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11 Abstract

12 B cells and antibodies are crucial in protecting against infections like SARS-CoV-2.

13 However, antibody levels decline after infection or vaccination, reducing defences against

14 future SARS-CoV-2 infections. To understand antibody production and decline, we devel-

15 oped a mathematical model that predicts germinal center B cell, long-lived plasma cell,

16 memory B cell, and antibody dynamics. Our focus was on B cell activation and antibody

17 generation following both primary and secondary SARS-CoV-2 infections. Aligning our

18 model with clinical data, we adjusted antibody production rates for germinal center B cells

19 and plasma B cells during primary and secondary infections. We also assessed antibody

20 neutralization against Delta and Omicron variants post-primary and secondary exposure.

21 Our findings showed reduced neutralization against Omicron due to its immune evasion. In

22 primary and secondary exposures to Delta and Omicron, our predictions indicated enhanced

23 antibody neutralization in the secondary response within a year of the primary response. We

24 also explored waning immunity, demonstrating how B cell kinetics affect viral neutraliza-

25 tion post-primary infection. This study enhances our understanding of humoral immunity

26 to SARS-CoV-2 and can predict antibody dynamics post-infection or vaccination.
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» Introduction

31 B lymphocytes, called B cells, are integral components of the adaptive immune system and
32 contribute significantly to the human body’s defence mechanisms. These specialized cells are
33 central to the immune response, particularly in their role as antibody producers [[1]. These
s+ antibodies, also known as immunoglobulins, patrol the bloodstream and tissues, acting as a
ss frontline defence by specifically binding to foreign pathogens and inhibiting the harmful ef-
s fects of these invaders [2]. Antiviral antibodies include two distinct categories, neutralizing and
37 non-neutralizing antibodies, each governed by unique mechanisms of action. Through partic-
ss ular binding, neutralizing antibodies (Nabs) have the power to entirely prevent the virus from
3o entering host cells, halting viral particles in their tracks and effectively acting as a robust shield
s against infections [3-5]].

a1 The study of antibody interactions and the dynamics of B cell responses is complex. Math-
«2 ematical modelling allows for insights into these intricacies, that are complementary to exper-
ss imental and clinical research. Mathematical models have a well-established track record of
s being employed in various domains, including biology [6-9]], medicine [10+12], and oncol-
a5 ogy [13-17]. They offer a simplified quantitative and predictive framework for understanding
s complex systems, enabling the exploration of causal relationships and mechanistic insights.
a7 Such models bridge the molecular intricacies of B cell responses and their implications in the
s broader context of host-pathogen interactions, allowing us to decipher the underlying principles
49 governing immune responses. In the study discussed in [18]], an initial mathematical model was
so proposed that integrated B cells. This model encompassed four specific types of B cells: target
st cells, proliferating cells, plasma cells, and memory cells. Subsequent studies expanded this
s2 model, incorporating normal B cells, memory B cells, and long-lived plasma cells to investigate
s3 the contributions of memory B cells to the secondary immune response [19]. Other studies have
s« explored how the immune response depends on the dynamic activation of lymphocytic agents,
ss such as T and B cells, and the interplay of signalling molecules like interleukin-2 (IL-2) and
s interleukin-4 (IL-4) [20]. In the research conducted by Keersmaekers et al. [21]], a novel ap-
57 proach was employed by integrating ordinary differential equation (ODE) models with mixed
ss effects models to examine longitudinal vaccine immunogenicity data. Utilizing B-cell and T-
s9 cell datasets from a herpes zoster vaccine study, the authors introduced ODE-based mixed-
e effects models, providing a valuable framework for vaccine immunogenicity data analysis and
st the evaluation of immunological differences between various vaccines. A comprehensive model
e2 combining the humoral immune response and the germinal center (GC) reaction has also been
ss developed, capturing critical processes involved in immunoglobulin-G (IgG) production [22].
64 In this study, we used mathematical modelling to analyze the dynamic processes of B cell ac-
s tivation, antibody generation, and their intricate interplay with viral pathogens. Beginning from
e the established viral dynamics model delineating the virus-host interaction, coupled with the
67 1nnate immune response, initially introduced by [23]], we expanded this model by incorporating
es the neutralization effects of antibodies against viral particles and describing the proliferation
ss of B lymphocytes, their differentiation into plasma and memory B cells, and the subsequent
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70 generation of antibodies following primary and secondary infections. Our primary focus cen-
71 tred on investigating SARS-CoV-2 variants, notably Delta and Omicron; however, it is worth
72 noting that our model can simulate B cell activations in response to various viral infections.
73 Our overarching goal was to construct a model capable of faithfully simulating the humoral
72 response, guided by clinical findings. By comparing our model’s antibody predictions with
75 clinical data from hospitalized patients, we refined our estimations of antibody generation rates
76 by germinal center and plasma B cells. We performed a global sensitivity analysis to discern the
77 humoral responsiveness to model parameters in primary and secondary immune responses by
78 computing Spearman’s rank correlation coefficient between peak antibody concentrations and
79 model parameters. The outcome of this analysis notably highlights the pronounced sensitivity
so of the primary antibody response to the antibody generation rate by germinal center B cells.
st In contrast, the secondary antibody response in its contribution shows equal sensitivity to both
s2 germinal center B cells and plasma B cells. A noteworthy insight from our findings is the need
ss for elevated antibody generation rates to achieve equivalent antibody levels in the secondary
s¢ response as observed in the primary response. We then explored antibody neutralization effects
s against the Delta and Omicron variants of SARS-CoV-2 within both primary and secondary
ss immune responses. While Omicron and Delta both elicited comparable antibody levels, the for-
&7 mer was associated with higher viral load levels and diminished neutralization efficacy. Lastly,
ss we explored the consequences of reduced neutralization (either through viral-specific immune
ss evasive properties or due to waning antibody concentrations) by studying re-exposure scenarios
o0 at varying intervals post-primary infection.

