

1 Paternal genomic resources from the YanHuang 2 cohort suggested a Weakly-Differentiated Multi- 3 source Admixture model for the formation of 4 Han's founding ancestral lineages

5
6 Zhiyong Wang^{1,2,3*}, Mengge Wang^{1,2,4,5,*#}, Kaijun Liu^{6,7}, Haibing Yuan², Shuhan Duan^{1,8}, Yunhui
7 Liu^{1,11}, Lintao Luo^{1,11}, Xiucheng Jiang^{1,8}, Shijia Chen^{1,11}, Lanhai Wei⁹, Renkuan Tang¹¹, Liping Hu³,
8 Jing Chen^{1,12}, Xiangping Li^{1,3}, Qingxin Yang^{1,3}, Yuntao Sun^{1,13}, Qiuxia Sun^{1,11}, Yuguo Huang¹,
9 Haoran Su^{1,15}, Jie Zhong¹, Hongbing Yao¹⁰, Libing Yun¹³, Jianbo Li¹¹, Junbao Yang¹⁴, Yan Cai¹⁵,
10 Hong Deng³, Jiangwei Yan¹², Bofeng Zhu^{16,17}, 10K_CPGDP[†], Kun Zhou⁷, Shengjie Nie^{3,#}, Chao
11 Liu^{5,16,18,#}, Guanglin He^{1,2,*#}

13 ¹Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China

14 ²Center for Archaeological Science, Sichuan University, Chengdu, 610000, China

15 ³School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China

16 ⁴Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510275, China

17 ⁵Guangzhou Forensic Science Institute, Guangzhou, 510055, China

18 ⁶School of International Tourism and culture, Guizhou Normal University, Guiyang, 550025, China

19 ⁷Chengdu 23Mofang Biotechnology Co., Ltd., Tianfu Software Park, Chengdu, Sichuan 610042, China

20 ⁸School of Basic Medical Sciences, North Sichuan Medical University, Nanchong, 637100, China

21 ⁹School of Ethnology and Anthropology, Institute of Humanities and Human Sciences, Inner Mongolia Normal University, Hohhot, 010022, China

22 ¹⁰Belt and Road Research Center for Forensic Molecular Anthropology Gansu University of Political Science and Law, Lanzhou, 730000, China

23 ¹¹Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China

24 ¹²School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China

25 ¹³Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China

26 ¹⁴Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College and Center for Genetics and Prenatal diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637007, China

27 ¹⁵Department of Clinical Laboratory, North Sichuan Medical College and Center for Genetics and Prenatal diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637007, China

28 ¹⁶Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China

29 ¹⁷Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China

30 ¹⁸Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China

31 *These authors contributed equally to this work

32 #Corresponding authors: E-mails: Menggewang2021@163.com (M.W.), nieshengjie@126.com (S.N.), liuchaogzf@163.com (C.L.), guanglinhescu@163.com (G.H.)

41 Abstract

42 The large-scale human genome revolution and rapidly advanced statistical innovation have updated our understanding of the fine-scale
43 and complex genetic structure, the entire landscape of genetic diversity and the evolutionary trajectories of spatiotemporally different
44 ancients and ethnolinguistically diverse modern populations. Recent ancient DNA research provided a detailed and complex admixture
45 picture of ancient Europeans but limited insights into East Asians as the few available genomes. Y-chromosome variations in the male-
46 specific regions, served as molecular archaeological tool, have unique evolutionary features that can be utilized to reconstruct the origin
47 and subsequent interaction of ancient East Asian paternal lineages. We launched the YanHuang cohort using our designed highest-
48 resolution capture sequencing panel to explore the detailed evolutionary trajectory of the Han Chinese, one of the largest ethnic groups in
49 the world. We reported one of the largest uniparental genomic resources and observed multiple founding paternal lineages dominant in
50 ancient western Eurasian, Siberian and East Asian participating in the formation of the gene pool of the Han Chinese. We identified fine-
51 scale paternal genetic structure correlated with different patterns of ancient population interaction and geographical mountain barriers
52 (Qinling-Huaihe line and Nanling Mountains), suggesting isolation-enhanced and admixture-introduced genetic differentiation enhanced
53 the complexity of the Han Chinese genomic diversity. We observed a strong direct correlation between the frequency of multiple founding
54 lineages of the Han Chinese and the proportion of subsistence-related ancestry sources related to western pastoralists, Holocene
55 Mongolian Plateau people and ancient East Asians, reflecting the ancient migration events contributed to our identified patterns of Chinese
56 paternal genomic diversity. We finally provided one novel and the most plausible admixture-by-admixture model, the Weakly-
57 Differentiated Multi-Source Admixture model, as the major genetic mechanism to illuminate our observed pattern of complex interactions
58 of multiple ancestral sources and landscape of the Han Chinese paternal genetic diversity. Generally, we presented one large-scale
59 uniparental genomic resource from the YanHuang cohort, portrayed one novel admixture formation model and presented the entire
60

61 Parental formation of Han Chinese

62 **genomic landscape with multiple ancestral sources related to ancient herders, hunter-gatherers and farmers who participated in the**
63 **ancestral formation of the Han Chinese.**

64 **KEYWORDS: Y-chromosome lineage, Han Chinese, Population structure, Evolution history, YanHuang cohort**

65 **Introduction**

66 East Asia, situated at the crossroad connecting America and the Pacific Islands, harbors a wealth of ethnolinguistic diversity and is an essential region
67 for studying human evolution (Cavalli-Sforza 1998). Decades of genetic study have provided valuable insights into the source, formation and
68 divergence of modern East Asians (Consortium et al. 2009; GenomeAsia 2019; Chen et al. 2022). The initial peopling history of East Asia occurred
69 tens of thousands of years ago and unfolded along two distinct migration routes, the northern route and the southern route, contributing to the basal
70 gene pool of the ancestor of East Asians (Jin and Su 2000; Zhong et al. 2011). The diverse patterns of genetic variations observed in present-day East
71 Asians were shaped by different factors, such as population admixture, cultural and social practices, geographic isolation and others, indicating their
72 different and complex population histories (Cao et al. 2020). Meanwhile, recent advances in ancient DNA investigation refreshed our understanding
73 of the evolutionary history of ancient East Asians. Genetic continuity was evidenced via ancient DNA from the Amur River Basin and Tibetan Plateau
74 and complex population interactions and admixture processes or key migration events were observed in core central regions of East Asia (Jeong et
75 al. 2016; Mao et al. 2021; Wang et al. 2021a; Wang et al. 2021d; Liu et al. 2022a). Mao et al. identified Tianyuan/Yana-related Paleolithic lineages that
76 contributed to the gene pool of Siberians and northern East Asians in the pre-last glacial maximum era and reported the genetic turnover between
77 pre-Neolithic AR33K and AR19K and genetic continuity of Neolithic and modern Tungusic people (Mao et al. 2021). Ning et al. reported ancient DNA
78 from northern China and identified the population genetic interaction associated with diverse subsistence strategies (Ning et al. 2020). Yang et al.
79 reported genetic stratification between ancient northern East Asians (ANEA) and ancient southern East Asians (ASEA) since the early Neolithic
80 period and Wang et al. identified the consistent southward gene flow from the Yellow River Basin (YRB) to Fujian and Guangxi Neolithic and historical
81 populations (Yang et al. 2020; Wang et al. 2021d). McCol and Lipson et al. further identified southward gene flow from South China to Southeast Asia
82 and even Oceania associated with spatiotemporally diverse ancient population expansion and migration (Lipson et al. 2018; McColl et al. 2018).
83 Ancient western Eurasian Yamnaya and Afanasievo people also influenced the genomic diversity of ancient Eastern Eurasian Steppe (AEES)
84 populations and Xinjiang people (Damgaard et al. 2018; Jeong et al. 2020; Zhang et al. 2021a; Kumar et al. 2022). Generally, complex interaction and
85 admixture scenarios between spatiotemporally different ancient populations reshaped the genetic landscape of eastern Eurasians, consistent with
86 the dispersal of ancient Chinese agriculture and pastoralist technological innovation and language families (Wang et al. 2021a). However, the extent
87 to which these autosome-evidenced ancient population evolutionary events influenced the uniparental gene pool of modern East Asians and the fine-
88 scale uniparental genetic history of Han Chinese populations remain unclear and need to be examined comprehensively.

89 The Han Chinese, one of the largest ethnic groups globally and spreading in geographically diverse regions of East Asia, have attracted
90 geneticists to unravel their genetic diversity and population history over two decades (Wen et al. 2004a; Xu et al. 2009; Chiang et al. 2018; Cao et al.
91 2020; Cheng et al. 2023). From the perspective of genetics, archaeology and linguistics, the origin of Sino-Tibetan (ST) languages was associated with
92 the Neolithic farmers who cultivated millet in the upper-middle YRB (Zhang et al. 2019; Wang et al. 2021a; Liu et al. 2022b) and the dispersal of ST
93 languages during the Neolithic period aligned with the farming-and-language-dispersal hypothesis (Diamond and Bellwood 2003; Bellwood 2005).
94 These early millet agriculturalists significantly contributed to the major genetic makeup of present-day Han Chinese populations (Wang et al. 2021a).
95 Historically documented successive waves of dispersal of the Han Chinese and interactions with surrounding ethnolinguistically diverse populations
96 indicated the complexity of the genetic history of the Han Chinese (Cavalli-Sforza et al. 1994; Wang 1994; Ge et al. 1997). Xu et al. provided
97 anthropologic clues for the formation of the Han Chinese and proposed the "snowball theory" to illuminate the cultural formation of the Han Chinese,
98 in which the Han Chinese rolled like a snowball, absorbing the cultural and genetic elements from surrounding ethnically different populations (Xu
99 1999; Xu 2012). Using the uniparental markers, Wen et al. revealed the southward demic diffusion of the Han Chinese with sex-biased admixture as
100 the differentiation of the genetic contribution of northern Han to southern Han between the paternal and maternal lineages (Wen et al. 2004a).
101 Subsequently, the phylogeographic pattern observed in the Y-chromosome presented that the genetic component of the Han Chinese was intricate
102 and diverse, along with different paternal lineages (Xue et al. 2006; Xue et al. 2008; Zhong et al. 2011; Lang et al. 2019; Song et al. 2019; Tao et al.
103 2023). Meanwhile, autosomal DNA-based research identified different ancestral components among geographically diverse Han Chinese populations
104 (Chen et al. 2019; He et al. 2020; He et al. 2021; Yao et al. 2021; He et al. 2022; Wang et al. 2022c). However, due to the restriction of sampling size
105 and the paucity of ancient DNA data in the East Asian region, the genetic history and relationship between the Han Chinese and other ancient East
106 Asian populations remain largely elusive. Similarly, the extent to which and how the past populations with different subsistence strategies, such as
107 indigenous agriculture and neighboring nomadism, have contributed to the paternal genetic makeup of the Han Chinese remain uncertain since the
108 Holocene.

109 Previous studies leveraged different molecular markers to explore the Han Chinese population structure, uncovering their distinct genetic
110 relatedness and history patterns. Based on the early genome-wide array data, the researchers observed the North-to-South and East-to-West genetic
111 divergences of the Han Chinese and identified its migration history followed the isolation-by-distance model that the genetic relatedness decreased
112 as the geographic distance (Chen et al. 2009; Xu et al. 2009; Chiang et al. 2018). The high-throughput sequencing resources further advanced our
113 understanding of the different population stratification among the Han Chinese, implying the diverse demographic history of geographically different
114 East Asians (Liu et al. 2018; Cao et al. 2020; Zhang et al. 2021b; Cong et al. 2022; Qiu et al. 2022; Wang et al. 2022a; Cheng et al. 2023; Yu et al. 2023a).
115 Unlike the nuclear genome data, the uniparentally-inherited markers can provide a unique evolutionary insight into the sex-specific genetic landscape
116 and demographic history as their features of non-recombination and male/female-specific inheritance (Kutanan et al. 2019; Karmin et al. 2022; Li et
117 al. 2023). Previous uniparental genetic evidence based on the limited number of markers identified the North-to-South cline of Han Chinese's paternal
118 and maternal genetic structure (Su et al. 1999; Yao et al. 2002; Wen et al. 2004a; Lang et al. 2019). Moreover, with the comprehensive sampling
119 coverage, Li et al. unveiled the fine-scale matrilineal genetic divergence of the Han Chinese related to the river barriers and underscored the significant
120 influence of agriculture technology innovation on shaping the matrilineal genetic variations (Li et al. 2019b). Although the prior research on the
121 paternal genetic architecture of the Han Chinese had been substantially conducted (Wen et al. 2004a; Xue et al. 2008; Lang et al. 2019; He et al. 2023a),
122 the restricted number of Y-SNPs and/or limitation of sampling bias have hindered our understanding of the picture of fine-scale paternal population
123 structure and the critical factors in shaping the paternal genetic landscape as the patrilocality and matrilocality residence models possess
124 differentiated role in the human Y-chromosome genetic diversity and variation spectrum.

