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Abstract11

B cells and antibodies are crucial in protecting against infections like SARS-CoV-2.12

However, antibody levels decline after infection or vaccination, reducing defences against13

future SARS-CoV-2 infections. To understand antibody production and decline, we devel-14

oped a mathematical model that predicts germinal center B cell, long-lived plasma cell,15

memory B cell, and antibody dynamics. Our focus was on B cell activation and antibody16

generation following both primary and secondary SARS-CoV-2 infections. Aligning our17

model with clinical data, we adjusted antibody production rates for germinal center B cells18

and plasma B cells during primary and secondary infections. We also assessed antibody19

neutralization against Delta and Omicron variants post-primary and secondary exposure.20

Our findings showed reduced neutralization against Omicron due to its immune evasion. In21

primary and secondary exposures to Delta and Omicron, our predictions indicated enhanced22

antibody neutralization in the secondary response within a year of the primary response. We23

also explored waning immunity, demonstrating how B cell kinetics affect viral neutraliza-24

tion post-primary infection. This study enhances our understanding of humoral immunity25

to SARS-CoV-2 and can predict antibody dynamics post-infection or vaccination.26
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Introduction30

B lymphocytes, called B cells, are integral components of the adaptive immune system and31

contribute significantly to the human body’s defence mechanisms. These specialized cells are32

central to the immune response, particularly in their role as antibody producers [1]. These33

antibodies, also known as immunoglobulins, patrol the bloodstream and tissues, acting as a34

frontline defence by specifically binding to foreign pathogens and inhibiting the harmful ef-35

fects of these invaders [2]. Antiviral antibodies include two distinct categories, neutralizing and36

non-neutralizing antibodies, each governed by unique mechanisms of action. Through partic-37

ular binding, neutralizing antibodies (Nabs) have the power to entirely prevent the virus from38

entering host cells, halting viral particles in their tracks and effectively acting as a robust shield39

against infections [3–5].40

The study of antibody interactions and the dynamics of B cell responses is complex. Math-41

ematical modelling allows for insights into these intricacies, that are complementary to exper-42

imental and clinical research. Mathematical models have a well-established track record of43

being employed in various domains, including biology [6–9], medicine [10–12], and oncol-44

ogy [13–17]. They offer a simplified quantitative and predictive framework for understanding45

complex systems, enabling the exploration of causal relationships and mechanistic insights.46

Such models bridge the molecular intricacies of B cell responses and their implications in the47

broader context of host-pathogen interactions, allowing us to decipher the underlying principles48

governing immune responses. In the study discussed in [18], an initial mathematical model was49

proposed that integrated B cells. This model encompassed four specific types of B cells: target50

cells, proliferating cells, plasma cells, and memory cells. Subsequent studies expanded this51

model, incorporating normal B cells, memory B cells, and long-lived plasma cells to investigate52

the contributions of memory B cells to the secondary immune response [19]. Other studies have53

explored how the immune response depends on the dynamic activation of lymphocytic agents,54

such as T and B cells, and the interplay of signalling molecules like interleukin-2 (IL-2) and55

interleukin-4 (IL-4) [20]. In the research conducted by Keersmaekers et al. [21], a novel ap-56

proach was employed by integrating ordinary differential equation (ODE) models with mixed57

effects models to examine longitudinal vaccine immunogenicity data. Utilizing B-cell and T-58

cell datasets from a herpes zoster vaccine study, the authors introduced ODE-based mixed-59

effects models, providing a valuable framework for vaccine immunogenicity data analysis and60

the evaluation of immunological differences between various vaccines. A comprehensive model61

combining the humoral immune response and the germinal center (GC) reaction has also been62

developed, capturing critical processes involved in immunoglobulin-G (IgG) production [22].63

In this study, we used mathematical modelling to analyze the dynamic processes of B cell ac-64

tivation, antibody generation, and their intricate interplay with viral pathogens. Beginning from65

the established viral dynamics model delineating the virus-host interaction, coupled with the66

innate immune response, initially introduced by [23], we expanded this model by incorporating67

the neutralization effects of antibodies against viral particles and describing the proliferation68

of B lymphocytes, their differentiation into plasma and memory B cells, and the subsequent69
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generation of antibodies following primary and secondary infections. Our primary focus cen-70

tred on investigating SARS-CoV-2 variants, notably Delta and Omicron; however, it is worth71

noting that our model can simulate B cell activations in response to various viral infections.72

Our overarching goal was to construct a model capable of faithfully simulating the humoral73

response, guided by clinical findings. By comparing our model’s antibody predictions with74

clinical data from hospitalized patients, we refined our estimations of antibody generation rates75

by germinal center and plasma B cells. We performed a global sensitivity analysis to discern the76

humoral responsiveness to model parameters in primary and secondary immune responses by77

computing Spearman’s rank correlation coefficient between peak antibody concentrations and78

model parameters. The outcome of this analysis notably highlights the pronounced sensitivity79

of the primary antibody response to the antibody generation rate by germinal center B cells.80

In contrast, the secondary antibody response in its contribution shows equal sensitivity to both81

germinal center B cells and plasma B cells. A noteworthy insight from our findings is the need82

for elevated antibody generation rates to achieve equivalent antibody levels in the secondary83

response as observed in the primary response. We then explored antibody neutralization effects84

against the Delta and Omicron variants of SARS-CoV-2 within both primary and secondary85

immune responses. While Omicron and Delta both elicited comparable antibody levels, the for-86

mer was associated with higher viral load levels and diminished neutralization efficacy. Lastly,87

we explored the consequences of reduced neutralization (either through viral-specific immune88

evasive properties or due to waning antibody concentrations) by studying re-exposure scenarios89

at varying intervals post-primary infection.90

Methods91

In this study, we introduced mathematical models to analyze the immune response to SARS-92

