allele
(~49.5%), whereas two other genomes (Bon002 and Saqqaq) processed using “MASKED”
exhibited a weak but significant bias (~51%) towards the alternative allele (p<0.0001).
Although we lack an explanation for this variability among genomes, we overall conclude
that “MASKED” or “GRAPH” approaches both reduce the impact of reference bias on called
ancient genotypes (Figure 2A, Figure S3A, Tables S5-6).

The majority of paleogenomes over the last decade have been published as processed BAM
files rather than raw FASTQ files, where the former could be subject to irreversible reference
bias introduced by mapping parameters as well as alignment quality filtering. To investigate
this, we collected 10 additional paleogenomes available as BAM files (Table S2). These
included 5 shotgun-generated and 1240K SNPs-enriched genomes. Among the shotgun-
generated genomes, the Ust-Ishim and LBK BAM files were published without strict filtering
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(i.e., included reads with MAPQ<30), while the rest had been quality filtered (all reads with
MAPQ>30) (Figure S4). None of the 1240K SNPs-enriched genomes had been subjected to
strict filtering (Figure S4, Table S2).

We again remapped the reads and called pseudo-haploid genotypes using the three
strategies. This revealed persistent reference bias for three shotgun-generated BAM files
subjected to strict filtering, irrespective of the alignment strategy used (Figure 2C, Figure S4,
Table S2). In contrast, both the “MASKED” and “GRAPH” strategies significantly reduced
reference bias on Ust-Ishim and LBK, which had not been filtered (Figure 2C, Figure S3B,
Table S2). This confirms the expectation that quality filtering of BAM files introduces
irreversible reference bias. Meanwhile, all five 1240K SNPs-enriched genomes showed the
same level of reference bias irrespective of the alignment strategy used (the alternative
allele on average ~0.7% lower than expected) (Figure 2D, Figure S3B, Figure S4, Table S2).
Such bias appears independent of the mapping/filtering process and is likely attributable to
1240K SNP capture favouring one allele over another at targeted SNPs, as reported recently
(52,53).
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Figure 2: Comparing reference bias under three different alignment strategies (A) using
simulated aDNA-like genomes, (B) using real ancient genomes with available raw FASTQ
files, and using real (C) shotgun and (D) 1240K capture ancient genomes with already
processed BAM files. The plot shows the proportion of alternative alleles after randomly
selecting one allele from heterozygote sites 100 times using pileupCaller (panel A: 77,841
sites; panel B: 4,658 - 422,046 sites; panel C: 96,917 - 543,495, panel D: 2,934 - 19,394
sites) (see also Tables S2-6 and Figures S5-6). The BAM files available without strict filtering
(i.e., included reads with MAPQ<30) are shown in bold in Panel C (Table S2). In these
comparisons we did not apply any PMD-correction.

We further observed that the number of reads with MAPQ>30 using the “GRAPH” approach
was higher (4 - 21%) than the two other alignment approaches; this was true for all seven
FASTQ files (random expectation for “GRAPH” being best in all seven cases: (1/3)7 =
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0.0004) (Figure S7, Table S7). This happens because reads carrying both alleles would
receive higher quality mapping scores using the graph genome alignment than “MASKED” or
“‘LINEAR”. However, we did not observe the same pattern for BAM files, where some of the
reads carrying alternative alleles were probably already filtered out.

Trimming, rescaling and refining as alternative PMD-correction approaches

We also investigated the performance of several approaches for PMD-correction on called
genotypes: (A) using “TRIMMING”, i.e. the standard 2 or 10 bp masking of aligned reads
with trimBam (11), (B) “RESCALING”, which involves rescaling base qualities using
mapDamageZ2 (13), and (C) “REFINING?”, i.e. masking bases at the read ends that overlap
with variants sensitive to PMD-related genotyping errors using the new software we present
here, bamRefine. Our algorithm masks 5’ end bases only if they overlap with variants that
include a “C” allele (to prevent C->T false-positives), or 3’ end bases if they overlap with
variants that include a “G” allele (to prevent G->A false-positives). Notably, our approach
avoids biased genotyping due to PMD-induced C/G loss at transversion sites (e.g. C’s being
underrepresented at a C/A variant site when the variant occurs on 5’ ends of reads due to
PMD-induced C->T transitions). Our approach further avoids comprehensive data loss
compared with “TRIMMING?”, as the latter involves masking extended regions at read ends
for non-UDG-treated libraries (Methods).