125 Parental formation of Han Chinese

126 Consequently, to better characterize the fine-scale paternal genetic structure and evolutionary history of the Han Chinese and explore their
127 possible formation mechanism, we developed a high-resolution YHseqY3000 panel based on the uniparental genomic database and the highest-
128 resolution phylogeny tree constructed in the 10K Chinese People Genomic Diversity Project (10K_CPGDP) (He et al. 2023b). We conducted the
129 YanHuang cohort (YHC) and reported YHC uniparental genomic resources among 5,020 unrelated Han Chinese individuals from 29 administrative
130 provinces of China using our developed YHseqY3000 panel (**Figure 1a**). We have presented, so far, one of the most extensive and comprehensive
131 landscapes of Y-chromosomal genetic variations and the haplogroup frequency spectrum (HFS) in the Han Chinese. We explored the fine-scale
132 paternal genetic structure of the Han Chinese as well as the possible influencing factors on the landscape of Han Chinese paternal genetic diversity,
133 including cultural elements, river separation and mountain barriers. We also dissected the extent of diverse founding lineages introduced by extensive
134 admixture events among previously isolated or differentiated sources that took part in the formation of the Han Chinese since the Holocene and
135 proposed the **Weakly-Differentiated Multi-Source Admixture (WDMSA)** model that stated the multi-sources related to deep-in-time diverged but
136 spatiotemporally and genetically weakly connected or recently admixed ancient western Eurasian herders, Siberian hunter-gatherers and East Asian
137 millet and rice farmers participated in the formation of the Han Chinese. In aggregate, we provided a comprehensive insight into the genetic history
138 of the Han Chinese, summarized and built one new genetic admixture-by-admixture model to illuminate the evolutionary process and underscored
139 two important evolutionary forces, including isolation-enhanced and admixture-introduced genetic differentiation, in shaping the Han Chinese
140 paternal genetic landscape.

141 Results

142 **Paternal genetic diversity of the Han Chinese observed in the pilot work of the YanHuang cohort**

143 We launched the YanHuang cohort to capture the entire landscape of paternal genetic diversity of geographically different Han Chinese populations
144 and generated 5,020 targeted Y-chromosome sequences, including 3,002 phylogenetic informative SNPs (PISNPs) in our developed YHseqY3000
145 panel, from 29 different administrative provinces (**Figure 1a** and **Table S1**). After the quality control, we observed 1,899 distinct haplotypes and
146 1,766 terminal haplogroups, which were allocated based on our developed forensic phylogenetic tree (**Table S2**). The haplotype/haplogroup-based
147 parameters within the Han Chinese, such as haplotype/haplogroup diversity ranging from 0.9835 to 1.0000 and from 0.9818 to 1.0000, respectively,
148 showed similar and strong values (**Figure 1b** and **Table S3**), indicating that the YHseqY3000 panel had a rather powerful performance in haplogroup
149 classification and variation capture.

150 To investigate the frequency distribution of founding lineages or dominant haplogroups consistent with historical coherence of haplogroup
151 Nomenclature, we used HaploGrouper to classify haplogroup based on the International Society of Genetic Genealogy (ISOGG) Y-DNA Haplogroup
152 Tree 2019-2020 (version 15.73) and finally identified 545 definitive haplogroups among 5,020 unrelated samples (**Table S2**). We first assessed the
153 geographical distribution of major haplogroups at the third level and generated the HFS of the Han Chinese (**Figure 1c**). Haplogroup O2a (52.85%)
154 contributed significantly to the paternal gene pool of the Han Chinese, followed by O1a (12.47%), O1b (9.86%), C2b (8.71%), N1b (3.57%), N1a
155 (2.77%), Q1a (2.77%), D1a (1.43%) and C2a (1.08%) (**Table S4**). To explore the distribution patterns of these haplogroups in detail, we generated
156 the geographical distribution heatmap using ArcGIS 10.8 (**Figures 1d-l**). The dominant haplogroup O2a had the highest frequency in northern and
157 northeastern China (**Figure 1d**), including Heilongjiang (68.47%), Hubei (57.92%) and Anhui (56.78%) (**Table S4**). The majority of its sub-lineages
158 consisted of O2a2b1a1-M117 (16.91%), O2a2b1a2a1a-F46 (9.92%) and O2a1b1a1a1a-F11 (10.66%) (**Table S4**). O1a-M119 was distributed mainly
159 in southern and southeastern China (**Figure 1e**), including Zhejiang (25.98%), Jiangxi (23.47%) and Fujian (20.42%) (**Table S4**). In particular, the
160 sub-lineage of O1a-M119 was mainly composed of O1a1a1a1a1a-F492 (5.40%) (**Table S4**). O1b-M268 was mainly distributed in southern China
161 (**Figure 1f**), especially in Guangxi (24.72%), Guangdong (19.89%) and Hunan (14.65%) (**Table S4**). Interestingly, the distribution of the sister sub-
162 haplogroups, O1b1a1-PK4 and O1b1a2-Page59, were correlated with geographical distances and showed a latitude-dependent gradient, with
163 O1b1a1-PK4 more in southern China and O1b1a2-Page59 more in northern China (**Figure S1**). C2b was mainly found in northern China (**Figure 1g**),
164 including Hebei (15.21%), Shandong (13.97%) and Beijing (13.53%) (**Table S4**). We also noticed that C2a had a high frequency in northern China
165 (**Figure 1h**), such as Inner Mongolia (12.20%) and Tianjin (11.59%) and was distributed rarely in southern China compared to C2b (**Table S4**). N1b
166 was mainly distributed in southern and southwestern China (**Figure 1i**), including Yunnan (8.06%), Chongqing (7.07%) and Shanghai (6.57%)
167 (**Table S4**). N1a was mainly found in northern China (**Figure 1j**), such as Shaanxi (6.32%) and Inner Mongolia (4.88%) (**Table S4**). Notably, N1a
168 occupied a certain proportion in Yunnan (4.84%) (**Table S4**). D1a had a high frequency in the surrounding areas of the Tibetan Plateau, such as Inner
169 Mongolia (9.76%) and Gansu (6.15%) (**Figure 1k**). D1a was prevalent among Tibetans and the dominant paternal lineage of the Tibeto-Burman-
170 speaking (TB) populations (Shi et al. 2008; Qi et al. 2013), suggesting interaction between the Han Chinese and TB populations. Q1a was mainly
171 distributed in northern China (**Figure 1l**), including Inner Mongolia (7.32%) and Shaanxi (5.06%) (**Table S4**). Most of its sub-lineages were Q1a1a-
172 M120 (2.75%) (**Table S4**). The rare deep-rooted haplogroup F (0.08%) was entirely distributed in southwestern China (**Table S4**), consistent with
173 the southern route of the prehistorically northward migration of modern humans in East Asia (Su et al. 1999). Other non-Chinese-specific
174 haplogroups, such as R, E, G, H, I, J and L, were mainly observed in northern and northwestern China (**Table S4**), providing clues from the Holocene
175 trans-Eurasian connection. These identified West Eurasian and Central/South Asian-specific haplogroups directly reflected the east-west gene flow
176 within the Eurasian continent along prehistoric trans-Eurasian communication and historic migration along the ancient Silk Road (Karafet et al. 2008;
177 Zhong et al. 2011). In aggressive, the paternal lineages of the Han Chinese were diverse and multivariate and these results also represented the
178 geographically specific distribution of haplogroups within the Han Chinese.

179 **Isolation-enhanced genetic differentiation influenced the paternal genetic architecture of the Han Chinese**

180 To explore genetic relatedness within the Han Chinese, we performed principal component analysis (PCA) on 4,987 individuals from 26 of the 29
181 sampling administrative provinces of China based on the haplogroup frequency at the fourth level (**Figure 2a-c**). When we grouped populations by
182 geography, the PC1 separated the Han Chinese into northern and southern Han Chinese, with the Qinling-Huaihe line as the geographical boundary
183 (**Figure 2a**). We also found that PC1 was highly correlated with latitude ($R = -0.82, P < 0.001$) while not correlated with longitude (**Figure 2d**). Of
184 note, the longitude showed a significant correlation with O2a ($R = 0.56, P < 0.001$), which might result from the recent westward migration of the
185 Han Chinese since 1949 (Liang and White 1996) (**Figure 2d**). In addition, the correlation analysis between PC1 and frequency of O1a ($R = 0.96, P <$
186 0.001) and C2b ($R = -0.69, P < 0.001$) was strongly statistically significant (**Figure 2d**). It appeared that O1a had a high frequency in the southern
187 populations clustering on the right of the PC map and decreased to a low frequency in the northern populations on the left, whereas the frequency of
188 C2b showed a contrasting pattern. The North-South stratification was also revealed by the neighbor-joining tree and the genetic distance matrix
189

249 Parental formation of Han Chinese

250 based on pairwise genetic distances (F_{ST}) as well as the correlation analysis between the pairwise genetic distances among 26 Han Chinese
251 populations (**Figures 2d-f**).

252 Southern Han Chinese exhibited a distinct substructure in the PCA clustering pattern, in which PC2 effectively separated Guangdong and Guangxi
253 populations from other southern Han Chinese, with the Nanling Mountains as another geographical boundary (**Figure 2a**). Hence, we categorized
254 Guangdong and Guangxi individuals as Lingnan Han in the subsequent genetic analysis. Notably, the pairwise genetic distances observed between
255 the merged northern and southern Han without Lingnan Han (0.0102) were equal to the estimated values between the merged southern Han and
256 Lingnan Han (0.0100), further conforming Lingnan Han to another genetic sub-clade (**Table S5**). PC2 coordinates were not correlated with longitude
257 or latitude but possessed a strong correlation with the frequency of O1b ($R = 0.74, P < 0.001$) (**Figure 2d**). In the neighbor-joining tree, we observed
258 that the Central Han (Anhui, Jiangsu and Shanghai) were clustering together (**Figure 2f**). However, the Central Han people were not clearly separated
259 from other southern Han (**Figure 2a**). Our observed genetic similarity and difference patterns were further confirmed via the multidimensional
260 scaling (MDS) analysis (**Figure S2**). In addition, we did not identify isolation by distance pattern in the paternal genetic structure ($r = 0.0006, P =$
261 0.462), which was evidenced in the autosomal DNA using the Mantel test (Chiang et al. 2018). The differences in the genetic features inferred from
262 the autosomal and uniparental genetic legacy showed different genetic influences of patrilocality and matrilocality residence models on the gene
263 pool of the Han Chinese. Additionally, we explored the genetic affinities among the Han Chinese separated along different river valleys and language
264 dialects (**Figures 2b and c**). Populations from the northern River (YRB and other Northern Rivers) exhibited significant differentiation from others
265 in the southern River (Yangtze River and other Southern Rivers) along PC1 (**Figure 2b**). Notably, Mandarin-speaking populations distinguished
266 substantially from others along PC1 (Wilcoxon rank sum test, $P = 3.40E-3$) (**Figure 2c**), underscoring the association between cultural dialects and
267 Y-chromosome founding lineages. In summary, according to the results above, we identified three population substructures based on the large-scale
268 Y-chromosome sequences, including North Han, South Han, and Lingnan Han (**Figures 2a and S2**).

269 To further dissect the genetic differentiation and the factors that influenced the paternal genetic structure of the Han Chinese, we performed the
270 analysis of molecular variance (AMOVA) by classifying the Han Chinese into different catalogs based on the different geographical regions, river
271 valleys, and language dialects (**Table 1**). All genetic variances from the within-population level accounted for 1.02% ($P < 0.001$) (**Table 1**). When we
272 classified the Han Chinese into northern and southern Han, the northern Han (0.18%, $P > 0.001$) showed greater genetic homogeneity than the
273 southern Han (0.67%, $P < 0.001$) (**Table 1**), which indicated the different patterns of genetic differentiation between geographically diverse regions.
274 The significant among-group variation (1.14%, $P < 0.001$) was presented in the grouping that categorized the Han Chinese into North Han, South Han,
275 and Lingnan Han, which was higher than other groups, such as groups categorized by the four/seven geographical regions, river valleys and language
276 dialects (**Table 1**). Interestingly, the among-group variation of the grouping cataloged by three river valleys showed a relatively high value (1.09%, P
277 < 0.001) when compared with the grouping of northern Han and southern Han (1.06%, $P < 0.001$) (**Table 1**). These results showed that isolation-
278 enhanced genetic differentiation presented by the geography boundaries (Qinling-Huaihe line and Nanling Mountains) and the river valleys (Yellow
279 River, Yangtze River, and Zhujiang River) played a pivotal role in shaping the paternal population structure of the Han Chinese.

280 The genetic connection and expansion events among founding populations with the different paternal lineages

281 To comprehensively investigate the genetic connection among different paternal lineages and between observed population substructures, we
282 performed median-joining network analysis and reconstructed a parsimony phylogenetic tree using 5,020 Y-chromosome sequences (**Figures 3 and**
283 **S3**). We observed that nearly every central node and branch was contributed by geographically diverse populations, and the paternal lineages
284 consisting of O2a, O1a, O1b, and C2b contributed to most of the paternal genetic framework (**Figures 3a and S3**). Notably, the O1a node and branch
285 predominantly comprised individuals from South Han, while Lingnan Han primarily represented the O1b node and branch. In contrast, the C2b node
286 and branch primarily consisted of North Han (**Figures 3a and S3**). We then generated the network focusing exclusively on O2a, O1a, O1b, C2b, C2a,
287 N1a, N1b, Q1a, and D1a to explore the fine-scale genetic structure of these lineages comprehensively (**Figures 3b-c and S4-6**).

288 Our results presented the star-like network of O2a2b1a1a1 (downstream of O-M117) and O2a1b1a1a1a1 (downstream of O-F11) (**Figure 3b**),
289 indicating the expansion of these lineages in the Han Chinese. However, we had not observed an apparent hierarchical expansion structure within
290 O2a2b1a2a1a-F46, and the origin of the cluster was not located in the center (**Figure 3b**), which might have indicated the expansion of O2a2b1a2a1a-
291 F46 happened immediately after its advent. Our results reconciled the phylogenetic bifurcations of three Neolithic Super-Grandfathers of the Han
292 Chinese (Yan et al. 2014), revealing deeper branches' expansion in the Han Chinese. Ancient DNA analysis identified that O1a was first found in the
293 5,300-4,100-year-old Liangzhu ancient people in the surrounding region of the Yangtze River delta (Li et al. 2007). Previous studies found that O1a
294 sub-lineages underwent a complex demographic history over the past 10,000 years, in which the Neolithic communities in Southeast China with O1a
295 contributed to the gene pool of Sinitic/Tai-Kadai/Austronesian-speaking populations (Sun et al. 2021). The striking star-like network of
296 O1a1a1a1a1-F492 implied that the haplogroup had undergone expansion in the Han Chinese, which was in line with the phylogenetic radiation in
297 previous studies (Sun et al. 2021).