CoV-2 infection. We begin by introducing a model (referred to as Model One, Eqs. (1)) focusing93

on unravelling the intricate dynamics of viral replication and the innate immune responses that94

are triggered upon infection. This model is primarily based on the work of [23]. Subsequently,95

we delve into the dynamics of the primary humoral response in our second model (Model Two,96

Eqs. (2)), where we present a novel mathematical framework to elucidate this essential aspect97

of the immune response.98

We further investigate re-exposure and its impact on the secondary immune response in our99

newly developed third model (Model Three, Eqs. (3)). Finally, we enhance our comprehension100

of viral load dynamics and immune response interactions by introducing an additional neutral-101

ization function for viral load dynamics into Model One (Eq. (4)). Together, these models102

provide valuable insights into critical aspects of infection and immunity, offering a comprehen-103

sive exploration of the immune response to SARS-CoV-2.104
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Mathematical model of viral dynamics and innate immune response105

We used a simplified version of the model presented in [23] to predict SARS-CoV-2 infection106

within a host. This model considers a population of susceptible lung cells (S(t)) that can be in-107

fected (I(t)) by SARS-CoV-2 viral particles (V (t)). When infected, cells secrete unbound type108

I interferon (Fu(t)), which reduces viral infection and makes the cells refractory to the virus109

(R(t)). Infected cells can either undergo virus-induced lysis or be eliminated by the immune110

response, leading to cell damage or death (D(t)). The entire model is represented by Eqs. (1).111

112

Model One113

dV

dt
= pI(t)− dvV (t), (1a)

dS

dt
= λs

(
1−

S(t) + I(t) +D(t) + R(t)

Smax

)
S(t)− βS(t)V (t), (1b)

dI

dt
= βS(t− τI)V (t− τI)

(
1−

Fb(t)

εf + Fb(t)

)
− dII(t), (1c)

dR

dt
= λs

(
1−

S(t) + I(t) +D(t) + R(t)

Smax

)
R(t) + βS(t− τI)V (t− τI)

(
Fb(t)

εf + Fb(t)

)
,

(1d)

dD

dt
= dII(t)− ddD(t), (1e)

dFu

dt
= ψprod

f +
pfI(t)

I(t) + ηf
− klinf

Fu(t)− kbfFb(t)Fu(t) + kuf
Fb(t), (1f)

dFb

dt
= −kintfFb(t) + kbfFb(t)Fu(t)− kuf

Fb(t). (1g)

114

In this submodel, viral particles (V (t)) are produced by infected cells at rate p and are115

cleared through degradation at per capita rate dv, which accounts for all contributions to viral116

clearance. Susceptible epithelial cells (S(t)) proliferate logistically with a per capita prolif-117

eration rate λs to a carrying capacity of Smax. These cells become infected (I(t)) at a rate118

βV (t). Resistant cells (R(t)) proliferate at rate λs, which is equal to that of susceptible cells.119

The concentration of interferon (IFN) determines the number of cells that become refractory to120

infection and the number that become productively infected, controlled by the half-effect pa-121

rameter εf [23]. Following an eclipse phase lasting τI hours, productively infected cells (I(t))122

produce virus particles and undergo virus-mediated lysis at a rate dI . Dead cells (D(t)) ac-123

cumulate through infected cell lysis dI and disintegrate at a rate dd, as observed in rapid cell124

death [24].125

The Michaelis-Menten expression
pf I(t)

I(t)+ηf
in Eq. (1f) represents the production of unbound126

interferon (Fu) by infected cells in response to the infection of target cells, I(t). The parameter127
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pf characterizes the maximum rate at which unbound interferon is generated by infected cells.128

This maximum rate occurs when the concentration of infected cells is significantly higher than129

ηf . In contrast, the parameter ηf , known as the half-effect concentration, defines the point at130

which the interferon production rate reaches half of its maximum value. It plays a crucial role131

in determining how sensitively the production rate responds to fluctuations in the concentration132

of infected cells. Parameters kbf and kuf
represent the binding and unbinding rates of IFN-I, re-133

spectively, while kintf and klinf
are the internalization and elimination rates of bound cytokine.134

Finally, the parameter ψprod
f accounts for the production of IFN by macrophages and mono-135

cytes, which are not explicitly modelled in this system; for more details, refer to [23]. Table136

1 provides a comprehensive list of all model parameter values along with model variables and137

their corresponding initial values.138

Mathematical model of the primary humoral response139

Humoral immunity is a specific immune response characterized by the production of antibodies140

by B lymphocytes. When B cells bind to infectious agents through their surface receptors141

(BCRs), they release antibodies, which either neutralize or exhibit non-neutralizing effects on142

the antigen. In this study, we developed a mathematical model to describe the adaptive immune143

response, focusing on B cell and antibody-mediated immunity. Upon encountering an antigen144

on follicular dendritic cells in secondary lymphoid organs, naïve B cells present the antigen to145

T cells at the T cell-B cell border. This interaction leads to the activation, proliferation, and146

differentiation of naïve B cells into germinal center B cells. B cell maturation can occur within147

germinal centers (GCs) where activated B cells integrate immune signals, including cytokines148

like interleukin-4 released by follicular T cells. This process gives rise to long-lived plasma and149

memory B cells, which provide protective immunity by circulating in the blood or migrating to150

effector sites. IL-4 plays a crucial role in GC B cells’ maturation and self-renewal processes,151

and its absence hinders the proper formation and self-renewal of GC B cells [25]. Memory B152

cells and long-lived plasma cells are responsible for lifelong B cell-mediated protection against153

diseases [26]. Our working assumption regarding the primary response is based on a system154

that begins without a triggered immune response.155

Based on the mechanisms described above, we developed a mathematical model of antibody156

production, as illustrated in Fig. 1. We explicitly considered activated B cells (B(t)), GC B157

cells (Bg(t)), plasma B cells (P (t)), memory B cells (M(t)), neutralizing antibodies (A(t)), T158

follicular helper cells (T (t)), and the central cytokine interleukin-4 (Il(t)). The model consists159

of the following system of seven nonlinear delay differential equations:160

Model Two161

dB

dt
=

(
ρb − µbV (t)− δb

)
B(t), (2a)

dBg

dt
= µbB(t− τb)V (t− τb) + ρbg (2pb − 1)