We used the same simulation scheme using chromosome 1 polymorphisms as above, with
the difference that here, along with the 77,841 heterozygous positions described earlier, we
also genotyped 182,515 homozygous reference and 53,391 homozygous alternative
positions, totalling 313,747 SNPs. We generated aDNA-like read data at 10X coverage using
gargammel (17), aligned these using either of the three mapping strategies (‘LINEAR”,
“‘“MASKED”, and “GRAPH”) and applied either of the three PMD-correction approaches
mentioned above. We then called diploid genotypes at the 313,747 SNPs using GATK
HaplotypeCaller (40), and examined the missingness and error rates on these calls,
comparing the three PMD-correction approaches.

Trimming causes data loss and rescaling causes reference bias

Irrespective of the mapping approach, “TRIMMING” exhibited the highest missingness (0.48-
0.95%), followed by “REFINING” (0.38-0.86%), and “RESCALING” (0.26-0.52%) (Figure
3A). “TRIMMING” also showed the highest overall error rate among the three methods (2.42-
2.48%) (Figure 3A, Figure S5 and Table S4). The bulk of these errors were caused by
misassigning heterozygous sites as homozygous reference or homozygous alternative, due
to sampling error (i.e. insufficient data to call heterozygous sites) (Figure 3B). “RESCALING”
and “REFINING” had slightly lower error rates (2.14-2.31% and 2.07-2.15% respectively), as
they use more data than “TRIMMING”. These error rates were higher (~7%, 6% and 5%,
respectively) when repeating the analysis with 5X coverage data (Figure S8); this is
expected as with lower coverage sampling error becomes more dramatic.

Despite the lowest overall error rate and missingness using “RESCALING”, closer inspection
revealed that this approach suffers from significant reference bias. The majority of errors
observed with “RESCALING” were caused by favouring the reference allele in genotype
calls during PMD-correction (Mann-Whitney U test p<0.0001; Figures S2 and S9), leading to
an overestimation of homozygous reference alleles and underestimation of homozygous
alternative alleles (Figure 3, Figure S10). In contrast, the “TRIMMING” and “REFINING”
approaches label genotypes incorrectly as homozygous reference or alternative at similar
rates (Figures S11-12). This pattern could also be observed when calling pseudohaploid
genotypes at the 77,841 heterozygous sites after using either of the three PMD-correction
methods (Figure 4). “RESCALING” led to a marked underestimation of alternative allele
proportions (45.84 - 47.72%), whichever alignment strategy was employed. When we
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checked transition and transversion sites separately, we observed that this skew in the
alternative allele proportions mostly affected transition sites, indicating that the mapDamage
algorithm used in “RESCALING” overrepresented reference alleles (Figures S13-14).

RESCALING

TRIMMING

REFINING

FAESCALING

TRIMMING

REFINING

RESCALING

TRIMMING

REFINING

a

3000 6000 ; 2000
Number of Genotyping Error

Error Type
W wissing [l Wrong Genotype

& REFINING @ TRIMMING

% RESCALING

A

Alternative

B
True Genotype
Homozygous Reference Heterozygous Homazygous Alternative
RESCALING {4 |
g TRIMMING | & - & - |m - %
£ A £l
REFINING 4 3 A L |m &
RESCALING 4 |
E TRIMMING { & . F |= .
8
REFINING { & . | I .
RESCALING 1 °
o
§ TRIMMING 4 A ™ "‘ |m . g
REFINING { & . ¥ 4 [* .
-n— =T T o T T T T T T T T —
/] 1000 2000 3000 0 1000 2000 3000 o 1000 2000 3000
Number of Genotyping Error
PMD Correction Called Genotype

Reference

Figure 3: (A) Proportion of genotyping errors and missingness (B) Frequency of type of
genotyping errors for each PMD-correction method for 10X coverage simulated genomes,
calculated by comparing diploid calls with true genotypes (see also Figures S8-12).
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Graph or masked mapping followed by bamRefine yields the best F-scores

To investigate genotype accuracies further among the three PMD-correction algorithms, we
calculated concordance rate (CR), proportion of false negative, proportion of false positive,
non-reference true positive rate (NTPR), as well as recall (or sensitivity) and the F-score
(Figure 5), with the alternative allele as our pivot (54) (Figure S15).