298 The O1b1a2-Page57 showed a high frequency in northeast China (**Figure S1**), and its sub-lineage O1b1a2a1-F1759 presented a star-like
299 network in the Han Chinese (**Figure 3d**). Meanwhile, the previous population investigation found that O1b1a2-Page57 was mainly spread among
300 Sinitic-speaking populations while absent in other ethnolinguistic populations (Lang et al. 2019; Song et al. 2019; Xie et al. 2019; Song et al. 2021;
301 Wang et al. 2021b; Wang et al. 2021c; Wang et al. 2022b), and O1b1a2 was detected in the Neolithic people from Wanggou site (5,500-5,000BP)
302 belonging to Yangshao culture (Ning et al. 2020), which might take part in the formation of the Han Chinese and finally became one of their founding
303 paternal lineages. In addition, we also observed that the sub-lineages of Q1a and N1a showed a similar pattern (**Figures S5b and S6a**), which was in
304 keeping with the phylogenetic expansion in previous studies (Sun et al. 2019; Yu et al. 2023b). This evidence revealed the internal genetic connection
305 and the expansion events within the Han Chinese. Meanwhile, these expansion events, which were also confirmed by previous phylogenetic studies,
306 demonstrated that our designed panel can comprehensively capture the genetic diversity of Han Chinese populations.

307 The effect of the admixture-introduced genetic differentiation on the formation of the Han Chinese

308 The observed paternal substructure of the Han Chinese defined the level of genetic differentiation and extent of the Y-chromosome variations, which
309 provided clues to explore the differences in the composition of founding lineages. We first performed Fisher's exact test to investigate which
310 haplogroup showed a significant North-South frequency difference and observed that O1a, O1b, C2b, C2a, R1a, R1b, N1a, and J2a presented significant
311 differences of haplogroup frequency distribution between southern and northern Han populations (**Table S7**). We further performed the mantel test
312 to explore the correlation between the pairwise genetic distances and haplogroup composition (**Figure 2d**). Overall, O1a, O1b, C2b, C2a, N1a, and

255 Parental formation of Han Chinese

256 R1b significantly contributed to the discrepancy of the pairwise genetic distances between the Han Chinese populations (**Figure 2d**). Analysis of
257 spatial autocorrelation can investigate the pattern of regional clustering among these major haplogroups, which might relate to the corresponding
258 haplogroup's diffusion center (**Figures 1d-i**). Results revealed a pronounced clustering pattern for O1a and O1b within southern China, where O1a
259 clustered near the Yangtze River and O1b clustered in the Lingnan region. (**Figures 1e and f**). A significant pattern of regional clustering in northern
260 China was prominently observed for C2b and C2a (**Figures 1g and h**). Nonetheless, when considering the prevalent haplogroup O2a and its major
261 sub-haplogroup O-M117, O-F46, and O-F11 among the Han Chinese, the obvious regional clustering pattern above was not observed, which might
262 indicate the extensive admixture of the three Neolithic Super-Grandfathers (**Figures 1e and S1**). In general, taking into account the prevalence of
263 these haplogroups within the Han Chinese, various statistical analyses had elucidated that the predominant influence on the observed differentiation
264 within the paternal genetic structure of the Han Chinese was primarily attributed to the presence of O1a, O1b, and C2b haplogroups. Meanwhile, the
265 genetic components of C2a, N1a, R1a, R1b, and J2a have also contributed to genetic differentiation within the Han Chinese.

266 The composition of the paternal lineages observed in the Han Chinese was diverse, and some of the ancient indigenous and incoming paternal
267 lineages more or less contributed to their genetic differentiation. To distinguish the extent to which ancient populations in Eurasia contributed to the
268 paternal genetic makeup of the Han Chinese since the Holocene, we performed the model-based ADMIXTURE analysis of 32 geographically diverse
269 Han Chinese populations and ancient Eurasian populations to explore their basic admixture genetic profile (**Figure 4a**). We found that the four-
270 source admixture model best explained the genetic ancestry composition of the Han Chinese, including YRB-related ANEA ancestry (Pingliangtai_LN;
271 green), ASEA-related ancestry (GaoHuaHua; orange), AEES-related ancestry (Mongolia_N_North; purple) and ancient Western Eurasian Steppe-
272 related ancestry (AWES; Afanasievo; blue) (**Figure 4a**). The ancestral component exhibited variations across geographically diverse Han Chinese
273 populations (**Figure 4b**). In short, the proportion of AEES/AWES/ANEA-related ancestry decreased from north to south, whereas the tendency of
274 ASEA-related ancestry presented a contrasting pattern among the Han Chinese (**Figure 4b**).

275 Previous genomic findings had evidenced the male-dominant sex-biased admixture in TB and Hui populations (Wen et al. 2004b; Ma et al. 2021).
276 Consequently, if the proportion of estimated ancestral component demonstrates a significant positive correlation with the frequency of paternal
277 lineages, it is plausible to consider that the expansion and admixture events related to the ADMIXTURE-inferred ancestral sources might have
278 contributed to the incorporation of the paternal lineage into the formation of the targeted Han Chinese. Subsequently, we conducted a correlation
279 analysis between the ADMIXTURE-inferred ancestry proportion and paternal lineage frequency in geographically different Han Chinese. We observed
280 that ASEA-related ancestry composition was significantly related with O1a and O1b, AEES-related ancestry composition was correlated with C2a,
281 C2b, J2a, N1a, Q1a, R1a and R1b, AWES-related ancestry composition was associated with C2a, D1a, J2a, N1a, Q1a, R1a and R1b, and ANEA-related
282 ancestry composition was correlated with C2b and N1a (**Figure 4c**). We further explored the correlation between the sub-lineages at the fourth level
283 and genetic ancestry composition (**Figure 4d**). The downstream of these lineages was also generally associated with corresponding genetic ancestry
284 composition (**Figure 4d**). Interestingly, we observed that these paternal lineages introduced by the corresponding ancestry-related populations
285 largely contributed to the genetic differentiation of the Han Chinese (**Figure 2d and Table S7**). In general, these admixture-introduced external
286 paternal lineages contributed to genetic divergence among the northern and southern Han Chinese, confirming that the evolutionary force of
287 population admixture within Eurasia played a vital role in the formation of the paternal genetic landscape of the Han Chinese.

288 The weakly-differentiated multi-source admixture model for the origin of the Han Chinese

289 Recent genomic evidence has illuminated three ancestral sources related to local hunter-gatherers, western Eurasian Yamnaya pastoralists and Near
290 East farmers who formed modern European people (Lazaridis et al. 2014). Ancient and modern genetic admixture modeling also illuminated that
291 modern Indian people carried two primary ancestral sources of ancient northern Indian and ancient southern Indian related to the ancient pastoralist
292 expansion and admixture with local residents (Reich et al. 2009). Admixture coalescent modeling of modern African also revealed that the weakly
293 structured stems model contributed to the modern African origins (Ragsdale et al. 2023). Our genetic studies revealed that multiple sources
294 contributed to the formation of the genetic diversity of the Han Chinese based on both autosomal ancestral components and the paternal lineages
295 (**Figures 1c and 4a**). From the ancient genetic landscape of paternal lineages, we could discover that some of the above four ancestry-related
296 populations have shared paternal lineages since the Holocene. For example, the typical haplogroup R1a and R1b derived from AWES-related
297 populations emerged in the AEES-related populations (Narasimhan et al. 2019; Wang et al. 2021a), such as Mongolia_LBA_MongunTaiga_3 (R1a) and
298 Mongolia_EBA_Chemurche (R1b). The N1a also emerged in the AWES-related populations (Mereke_MBA) and AEES-related populations
299 (Munkhkhairkhan_MBA) (Narasimhan et al. 2019; Wang et al. 2021a). The ANEA-related lineage O2a appeared in the individuals
300 (Mongolia_LBA_CenterWest_5) from the AEES-related populations (Ning et al. 2020; Wang et al. 2021a). The C2b was detected in the AEES-related
301 populations (Russia_Siberia_Lena_EN) and ANEA-related populations (Shimao_LN and MiaoZigou_MN) (Ning et al. 2020; Yu et al. 2020). Besides, we
302 could observe that diverse ancestral sources spread identical paternal lineages into the gene pool of the Han Chinese when we analyzed the
303 correlation between the lineage frequency and ADMIXTURE-based ancestry proportion. R1a, R1b and N1a correlated with AWES/AEES-related
304 ancestry component, and C2b correlated with AEEA/ANEA-related ancestry component (**Figure 4c**), which was consistent with present findings
305 from the archaeogenetics among the Eurasia. The shared and correlated paternal lineages might indicate the potential gene flow between these
306 ancestral sources.

307 Except for the observed shared paternal lineages between the aforementioned ancestry-related sources, we also tried to fit similar admixture
308 patterns based on the autosomal genomic variations to illustrate the in-depth ancient divergence and recent connection of these ancestral sources in
309 the Han Chinese formation processes. Consequently, we used ADMIXTOOLS2 analysis to explore further population divergence and gene flow
310 between the Han Chinese and other ancient populations and to dissect the putative admixture model that explained the formation of the Han Chinese
311 well (**Figure S7**). The best model fitting of the admixture graph presented that the formation of the Han Chinese was fitted with 51% ancestry related
312 to GaoHuaHua and 49% ancestry related to YRB millet farmers. We can also observe the ancient gene flow between Afanasievo herders and Mongolia
313 plateau hunter-gatherers, between Mongolia_North_N and China_YR_LN from the admixture graph (**Figure S7**), suggesting the early connection of
314 these putative ancestral sources. Generally, our findings suggested that ancient East Asians, including ANEA and ASEA, ancient Siberians and ancient
315 western Eurasian pastoralists with differentiated but connected genetic lineages, participated in forming modern Han Chinese (**Figure 5**). The native
316 ancestry sources, represented by ANEA and ASEA-related populations, were major spread the O2 and O1 haplogroups and their sublineages, which
317 had historical connections to the founding lineages of cultivation millet and rice farmers. Siberian hunter-gatherers with AEES-related ancestry
318 components primarily disseminated the C and their sublineages through complex interaction and admixture with AWES-related populations and
319 ANEA-related millet farmers. AWES-related pastoralists mainly brought R and their subhaplogroups into northwestern Han Chinese with the

320 Parental formation of Han Chinese

321 pastoralist expansion or Holocene trans-Eurasian cultural exchange and population admixture, which also exhibited a connection with AEES-related
322 populations. We summarized the weakly differentiated but multiple connected ancestral sources presented by native and immigrant ancestry
323 populations flowing extensive expansion and admixture processes as the WDMSA model (**Figure 5**). Our model suggested that the complex, multiple
324 and multi-layered ancestral sources participated in forming geographically diverse modern Han Chinese populations. Our identified fine-scale
325 paternal genetic structure also suggested that both isolation-enhanced and admixture-introduced genetic differentiation contributed to the genetic
326 differences among North, South and Lingnan Han Chinese populations.

327 The genetic relatedness between the Han Chinese and other ethnolinguistic populations in East Asia

328 To explore the genetic affinity and admixture signature between the Han Chinese and other ethnolinguistic populations in East Asia, we aggregated
329 our data with the published available haplogroup information, resulting in a comprehensive dataset encompassing 10,481 individuals from 54
330 ethnolinguistically diverse populations belonging to four language families (Lang et al. 2019; Song et al. 2019; Xie et al. 2019; Wang et al. 2021b;
331 Wang et al. 2021c; Song et al. 2022; Wang et al. 2022b; He et al. 2023a). We performed PCA based on haplogroup frequency at the fourth level, aiming
332 to elucidate the genetic relationship among the combined populations. We observed that northern and southern Chinese populations were generally
333 separated along the PC2 axis. Populations from northern China were predominantly positioned toward the lower part of the PC map, while
334 populations from southern China were predominantly positioned toward the upper part (**Figure 6a**). The particular distribution pattern
335 underscored the genetic divergence between northern and southern Chinese populations, which was also conspicuously proved by the neighbor-
336 joining tree and the distance matrix (**Figures 6b-d**). Interestingly, we observed that the pattern of population clustering was generally relevant to
337 linguistic affiliation (**Figures 6b-d**), implying the association between the language family and paternal lineage. Furthermore, the neighbor-joining
338 tree and the distance matrix showed that the Altaic-speaking populations from northern China were relatively close to the northern Han Chinese. In
339 contrast, the TB/Tai-Kadai-speaking populations from southern China exhibited relative proximity to the southern Han Chinese (**Figures 6b-d**),
340 indicating the gene flow between the Han Chinese and surrounding ethnolinguistically diverse populations. In particular, Hui populations were
341 relatively close to the Han Chinese (**Figure 6a**), which was consistent with a previous study (Ma et al. 2021). We also noticed that the D1a has a high
342 frequency in Tibetans, which was consistent with previous studies (Qi et al. 2013). R1a, R1b and R2a were mainly located in northwestern China,
343 especially in Xinjiang, which was consistent with the gene flow between West and East Eurasian. J2a has a high frequency in Qinghai, situated within
344 the Hexi corridor, which might imply the impact of the Silk Road connecting China with the West (Yang et al. 2008; Shou et al. 2010). These findings
345 elucidated the intricate interaction between the Han Chinese and ethnolinguistically diverse East Asian groups, shedding light on gene flow dynamics
346 between West and East Eurasia.