(
αv

V (t)

Sv + V (t)
+ αIl

Il(t)

SIl + Il(t)

)
Bg(t)− δbgBg(t), (2b)

5
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Figure 1: A) Development of the humoral immune response. In phase 1 of the primary response (left),

after encountering antigen, signalling via the B cell receptor (BCR) in the secondary lymphoid organ

initiates naïve B cell proliferation and differentiation into germinal centre GC B cells (highlighted com-

partments). In phase 2 of the primary response (right), newly differentiated GC B cells form GCs and

present antigen to T follicular helper cells in the light zone. T helper cells activate B cells through IL-4

(highlighted cytokine) signalling. Upon exit from the GC, B cells terminally differentiate into plasma

cells, memory B cells, or re-enter the GC dark zone. In the secondary response (bottom right), memory

B cells respond to antigens by differentiating into long-lived plasma cells or GC B cells, restimulating

antibody production. B) Fate of B cells after primary and secondary infections. Following primary infec-

tion, a GC B cell generates one GC B cell with a probability of pb, one plasma B cell with a probability

of (1− pb)pp and one memory B cell with a probability of (1− pb)(1− pp). During secondary infection,

a memory B cell can divide into another memory B cell with a probability of pm, a GC B cell with a

probability of (1− pm)p̂b, and a plasma B cell with a probability of (1− pm)(1− p̂b).
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dP

dt
= (1− pb)ppρbgBg(t)− δpP (t), (2c)

dM

dt
= (1− pb)(1− pp)ρbgBg(t), (2d)

dA

dt
= αbBg(t) + αpP (t)− δaA(t), (2e)

dT

dt
= µtBg(t)− δtT (t), (2f)

dIl

dt
= µIlT (t)− δIlIl(t). (2g)

162

In Eq. (2a), µbV (t) denotes the interaction of B cells with the pathogen (here considered to163

be SARS-CoV2 viral particles V(t)) and their subsequent differentiation at a rate of µb, while δb164

represents the natural death rate of mature B cells.165

Germinal centers are crucial in generating long-lived, high-affinity plasma and memory B166

cells [27, 28]. As the GC matures, B cells undergo multiple rounds of cell division, driven by167

interactions with T follicular helper cells and engagement with cognate antigens within the light168

zone [29]. In Eq. (2b), GC B cells are assumed to be activated after a delay of τb following169

naïve B cells first encounter with antigen. The activation of GC B cells depends on T follicular170

helper cells, IL-4 signals, and antigen interactions. The parameters αIl and SIl represent the171

binding rate of IL-4 to the receptor on the surface of GC B cells and the saturation constant of172

IL-4, respectively. The parameter αV represents the binding rate of viral particles to GC B cell173

receptors, and SV is the virus saturation constant. GC B cells undergo symmetric division with174

a rate of ρbgpb and die at a rate of δbg .175

Long-lived plasma B cells primarily form during the germinal center reaction and secrete176

high-affinity class antibodies [30, 31]. Eq. (2c) describes the differentiation of plasma B cells177

from GC B cells, which occurs with probability pp, and their natural death rate δp. Memory178

B cells are long-lived and quiescent cells that respond upon re-stimulation by specific antigens179

[32–36]. They arise from the asymmetric division of GC B cells at a rate of (1− pb)(1− pp)ρbg180

(Eq. (2d)). We assumed antibody production to be proportional to the number of GC B cells181

and plasma B cells and to occur at αb and αp, respectively; antibodies degrade at rate δa. This182

model focuses on neutralizing antibodies that can neutralize disease-causing pathogens, thereby183

providing immunity. T follicular helper cells play a crucial role in activating humoral immune184

responses. In our model, B cells act as antigen-presenting cells (APCs) for activating helper T185

cells in the light zone of germinal centers (Fig. 1). The term µtBg(t) in Eq. (2f) represents186

the activation of T cells with a rate parameter µt, based on the stimulation of GC B cells. The187

death of T cells is modelled by the term −δtT with a death rate of δt. Lastly, we consider IL-4188

as the only cytokine in the system (Eq. (2g)). IL-4 is a cytokine with pleiotropic activity in the189

immune system [37], and it plays a crucial role in activating mature B cells. In our mathematical190

model, IL-4 is secreted by T cells at rate µIl and is cleared at rate δIl. Table 2 summarizes model191

variables with their initial values. A detailed list of model parameter values and model variables192
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with their respective initial values is given in Table 2.193

Modeling re-exposure (secondary response)194

Upon subsequent encounters with the same pathogen, the immune system can mount a faster195

and more robust response due to the previous establishment of immunological memory. This196

secondary immune response is typically effective in preventing disease by efficiently detecting,197

attacking, and eliminating the pathogen, leading to reduced symptoms. When memory B cells198

interact with their specific antigens upon re-exposure, they rapidly expand and generate a burst199

of plasma and germinal center B cells. To represent this evolving scenario, we formulated a200

mathematical model depicting the production of antibodies, as shown in Fig. 1. Within this201

model, we took into explicit account memory B cells, germinal center B cells, plasma B cells,202

and neutralizing antibodies. This model is characterized by a system of four nonlinear delay203

differential equations:204

Model Three205

dM

dt
= ρm(2pm − 1)M(t− τm)V (t− τm)− δmM(t), (3a)

dBg

dt
= (1− pm)p̂bρmM(t)− δbgBg(t), (3b)

dP

dt
= (1− pm)(1− p̂b)ρmM(t)− δpP (t), (3c)

dA

dt
= α̂bBg(t) + α̂pP (t)− δaA(t). (3d)