Our results showed that the proportion of false negatives (true alternative allele called as
reference) was the highest using “RESCALING”, consistent with our observations above.
The NTPR (true alternative allele called as an alternative) of “RESCALING” was also the
lowest.

Meanwhile, we observed <1% false positives (true reference allele called as an alternative)
using “RESCALING”, compared with 1-1.5% false positives using “TRIMMING” and
“‘REFINING”. This suggests residual PMD effects (PMD beyond the masked 10 bp) that
could not be corrected using the latter two methods. These PMD-induced errors, however,
were not biased towards the reference or alternative allele (Figures S2 and S9-12).

Overall, “REFINING” with bamRefine emerged as the top performer across the majority of
evaluated indices, including concordance, recall, and F-score, suggesting it can call the
largest numbers of genotypes with the least error and bias (Figure 5). The F-score values of
“‘REFINING” were highest using the “GRAPH” alignment strategy, in contrast to
“‘RESCALING”. Meanwhile, the “TRIMMING” strategy, which involves aggressive masking of
10 bp at the end of reads, leads to significant data loss and reduces overall depth per site
(Figure S16), leading to the lowest concordance rates and F-scores in our simulations.
“‘RESCALING” had intermediate F-scores (Figure 5) but clearly suffered from reference bias
(Figures 4, Figure S10), which renders it the least useful among the three methods in our
view.
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Figure 5: PMD-correction performances of “REFINING”, “TRIMMING”, and “REFINING” on
simulated ancient genomes, calculated by comparing diploid calls with true genotypes
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Finally, we applied the two unbiased PMD-correction methods, “TRIMMING” and
“‘REFINING”, to the 17 published ancient genomes described earlier (Table S2). When using
shotgun FASTQ files and/or unfiltered BAM files and mapping using the “MASKING” or
“GRAPH? strategies, neither “TRIMMING” nor “REFINING” led to reference bias (49.7%-
50.7% proportion of alternative allele) (Figure 6, Table S5). However, we also noted that
“TRIMMING” leads up to 2% more data loss (as measured by the number of genotyped

SNPs) than “REFINING” (Figure S6, Table S6), while their error rates are comparable
(Figure S17).
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Figure 6: Comparing reference bias in published ancient genomes that FASTQ file available
aligned with different reference genomes and PMD-effects reduced with different
approaches. The plot shows the proportion of alternative alleles after randomly selecting one
allele from heterozygote sites 100 times by pileupCaller (see also Figure S18).

The impact of reference bias is higher on measures of allele sharing in the LINEAR
strategy

Reference bias can readily lead to statistically significant asymmetries in analyses such as
f4-statistics. We thus studied fs-statistics of the form f4(Chimp, Human Reference Genome;
Ind1_MappingStrategy1, Ind1_MappingStrategy2). We found that the Human Reference

Genome significantly shared more alleles with data processed using the “LINEAR” strategy
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(IZ] > 3) than using the “MASKED” and “GRAPH?” strategies. Hence, both “MASKED” or
“GRAPH? strategies largely mitigate the reference bias that arises with the “LINEAR”
strategy (Figure 7A).

We further found that in 71% of comparisons, the Human Reference Genome shares more
alleles with data processed using the “MASKED” strategy than the “GRAPH” strategy. This
indicates that “GRAPH” is more effective in reducing reference bias, consistent with earlier
results (Figure 7B).