«+ Methods

92 In this study, we introduced mathematical models to analyze the immune response to SARS-
s CoV-2 infection. We begin by introducing a model (referred to as Model One, Eqgs. (I))) focusing
9« on unravelling the intricate dynamics of viral replication and the innate immune responses that
o5 are triggered upon infection. This model is primarily based on the work of [23[]. Subsequently,
9 we delve into the dynamics of the primary humoral response in our second model (Model Two,
o Egs. (2)), where we present a novel mathematical framework to elucidate this essential aspect
98 of the immune response.

99 We further investigate re-exposure and its impact on the secondary immune response in our
10 newly developed third model (Model Three, Eqs. (3)). Finally, we enhance our comprehension
101 of viral load dynamics and immune response interactions by introducing an additional neutral-
102 ization function for viral load dynamics into Model One (Eq. (). Together, these models
103 provide valuable insights into critical aspects of infection and immunity, offering a comprehen-
104 sive exploration of the immune response to SARS-CoV-2.


https://doi.org/10.1101/2023.11.10.566587
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.10.566587; this version posted November 12, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

s Mathematical model of viral dynamics and innate immune response

106 We used a simplified version of the model presented in [23]] to predict SARS-CoV-2 infection
107 within a host. This model considers a population of susceptible lung cells (S(¢)) that can be in-
108 fected (I(t)) by SARS-CoV-2 viral particles (V' (¢)). When infected, cells secrete unbound type
19 I interferon (F,(t)), which reduces viral infection and makes the cells refractory to the virus
1o (R(t)). Infected cells can either undergo virus-induced lysis or be eliminated by the immune
111 response, leading to cell damage or death (D(t)). The entire model is represented by Egs. (T).

112

113 Model One
S = pI(t) ~ 4,V (1), (1)
1 D
45 _ (1 - 20O DO+ EOY gy gy, (1b)
dt Sma:c
dI Fy(t)
— = - ) (1 —2L ) —qr 1
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dF;
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114
115 In this submodel, viral particles (V/(¢)) are produced by infected cells at rate p and are

11 cleared through degradation at per capita rate d,, which accounts for all contributions to viral
17 clearance. Susceptible epithelial cells (S(t)) proliferate logistically with a per capita prolif-
18 eration rate A\, to a carrying capacity of S,.,. These cells become infected (/(t)) at a rate
1e BV (t). Resistant cells (R(t)) proliferate at rate A, which is equal to that of susceptible cells.
120 The concentration of interferon (IFN) determines the number of cells that become refractory to
121 infection and the number that become productively infected, controlled by the half-effect pa-
122 rameter ¢ [23]]. Following an eclipse phase lasting 7; hours, productively infected cells (/(t))
123 produce virus particles and undergo virus-mediated lysis at a rate d;. Dead cells (D(t)) ac-
124 cumulate through infected cell lysis d; and disintegrate at a rate dg, as observed in rapid cell
125 death [24].

126 The Michaelis-Menten expression I(t) B0 )

127 interferon (F},) by infected cells in response to the infection of target cells, /(). The parameter

in Eq. (If) represents the production of unbound

4
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128 py characterizes the maximum rate at which unbound interferon is generated by infected cells.
129 'This maximum rate occurs when the concentration of infected cells is significantly higher than
130 7). In contrast, the parameter 1y, known as the half-effect concentration, defines the point at
131 which the interferon production rate reaches half of its maximum value. It plays a crucial role
122 in determining how sensitively the production rate responds to fluctuations in the concentration
133 of infected cells. Parameters k; ; and k, ; represent the binding and unbinding rates of IFN-I, re-
13a  spectively, while k;,,; ; and Ky, ; are the internalization and elimination rates of bound cytokine.

135 Finally, the parameter 1/1§md accounts for the production of IFN by macrophages and mono-
136 cytes, which are not explicitly modelled in this system; for more details, refer to [23]. Table
137 [I] provides a comprehensive list of all model parameter values along with model variables and
138 their corresponding initial values.

o Mathematical model of the primary humoral response

120 Humoral immunity is a specific immune response characterized by the production of antibodies
141 by B lymphocytes. When B cells bind to infectious agents through their surface receptors
12 (BCRs), they release antibodies, which either neutralize or exhibit non-neutralizing effects on
113 the antigen. In this study, we developed a mathematical model to describe the adaptive immune
144 response, focusing on B cell and antibody-mediated immunity. Upon encountering an antigen
15 on follicular dendritic cells in secondary lymphoid organs, naive B cells present the antigen to
s T cells at the T cell-B cell border. This interaction leads to the activation, proliferation, and
147 differentiation of naive B cells into germinal center B cells. B cell maturation can occur within
14s  germinal centers (GCs) where activated B cells integrate immune signals, including cytokines
149 like interleukin-4 released by follicular T cells. This process gives rise to long-lived plasma and
150 memory B cells, which provide protective immunity by circulating in the blood or migrating to
151 effector sites. IL-4 plays a crucial role in GC B cells” maturation and self-renewal processes,
12 and its absence hinders the proper formation and self-renewal of GC B cells [25]. Memory B
153 cells and long-lived plasma cells are responsible for lifelong B cell-mediated protection against
154 diseases [26]. Our working assumption regarding the primary response is based on a system
155 that begins without a triggered immune response.