347 Discussion

348 The proliferation of large-scale genetic studies focusing on autosomal DNA advanced our understanding of fine-scale genetic structure and
349 demographic history (Bai et al. 2018; Liu et al. 2021; Ma et al. 2021; Chen et al. 2022; Pan et al. 2022). Moreover, Y-chromosome and mtDNA variations
350 provided a unique insight into sex-specific genetic history (Wen et al. 2004a; Kutanan et al. 2019; Li et al. 2019a; Pinotti et al. 2019; Kutanan et al.
351 2020; Macholdt et al. 2020; Karmi et al. 2022). However, these researches focusing on the Y-chromosome in East Asia tended to concentrate on the
352 phylogenetic variations, which more or less overlooked the investigation of paternal genetic structure and corresponding factors in the formation of
353 the Han Chinese. Here, to strengthen our understanding of the fine-scale demographical history of the Han Chinese, we launched the YanHuang cohort
354 and presented the repertoires of Y-chromosome variations from 5,020 Han Chinese belonging to 29 different administrative provinces sequencing
355 via our developed YHseqY3000 panel. The high value of haplotype and haplogroup-based parameters indicated the strong performance of our
356 developed panel in haplogroup allocation and variation capture. Moreover, we presented one of the most extensive HFS of the Han Chinese, in which
357 O2a, O1b, O1a and C2b accounted for most of the haplogroup composition. In particular, we found a significant paternal genetic differentiation
358 corresponding to the geographic boundaries of the Qinling-Huaihe and Nanling Mountains and population admixture among the western and eastern
359 Eurasian populations, as well as the northern and southern East Asian populations. Here, we will discuss the isolation-enhanced and admixture-
360 introduced genetic differentiation contributed to the formation mechanism of the Han Chinese and summarized this observed pattern as the WDMSA
361 model.

362 Isolation-enhanced genetic differentiation on the paternal genetic structure

363 Our study observed the North-South genetic divergence in the Han Chinese, consistent with previous studies based on autosomal DNA and mtDNA
364 (Wen et al. 2004a; Chen et al. 2009). At the same time, our results further separated the Han Chinese into three subgroups, including
365 North/South/Lingnan Han Chinese, corresponding to the geographical boundaries (**Figure 2a**). Abundant previous evidence based on the autosomal
366 variations revealed four subgroups of the Han Chinese, including North/South/Central/Lingnan Han, in which the Central Han showed a close
367 pairwise genetic distance with North Han than with South Han and Lingnan Han (Cong et al. 2022). However, our study showed that the Central Han
368 showed a close genetic distance with South Han ($0.0022, P < 0.01$) instead of North Han ($0.0089, P < 0.01$) (**Table S5**). The catalog of genetic structure
369 implied different genetic histories revealed by the Y-chromosome and autosomal variations.

370 AMOVA-based results inferred that the largest among-group variation (1.14%, $P < 0.001$) was observed in the grouping according to
371 geographical boundaries (**Table 1**), which further confirmed the pattern of genetic stratification. In addition, northern Han Chinese performed more
372 homogeneous, whereas southern Han Chinese were more diverse than their northern counterpart (**Table 1**), which might result from the prehistoric
373 migration and interaction between southern Han Chinese and southern Indigenous groups (Su et al. 1999; Wen et al. 2004a). The Qinling-Huaihe
374 Line is related to the division line of hydrology and climatology and roughly corresponds to the line between Millet-based farming in the YRB and
375 Rice-based farming in the Yangtze River Basin (Li et al. 2012). The Nanling Mountain serves as a geographical barrier between the Yangtze River
376 Basin and the Zhujiang River Basin. This might lead to the among-group variation observed among the Yangtze River, Yellow River and Zhujiang River
377 populations, thus exhibiting a relatively elevated degree of differentiation.

378 Otherwise, the correlation between language dialects and autosomal DNA had been presented in previous studies (Qiu et al. 2022) but rare for
379 the mtDNA (Li et al. 2019b). In our study, we noticed that the Han Chinese speaking Mandarin presented genetic differences with other dialect groups
380 (**Figure 2c**), possibly due to the patrilocality residence customs in East Asia (Wang and Li 2013). Importantly, we only observed the genetic
381 divergence between Mandarin speakers and other dialect speakers. Considering the observed paternal genetic structure and genetic divergence, the
382 isolation-enhanced genetic differentiation presented by geography played an essential role in shaping the paternal structure of the Han Chinese. In
383

384

385 Parental formation of Han Chinese

386 addition, the river basin is always related to agricultural traditions, which are strongly related to population expansion and have been proven to
387 influence the maternal genetic landscape of the Han Chinese. The future whole-genome sequencing on the Y-chromosome will provide more clues
388 for whether agricultural traditions have affected the paternal landscape of the Han Chinese.

389 Admixture-introduced genetic differentiation on the paternal genetic structure

390 Population admixture is one of the most essential driving forces influencing genomic diversity, which can decrease the between-population
391 differentiation and increase the within-population genetic diversity. In our study, the evidence regarding Fisher's exact test and mantel test that
392 elaborated the differentiation of paternal genetic structure was accounted for O1a, O1b, C2b, C2a, N1a, R1a, R1b and J2a (Figure 2d and Table S7),
393 which also correlated with the four ancestral components simulated by ADMIXTURE (Figure 4c). Therefore, the observed correlation suggested that
394 these haplogroups contributing to the genetic differentiation of the Han Chinese were introduced by admixture. Of note, due to the sample bias and
395 paucity of the ancient DNA in East Asia, the correlation analysis might increase the false positive rate, such as the D1a and AWES-related populations
396 (Figure 4c). However, most of the significant correlations can be verified from the archaeogenetics. We can observe these haplogroups arising in
397 corresponding ancient populations, but it is difficult to determine the concrete time of admixture. In particular, the O2a haplogroup frequently
398 emerged in ANEA-related populations and took account of the majority of the paternal genetic landscape and did not contribute to the genetic
399 divergence, which might indicate that the demic diffusion of the Han Chinese from north to south was mainly driven by ancient populations carrying
400 O2a haplogroup.

401 The formation of the Han Chinese can be viewed as a tapestry interwoven by admixture events. According to the historical record, the Han
402 Chinese were generally thought to be descended from the ancient Huaxia tribe located in the upper and middle YRB. About six kya, the proto-Han
403 Chinese were divided from the proto-ST people and migrated to the south and east of East Asia. Long-term migration, interaction and admixture with
404 surrounding populations led to the largest population size and wide distribution of the Han Chinese in China. Consequently, the WDMSA model within
405 the Han Chinese is much simplified. However, we identified multiple ancestral sources from different Eurasian regions that contributed the genetic
406 legacy to the formation of Han Chinese's complex paternal gene pool, which was consistent with our proposed admixture-by-admixture models with
407 some weakly differentiated and connected ancestral sources. The analysis of autosomal variations of ancient populations also confirmed this finding.
408 For example, Fu et al. revealed the gene flow between northern and southern China since the Neolithic, as the genetic affinity was higher in the
409 present than in the past (Yang et al. 2020). Wang et al. also found that ancient farmers from Taiwan received the gene pool from northern ancestry in
410 the Neolithic (Wang et al. 2021a). Jeong et al. identified the gene flow from the western pastoralists to the eastern Eurasian cal. 3000 BCE (Jeong et
411 al. 2020). The WDMSA model proposed here provided a general insight into the Han Chinese's formation, but the Han Chinese's dynamic migration
412 and admixture history are multi-wave and multi-level. In the future, the broader coverage of sampling and higher resolution sequence, together with
413 more paleogenomic studies, are expected to provide a more detailed evolutionary history of the Han Chinese.

414 Limitations

415 Y-chromosome complex tandem regions, especially in the telomere, centromere and segmental duplication regions, were the hardy-measured
416 sequenced regions in the past years (Zhou et al. 2023). Our presentation focused on the high-confidence lineage markers in the male-specific regions
417 of the Y-chromosome based on the capturing target sequencing to present the full landscape of paternal lineages of Han Chinese populations. Recent
418 advantages in second and third-generation long-read sequencing (Oxford Nanopore Technologies and PacBio HiFi) and statistical assembly and
419 genotyping innovations provided further insights for the landscape of the complete sequence and revolutionary features of pseudoautosomal regions
420 (PARs), X-degenerate regions (XDR), X-degenerate regions (XDR), ampliconic palindromic regions, q-arm heterochromatin and centromeric satellites
421 of a complete Y chromosome (Hallast et al. 2023; Rhie et al. 2023). Thus, high-coverage complete whole-genome Y-chromosome sequences from
422 genetically different populations in our YHC, 10K_CPGDP and other Chinese cohorts were needed to provide deep insights into the formation of Han
423 Chinese. Besides, Sampling bias exists here, especially in the high-altitude Tibetan Plateau. Further anthropologically informed sampling across a
424 wider region of Han Chinese and minority ethnic groups will also be needed to eliminate the interactions among ethnolinguistically underrepresented
425 populations.

426 Conclusion

427 We reported the largest paternal genomic resources from the YanHuang cohort and presented one large-scale and extensive paternal genomic data
428 of the Han Chinese by genotyping 5,020 Han Chinese individuals from 29 different geographical populations. We identified fine-scale paternal genetic
429 structures, including North, South and Lingnan Han along the Qinling-Haihe and Nanling mountains and multiple and complex founding lineages in
430 geographically different Han Chinese, whose frequency distribution possessed intense latitude-dependent gradient changes. Most importantly, we
431 identified two major evolutionary forces, including isolation-enhanced and admixture-introduced genetic differentiation, which obviously shaped
432 the paternal genetic structure. Meanwhile, we finally proposed the new admixture-by-admixture WDMSA model to deliver the multiple, complex and
433 multi-layer ancestral sources related to local ancient millet and rice farmers and neighboring Siberian hunter-gatherers and herders contributed to
434 the genomic information of geographically different Han Chinese. In summary, we provided new insights into the paternal genetic structure of the
435 Han Chinese and the influencing factors of their formation based on the newly collected paternal genomic sources and reported a most plausible
436 complex admixture model to illuminate the evolutionary history of the Han Chinese.

437 MATERIALS AND METHODS

438 Studied populations

439 We collected peripheral blood from 5,020 unrelated males distributed in 29 different administrative provinces (Figure 1a), including Anhui (N =
440 236), Beijing (N = 133), Chongqing (N = 99), Fujian (N = 142), Gansu (N = 65), Guangdong (N = 387), Guangxi (N = 89), Guizhou (N = 64), Hainan (N
441 = 11), Hebei (N = 230), Heilongjiang (N = 92), Henan (N = 253), Hubei (N = 183), Hunan (N = 198), InnerMongolia (N = 41), Jiangsu (N = 499), Jiangxi
442 (N = 196), Jilin (N = 69), Liaoning (N = 161), Ningxia (N = 12), Shaanxi (N = 158), Shandong (N = 594), Shanghai (N = 137), Shanxi (N = 158), Sichuan
443 (N = 342), Tianjin (N = 69), Xinjiang (N = 10), Yunnan (N = 62) and Zhejiang (N = 331). Each donor provided the informed consent. Ethical approval
444 was provided by the Medical Ethics Committee of West China Hospital of Sichuan University (2023-1321). Our experiment obeyed the
445 recommendations and regulations of our institute and national guidelines of the standard of the Declaration of Helsinki (Association 2013). Genomic
446

447

448

449 Parental formation of Han Chinese

450 DNA was extracted using the QIAamp DNA Mini Kit (QIAGEN, Germany). We used the Qubit dsDNA HS Assay Kit to quantify DNA concentrations based
451 on the standard protocol on a Qubit 3.0 fluorometer (Thermo Fisher Scientific). Then, DNA samples were stored at – 20°C until amplification.

452 Genotyping and quality control

453 We sequenced the targeted Y-chromosome regions in 5,020 samples using the YHseqY3000 panel on the Illumina platform (Illumina, San Diego, CA,
454 USA) and used the BWA v.0.7.13 (Li and Durbin 2009) to map the raw sequencing reads to the human reference genome GRCh37. The Quality control
455 was conducted by the PLINK v1.90b6.26 64-bit (2 Apr 2022) with two parameters (-geno: 0.1 and -mind: 0.1) (Chang et al. 2015).

456 Haplogroup allocation

457 First, we classify the haplogroup with our developed forensic phylogenetic tree using our in-house pipeline. Consistent with previous research on
458 the haplogroup Nomenclature, the haplogroup for each sample was allocated by the python package of hGrpr2 in HaploGrouper based on the ISOGG
459 Y-DNA Haplogroup Tree 2019–2020 version 15.73 (Jagadeesan et al. 2021). In addition, we used Y-LineageTracker to classify the haplogroup for
460 comparing the consistency of haplogroup allocation (Chen et al. 2021). Detailed results are listed in **Table S2**.

461 The performance of our developed panel

462 We used Arlequin 3.5.1.3 to calculate the haplotype frequency of 29 populations, respectively. We calculated the haplotype/haplogroup-based
463 forensic parameter with the following formulas. Haplotype diversity (HD) was calculated based on the following formula from Nei and Tajima: $HD = n(1 - \sum p_i^2)/(n-1)$, where n is the mean of the total number of observed haplotypes and p_i is the mean of the frequency of the i-th haplotype.
464 Discrimination capacity (DC) was calculated as the ratio between the number of observed haplotypes and the number of total haplotypes. Match
465 probability (MP) was computed as the sum of squared haplotype frequencies: $MP = \sum p_i^2$.