206

In Eq. (3a), we allow for a short delay (τm) to activate memory B cells after re-exposure to207

SARS-CoV-2 and consider mature memory B cells to die at rate δm. Memory B cells undergo208

symmetric division at a rate ρmpm. Eq. (3b) describes the dynamics of GC B cells, which are209

produced through differentiation of memory B cells with the probability of p̂b. These GC B210

cells die naturally at rate δbg . Long-lived plasma B cells, representing memory plasma B cells,211

are generated from the asymmetric division of memory B cells with a rate of (1− pm)(1− p̂b),212

as shown in Eq. (3c).213

The secondary antibody response is characterized by producing significant amounts of higher214

affinity IgG antibodies [38]. Therefore, we assumed different antibody generation rates for GC215

B cells (α̂b) and plasma B cells (α̂p) compared to the primary response (Eq. (3d)). The initial216

values of the secondary response depend on the specific day of re-exposure to the antigen, re-217

flecting the time elapsed since the primary immune response. For example, the initial values for218

the secondary immune response at the one-year mark since the primary exposure (specifically,219

M(360), Bg(360), P (360), A(360)), which were obtained by solving the primary response220

(Eqs. (2)) at day=360 (one year), are listed in Table 2.221
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Antibody Neutralization Effect222

Neutralizing antibodies play a critical role in the immune response by binding to specific regions223

(epitopes) on invading viruses, effectively neutralizing viral infections. They achieve this by224

blocking the interaction between the viral envelope and the host cell’s receptor or inhibiting the225

release of the viral genome [39]. To incorporate the impact of antibody neutralization in our226

model for SARS-CoV-2 infection within the host, we introduced an additional term in Eq. (1a)227

that accounts for the neutralizing effect of antibodies. This term enhances the inhibition of viral228

replication, reflecting the neutralization function. The modified equation is given by:229

dV

dt
= pI(t)− dvV (t)− αEmax

V A(t)h

ICh
50 + A(t)h

. (4)230

The parameters Emax, h, and IC50 describe the neutralization function, which is crucial231

in determining the effectiveness of antibody neutralization and blocking new infections. Emax232

characterizes the maximal attainable neutralization achieved by antibodies and typically ranges233

between 0 and 1 (or 0 and 100%). Parameter h describes the gradient of the neutralization curve234

(usual Hill coefficient), signifying the degree of sensitivity in response to shifts in antibody con-235

centration. IC50 represents the antibody concentration needed to achieve 50% neutralization.236

Thus, by substituting Eq. (4) with Eq. (1a) in the within-host model (Eqs. (1)) and inte-237

grating it with either the primary humoral response model (Eqs. (2)) or the secondary humoral238

response model (Eqs. (3)), we can effectively simulate the interactions between the host and239

pathogen, and the stimulated immune response following the primary or secondary response,240

respectively. Notably, throughout this paper, we consistently utilized viral load dynamics that241

were influenced by the neutralization function (i.e., Eq. (4)).242

Model Calibration243

Literature-Derived Parameters244

Most of the parameters in our model were obtained from relevant literature sources. These fixed245

parameters represent constants that are well-established or values that have been empirically246

validated. A comprehensive list of the parameters used in our host-pathogen interaction model247

(as defined in Eqs (1)) is given in Table 1, with a reference to the source [23]. In the study248

by Jenner et al. (2021) [23], model parameters were obtained through various means, including249

direct extraction from existing literature, fitting of effect curves to experimental data collected in250

vitro, in vivo, and from clinical observations, or through the calculation of values that maintain251

homeostasis in the absence of SARS-CoV-2 infection. Furthermore, the parameters used to252

describe the immune response (as described in Eq. (2) and (3)) are meticulously detailed in253

Table 2, accompanied by the corresponding references.254

Macallan et al. (2005) conducted a comprehensive study on the kinetics of human B lym-255

phocytes, examining two distinct cohorts: one consisting of young individuals (below 35 years256

of age) and the other comprising elderly individuals (over 65 years of age), all in good health.257
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Their observations revealed that peripheral blood B cells exhibited a relatively slow division258

rate, approximately 0.46% per day, while memory cells displayed a more rapid proliferation259

rate, approximately 2.66% per day (ρm = 0.0266). In the absence of specific data, we made the260

assumption that the proliferation rates for activated B cells and germinal center (GC) B cells261

were equivalent and set at ρb = ρbg = 0.0046. In the study by Perelson et al. (1976), biologi-262

cally plausible parameter values were employed, assuming that B-lymphocytes were triggered263

and proliferated with a probability of 0.1. Consequently, in our model, we also assumed the264

same probability of symmetric division for activated B cells and activated memory B cells265

(pb = pm = 0.1).266

Estimated Parameters267

To determine the parameters associated with the neutralization (Equation (4)), namely {Emax,268

h, IC50}, we used the curve-fit() function, a tool for nonlinear least squares curve fitting avail-269

able within the Python programming language through the open-source SciPy library. The270

model was fit to data reporting the efficacy of clinical monoclonal antibodies (such as Sotro-271

vimab) against the Delta and Omicron variants of SARS-CoV-2 from Planas et al. ( [40]). We272

minimized the residual sum of squares (RSS):273

RSS =
m∑

i

(yobsi − yi)
2, (5)274

where the parameterm signifies the number of observed antibody concentration data points. We275

obtained the best-fit values for Emax, h, and IC50 by minimizing the RSS between our model’s276

predictions and these data.277

Adjusted parameters278

Kinetic rates for the generation of antibodies from germinal center B cells and plasma cells are279

difficult to measure experimentally and are therefore generally unavailable. Thus, we leveraged280

data of the primary antibody response from eight hospitalized SARS-CoV-2 infected patients in281