156 Based on the mechanisms described above, we developed a mathematical model of antibody
157 production, as illustrated in Fig. We explicitly considered activated B cells (B(t)), GC B
158 cells (B, (t)), plasma B cells (P(t)), memory B cells (M (t)), neutralizing antibodies (A(t)), T
159 follicular helper cells (7'(¢)), and the central cytokine interleukin-4 (/1(¢)). The model consists
10 of the following system of seven nonlinear delay differential equations:

161 Model Two
dB
y (Pb — mV(t) — 5b>B(t)> (2a)
dB, V() I1(t)

W = ,u,bB(t — Tb)V(t - Tb) erbg(?pb - 1)(0{1,51) n V(t) + o S —l—[l(t))Bg(t) - 5bng(t), (2b)
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Figure 1: A) Development of the humoral immune response. In phase 1 of the primary response (left),
after encountering antigen, signalling via the B cell receptor (BCR) in the secondary lymphoid organ
initiates naive B cell proliferation and differentiation into germinal centre GC B cells (highlighted com-
partments). In phase 2 of the primary response (right), newly differentiated GC B cells form GCs and
present antigen to T follicular helper cells in the light zone. T helper cells activate B cells through IL-4
(highlighted cytokine) signalling. Upon exit from the GC, B cells terminally differentiate into plasma
cells, memory B cells, or re-enter the GC dark zone. In the secondary response (bottom right), memory
B cells respond to antigens by differentiating into long-lived plasma cells or GC B cells, restimulating
antibody production. B) Fate of B cells after primary and secondary infections. Following primary infec-
tion, a GC B cell generates one GC B cell with a probability of py, one plasma B cell with a probability
of (1 — py)pp and one memory B cell with a probability of (1 — p;)(1 — p,). During secondary infection,
a memory B cell can divide into another memory B cell with a probability of p,,, a GC B cell with a
probability of (1 — p,,,)pp, and a plasma B cell with a probability of (1 — p,,)(1 — pp).
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O = By (1) ~ 6T(0), (2)
% — () — Sull(t). (2g)

162

163 In Eq. (2a)), 14V (t) denotes the interaction of B cells with the pathogen (here considered to
162 be SARS-CoV?2 viral particles V(t)) and their subsequent differentiation at a rate of y,, while 9
15 represents the natural death rate of mature B cells.

166 Germinal centers are crucial in generating long-lived, high-affinity plasma and memory B
167 cells [27,28]]. As the GC matures, B cells undergo multiple rounds of cell division, driven by
s interactions with T follicular helper cells and engagement with cognate antigens within the light
6o zone [29]. In Eq. (2b), GC B cells are assumed to be activated after a delay of 7, following
170 naive B cells first encounter with antigen. The activation of GC B cells depends on T follicular
171 helper cells, IL-4 signals, and antigen interactions. The parameters «;; and Sj; represent the
172 binding rate of IL-4 to the receptor on the surface of GC B cells and the saturation constant of
173 IL-4, respectively. The parameter oy represents the binding rate of viral particles to GC B cell
174 receptors, and Sy is the virus saturation constant. GC B cells undergo symmetric division with
175 arate of py pp and die at a rate of 6bg.

176 Long-lived plasma B cells primarily form during the germinal center reaction and secrete
177 high-affinity class antibodies [30,[31]]. Eq. describes the differentiation of plasma B cells
i7s  from GC B cells, which occurs with probability p,, and their natural death rate J,. Memory
179 B cells are long-lived and quiescent cells that respond upon re-stimulation by specific antigens
1o [32-36]. They arise from the asymmetric division of GC B cells at a rate of (1 — py,)(1 — p,)ps,
11 (Eq. (2d)). We assumed antibody production to be proportional to the number of GC B cells
12 and plasma B cells and to occur at a3, and «,, respectively; antibodies degrade at rate J,. This
183 model focuses on neutralizing antibodies that can neutralize disease-causing pathogens, thereby
18« providing immunity. T follicular helper cells play a crucial role in activating humoral immune
185 responses. In our model, B cells act as antigen-presenting cells (APCs) for activating helper T
186 cells in the light zone of germinal centers (Fig. . The term 4 B,(t) in Eq. represents
17 the activation of 7" cells with a rate parameter j;, based on the stimulation of GC B cells. The
188 death of T cells is modelled by the term —¢,7" with a death rate of ¢;. Lastly, we consider IL-4
180 as the only cytokine in the system (Eq. (2g))). IL-4 is a cytokine with pleiotropic activity in the
190 immune system [37]], and it plays a crucial role in activating mature B cells. In our mathematical
191 model, IL-4 is secreted by 7 cells at rate ;1;; and is cleared at rate d;. Table summarizes model
192 variables with their initial values. A detailed list of model parameter values and model variables
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193 with their respective initial values is given in Table 2]

12« Modeling re-exposure (secondary response)

1es  Upon subsequent encounters with the same pathogen, the immune system can mount a faster
196 and more robust response due to the previous establishment of immunological memory. This
197 secondary immune response is typically effective in preventing disease by efficiently detecting,
19¢  attacking, and eliminating the pathogen, leading to reduced symptoms. When memory B cells
190 interact with their specific antigens upon re-exposure, they rapidly expand and generate a burst
200 of plasma and germinal center B cells. To represent this evolving scenario, we formulated a
200 mathematical model depicting the production of antibodies, as shown in Fig. [l Within this
202 model, we took into explicit account memory B cells, germinal center B cells, plasma B cells,
203 and neutralizing antibodies. This model is characterized by a system of four nonlinear delay
204 differential equations:

205 Model Three
dM
e P (2pm — V)M (t — 7))V (t — 7o) — 6 M (1), (3a)
dB _
d_tg = (1 - pm)pbpmM(t) - 5bng(t)a (3b)
dP N
7 = (1= pn)(L = Po)omM () = 5, P(1), (3¢)
dA ~
o apBy(t) + a, P(t) — 0,A(t). (3d)
206
207 In Eq. (34), we allow for a short delay () to activate memory B cells after re-exposure to

208 SARS-CoV-2 and consider mature memory B cells to die at rate 9,,. Memory B cells undergo
200 symmetric division at a rate p,,p,,. Eq. describes the dynamics of GC B cells, which are
210 produced through differentiation of memory B cells with the probability of p,. These GC B
211 cells die naturally at rate d,,. Long-lived plasma B cells, representing memory plasma B cells,
212 are generated from the asymmetric division of memory B cells with a rate of (1 — p,,,)(1 — pp),
213 as shown in Eq. (3d).

214 The secondary antibody response is characterized by producing significant amounts of higher
215 affinity IgG antibodies [38]. Therefore, we assumed different antibody generation rates for GC
216 B cells () and plasma B cells (@) compared to the primary response (Eq. (3d)). The initial
217 values of the secondary response depend on the specific day of re-exposure to the antigen, re-
218 flecting the time elapsed since the primary immune response. For example, the initial values for
219 the secondary immune response at the one-year mark since the primary exposure (specifically,
20 M (360), B,(360), P(360), A(360)), which were obtained by solving the primary response
221 (Egs. (2))) at day=360 (one year), are listed in Table[2]
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22 Antibody Neutralization Effect

223 Neutralizing antibodies play a critical role in the immune response by binding to specific regions
224 (epitopes) on invading viruses, effectively neutralizing viral infections. They achieve this by
225 blocking the interaction between the viral envelope and the host cell’s receptor or inhibiting the
226 release of the viral genome [39]. To incorporate the impact of antibody neutralization in our
227 model for SARS-CoV-2 infection within the host, we introduced an additional term in Eq. (Ia))
228 that accounts for the neutralizing effect of antibodies. This term enhances the inhibition of viral
220 replication, reflecting the neutralization function. The modified equation is given by:

dV VA(t)h

— =pl(t) —d,V(t) — aFpyx——. 4
230 0t pl(t) (t) —a ICE + A(t)h #)
231 The parameters Fi.x, h, and IC5q describe the neutralization function, which is crucial

232 1n determining the effectiveness of antibody neutralization and blocking new infections. Ei,.x
233 characterizes the maximal attainable neutralization achieved by antibodies and typically ranges
2a between 0 and 1 (or 0 and 100%). Parameter h describes the gradient of the neutralization curve
235 (usual Hill coefficient), signifying the degree of sensitivity in response to shifts in antibody con-
26 centration. /Cly represents the antibody concentration needed to achieve 50% neutralization.
237 Thus, by substituting Eq. @) with Eq. (Ta) in the within-host model (Egs. (I))) and inte-
208 grating it with either the primary humoral response model (Egs. (2)) or the secondary humoral
29 response model (Egs. (3)), we can effectively simulate the interactions between the host and
240 pathogen, and the stimulated immune response following the primary or secondary response,
241 respectively. Notably, throughout this paper, we consistently utilized viral load dynamics that
22 were influenced by the neutralization function (i.e., Eq. (@)).

2s  Model Calibration
24 Literature-Derived Parameters

245 Most of the parameters in our model were obtained from relevant literature sources. These fixed
246 parameters represent constants that are well-established or values that have been empirically
247 validated. A comprehensive list of the parameters used in our host-pathogen interaction model
25 (as defined in Eqs (I)) is given in Table [} with a reference to the source [23]. In the study
249 by Jenner et al. (2021) [23], model parameters were obtained through various means, including
250  direct extraction from existing literature, fitting of effect curves to experimental data collected in
251 Vitro, in vivo, and from clinical observations, or through the calculation of values that maintain
252 homeostasis in the absence of SARS-CoV-2 infection. Furthermore, the parameters used to
23 describe the immune response (as described in Eq. (2) and (3))) are meticulously detailed in
2« Table 2] accompanied by the corresponding references.

255 Macallan et al. (2005) conducted a comprehensive study on the kinetics of human B lym-
256 phocytes, examining two distinct cohorts: one consisting of young individuals (below 35 years
257 of age) and the other comprising elderly individuals (over 65 years of age), all in good health.

9
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258 Their observations revealed that peripheral blood B cells exhibited a relatively slow division
250 rate, approximately 0.46% per day, while memory cells displayed a more rapid proliferation
20 rate, approximately 2.66% per day (p,, = 0.0266). In the absence of specific data, we made the
261 assumption that the proliferation rates for activated B cells and germinal center (GC) B cells
2 were equivalent and set at p, = pp, = 0.0046. In the study by Perelson et al. (1976), biologi-
263 cally plausible parameter values were employed, assuming that B-lymphocytes were triggered
26+ and proliferated with a probability of 0.1. Consequently, in our model, we also assumed the
265 same probability of symmetric division for activated B cells and activated memory B cells

266 (Pp = pm = 0.1).