466 Statistical Analyses

467 Y-chromosome-based analyses

468 Genetic diversity

469 We used the Python package ClusterHaplogroup in Y-LineageTracker to calculate the haplogroup frequency of 29 populations from different
470 provinces. To prevent the potential bias from the small sample size (< 30), we removed the samples from Xinjiang, Ningxia and Hainan for further
471 analysis. Using the R package, we generated the HFS within the third level. We used ArcGIS software to present the geographic distribution of the
472 haplogroup frequency and conducted the spatial autocorrelation analysis with the above results. Moran's I index can dissect whether the haplogroup
473 distribution has clustering properties in spatial geographical distribution. Getis-Ord Gi* can distinguish the HotSpot and ColdSpot related to a cluster
474 region with high and low values, respectively. The HotSpot generally corresponds to the center of diffusion of the haplogroup.

475 Genetic relationship and population structure

476 We used the Python package of ClusterHaplogroup in Y-LineageTracker to perform PCA based on the haplogroup frequency at the fourth level. We
477 also used Arlequin 3.5.1.3 to calculate the pairwise genetic distances (F_{ST}) within 26 populations and then carried out a nonparametric MDS analysis
478 using the R package (Excoffier and Lischer 2010). We conducted the correlation analysis and mantel test using the R package. We constructed an
479 unrooted neighbor-joining tree based on genetic distances (F_{ST}) among 26 populations using MEGA 7 (Kumar et al. 2016). We also generated the
480 genetic distances (F_{ST}) matrix using the R package among 26 populations. We performed the AMOVA analysis using the Arlequin 3.5.1.3. We
481 performed the mantel test to explore the model of isolate by distance, which meant the relationship between the genetic distance and the geographic
482 distance using the R package with 10000 rounds of permutation.

483 Phylogeny analysis and network analysis

484 We generated the Newick file of the phylogenetic tree of all samples using the Python package of PhyloHaplogroup in Y-LineageTracker with the
485 maximum parsimony method. Then, we import the Newick file into the website of iTOL: Interactive Tree of Life to annotate and embellish. We used
486 the Python package of `fasta_to_nexus_Main.py` (`fasta_nexus_converter/Main.py` at master · rubenAlbuquerque/fastna_nexus_converter · GitHub) to
487 convert Fasta file to Nexus files. Then, we used popART to generate the Median-Joining Network (Bandelt et al. 1999; Leigh et al. 2015).

488 Autosome-based analyses

489 Model-based ADMIXTURE analysis

490 We used PLINK v.1.90 to prune the original dataset with strong linkage disequilibrium SNPs based on the parameters of --indep-pairwise 200 25 0.4
491 (Chang et al. 2015). Then, we applied the unsupervised ADMIXTURE v.1.3.0 analysis based on the clustering algorithm of maximum likelihood
492 (Alexander et al. 2009) to explore the genetic structure and identify ancestral sources in the context of different regions in China at the autosomal
493 chromosome level. The model-based ADMIXTURE analysis included 1,132 individuals from 32 Han Chinese populations from different administrative
494 provinces and 89 ancient and modern reference populations included in our merged 10K_CPGDP database. On this basis, we ran ADMIXTURE for 100
495 iterations with the number of ancestral sources from K = 2 to K = 20 through the default parameters. Besides, we performed 10-fold cross-validation
496 (--cv = 10) using different random seeds to determine the optimal K value (Feng et al. 2018), which depended on the lowest cross-validation error
497 and the highest log-likelihood. We used ArcMap 10.8 to visualize the frequency distribution of four ancestral components among 32 populations of
498 the Han Chinese from different administrative provinces. We then correlated the four ancestral components with the paternal lineage frequency and
499 visualized the result of correlation analysis using the R package.

500 ADMIXTOOLS2 analysis

501 For the ADMIXTOOLS2 analysis, we integrated data from 32 Han Chinese populations along with continentally representative modern ancient source
502 populations (Maier et al. 2023), including Yoruba, Russia_Afanasievo, China_SEastAsia_Island_EN, Mongolia_North_N, China_YR_LN and GaoHuaHua.
503 The function `find_graphs` in the R package ADMIXTOOLS2 was setting 0 to 2 admixture events with 50 replicates for each Han Chinese population.
504 This approach leveraged f -statistics and the optimal model fit is shown in **Figure S7**.

505 Declarations

506 Ethics approval and consent to participate

Parental formation of Han Chinese

513 The Medical Ethics Committee of West China Hospital of Sichuan University approved this study. This study was conducted in accordance with the
514 principles of the Helsinki Declaration.

515 **Consent for publication**

516 Not applicable.

517 **Data Availability**

518 All haplogroup information was submitted in the supplementary materials. We followed the regulations of the Ministry of Science and Technology of
519 the People's Republic of China. The raw genotype data required controlled access. Further requests for access to data can be directed to Guanglin He
520 (Guanglinhe@163.com) and Mengge Wang (Menggewang2021@163.com).

521 **Competing interests**

522 The authors declare that they have no competing interests.

523 **Funding**

524 This work was supported by grants from the National Natural Science Foundation of China (82202078).

525 **Author Contributions**

526 Z.W., G.H., M.W., S.N. and C.L. conceived and supervised the project. G.H. and M.W. collected the samples. Z.W., Y.H., G.H. and M.W. extracted the genomic
527 DNA and performed the genome sequencing. Z.W., G.H., M.W. and S.D. did variant calling. Z.W., B.J., L.L., Y.L., X.J., M.W., Y.H., S.D., R.T., K.L., L.H., J.C.,
528 X.L., Q.Y., Y.S., Q.S., Y.H., H.S., J.Z., H.Y., L.Y., J.Y., Y.C., K.Z., H.D., J.Y., B.Z., S.N., C.L., G.H. performed population genetic analysis. Z.W., G.H. and M.W. drafted
529 the manuscript. Z.W., G.H., M.W., S.N. and C.L. revised the manuscript.

530 **Acknowledgments**

531 We thank all the volunteers who participated in this project.

532 **†Full author lists of 10K_CPGDP consortium**

533 Mengge Wang^{1,2,4,5}, Haibing Yuan², Lanhai Wei⁹, Renkuan Tang¹¹, Liping Hu³, Yuguo Huang¹, Hongbing Yao¹⁰, Libing Yun¹³, Junbao Yang¹⁴, Yan Cai¹⁵,
534 Hong Deng³, Jiangwei Yan¹², Bofeng Zhu^{16,17}, Shengjie Nie², Chao Liu^{5,15,18}, Guanglin He^{1,2}

535

536 **REFERENCES**

537 Alexander DH, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals. *Genome Res* **19**: 1655-1664.

538 Association WM. 2013. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. *Jama*
539 **310**: 2191-2194.

540 Bai H, Guo X, Narisu N, Lan T, Wu Q, Xing Y, Zhang Y, Bond SR, Pei Z, Zhang Y et al. 2018. Whole-genome sequencing of 175 Mongolians uncovers
541 population-specific genetic architecture and gene flow throughout North and East Asia. *Nat Genet* **50**: 1696-1704.

542 Bandelt HJ, Forster P, Rohl A. 1999. Median-joining networks for inferring intraspecific phylogenies. *Mol Biol Evol* **16**: 37-48.

543 Bellwood P. 2005. Examining the farming/language dispersal hypothesis in the East Asian context. In *The Peopling of East Asia*, pp. 41-54. Routledge.

544 Cao Y, Li L, Xu M, Feng Z, Sun X, Lu J, Xu Y, Du P, Wang T, Hu R et al. 2020. The ChinaMAP analytics of deep whole genome sequences in 10,588
545 individuals. *Cell Res* **30**: 717-731.

546 Cavalli-Sforza LL. 1998. The Chinese human genome diversity project. *Proc Natl Acad Sci U S A* **95**: 11501-11503.

547 Cavalli-Sforza LL, Menozzi P, Piazza A. 1994. *The history and geography of human genes*. Princeton university press.

548 Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. 2015. Second-generation PLINK: rising to the challenge of larger and richer datasets.
549 *Gigascience* **4**: 7.

550 Chen H, Lin R, Lu Y, Zhang R, Gao Y, He Y, Xu S. 2022. Tracing Bai-Yue Ancestry in Aboriginal Li People on Hainan Island. *Mol Biol Evol* **39**: msac210.

551 Chen H, Lu Y, Lu D, Xu S. 2021. Y-LineageTracker: a high-throughput analysis framework for Y-chromosomal next-generation sequencing data. *BMC*
552 *Bioinformatics* **22**: 114.

553 Chen J, Zheng H, Bei JX, Sun L, Jia WH, Li T, Zhang F, Seielstad M, Zeng YX, Zhang X et al. 2009. Genetic structure of the Han Chinese population revealed
554 by genome-wide SNP variation. *Am J Hum Genet* **85**: 775-785.

555 Chen P, Wu J, Luo L, Gao H, Wang M, Zou X, Li Y, Chen G, Luo H, Yu L et al. 2019. Population Genetic Analysis of Modern and Ancient DNA Variations
556 Yields New Insights Into the Formation, Genetic Structure, and Phylogenetic Relationship of Northern Han Chinese. *Front Genet* **10**: 1045.

557 Cheng S, Xu Z, Bian S, Chen X, Shi Y, Li Y, Duan Y, Liu Y, Lin J, Jiang Y. 2023. The STROMICS genome study: deep whole-genome sequencing and analysis
558 of 10K Chinese patients with ischemic stroke reveal complex genetic and phenotypic interplay. *Cell Discovery* **9**: 75.

559 Chiang CW, Mangal S, Robles C, Sankararaman S. 2018. A comprehensive map of genetic variation in the world's largest ethnic group—Han Chinese.
560 *Mol Biol Evol* **35**: 2736-2750.

561 Cong PK, Bai WY, Li JC, Yang MY, Khederzadeh S, Gai SR, Li N, Liu YH, Yu SH, Zhao WW et al. 2022. Genomic analyses of 10,376 individuals in the
562 Westlake BioBank for Chinese (WBBC) pilot project. *Nat Commun* **13**: 2939.

563 Consortium HP-AS, Abdulla MA, Ahmed I, Assawamakin A, Bhak J, Brahmachari SK, Calacal GC, Chaurasia A, Chen CH, Chen J et al. 2009. Mapping
564 human genetic diversity in Asia. *Science* **326**: 1541-1545.

565 Damgaard PB, Marchi N, Rasmussen S, Peyrot M, Renaud G, Korneliussen T, Moreno-Mayar JV, Pedersen MW, Goldberg A, Usmanova E et al. 2018. 137
566 ancient human genomes from across the Eurasian steppes. *Nature* **557**: 369-374.

567 Diamond J, Bellwood P. 2003. Farmers and their languages: the first expansions. *Science* **300**: 597-603.

568 Excoffier L, Lischer HE. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows.
569 *Mol Ecol Resour* **10**: 564-567.

570 Feng Q, Lu D, Xu S. 2018. AncestryPainter: a graphic program for displaying ancestry composition of populations and individuals. *Genomics, Proteomics & Bioinformatics* **16**: 382-385.

571 Ge J, Wu S, Chao S. 1997. *Zhongguo yimin shi* (The migration history of China). Fujian People's Publishing House, Fuzhou, China.

572 GenomeAsia KC. 2019. The GenomeAsia 100K Project enables genetic discoveries across Asia. *Nature* **576**: 106-111.

573 Hallast P, Ebert P, Loftus M, Yilmaz F, Audano PA, Logsdon GA, Bonder MJ, Zhou W, Hops W, Kim K et al. 2023. Assembly of 43 human Y chromosomes
574 reveals extensive complexity and variation. *Nature* **621**: 355-364.

575 He G, Wang M, Miao L, Chen J, Zhao J, Sun Q, Duan S, Wang Z, Xu X, Sun Y et al. 2023a. Multiple founding paternal lineages inferred from the newly-
576 developed 639-plex Y-SNP panel suggested the complex admixture and migration history of Chinese people. *Human genomics* **17**.

577

Parental formation of Han Chinese

578 He G, Wang Z, Guo J, Wang M, Zou X, Tang R, Liu J, Zhang H, Li Y, Hu R et al. 2020. Inferring the population history of Tai-Kadai-speaking people and
579 southernmost Han Chinese on Hainan Island by genome-wide array genotyping. *Eur J Hum Genet* **28**: 1111-1123.

580 He G, Yao H, Sun Q, Duan S, Tang R, Chen J, Wang Z, Sun Y, Li X, Wang S et al. 2023b. Whole-genome sequencing of ethnolinguistic diverse northwestern
581 Chinese Hexi Corridor people from the 10K_CPGDP project suggested the differentiated East-West genetic admixture along the Silk Road
582 and their biological adaptations. *bioRxiv* doi:10.1101/2023.02.26.530053: 2023.2002.2026.530053.

583 He GL, Li YX, Zou X, Yeh HY, Tang RK, Wang PX, Bai JY, Yang XM, Wang Z, Guo JX et al. 2022. Northern gene flow into southeastern East Asians inferred
584 from genome-wide array genotyping. *Journal of Systematics and Evolution* **61**: 179-197.

585 He GL, Wang MG, Li YX, Zou X, Yeh HY, Tang RK, Yang XM, Wang Z, Guo JX, Luo T et al. 2021. Fine-scale north-to-south genetic admixture profile in
586 Shaanxi Han Chinese revealed by genome-wide demographic history reconstruction. *Journal of Systematics and Evolution* **60**: 955-972.