Washington State, USA [41] to adjust the parameters αb and αp (primary response) in addition282

to α̂b and α̂p (secondary response) to ensure that model predictions captured the heterogeneity283

in antibody responses. For this, we simulated our model with parameters set as described in the284

previous sections and performed a parameter sweep ranging from 10−4 to 5. We then compared285

the model’s prediction to these data through a visual predictive check.286

Sensitivity analysis287

We conducted a global sensitivity analysis to identify the parameters most affecting antibody288

production to assess the impact of parameter variations on the maximum values of antibodies289

within both the primary and secondary immune responses in our mathematical model. We used290

10

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2023. ; https://doi.org/10.1101/2023.11.10.566587doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.10.566587
http://creativecommons.org/licenses/by-nd/4.0/


Latin Hypercube Sampling (LHS) [42, 43] to generate 1000 samples of the model’s parame-291

ters. For each, we defined a parameter range using minimum = 0.5 × baseline parameter and292

maximum = 1.5 × baseline parameter. We used correlation and scatter plots to investigate293

the relationship between maximum antibody concentrations and parameters. Further, we mea-294

sured the linear regression between predicted maximum antibody levels and changes in each295

parameter to elucidate the nature and strength of the relationship.296

Results297

Model calibration outcomes298

Fitting neutralization function to clinical data299

We performed curve fitting to clinical data from patients infected with the Omicron and Delta300

variants [40] to determine the parameters of the neutralization function (Eq. (4)). Separate301

curve fitting procedures were carried out for each variant, enabling us to extract variant-specific302

parameter values (Fig. 2A). The resulting parameter values are detailed in Table 1. The fit-303

ted parameters from the function suggest differences in the neutralization effect of antibodies304

against the Omicron and Delta variants of SARS-CoV-2. Notably, though we found a higher305

Emax value for Omicron (92.02) compared to Delta (83.94), indicating a higher maximum ef-306

fect when antibody concentrations are at their saturating levels, the IC50 value for Omicron was307

found to be considerably higher (760.43) than for Delta (189.83), implying that a much greater308

concentration of antibodies is needed to achieve half of the maximum neutralization effect for309

Omicron. This suggests that Omicron is less susceptible to neutralization by the antibodies310

than Delta. The parameter h, or the Hill coefficient, further informs this interpretation. The311

Hill coefficient for Delta was estimated to be slightly above 1 (1.04), suggesting a cooperative312

binding. In contrast, for Omicron, the Hill coefficient was found to be less than 1 (0.84), which313

could indicate a negative cooperative effect or simply a lower level of cooperativity in antibody314

binding. Overall, the fitting results imply that while the maximum potential neutralization effect315

for Omicron may be higher, it is harder to achieve due to the need for higher antibody concen-316

trations, indicating that Omicron may be more resistant to neutralization by antibodies than the317

Delta variant.318

Model validation319

To validate the predictive capabilities of our model, we compared model predictions to clinical320

data collected from a cohort of eight hospitalized patients with SARS-CoV-2 infections [41].321

This validation aimed to substantiate the accuracy of our model’s predictions pertaining to both322

antibodies in the primary response (Eq. (2e)) and viral load dynamics (i.e. Eq. (4)).323

Antibody concentrations The model’s predictions closely matched the measured antibody324

concentrations (Fig. 2B). To achieve this alignment, we set the values for the antibody genera-325
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Figure 2: Comparisons of model predictions to clinical data. A) Model fits (solid lines) to

the neutralization effect of monoclonal antibodies against SARS-CoV-2 Delta (blue dots) and

Omicron (red dots) variants. B) Model prediction (blue solid line) of antibody concentrations in

primary infections compared to clinical data from 8 hospitalized patients infected with SARS-

CoV-2 Wuhan strain in Washington, USA (red markers) with αb = 0.1 and αp = 0.1. C) Model

predictions of viral loads after infection by Delta (blue solid curve) or Omicron (red solid line)

compared to the data. Horizontal dashed line: detection limit of 40 copies/ml.

tion rates of germinal center B cells and plasma B cells, represented by parameters αb and αp,326

to 0.1. This choice allowed us to achieve a close correspondence between the model’s predic-327

tions and the clinical data. These data are from the first wave of the pandemic during which328

both variants had not yet emerged. For simplicity, we assumed Delta to be most similar to the329

Wuhan strain, given the evolutionary distance of Wuhan to Delta versus Wuhan to Omicron,330

and adjusted the parameters using the Delta prediction.331

Viral load Model predictions to data from SARS-CoV-2 concentrations from hospitalized332

patients encompassing infections from Delta and Omicron variants demonstrated good agree-333

ment. We found an elevation in viral loads associated with the Omicron variant compared to334

Delta (Fig. 2C).335

Antibody levels are strongly influenced by germinal centre and plasma B336

cell antibody generation rates337

To quantify the influence of specific parameters on our predicted outcomes, we performed a338

global sensitivity analysis that focused on peak antibody concentrations (Amax) after primary339

and secondary responses. The relationships between primary/secondary antibody responses and340

model parameters are depicted in Fig. 3A. In this figure, we have excluded parameters that do341

not have discernible impacts on model variations. During the primary immune response, our342

analyses reveal a weak correlation between the antibody generation rate by plasma B cells (αp)343

and the peak antibody concentration. In contrast, the antibody generation rate by GC B cells344