27 Estimated Parameters

28 To determine the parameters associated with the neutralization (Equation {))), namely {E,,..,
29 h, [C50}, we used the curve-fit() function, a tool for nonlinear least squares curve fitting avail-
270 able within the Python programming language through the open-source SciPy library. The
2r1 model was fit to data reporting the efficacy of clinical monoclonal antibodies (such as Sotro-
272 vimab) against the Delta and Omicron variants of SARS-CoV-2 from Planas et al. ( [40]]). We
273 minimized the residual sum of squares (RSS):

274 RSS = Z(yobsi - yi)27 (5)

275 where the parameter m signifies the number of observed antibody concentration data points. We
276 obtained the best-fit values for E,, .., h, and IC5q by minimizing the RSS between our model’s
277 predictions and these data.

27s  Adjusted parameters

279 Kinetic rates for the generation of antibodies from germinal center B cells and plasma cells are
250 difficult to measure experimentally and are therefore generally unavailable. Thus, we leveraged
281 data of the primary antibody response from eight hospitalized SARS-CoV-2 infected patients in
2.2 Washington State, USA [41] to adjust the parameters «;, and o, (primary response) in addition
283 to ay, and @, (secondary response) to ensure that model predictions captured the heterogeneity
234 1n antibody responses. For this, we simulated our model with parameters set as described in the
285 previous sections and performed a parameter sweep ranging from 10~ to 5. We then compared
286 the model’s prediction to these data through a visual predictive check.

27 Sensitivity analysis

288 We conducted a global sensitivity analysis to identify the parameters most affecting antibody
289 production to assess the impact of parameter variations on the maximum values of antibodies
290 Wwithin both the primary and secondary immune responses in our mathematical model. We used
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201 Latin Hypercube Sampling (LHS) [42,43] to generate 1000 samples of the model’s parame-
202 ters. For each, we defined a parameter range using minimum = (.5 X baseline parameter and
203 maximum = 1.5 X baseline parameter. We used correlation and scatter plots to investigate
204 the relationship between maximum antibody concentrations and parameters. Further, we mea-
205 sured the linear regression between predicted maximum antibody levels and changes in each
206 parameter to elucidate the nature and strength of the relationship.

. Results

s Model calibration outcomes
200 Fitting neutralization function to clinical data

a0 We performed curve fitting to clinical data from patients infected with the Omicron and Delta
a1 variants [40] to determine the parameters of the neutralization function (Eq. (@))). Separate
a2 curve fitting procedures were carried out for each variant, enabling us to extract variant-specific
a0z parameter values (Fig. [2JA). The resulting parameter values are detailed in Table [I] The fit-
s04 ted parameters from the function suggest differences in the neutralization effect of antibodies
a5 against the Omicron and Delta variants of SARS-CoV-2. Notably, though we found a higher
306 Fmax vValue for Omicron (92.02) compared to Delta (83.94), indicating a higher maximum ef-
a7 fect when antibody concentrations are at their saturating levels, the /Cy, value for Omicron was
ss found to be considerably higher (760.43) than for Delta (189.83), implying that a much greater
s09 concentration of antibodies is needed to achieve half of the maximum neutralization effect for
sio Omicron. This suggests that Omicron is less susceptible to neutralization by the antibodies
st than Delta. The parameter h, or the Hill coefficient, further informs this interpretation. The
sz Hill coefficient for Delta was estimated to be slightly above 1 (1.04), suggesting a cooperative
a3 binding. In contrast, for Omicron, the Hill coefficient was found to be less than 1 (0.84), which
s14 could indicate a negative cooperative effect or simply a lower level of cooperativity in antibody
a5 binding. Overall, the fitting results imply that while the maximum potential neutralization effect
sie  for Omicron may be higher, it is harder to achieve due to the need for higher antibody concen-
a7 trations, indicating that Omicron may be more resistant to neutralization by antibodies than the
a8 Delta variant.

319 Model validation

s20 To validate the predictive capabilities of our model, we compared model predictions to clinical
a2t data collected from a cohort of eight hospitalized patients with SARS-CoV-2 infections [41].
a2 This validation aimed to substantiate the accuracy of our model’s predictions pertaining to both
a3 antibodies in the primary response (Eq. (2€) and viral load dynamics (i.e. Eq. (@))).

324 Antibody concentrations The model’s predictions closely matched the measured antibody
s2s concentrations (Fig. 2B). To achieve this alignment, we set the values for the antibody genera-
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Figure 2: Comparisons of model predictions to clinical data. A) Model fits (solid lines) to
the neutralization effect of monoclonal antibodies against SARS-CoV-2 Delta (blue dots) and
Omicron (red dots) variants. B) Model prediction (blue solid line) of antibody concentrations in
primary infections compared to clinical data from 8 hospitalized patients infected with SARS-
CoV-2 Wuhan strain in Washington, USA (red markers) with o, = 0.1 and «, = 0.1. C) Model
predictions of viral loads after infection by Delta (blue solid curve) or Omicron (red solid line)
compared to the data. Horizontal dashed line: detection limit of 40 copies/ml.

a6 tion rates of germinal center B cells and plasma B cells, represented by parameters oy, and o,
sz to 0.1. This choice allowed us to achieve a close correspondence between the model’s predic-
a2s tions and the clinical data. These data are from the first wave of the pandemic during which
320 both variants had not yet emerged. For simplicity, we assumed Delta to be most similar to the
a0 Wuhan strain, given the evolutionary distance of Wuhan to Delta versus Wuhan to Omicron,
s31  and adjusted the parameters using the Delta prediction.