587 Jagadeesan A, Ebenesersdottir SS, Guethmundsdottir VB, Thordardottir EL, Moore KHS, Helgason A. 2021. HaploGrouper: a generalized approach to
588 haplogroup classification. *Bioinformatics* **37**: 570-572.

589 Jeong C, Ozga AT, Witonsky DB, Malmstrom H, Edlund H, Hofman CA, Hagan RW, Jakobsson M, Lewis CM, Aldenderfer MS et al. 2016. Long-term
590 genetic stability and a high-altitude East Asian origin for the peoples of the high valleys of the Himalayan arc. *Proc Natl Acad Sci USA* **113**:
591 7485-7490.

592 Jeong C, Wang K, Wilkin S, Taylor WTT, Miller BK, Bemann JH, Stahl R, Chiovelli C, Knolle F, Ulziibayar S et al. 2020. A Dynamic 6,000-Year Genetic
593 History of Eurasia's Eastern Steppe. *Cell* **183**: 890-904 e829.

594 Jin L, Su B. 2000. Natives or immigrants: modern human origin in east Asia. *Nat Rev Genet* **1**: 126-133.

595 Karafet TM, Mendez FL, Meilerman MB, Underhill PA, Zegura SL, Hammer MF. 2008. New binary polymorphisms reshape and increase resolution of
596 the human Y chromosomal haplogroup tree. *Genome Res* **18**: 830-838.

597 Karmin M, Flores R, Saag L, Hudjashov G, Brucato N, Crenna-Darusallam C, Larena M, Endicott PL, Jakobsson M, Lansing JS et al. 2022. Episodes of
598 Diversification and Isolation in Island Southeast Asian and Near Oceanian Male Lineages. *Mol Biol Evol* **39**.

599 Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. *Mol Biol Evol* **33**: 1870-1874.

600 Kumar V, Wang W, Zhang J, Wang Y, Ruan Q, Yu J, Wu X, Hu X, Wu X, Guo W et al. 2022. Bronze and Iron Age population movements underlie Xinjiang
601 population history. *Science* **376**: 62-69.

602 Kutanan W, Kampuansai J, Srikummoor M, Brunelli A, Ghirotto S, Arias L, Macholdt E, Hubner A, Schroder R, Stoneking M. 2019. Contrasting Paternal
603 and Maternal Genetic Histories of Thai and Lao Populations. *Mol Biol Evol* **36**: 1490-1506.

604 Kutanan W, Shoocongdej R, Srikummoor M, Hubner A, Suttipai T, Srithawong S, Kampuansai J, Stoneking M. 2020. Cultural variation impacts paternal
605 and maternal genetic lineages of the Hmong-Mien and Sino-Tibetan groups from Thailand. *Eur J Hum Genet* **28**: 1563-1579.

606 Lang M, Liu H, Song F, Qiao X, Ye Y, Ren H, Li J, Huang J, Xie M, Chen S et al. 2019. Forensic characteristics and genetic analysis of both 27 Y-STRs and
607 143 Y-SNPs in Eastern Han Chinese population. *Forensic Sci Int Genet* **42**: e13-e20.

608 Lazaridis I, Patterson N, Mitnik A, Renaud G, Mallick S, Kirsanow K, Sudmant PH, Schraiber JG, Castellano S, Lipson M et al. 2014. Ancient human genomes
609 suggest three ancestral populations for present-day Europeans. *Nature* **513**: 409-413.

610 Leigh JW, Bryant D, Nakagawa S. 2015. popart: full-feature software for haplotype network construction. *Methods in Ecology and Evolution* **6**: 1110-
611 1116.

612 Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics* **25**: 1754-1760.

613 Li H, Huang Y, Mustavich LF, Zhang F, Tan JZ, Wang LE, Qian J, Gao MH, Jin L. 2007. Y chromosomes of prehistoric people along the Yangtze River. *Hum
614 Genet* **122**: 383-388.

615 Li S, Yan J, Wan J. 2012. The characteristics of temperature change in Qinling Mountains. *Sci Geogr Sin* **32**: 853-858.

616 Li Y-C, Gao Z-L, Liu K-J, Tian J-Y, Yang B-Y, Rahman ZU, Yang L-Q, Zhang S-H, Li C-T, Achilli A. 2023. Mitogenome evidence shows two radiation events
617 and dispersals of matrilineal ancestry from northern coastal China to the Americas and Japan. *Cell Reports*.

618 Li YC, Tian JY, Liu FW, Yang BY, Gu KS, Rahman ZU, Yang LQ, Chen FH, Dong GH, Kong QP. 2019a. Neolithic millet farmers contributed to the permanent
619 settlement of the Tibetan Plateau by adopting barley agriculture. *Natl Sci Rev* **6**: 1005-1013.

620 Li YC, Ye WJ, Jiang CG, Zeng Z, Tian JY, Yang LQ, Liu KJ, Kong QP. 2019b. River Valleys Shaped the Maternal Genetic Landscape of Han Chinese. *Mol Biol
621 Evol* **36**: 1643-1652.

622 Liang Z, White MJ. 1996. Internal migration in China, 1950-1988. *Demography* **33**: 375-384.

623 Lipson M, Cheronet O, Mallick S, Rohland N, Oxenham M, Pietruszewsky M, Pryce TO, Willis A, Matsumura H, Buckley H et al. 2018. Ancient genomes
624 document multiple waves of migration in Southeast Asian prehistory. *Science* **361**: 92-95.

625 Liu CC, Witonsky D, Gosling A, Lee JH, Ringbauer H, Hagan R, Patel N, Stahl R, Novembre J, Aldenderfer M et al. 2022a. Ancient genomes from the
626 Himalayas illuminate the genetic history of Tibetans and their Tibeto-Burman speaking neighbors. *Nat Commun* **13**: 1203.

627 Liu L, Chen J, Wang J, Zhao Y, Chen X. 2022b. Archaeological evidence for initial migration of Neolithic Proto Sino-Tibetan speakers from Yellow River
628 valley to Tibetan Plateau. *Proc Natl Acad Sci USA* **119**: e2212006119.

629 Liu S, Huang S, Chen F, Zhao L, Yuan Y, Francis SS, Fang L, Li Z, Lin L, Liu R. 2018. Genomic analyses from non-invasive prenatal testing reveal genetic
630 associations, patterns of viral infections, and Chinese population history. *Cell* **175**: 347-359. e314.

631 Liu Y, Xie J, Wang M, Liu C, Zhu J, Zou X, Li W, Wang L, Leng C, Xu Q et al. 2021. Genomic Insights Into the Population History and Biological Adaptation
632 of Southwestern Chinese Hmong-Mien People. *Front Genet* **12**: 815160.

633 Ma X, Yang W, Gao Y, Pan Y, Lu Y, Chen H, Lu D, Xu S. 2021. Genetic Origins and Sex-Biased Admixture of the Huis. *Mol Biol Evol* **38**: 3804-3819.

634 Macholdt E, Arias L, Duong NT, Ton ND, Van Phong N, Schroder R, Pakendorf B, Van Hai N, Stoneking M. 2020. The paternal and maternal genetic
635 history of Vietnamese populations. *Eur J Hum Genet* **28**: 636-645.

636 Maier R, Flegontov P, Flegontova O, Isildak U, Changmai P, Reich D. 2023. On the limits of fitting complex models of population history to f-statistics.
637 *eLife* **12**: e85492.

638 Mao X, Zhang H, Qiao S, Liu Y, Chang F, Xie P, Zhang M, Wang T, Li M, Cao P et al. 2021. The deep population history of northern East Asia from the Late
639 Pleistocene to the Holocene. *Cell* **184**: 3256-3266 e3213.

640 McColl H, Racimo F, Vinner L, Demeter F, Gakuhari T, Moreno-Mayar JV, van Driem G, Gram Wilken U, Seguin-Orlando A, de la Fuente Castro C et al.
641 2018. The prehistoric peopling of Southeast Asia. *Science* **361**: 88-92.

642 Narasimhan VM, Patterson N, Moorjani P, Rohland N, Bernardos R, Mallick S, Lazaridis I, Nakatsuka N, Olalde I, Lipson M et al. 2019. The formation of

Parental formation of Han Chinese

643 human populations in South and Central Asia. *Science* **365**: eaat7487.

644 Ning C, Li T, Wang K, Zhang F, Li T, Wu X, Gao S, Zhang Q, Zhang H, Hudson MJ et al. 2020. Ancient genomes from northern China suggest links between
645 subsistence changes and human migration. *Nat Commun* **11**: 2700.

646 Pan Y, Zhang C, Lu Y, Ning Z, Lu D, Gao Y, Zhao X, Yang Y, Guan Y, Mamatyusupu D et al. 2022. Genomic diversity and post-admixture adaptation in the
647 Uyghurs. *Natl Sci Rev* **9**: nwab124.

648 Pinotti T, Bergstrom A, Geppert M, Bawn M, Ohasi D, Shi W, Lacerda DR, Solli A, Norstedt J, Reed K et al. 2019. Y Chromosome Sequences Reveal a
649 Short Beringian Standstill, Rapid Expansion, and early Population structure of Native American Founders. *Curr Biol* **29**: 149-157 e143.

650 Qi X, Cui C, Peng Y, Zhang X, Yang Z, Zhong H, Zhang H, Xiang K, Cao X, Wang Y et al. 2013. Genetic evidence of paleolithic colonization and neolithic
651 expansion of modern humans on the tibetan plateau. *Mol Biol Evol* **30**: 1761-1778.

652 Qiu X, Huang S, Huang M, Liu S, Wang C, He J, Kuang Y, Lu J, Gu Y, Xia X et al. 2022. Whole genome sequencing and analysis of 4,053 individuals in trios
653 and mother-infant duos from the Born in Guangzhou Cohort Study. doi:10.21203/rs.3.rs-1732885/v1.

654 Ragsdale AP, Weaver TD, Atkinson EG, Hoal EG, Moller M, Henn BM, Gravel S. 2023. A weakly structured stem for human origins in Africa. *Nature* **617**:
655 755-763.

656 Reich D, Thangaraj K, Patterson N, Price AL, Singh L. 2009. Reconstructing Indian population history. *Nature* **461**: 489-494.

657 Rhie A, Nurk S, Cechova M, Hoyt SJ, Taylor DJ, Altemose N, Hook PW, Koren S, Rautiainen M, Alexandrov IA et al. 2023. The complete sequence of a
658 human Y chromosome. *Nature* **621**: 344-354.

659 Shi H, Zhong H, Peng Y, Dong YL, Qi XB, Zhang F, Liu LF, Tan SJ, Ma RZ, Xiao CJ et al. 2008. Y chromosome evidence of earliest modern human settlement
660 in East Asia and multiple origins of Tibetan and Japanese populations. *BMC Biol* **6**: 45.

661 Shou WH, Qiao EF, Wei CY, Dong YL, Tan SJ, Shi H, Tang WR, Xiao CJ. 2010. Y-chromosome distributions among populations in Northwest China identify
662 significant contribution from Central Asian pastoralists and lesser influence of western Eurasians. *J Hum Genet* **55**: 314-322.

663 Song F, Song M, Luo H, Xie M, Wang X, Dai H, Hou Y. 2021. Paternal genetic structure of Kyrgyz ethnic group in China revealed by high-resolution Y-
664 chromosome STRs and SNPs. *Electrophoresis* **42**: 1892-1899.

665 Song M, Wang Z, Lyu Q, Ying J, Wu Q, Jiang L, Wang F, Zhou Y, Song F, Luo H et al. 2022. Paternal genetic structure of the Qiang ethnic group in China
666 revealed by high-resolution Y-chromosome STRs and SNPs. *Forensic Sci Int Genet* **61**: 102774.

667 Song M, Wang Z, Zhang Y, Zhao C, Lang M, Xie M, Qian X, Wang M, Hou Y. 2019. Forensic characteristics and phylogenetic analysis of both Y-STR and
668 Y-SNP in the Li and Han ethnic groups from Hainan Island of China. *Forensic Sci Int Genet* **39**: e14-e20.

669 Su B, Xiao J, Underhill P, Deka R, Zhang W, Akey J, Huang W, Shen D, Lu D, Luo J et al. 1999. Y-Chromosome evidence for a northward migration of
670 modern humans into Eastern Asia during the last Ice Age. *Am J Hum Genet* **65**: 1718-1724.

671 Sun J, Li YX, Ma PC, Yan S, Cheng HZ, Fan ZQ, Deng XH, Ru K, Wang CC, Chen G et al. 2021. Shared paternal ancestry of Han, Tai-Kadai-speaking, and
672 Austronesian-speaking populations as revealed by the high resolution phylogeny of O1a-M119 and distribution of its sub-lineages within
673 China. *Am J Phys Anthropol* **174**: 686-700.

674 Sun N, Ma P-C, Yan S, Wen S-Q, Sun C, Du P-X, Cheng H-Z, Deng X-H, Wang C-C, Wei L-H. 2019. Phylogeography of Y-chromosome haplogroup Q1a1a-
675 M120, a paternal lineage connecting populations in Siberia and East Asia. *Annals of Human Biology* **46**: 261-266.

676 Tao Y, Zhou J, Liang L, Allen E, Zou Y, Huang Z, Li H. 2023. Fine-scale Genetic Structure of Geographically Distinct Patrilineal Lineages Delineates
677 Southward Migration Routes for Han Chinese. *Nature Anthropology*.

678 Wang C, Dai J, Qin N, Fan J, Ma H, Chen C, An M, Zhang J, Yan C, Gu Y et al. 2022a. Analyses of rare predisposing variants of lung cancer in 6,004 whole
679 genomes in Chinese. *Cancer Cell* **40**: 1223-1239 e1226.