Finally, we also compared if either “TRIMMING” or “REFINING” showed additional bias in
form f4(Chimp, Human Reference Genome; Ind1_MappingStrategy1_TRIMMING,
Ind1_MappingStrategy1_REFINING) for three mapping strategies. All results were non-
significant (|Z| < 3) (Figure 7C).
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Figure 7: Results from the model A) f4(Chimp, Human Reference Genome; Ind1_LINEAR,
Ind1_MASKED/Ind1_GRAPH), B) f4(Chimp, Human Reference Genome; Ind1_MASKED,
Ind1_GRAPH) for both PMD correction strategies and C) f4(Chimp, Human Reference
Genome; Ind1_Mapping_Strategy1_TRIMMING), Ind1_Mapping_Strategy1_REFINING) for
all mapping strategies by using ancient genomes that FASTQ files available. The colour
gradient from blue to red represents the fraction of comparisons that are nominally
significant (|Z|>3) See also Figure S19 for results when the genomes with just BAM files
available are used.
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Our results confirm a strong reference bias that emerges when using the approach of linear
reference genome alignment (“LINEAR”), which impacts downstream analyses such as fs4
tests. We also find that alignment to either a masked linear reference genome (the
“‘“MASKED?” strategy) or to a graph genome (“GRAPH?”) effectively reduces reference bias.
This observation is consistent with previous findings (5,6,8,7) and supports the feasibility of
implementing these strategies for more accurate aDNA analysis. Comparing “GRAPH” and
“MASKED”, the “GRAPH” approach allows a higher fraction of reads to be mapped, has
higher F-scores, and appears even less affected by reference bias in f4 tests. Meanwhile, the
“MASKED?” strategy has the advantage of being simpler to implement with the standard bwa
aln tool.

Despite their effectiveness on FASTQ data, neither “MASKED” nor “GRAPH” strategies can
alleviate reference bias on paleogenome data published after mapping quality filtering. This
outcome emphasizes the need for sharing all the raw data, such as the BAM files including
all reads (including those with very low mapping quality), or even better, the raw FASTQ files
(as mapping to a specific reference can itself create a bias). Sharing full data allows long-
term healthy reusability of the data, avoiding possible batch effects due to data processing.

Meanwhile, the reference bias in SNP-capture data appears inherent to the previously widely
used Agilent 1240K platform (52) and also cannot be corrected. Although Rohland and
colleagues suggest that the TWIST platform is free of reference bias, this observation points
to the risks introduced by experimental manipulation of ancient molecules. Imputation
methods may partly help overcome such inherent biases (55), but imputation using modern-
day haplotypes from specific populations may itself create new issues as, for instance,
variants not present in present-day populations cannot be imputed. Overall, we believe the
safest way forward for the community involves shotgun sequencing and full data sharing.
This can also allow new uses of paleogenomic data, such as copy number variation (56) or
metagenomic analyses (57).

This study also introduced a new algorithm, bamRefine, for effective PMD-correction on
non-UDG-treated libraries. “REFINING” with bamRefine selectively masks only PMD-
sensitive sites at read ends and makes a larger amount of genetic information available for
genotyping than the standard “TRIMMING” approach. Indeed, “REFINING” showed clearly
higher performance compared to “TRIMMING” in terms of overall accuracy. “REFINING”
also did not show significant reference bias, a deficiency that “RESCALING” with
mapDamage was found to suffer from. In simulated and real datasets, the combination of
“GRAPH” mapping and “REFINING” yielded the best results. Meanwhile, optimizing the
“RESCALING” approach could be a worthwhile avenue for future work as it involves the
lowest data loss. We also note that using UDG-treatment of aDNA is an alternative
experimental solution used by a large number of laboratories.

Overall, these approaches offer promising solutions to overcome the challenges associated
with aDNA analysis, extracting more information from the available data and enhancing our
ability to reconstruct the population history of past populations.

Data Availability

All samples of FASTQ/BAM files were downloaded from the accession numbers provided in
the published article, except for Bon002, prs013, mfo001 and irk034, for which raw FASTQ
files were obtained from the corresponding authors of the relevant publications (see Table
S2).
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