332 Viral load Model predictions to data from SARS-CoV-2 concentrations from hospitalized
333 patients encompassing infections from Delta and Omicron variants demonstrated good agree-
s« ment. We found an elevation in viral loads associated with the Omicron variant compared to

a5 Delta (Fig. )

s Antibody levels are strongly influenced by germinal centre and plasma B
sz cell antibody generation rates

ss To quantify the influence of specific parameters on our predicted outcomes, we performed a
se  global sensitivity analysis that focused on peak antibody concentrations (A,,,.) after primary
a0 and secondary responses. The relationships between primary/secondary antibody responses and
s model parameters are depicted in Fig. [3A. In this figure, we have excluded parameters that do
a2 not have discernible impacts on model variations. During the primary immune response, our
us analyses reveal a weak correlation between the antibody generation rate by plasma B cells ()
a4 and the peak antibody concentration. In contrast, the antibody generation rate by GC B cells
a5 (ap) demonstrated a strong positive correlation. Furthermore, we observed a nearly equivalent
us negative correlation between the death rate of plasma B cells (J,)) and the clearance rate of anti-
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Table 1: Initial Values and Parameter Settings for Innate Immune Response to SARS-CoV-2
Infection (Egs. (1)) and (@))).

Variable Definition Initial value Unit Comment
S Susceptible cells 0.16 109 cell/ml 23]
I Infected cells 0 109 cell/ml 23]
R Resistant cells 0 109 cell/ml 23]
D Apoptosed cells 0 109 cell/ml 23
|4 Viral load 4.5 logi(copies/ml) 23
F, Unbound interferon 0.015 pg/ml 23
5y Bound interferon 1.1E-8 pg/ml 23
Model Parameters
Parameter Definition Value Unit Comment

Degradation rate of apotosed cells
Viral production rate

,,,,,,,,,,,,,, Half maximal effective concentration _ __ __ Delta:189.83-Omicron:760.43 _____ng/ml_______Fitted _ __

h Hill coefficient
: IEN unbinding rate

it g Internalization rate of IFN

a7 bodies (0,) and the peak antibody value. In the secondary response, we found a similar positive
us  correlation between the peak antibody value (A,,.,) and the antibody generation rates of both
us  GC B cells (a3) and plasma B cells (&,). Moreover, A,,,, was strongly negatively correlated
sso  with the antibody clearance rate. This negative correlation was also evident, with a reduced
a1 coefficient value, between the death rates of memory B cells (4,,) and GC B cell level. In-
a2 triguingly, our findings also unveiled a positive correlation between A,,,, and the probability
353 of symmetric deviation in memory B cells (p,,). In contrast, a negative correlation was found
s« with the probability of asymmetric deviation in memory B cells (p,). The observations from
w5 Fig. [3JA were illustrated using scatter plots between the 1000 samples of each parameter gener-
ss6  ated through Latin hypercube sampling and the maximal predicted antibody concentration (Fig.
7 [3B). Notably, a linear regression analysis yielded a higher Spearman’s correlation coefficient
s (r = 0.562) between A, and o, during the primary response, as compared to a correlation
30 coefficient of r = 0.147 for cy,. Similarly, in the secondary response, we found a strong corre-
a0 lation of r = 0.418 between A,,,, and &y, similar to the correlation r between A,,,,, and &, of
st 1 = 0.38. Low p-values (< 0.001) are reported in the regression fits.

2 Quantifying antibody generation rates in primary and secondary responses:
s model validation using clinical data

s« Given the above results from our sensitivity analysis, we next sought to capture the hetero-
35 geneity in antibody concentrations after primary infections reflected in the clinical data (see
s Fig. 2B). To recover the minimum and maximum values observed in the data from eight hos-
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Figure 3: Identifying model parameters that significantly impact the maximum antibody level
in both primary and secondary responses. A) Spearman’s rank correlation coefficient was cal-
culated between the maximum primary and secondary antibody levels and model parameters.
The blue and red colours indicate positive and negative correlations, respectively. The mag-
nitude of the blue and red rectangles corresponds to the absolute value of the correlation rank,
showing the statistical significance. B) Scatter plots with linear regression lines and Spearman’s
correlation coefficients (r and p-value) are displayed for the primary and secondary antibody
responses against (a, ¢) the antibody-secreting rate by germinal center B cells («;, and &) and
(b, d) plasma B cells (o, and &,,). In (a) and (c), the golden lines represent the linear regression
lines, while in (b) and (d), the black lines indicate the linear regression lines. The maximum
antibody levels are normalized to the baseline values in primary and secondary responses. C)
The model’s prediction of antibodies is compared with the clinical trial data from hospitalized
patients. The gray lines in the graph depict the lowest and highest antibody levels captured by
the model. The solid lines represent the primary response, while the dashed lines indicate the
secondary response. The secondary exposure was modelled to occur one year after primary
infection.
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s7  pitalized COVID-19 patients [41], we modulated the baseline estimated values of parameters
ss «y and q, in the primary response, along with &} and @, in the secondary response. Setting
o, = a;, = 1074, our model predicted primary antibody concentrations from 10% to 10* (mini-
s mal observed values). Setting these two parameters to be o, = o, = 0.1 resulted in intermediate
s antibody levels ranging from 10* to 10°. To achieve the highest antibody levels ranging from
sz 107 to 10° required increasing both to oy, = «, = 5 (Fig. ). Achieving the same antibody
ars  level following a secondary infection required a substantial increase in the parameters oy, and
a4 (), approximately 50 times higher than o, and o, (i.e., @, = 50as, @, = 50a;). Notably,
s due to the lack of data detailing the distinctions between «ay;, and «, (as well as @, and @, in
a7e  the secondary immune response), we opted to set them to be equal. Furthermore, as described
a77  in subsection (), our dataset originates from eight hospitalized patients who had encountered
primary SARS-CoV-2 infections; however, we also assessed the secondary antibody response.