680 Wang CC, Li H. 2013. Inferring human history in East Asia from Y chromosomes. *Investig Genet* **4**: 11.

681 Wang CC, Yeh HY, Popov AN, Zhang HQ, Matsumura H, Sirak K, Cheronet O, Kovalev A, Rohland N, Kim AM et al. 2021a. Genomic insights into the
682 formation of human populations in East Asia. *Nature* **591**: 413-419.

683 Wang F, Song F, Song M, Li J, Xie M, Hou Y. 2021b. Genetic reconstruction and phylogenetic analysis by 193 Y-SNPs and 27 Y-STRs in a Chinese Yi ethnic
684 group. *Electrophoresis* **42**: 1480-1487.

685 Wang F, Song F, Song M, Luo H, Hou Y. 2022b. Genetic structure and paternal admixture of the modern Chinese Zhuang population based on 37 Y-
686 STRs and 233 Y-SNPs. *Forensic Sci Int Genet* **58**: 102681.

687 Wang M, He G, Zou X, Liu J, Ye Z, Ming T, Du W, Wang Z, Hou Y. 2021c. Genetic insights into the paternal admixture history of Chinese Mongolians via
688 high-resolution customized Y-SNP SNaPshot panels. *Forensic Sci Int Genet* **54**: 102565.

689 Wang MG, He GL, Zou X, Chen PY, Wang Z, Tang RK, Yang XM, Chen J, Yang MQ, Li YX et al. 2022c. Reconstructing the genetic admixture history of Tai-
690 Kadai and Sinitic people: Insights from genome-wide SNP data from South China. *Journal of Systematics and Evolution* **61**: 157-178.

691 Wang T, Wang W, Xie G, Li Z, Fan X, Yang Q, Wu X, Cao P, Liu Y, Yang R et al. 2021d. Human population history at the crossroads of East and Southeast
692 Asia since 11,000 years ago. *Cell* **184**: 3829-3841 e3821.

693 Wang Z. 1994. History of nationalities in China. *China Social Science Press, Beijing (in Chinese)*.

694 Wen B, Li H, Lu D, Song X, Zhang F, He Y, Li F, Gao Y, Mao X, Zhang L et al. 2004a. Genetic evidence supports demic diffusion of Han culture. *Nature*
695 **431**: 302-305.

696 Wen B, Xie X, Gao S, Li H, Shi H, Song X, Qian T, Xiao C, Jin J, Su B et al. 2004b. Analyses of genetic structure of Tibeto-Burman populations reveals sex-
697 biased admixture in southern Tibeto-Burmans. *Am J Hum Genet* **74**: 856-865.

698 Xie M, Song F, Li J, Lang M, Luo H, Wang Z, Wu J, Li C, Tian C, Wang W et al. 2019. Genetic substructure and forensic characteristics of Chinese Hui
699 populations using 157 Y-SNPs and 27 Y-STRs. *Forensic Sci Int Genet* **41**: 11-18.

700 Xu J. 1999. Xueqiu: Han minzu de renleixue fenxi (Snowball: An Anthropological Analysis of the Han Nationality). *Shanghai: Shanghai renmin*
701 *chubanshe*.

702 Xu J. 2012. Understanding the snowball theory of the Han nationality. *Critical Han studies: the history, representation, and identity of China's majority*:
703 113-127.

704 Xu S, Yin X, Li S, Jin W, Lou H, Yang L, Gong X, Wang H, Shen Y, Pan X et al. 2009. Genomic dissection of population substructure of Han Chinese and its
705 implication in association studies. *Am J Hum Genet* **85**: 762-774.

706 Xue F, Wang Y, Xu S, Zhang F, Wen B, Wu X, Lu M, Deka R, Qian J, Jin L. 2008. A spatial analysis of genetic structure of human populations in China
707 reveals distinct difference between maternal and paternal lineages. *Eur J Hum Genet* **16**: 705-717.

708 Parental formation of Han Chinese

709 Xue Y, Zerjal T, Bao W, Zhu S, Shu Q, Xu J, Du R, Fu S, Li P, Hurles ME. 2006. Male demography in East Asia: a north–south contrast in human population
710 expansion times. *Genetics* **172**: 2431-2439.

711 Yan S, Wang CC, Zheng HX, Wang W, Qin ZD, Wei LH, Wang Y, Pan XD, Fu WQ, He YG et al. 2014. Y chromosomes of 40% Chinese descend from three
712 Neolithic super-grandfathers. *PLoS One* **9**: e105691.

713 Yang L, Tan S, Yu H, Zheng B, Qiao E, Dong Y, Zan R, Xiao C. 2008. Gene admixture in ethnic populations in upper part of Silk Road revealed by mtDNA
714 polymorphism. *Science in China Series C, Life sciences* **51**: 435-444.

715 Yang MA, Fan X, Sun B, Chen C, Lang J, Ko YC, Tsang CH, Chiu H, Wang T, Bao Q et al. 2020. Ancient DNA indicates human population shifts and
716 admixture in northern and southern China. *Science* **369**: 282-288.

717 Yao H, Wang M, Zou X, Li Y, Yang X, Li A, Yeh H-Y, Wang P, Wang Z, Bai J. 2021. New insights into the fine-scale history of western–eastern admixture
718 of the northwestern Chinese population in the Hexi Corridor via genome-wide genetic legacy. *Molecular Genetics and Genomics* **296**: 631-
719 651.

720 Yao YG, Kong QP, Bandelt HJ, Kivisild T, Zhang YP. 2002. Phylogeographic differentiation of mitochondrial DNA in Han Chinese. *Am J Hum Genet* **70**:
721 635-651.

722 Yu C, Lan X, Tao Y, Guo Y, Sun D, Qian P, Zhou Y, Walters Robin G, Li L, Zhu Y et al. 2023a. A high-resolution haplotype-resolved Reference panel
723 constructed from the China Kadoorie Biobank Study. *Nucleic Acids Research* doi:10.1093/nar/gkad779.

724 Yu H-X, Ao C, Wang X-P, Zhang X-P, Sun J, Li H, Liu K-J, Wei L-H. 2023b. The impacts of bronze age in the gene pool of Chinese: Insights from
725 phylogeographics of Y-chromosomal haplogroup N1a2a-F1101. *Frontiers in Genetics* **14**: 1139722.

726 Yu H, Spyrou MA, Karapetian M, Shnaider S, Radzeviciute R, Nagele K, Neumann GU, Penske S, Zech J, Lucas M et al. 2020. Paleolithic to Bronze Age
727 Siberians Reveal Connections with First Americans and across Eurasia. *Cell* **181**: 1232-1245 e1220.

728 Zhang F, Ning C, Scott A, Fu Q, Bjorn R, Li W, Wei D, Wang W, Fan L, Abuduresule I et al. 2021a. The genomic origins of the Bronze Age Tarim Basin
729 mummies. *Nature* **599**: 256-261.

730 Zhang M, Yan S, Pan W, Jin L. 2019. Phylogenetic evidence for Sino-Tibetan origin in northern China in the Late Neolithic. *Nature* **569**: 112-115.

731 Zhang P, Luo H, Li Y, Wang Y, Wang J, Zheng Y, Niu Y, Shi Y, Zhou H, Song T et al. 2021b. NyuWa Genome resource: A deep whole-genome sequencing-
732 based variation profile and reference panel for the Chinese population. *Cell Rep* **37**: 110017.

733 Zhong H, Shi H, Qi XB, Duan ZY, Tan PP, Jin L, Su B, Ma RZ. 2011. Extended Y chromosome investigation suggests postglacial migrations of modern
734 humans into East Asia via the northern route. *Mol Biol Evol* **28**: 717-727.

735 Zhou Y, Zhan X, Jin J, Zhou L, Bergman J, Li X, Rousselle MMC, Belles MR, Zhao L, Fang M et al. 2023. Eighty million years of rapid evolution of the
736 primate Y chromosome. *Nat Ecol Evol* **7**: 1114-1130.

737

738 Figure Legends

739 **Figure 1. The geographical location of the newly collected samples and the haplogroup frequency distribution at the third level.**

740 (a) The geographical distribution of the YanHuang cohort samples from 29 administrative provinces in China. The position of the circle represents
741 the sampling region and size indicates the sample size. The color of background indicated the different groupings according to the geographic barriers
742 of Qinling-Huaihe line and Nanling Mountains. The white background presented the paucity of sampling.

743 (b) The boxplots of DC (Discrimination capacity), MP (Match probability) and HD (Haplotype diversity) based on haplogroup and haplotype among
744 the Han Chinese. The superscripts of 1 and 2 present haplotype and haplogroup, respectively.

745 (c) The heat map of the haplogroup frequency spectrum within the third level among the Han Chinese. The topology of the tree is based on the F_{ST}
746 calculated by the haplogroup frequency matrix at the third level.

747 (d-l) The geographical distribution heatmap of the haplogroup O2a, O1a, O1b, C2b, C2a, N1b, N1a, D1a and Q1a at the third level among the Han
748 Chinese; different colors represent the haplogroup frequency among the Han Chinese (top). The spatial autocorrelation analysis is based on the
749 corresponding haplogroup frequency (bottom); HotSpot indicates the high-value spatial clustering, while ClodSpot indicates the low-value spatial
750 clustering. Different colors present different confidence intervals. Due to the small total number of Xinjiang (10), Ningxia (12) and Hainan (11), these
751 data were excluded.

752 **Figure 2. Paternal genetic structure and correlation analysis.**

753 (a-c) PCA of the Han Chinese based on the haplogroup frequency matrix at the fourth level, excluding the Xinjiang, Ningxia and Hainan due to potential
754 sampling bias, same to following pictures. Populations are grouped by (a) geographical boundaries of the Qinling-Huaihe line and Nanling Mountains,
755 (b) different river valleys and (c) different language dialects.

756 (d) Correlation analysis is shown between longitude, latitude, PC1, PC2, pairwise genetic distance and haplogroup frequency among the Han Chinese.
757 The pairwise genetic distance was related to each haplogroup composition by the Mantel test (bottom). Edge color indicates the statistical
758 significance and Edge width presents the Mantel's r statistic.

759 (e) The heat map of the matrix based on the pairwise genetic distance among the Han Chinese.

760 (f) The neighbor-joining tree based on the pairwise genetic distance among the Han Chinese. The different colors present different groupings.

761 **Figure 3. Median-joining network among the Han Chinese.**

762 (a) Median-joining network among all Han Chinese in our study.

763 (b) Median-joining network among the Han Chinese attributed to O2a and its sub-lineages.

764 (c) Median-joining network among the Han Chinese allocated to O1a and its sub-lineages.

765 (d) Median-joining network among the Han Chinese classified to O1b and its sub-lineages. Different colors in the node present different groups.
766 Different color backgrounds indicate different haplogroups and their sub-haplogroups.

767 **Figure 4. Correlation analysis between Admixture ancestry components and paternal lineages among the Han Chinese.**

768 (a) ADMIXTURE results presented the ancestry component of the Han Chinese with West Eurasia, Siberia and East Asia ancient individuals.

769 (b) The distribution of the Admixture ancestry components among the Han Chinese.

773 Parental formation of Han Chinese

774 (c-d) The correlation analysis between the Admixture ancestry component and paternal lineages at the third and fourth level, respectively.

775 **Figure 5. The simplified evolution pattern of the Han Chinese.**

776 The weakly-differentiated multi-source admixture model was proposed to illuminate the formation of the Han Chinese. The different colors of the
777 circle indicate the different haplogroups. The abbreviations are presented as follows. **AEES**: Ancient Eastern Eurasia Steppe. **AWES**: Ancient Western
778 Eurasia Steppe. **ANEA**: Ancient northern East Asians. **ASEA**: Ancient southern East Asians.