(αb) demonstrated a strong positive correlation. Furthermore, we observed a nearly equivalent345

negative correlation between the death rate of plasma B cells (δp) and the clearance rate of anti-346
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Table 1: Initial Values and Parameter Settings for Innate Immune Response to SARS-CoV-2

Infection (Eqs. (1) and (4))).
Variable Definition Initial value Unit Comment

S Susceptible cells 0.16 109 cell/ml [23]

I Infected cells 0 109 cell/ml [23]
R Resistant cells 0 109 cell/ml [23]
D Apoptosed cells 0 109 cell/ml [23]
V Viral load 4.5 log10(copies/ml) [23]
Fu Unbound interferon 0.015 pg/ml [23]
Fb Bound interferon 1.1E-8 pg/ml [23]

Model Parameters

Parameter Definition Value Unit Comment
λs Proliferation of susceptible cells 0.74 day−1 [23]
β Virus infection rate 0.3 day−1cop/ml [23]
τI Eclipse time 0.17 day [23]
dI Death rate of infected cells 0.1 day−1 [23]
dd Degradation rate of apotosed cells 8 day−1 [23]

p Viral production rate 394 day−1(cop/109cells) [23]

dv Viral decay rate 8.4 day−1 [23]
α Neutralization rate 0.5 day−1ml/cop [44]

Emax Maximum neutralization achievable by the antibodies Delta:83.94-Omicron:92.02 - Fitted
IC50 Half maximal effective concentration Delta:189.83-Omicron:760.43 ng/ml Fitted
h Hill coefficient Delta:1.04-Omicron:0.84 - Fitted
kuf

IFN unbinding rate 6.072 day−1 [23]

pf Interferon production by infected cells 2.8235 day−1(pg/ml) [23]

εf Half maximal response 2E-4 109cell/ml [23]

ψprod
f Production of IFN by macrophages and monocytes 0.25 day−1(pg/ml) [23]

ηf Half-maximal response 0.0223 109cells/ml [23]

kbf IFN binding rate 0.0107 day−1(ml/pg) [23]

klinf
Rate of IFN renal clearance 16.635 day−1 [23]

kintf Internalization rate of IFN 16.968 day−1 [23]

bodies (δa) and the peak antibody value. In the secondary response, we found a similar positive347

correlation between the peak antibody value (Amax) and the antibody generation rates of both348

GC B cells (α̂b) and plasma B cells (α̂p). Moreover, Amax was strongly negatively correlated349

with the antibody clearance rate. This negative correlation was also evident, with a reduced350

coefficient value, between the death rates of memory B cells (δm) and GC B cell level. In-351

triguingly, our findings also unveiled a positive correlation between Amax and the probability352

of symmetric deviation in memory B cells (pm). In contrast, a negative correlation was found353

with the probability of asymmetric deviation in memory B cells (p̂b). The observations from354

Fig. 3A were illustrated using scatter plots between the 1000 samples of each parameter gener-355

ated through Latin hypercube sampling and the maximal predicted antibody concentration (Fig.356

3B). Notably, a linear regression analysis yielded a higher Spearman’s correlation coefficient357

(r = 0.562) between Amax and αb during the primary response, as compared to a correlation358

coefficient of r = 0.147 for αp. Similarly, in the secondary response, we found a strong corre-359

lation of r = 0.418 between Amax and α̂b, similar to the correlation r between Amax and α̂p of360

r = 0.38. Low p-values (< 0.001) are reported in the regression fits.361

Quantifying antibody generation rates in primary and secondary responses:362

model validation using clinical data363

Given the above results from our sensitivity analysis, we next sought to capture the hetero-364

geneity in antibody concentrations after primary infections reflected in the clinical data (see365

Fig. 2B). To recover the minimum and maximum values observed in the data from eight hos-366
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Figure 3: Identifying model parameters that significantly impact the maximum antibody level

in both primary and secondary responses. A) Spearman’s rank correlation coefficient was cal-

culated between the maximum primary and secondary antibody levels and model parameters.

The blue and red colours indicate positive and negative correlations, respectively. The mag-

nitude of the blue and red rectangles corresponds to the absolute value of the correlation rank,

showing the statistical significance. B) Scatter plots with linear regression lines and Spearman’s

correlation coefficients (r and p-value) are displayed for the primary and secondary antibody

responses against (a, c) the antibody-secreting rate by germinal center B cells (αb and α̂b) and

(b, d) plasma B cells (αp and α̂p). In (a) and (c), the golden lines represent the linear regression

lines, while in (b) and (d), the black lines indicate the linear regression lines. The maximum

antibody levels are normalized to the baseline values in primary and secondary responses. C)

The model’s prediction of antibodies is compared with the clinical trial data from hospitalized

patients. The gray lines in the graph depict the lowest and highest antibody levels captured by

the model. The solid lines represent the primary response, while the dashed lines indicate the

secondary response. The secondary exposure was modelled to occur one year after primary

infection.
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pitalized COVID-19 patients [41], we modulated the baseline estimated values of parameters367

αb and αp in the primary response, along with α̂b and α̂p in the secondary response. Setting368

αb = αp = 10−4, our model predicted primary antibody concentrations from 102 to 103 (mini-369

mal observed values). Setting these two parameters to be αb = αp = 0.1 resulted in intermediate370

antibody levels ranging from 104 to 106. To achieve the highest antibody levels ranging from371

107 to 109 required increasing both to αb = αp = 5 (Fig. 3C). Achieving the same antibody372

level following a secondary infection required a substantial increase in the parameters α̂b and373

α̂p, approximately 50 times higher than αb and αp (i.e., α̂b = 50αb, α̂p = 50αp). Notably,374

due to the lack of data detailing the distinctions between αb and αp (as well as α̂b and α̂p in375

the secondary immune response), we opted to set them to be equal. Furthermore, as described376

in subsection (), our dataset originates from eight hospitalized patients who had encountered377

primary SARS-CoV-2 infections; however, we also assessed the secondary antibody response.