Table 2: Model variables and parameters of primary and secondary adaptive immune responses

(Egs. ) and (3)).

Primary Response

Variable Definition Valye Unit Comment
B Activated B cells 107 cell/ml 45
B, GC B cells 0 cell/ml Chosen
P Plasma B cells [0] cell/m] Chosen
M Memory B cells 0 cell/ml Chosen
A Antibody 0 ng/ml Chosen
T T follicular helper cells 0 cell/mI Chosen
11 Interleukin-4 (IL-4) 1.31 pg/ml 146]
Model Parameter:
Parameter Definition Mean value £ SD Unit Comment
b Proliferation rate of activated B cells 0.0046 £ 0.0028 day ! 45

Op, Natural death rate of GC B cells 0.0323 £ 0.0414 day™ [45]

P Asymmetric division probability 09 . 2
0 Natural death rate of Plasma cells 0.01 day [50051]

] Rate at which GC B cell secretes antibody _________ 01— ng/eell day=— Adjusted based on clinicaldata_

ooy ] Rate at which plasma B cell secretes antibody _______ 0.1~ " ‘mg/cell day™t "~ """~~~ " Adjusiedbased on clinicaldata_
O Decay rate of antibody 0.034 day™! 152]

___#u____Activation rate of T follicular helper cells by B cells____ 00355« cellfmiday™ ] L3
[ Natural death rate of T follicular helper cells 0.055 day 153]

oo qu______IL-4releaserate by T follicular helpercells ________ L3 eyt Chosen ___________________.

T Decay rate of IL-4 52634139 " day ! T T T 4
St Saturation constant of IL-4 10? pg/ml Chosen

- T Bindingrateof [L-4 "~ """ """""""""" 08 S Chosen” ~~~ """ """

-0y _________Bindingrate of virus particles ____________ or e Chosen .
S, Saturation constant of Virus 6 logio(copies/ml) Chosen

Secondary Response
Varjable Definition Value Unit Comment
M Memory B cells 4264.65 cell/ml Estimated one year after primary exposure (infected by the Delta variant)
B, GC B cells 32.77 cell/ml Estimated one year after primary exposure (infected by the Delta variant)
P Plasma B cells 3127.58 cell/ml Estimated one year after primary exposure (infected by the Delta variant)
A Antibody 13.65 ng/ml Estimated one year after primary exposure (infected by the Delta variant)
Model Parameter:
Parameter Definition alue nit Comment
Proliferation rate of activated memory B cells .0266 + 0.016 [45]
"""" _Symm probability _ - A

Db Asymmetric division probability
ap Rate at which GC B cell secretes antibody

a, Rate at which plasma B cell secretes antibody 5 ng/cell day™ T Adjusted based on clinical data

378

3

3

s Antibody neutralization efficacy against Delta and Omicron variants

a0 Using our full model with parameters values set to those in Table[2] we examined neutralization
1 (Eq. ()) in the context of the Delta and Omicron variants and found that neutralization (i.e.,
sz antibody efficacy) was higher during a secondary infection with Delta versus Omicron (Fig.

3

[e:]
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sss [AJA). This disparity implies that the Omicron variant may exhibit partial or complete neutral-
ss4 1zation evasion by the antibodies integrated into our model. Our findings align with the known
ss5 1mmune-evasive properties of Omicron [55,56] through reduced antibody binding to the Omi-
sss cron spike domain, indicative of neutralization escape [40]. We also conducted a comparative
ss7 analysis of antibody neutralization effects against Delta and Omicron secondary infections by
sss considering three distinct scenarios for primary and secondary infections: (1) Delta-Delta, (2)
sss  Delta-Omicron, and (3) Omicron-Omicron infections, given a secondary infection occurring
a0 either three months, six months, or one year after the primary exposure to the virus (Fig. BB).
st Our findings suggest that antibody neutralization is more pronounced in the Delta-Delta sce-
a2 nario compared to the other two scenarios, where similar neutralization effects were observed.
a3 Furthermore, the temporal interval between primary and secondary infections was found to
se4 have a strong influence on predicted neutralization, with delayed secondary infections resulting
ses 1n reduced neutralization. This phenomenon can be attributed to the decreased antibody levels
ws observed in Fig. {IC, coupled with an elevated viral load (Fig. @D) during later-stage infections,
37 and explains the increasing susceptibility to reinfection with time that has been observed from
sss the beginning of the COVID-19 pandemic. Indeed, our results demonstrate higher antibody
a9 concentrations during secondary infections occurring three or six months after primary expo-
a0 sure, in contrast to secondary infections one year (Fig. [[C), indicative of waning immunity.
st Notably, we couldn’t detect any significant time differences in the decrease of neutralization
a2 effects for the various scenarios. In other words, there is no significant variation in the time
a3 intervals when neutralization reaches zero, whether for primary or secondary responses.

404 Our model simulations show that waning waning antibody levels can be attributed to the
a5 decreasing populations of germinal center and plasma B cells. This trend is evident in Fig.
s[5 where the initial quantities of GC B cells (Fig. [5A) and plasma B cells (Fig. [5B) are
a7 considerably smaller and continue to decrease over time. In other words, their initial values
a8 one year after the primary infection are smaller than those at six months and significantly
w9 lower than the levels observed at three months (e.g. (B,(90) > B,(180) > B,(360)) and
a0 (P(90) > P(180) > P(360)).