Table 2: Model variables and parameters of primary and secondary adaptive immune responses

(Eqs. (2) and (3)).
Primary Response

Variable Definition Value Unit Comment
B Activated B cells 109 cell/ml [45]
Bg GC B cells 0 cell/ml Chosen
P Plasma B cells 0 cell/ml Chosen
M Memory B cells 0 cell/ml Chosen
A Antibody 0 ng/ml Chosen
T T follicular helper cells 0 cell/ml Chosen
Il Interleukin-4 (IL-4) 1.31 pg/ml [46]

Model Parameters
Parameter Definition Mean value ± SD Unit Comment

ρb Proliferation rate of activated B cells 0.0046± 0.0028 day−1 [45]
µb Differentiation rate of activated B cell 3.9E-6 day−1ml/cop [20]
δb Natural death rate of activated B cells 0.0124± 0.0005 day−1 [47]
τb Delay in B cell activation 5 day [48]
ρbg Proliferation rate of GC B cells 0.0046± 0.0028 day−1 [45]
pb Symmetric division probability 0.1 - [49]
δbg Natural death rate of GC B cells 0.0323± 0.0414 day−1 [45]
pp Asymmetric division probability 0.9 - [49]
δp Natural death rate of Plasma cells 0.01 day−1 [50, 51]
αb Rate at which GC B cell secretes antibody 0.1 ng/cell day−1 Adjusted based on clinical data
αp Rate at which plasma B cell secretes antibody 0.1 ng/cell day−1 Adjusted based on clinical data
δa Decay rate of antibody 0.034 day−1 [52]
µt Activation rate of T follicular helper cells by B cells 0.0355 cell/ml day−1 [53]
δt Natural death rate of T follicular helper cells 0.055 day−1 [53]
µI IL-4 release rate by T follicular helper cells 1.3 day−1 Chosen
δI Decay rate of IL-4 52.63± 1.39 day−1 [54]
SI Saturation constant of IL-4 104 pg/ml Chosen
αI Binding rate of IL-4 0.1 - Chosen
αv Binding rate of virus particles 0.1 - Chosen
Sv Saturation constant of Virus 6 log10(copies/ml) Chosen

Secondary Response
Variable Definition Value Unit Comment
M Memory B cells 4264.65 cell/ml Estimated one year after primary exposure (infected by the Delta variant)
Bg GC B cells 32.77 cell/ml Estimated one year after primary exposure (infected by the Delta variant)
P Plasma B cells 3127.58 cell/ml Estimated one year after primary exposure (infected by the Delta variant)
A Antibody 13.65 ng/ml Estimated one year after primary exposure (infected by the Delta variant)

Model Parameters
Parameter Definition Value Unit Comment

ρm Proliferation rate of activated memory B cells 0.0266± 0.016 day−1 [45]
pm Symmetric division probability 0.1 - [49]
τm Delay in memory cell activation 3 day [48]
δm Decay rate of memory B cells 0.061± 0.038 day−1 [45]
p̂b Asymmetric division probability 0.9 - [49]
α̂b Rate at which GC B cell secretes antibody 5 ng/cell day−1 Adjusted based on clinical data
α̂p Rate at which plasma B cell secretes antibody 5 ng/cell day−1 Adjusted based on clinical data

378

Antibody neutralization efficacy against Delta and Omicron variants379

Using our full model with parameters values set to those in Table 2, we examined neutralization380

(Eq. (4)) in the context of the Delta and Omicron variants and found that neutralization (i.e.,381

antibody efficacy) was higher during a secondary infection with Delta versus Omicron (Fig.382
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4A). This disparity implies that the Omicron variant may exhibit partial or complete neutral-383

ization evasion by the antibodies integrated into our model. Our findings align with the known384

immune-evasive properties of Omicron [55, 56] through reduced antibody binding to the Omi-385

cron spike domain, indicative of neutralization escape [40]. We also conducted a comparative386

analysis of antibody neutralization effects against Delta and Omicron secondary infections by387

considering three distinct scenarios for primary and secondary infections: (1) Delta-Delta, (2)388

Delta-Omicron, and (3) Omicron-Omicron infections, given a secondary infection occurring389

either three months, six months, or one year after the primary exposure to the virus (Fig. 4B).390

Our findings suggest that antibody neutralization is more pronounced in the Delta-Delta sce-391

nario compared to the other two scenarios, where similar neutralization effects were observed.392

Furthermore, the temporal interval between primary and secondary infections was found to393

have a strong influence on predicted neutralization, with delayed secondary infections resulting394

in reduced neutralization. This phenomenon can be attributed to the decreased antibody levels395

observed in Fig. 4C, coupled with an elevated viral load (Fig. 4D) during later-stage infections,396

and explains the increasing susceptibility to reinfection with time that has been observed from397

the beginning of the COVID-19 pandemic. Indeed, our results demonstrate higher antibody398

concentrations during secondary infections occurring three or six months after primary expo-399

sure, in contrast to secondary infections one year (Fig. 4C), indicative of waning immunity.400

Notably, we couldn’t detect any significant time differences in the decrease of neutralization401

effects for the various scenarios. In other words, there is no significant variation in the time402

intervals when neutralization reaches zero, whether for primary or secondary responses.403

Our model simulations show that waning waning antibody levels can be attributed to the404

decreasing populations of germinal center and plasma B cells. This trend is evident in Fig.405