[o<]
(]

4 Discussion

412 In this study, we developed a novel mathematical model to explore the intricate processes gov-
a3 erning B lymphocyte activation, replication, and differentiation and the production of antibodies
414 during infection by SARS-CoV-2. Our model traces the path from germinal center B cells to
#5 memory and long-lived plasma B cells, culminating in the production of antibodies after initial
s16  and subsequent viral exposures using a system of delay differential equations (DDEs) to capture
417 the interactions between immune cells and neutralizing antibodies. We assumed a delay in the
s8  activation of germinal center B cells during the primary immune response and a shorter delay
a9 in the activation of memory B cells during the secondary immune response. By incorporating
«20 the concept of neutralization, characterized by the binding of antibodies to viral particles to hin-
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Figure 4: Predicting antibody neutralization effects on SARS-CoV-2 Delta and Omicron vari-
ants in primary and secondary immune responses. A) Primary response for Delta variant neu-
tralization (blue curve) and Omicron variant neutralization (red curve). The inset reflects anti-
body dynamics. B) Neutralization responses after 1) Delta-Delta infection (blue solid curve),
2) Delta-Omicron infection (dashed green curve), and Omicron-Omicron infection (dashed red
curve), with secondary infections occurring three months, six months, and one year after the
primary infection. C) Antibody responses in primary (black curve) and secondary infections
taking place at three months (green curve), six months (blue curve), and one year (red curve)
after the primary infection (Delta-Delta Scenario). D) Viral loads in Omicron secondary infec-
tion occurring three months (green curve), six months (blue curve), and one year (red curve)
from the primary infection with Delta variant.
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Figure 5: Immune cell dynamics post primary and secondary infections with Delta variant for
A) GC B cells and B) plasma B cells over time. Black: primary response. Green: secondary
response to infection occurring three months after primary. Blue: secondary response to infec-
tion occurring six months after the primary. Red: secondary response to infection occurring one
year after primary. The inset reflects GC B cell dynamics in the secondary immune response.

21 der their replication, we could study the antiviral potency exhibited by neutralizing antibodies.
s22  Neutralizing antibodies are crucial in mitigating viral infectivity and have been widely studied
a3 as potential therapeutic agents [57]. Although a substantial portion of our model parameters
«24 were sourced from existing literature, specific parameters required informed assumptions. For
425 this, we conducted a comprehensive global sensitivity analysis to unveil the parameters exerting
a6 significant influence over the outcomes of our model. Our research revealed that in the primary
«27 response, the maximum antibody level was most sensitive to the antibody generation rate by
a8 germinal center B cells. In contrast, it was most sensitive to antibody production rates of both
a0 germinal center B cells and plasma B cells in the secondary response. By modulating these
a0 parameters and comparing model predictions to clinical data, we found that higher antibody
a3t generation rates in the secondary immune response are needed to reach comparative antibody
a2 concentrations in both primary and secondary infections.

433 Investigating the neutralizing effect of antibodies against Delta and Omicron variants after
s34 primary infection revealed a diminished neutralization rate for Omicron despite parity in an-
35 tibody levels. This finding corresponds to known immune evasive properties of the Omicron
a6 variant [58-60]. We noted a declining trend in overall neutralization when evaluating the sec-
s7  ondary immune response at intervals of three, six, or one year following primary infection. This
a8 trend aligns with the decrease in antibody levels, which is a consequence of the reduced initial
a9 GC and plasma B cells, predicted by our model, thus indicating its capacity to capture waning
a0 immunity. Waning immunity has particular importance for vaccination campaign scheduling.
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a1 Therefore, beyond the essential biological insights gained from this work, our model could be
a2 used in public health contexts for planning boosters.

443 In summary, our model of the humoral response predicted (1) antibody and viral load dy-
444 namics for various SARS-CoV-2 variants, such as Delta and Omicron, in agreement with clini-
a5 cal patient data, (2) elevated secondary immune responses characterized by augmented antibody
as  generation rates by germinal center B cells and plasma B cells, coupled with intensified anti-
47 body neutralization effects, (3) the immune-evasive nature of the Omicron variant, marked by
«s  similar antibody levels but higher viral load and diminished neutralization tendencies compared
a9 to the Delta variant and (4) waning immunity. This study thus contributed to our understanding
ss0  of humoral immunity to SARS-CoV-2 and other respiratory viruses and can be used to predict
a5t antibody dynamics following infection or vaccination. It is important to note that our immune
a2 models do not take into account affinity coefficients for antibodies. Therefore, we relied on
453 variations in the antibody generation rate by germinal center B cells and plasma B cells to cap-
54 ture differences in antibody concentrations between the primary and secondary responses. This
455 limitation highlights the need for further refinement and expansion of our model to incorporate
56 additional factors, such as affinity maturation. While our study primarily focused on B cells,
ss7 antibodies, and the contributions of memory B cells to the secondary response, the adaptive
458 1mmune response is a complex interplay of various molecules and cell types, including T cell-
459 mediated immunity. Future studies will explore these factors and refine our modelling approach
a0 accordingly. Lastly, it should be noted that since we used a deterministic framework consisting
st of ordinary and delay differential equations, our model will predict viral titers below the thresh-
ss2 old of a cleared infection (generally considered to be 1 — 2 logyo(copies/ml)), unlike stochastic
a3 systems. Overall, our mathematical model provides valuable insights into the dynamics of
se4 humoral immunity and the role of neutralizing antibodies in the context of SARS-CoV-2 infec-
a5 tion. By uncovering our model’s critical parameter values and limitations, we lay the foundation
w6 for future investigations to understand better the adaptive immune response following SARS-
467 CoV-2 infections and reinfections with matched or discordant strains and potential therapeutic
48 1nterventions.
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