5, where the initial quantities of GC B cells (Fig. 5A) and plasma B cells (Fig. 5B) are406

considerably smaller and continue to decrease over time. In other words, their initial values407

one year after the primary infection are smaller than those at six months and significantly408

lower than the levels observed at three months (e.g. (Bg(90) > Bg(180) > Bg(360)) and409

(P (90) > P (180) > P (360)).410

Discussion411

In this study, we developed a novel mathematical model to explore the intricate processes gov-412

erning B lymphocyte activation, replication, and differentiation and the production of antibodies413

during infection by SARS-CoV-2. Our model traces the path from germinal center B cells to414

memory and long-lived plasma B cells, culminating in the production of antibodies after initial415

and subsequent viral exposures using a system of delay differential equations (DDEs) to capture416

the interactions between immune cells and neutralizing antibodies. We assumed a delay in the417

activation of germinal center B cells during the primary immune response and a shorter delay418

in the activation of memory B cells during the secondary immune response. By incorporating419

the concept of neutralization, characterized by the binding of antibodies to viral particles to hin-420
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Figure 4: Predicting antibody neutralization effects on SARS-CoV-2 Delta and Omicron vari-

ants in primary and secondary immune responses. A) Primary response for Delta variant neu-

tralization (blue curve) and Omicron variant neutralization (red curve). The inset reflects anti-

body dynamics. B) Neutralization responses after 1) Delta-Delta infection (blue solid curve),

2) Delta-Omicron infection (dashed green curve), and Omicron-Omicron infection (dashed red

curve), with secondary infections occurring three months, six months, and one year after the

primary infection. C) Antibody responses in primary (black curve) and secondary infections

taking place at three months (green curve), six months (blue curve), and one year (red curve)

after the primary infection (Delta-Delta Scenario). D) Viral loads in Omicron secondary infec-

tion occurring three months (green curve), six months (blue curve), and one year (red curve)

from the primary infection with Delta variant.
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Figure 5: Immune cell dynamics post primary and secondary infections with Delta variant for

A) GC B cells and B) plasma B cells over time. Black: primary response. Green: secondary

response to infection occurring three months after primary. Blue: secondary response to infec-

tion occurring six months after the primary. Red: secondary response to infection occurring one

year after primary. The inset reflects GC B cell dynamics in the secondary immune response.

der their replication, we could study the antiviral potency exhibited by neutralizing antibodies.421

Neutralizing antibodies are crucial in mitigating viral infectivity and have been widely studied422

as potential therapeutic agents [57]. Although a substantial portion of our model parameters423

were sourced from existing literature, specific parameters required informed assumptions. For424

this, we conducted a comprehensive global sensitivity analysis to unveil the parameters exerting425

significant influence over the outcomes of our model. Our research revealed that in the primary426

response, the maximum antibody level was most sensitive to the antibody generation rate by427

germinal center B cells. In contrast, it was most sensitive to antibody production rates of both428

germinal center B cells and plasma B cells in the secondary response. By modulating these429

parameters and comparing model predictions to clinical data, we found that higher antibody430

generation rates in the secondary immune response are needed to reach comparative antibody431

concentrations in both primary and secondary infections.432

Investigating the neutralizing effect of antibodies against Delta and Omicron variants after433

primary infection revealed a diminished neutralization rate for Omicron despite parity in an-434

tibody levels. This finding corresponds to known immune evasive properties of the Omicron435

variant [58–60]. We noted a declining trend in overall neutralization when evaluating the sec-436

ondary immune response at intervals of three, six, or one year following primary infection. This437

trend aligns with the decrease in antibody levels, which is a consequence of the reduced initial438

GC and plasma B cells, predicted by our model, thus indicating its capacity to capture waning439

immunity. Waning immunity has particular importance for vaccination campaign scheduling.440
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Therefore, beyond the essential biological insights gained from this work, our model could be441

used in public health contexts for planning boosters.442

In summary, our model of the humoral response predicted (1) antibody and viral load dy-443

namics for various SARS-CoV-2 variants, such as Delta and Omicron, in agreement with clini-444

cal patient data, (2) elevated secondary immune responses characterized by augmented antibody445

generation rates by germinal center B cells and plasma B cells, coupled with intensified anti-446

body neutralization effects, (3) the immune-evasive nature of the Omicron variant, marked by447

similar antibody levels but higher viral load and diminished neutralization tendencies compared448

to the Delta variant and (4) waning immunity. This study thus contributed to our understanding449

of humoral immunity to SARS-CoV-2 and other respiratory viruses and can be used to predict450

antibody dynamics following infection or vaccination. It is important to note that our immune451

models do not take into account affinity coefficients for antibodies. Therefore, we relied on452

variations in the antibody generation rate by germinal center B cells and plasma B cells to cap-453

ture differences in antibody concentrations between the primary and secondary responses. This454

limitation highlights the need for further refinement and expansion of our model to incorporate455

additional factors, such as affinity maturation. While our study primarily focused on B cells,456

antibodies, and the contributions of memory B cells to the secondary response, the adaptive457

immune response is a complex interplay of various molecules and cell types, including T cell-458

mediated immunity. Future studies will explore these factors and refine our modelling approach459

accordingly. Lastly, it should be noted that since we used a deterministic framework consisting460

of ordinary and delay differential equations, our model will predict viral titers below the thresh-461

old of a cleared infection (generally considered to be 1−2 log10(copies/ml)), unlike stochastic462

systems. Overall, our mathematical model provides valuable insights into the dynamics of463

humoral immunity and the role of neutralizing antibodies in the context of SARS-CoV-2 infec-464

tion. By uncovering our model’s critical parameter values and limitations, we lay the foundation465

for future investigations to understand better the adaptive immune response following SARS-466

CoV-2 infections and reinfections with matched or discordant strains and potential therapeutic467

interventions.468
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