779 **Figure 6. The genetic relationship among East Asians inferred from Y chromosome variations.**

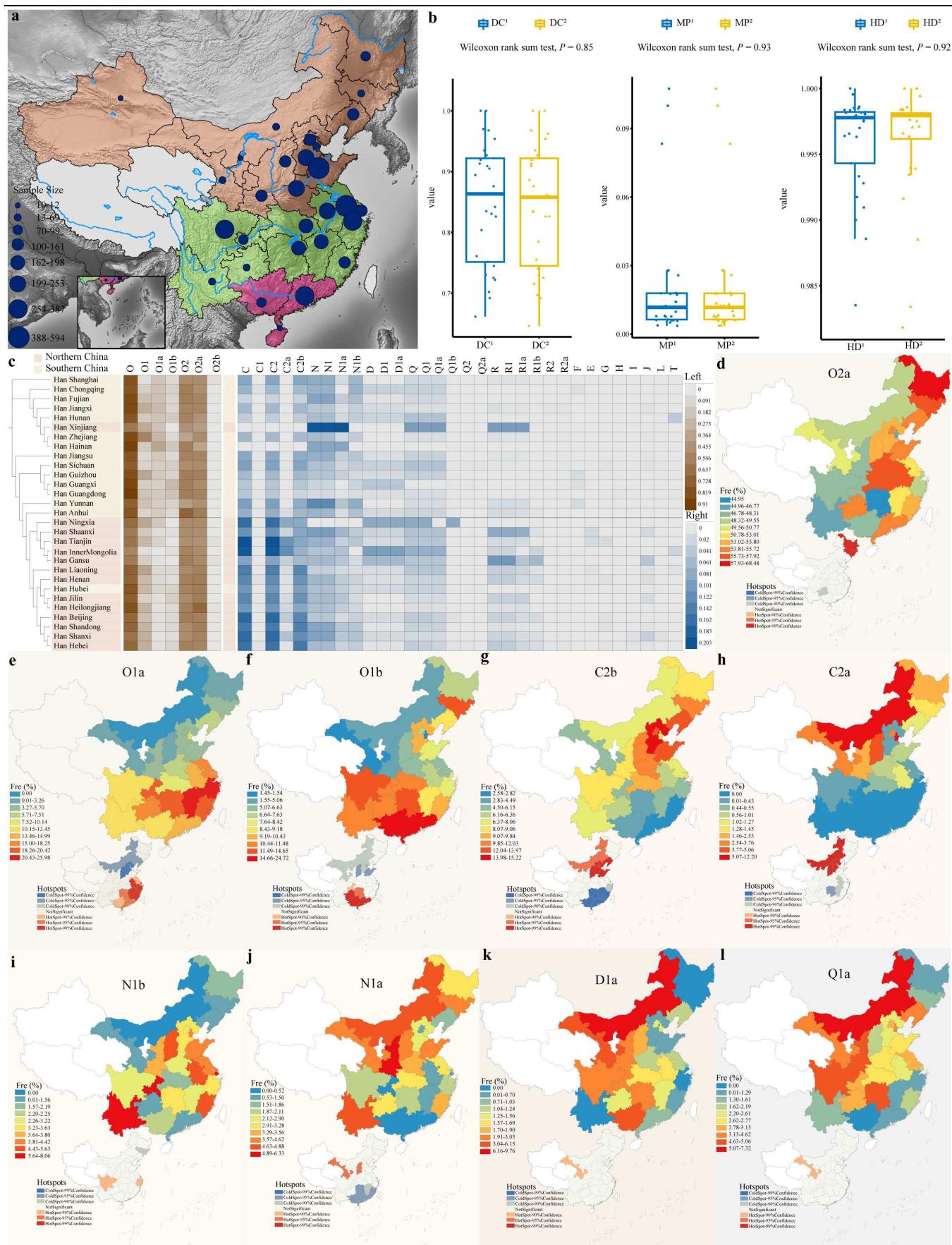
780 (a) PCA inferred from the haplogroup frequency matrix among 54 ethnolinguistically diverse populations in East Asia.

781 (b) The neighbor-joining tree among 54 ethnolinguistically diverse populations in East Asia.

782 (c-d) The heatmap of pairwise F_{ST} genetic distances among 54 ethnolinguistically diverse populations in East Asia with different legend values.

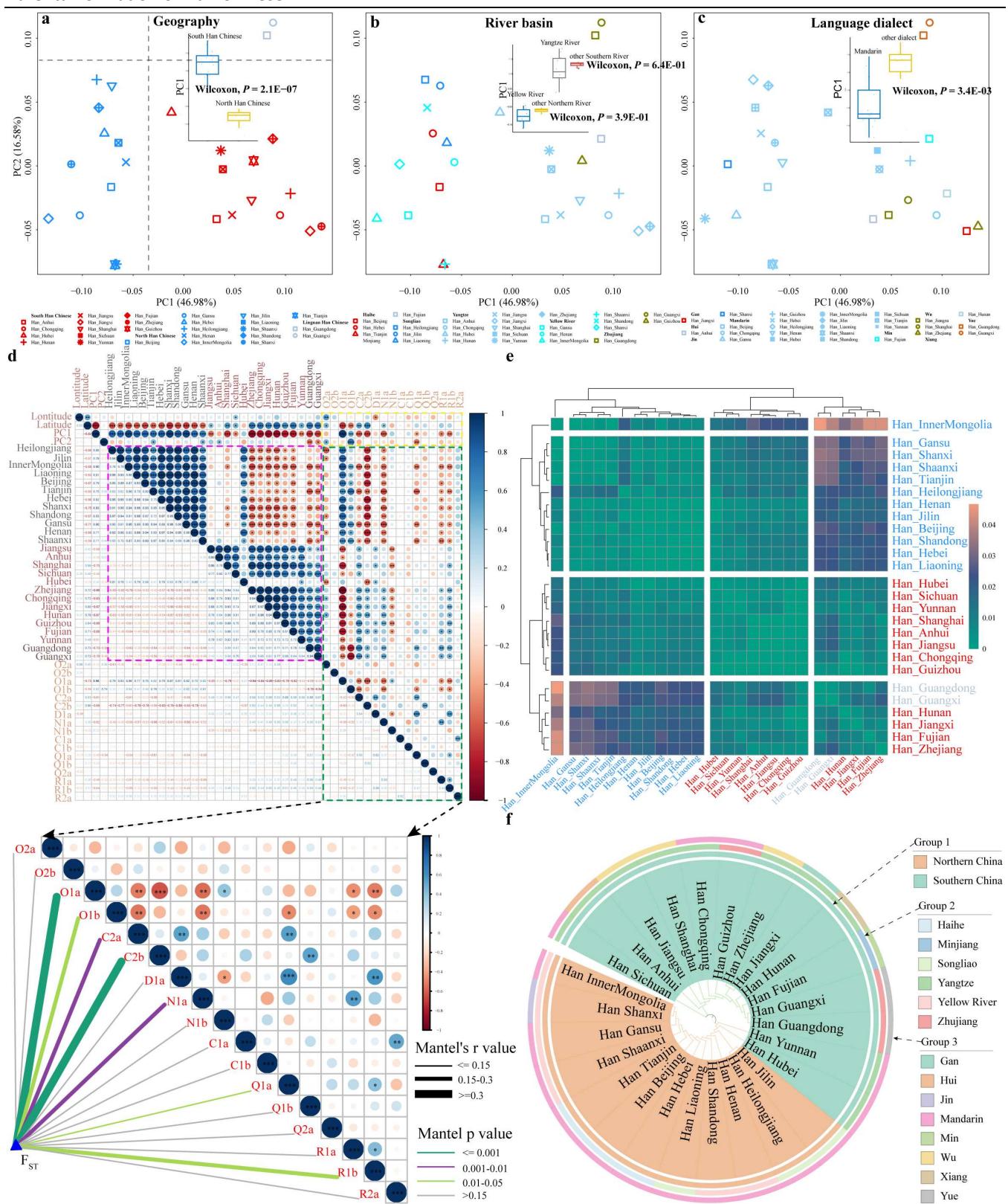
783 (e-i) The haplogroup frequency among 54 ethnolinguistically diverse populations in East Asia.

784


785

786 **Table 1. Results of AMOVA analysis.**

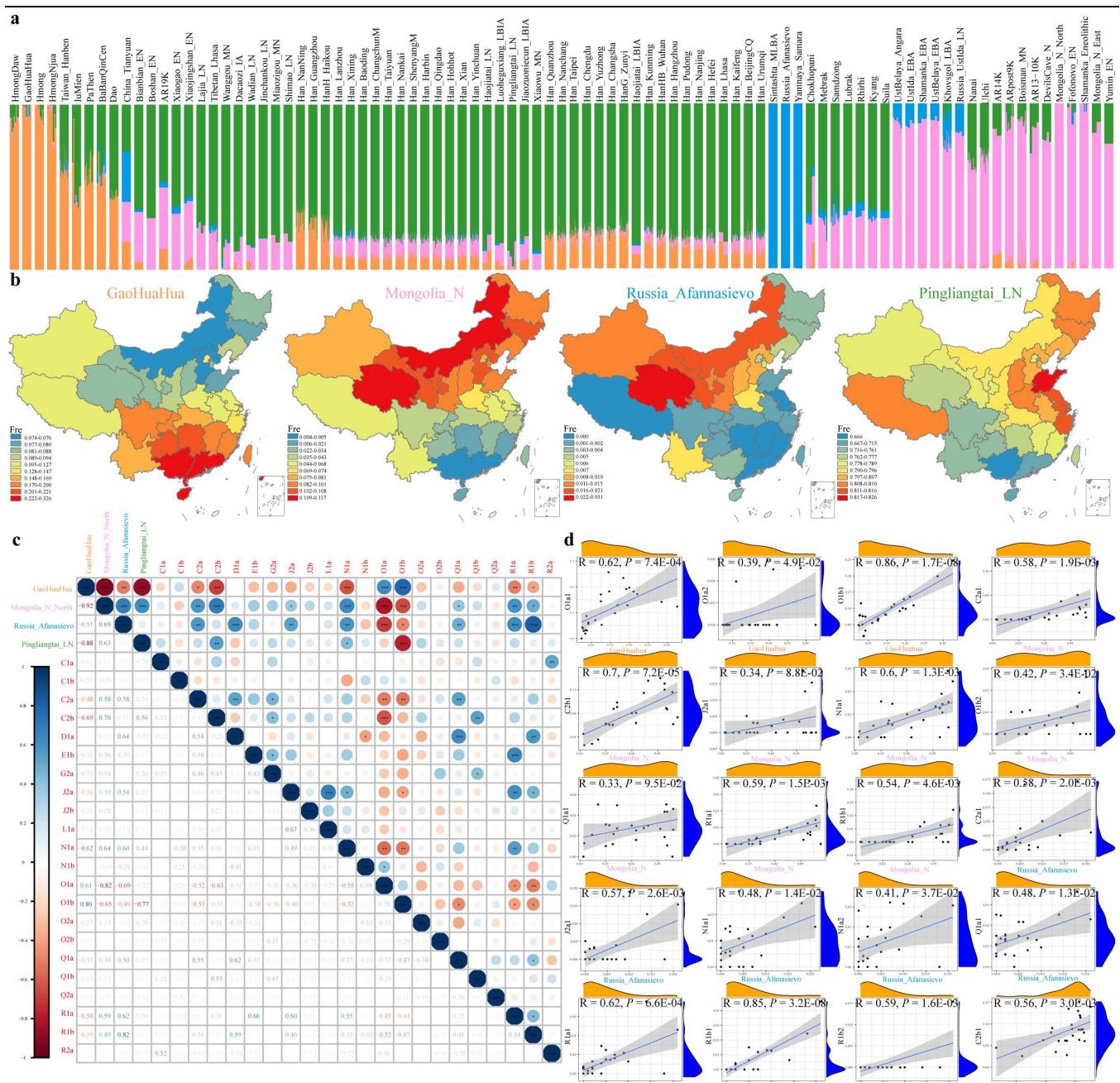
Groupings	Number of Populations	Number of Groups	Percentage of Variations (%)		
			Among-Groups	Among Populations within Groups	Within-Populations
Total	26	1	-	1.02**	98.98**
Southern China vs. Northern China^a	26	2	1.06**	0.47**	98.46**
Southern China vs. Northern China versus Southwestern China vs. Northwestern China^b	26	4	0.88**	0.44**	98.68**
Central vs. eastern vs. Northeastern vs. Northern vs. Northwestern vs. Southern vs. Southwestern^c	26	7	0.31	0.71**	98.98**
South Han vs. North Han vs. Lingnan Han^d	26	3	1.14**	0.32**	98.54**
Yangtze River vs. Yellow River vs. Zhejiang River vs. Haihe River vs. Songliao River vs. Minjiang River^e	26	6	0.96**	0.31**	98.73**
Yangtze River vs. Yellow River vs. Zhejiang River^f	26	3	1.09**	0.32**	98.59**
Language Dialects^g	26	8	0.93**	0.36**	98.71**
Northern Han Chinese^a	14	1	-	0.67*	99.33*
Southern Han Chinese^a	12	1	-	0.18**	99.82**
Lingnan Han Chinese^d	2	1	-	0.17	99.83
Central Han Chinese	3	1	-	-0.12	100.12


787 Note: The superior characters indicate different groupings. Detailed information about groupings is shown in Table S6. **indicates $P < 0.01$
788 *indicates $P < 0.05$.

Parental formation of Han Chinese

Figure 1. The geographical location of the newly collected samples and the haplogroup frequency distribution at the third level.

Parental formation of Han Chinese



Parental formation of Han Chinese

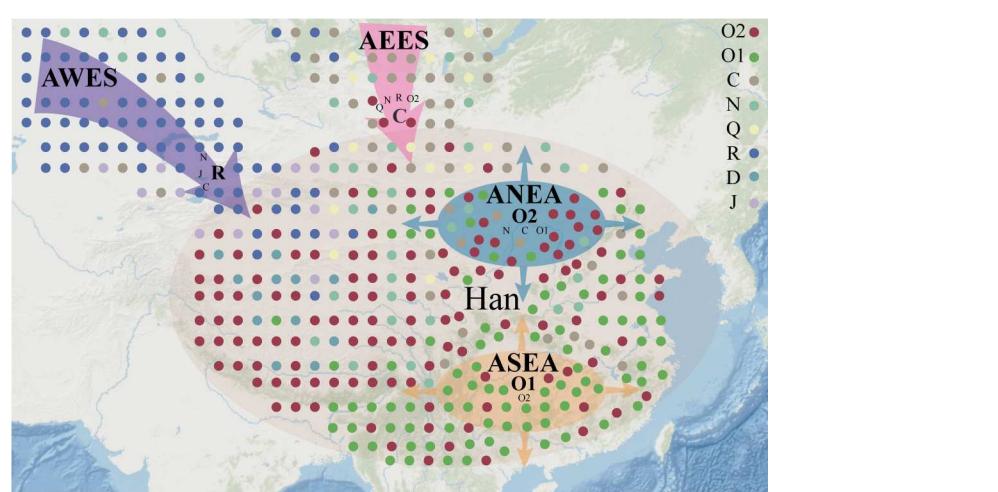


Figure 3. Median-joining network among the Han Chinese.

Parental formation of Han Chinese

Figure 4. Correlation analysis between Admixture ancestry components and paternal lineages among the Han Chinese.

Figure 5. The simplified evolution pattern of the Han Chinese.

Parental formation of Han Chinese

803

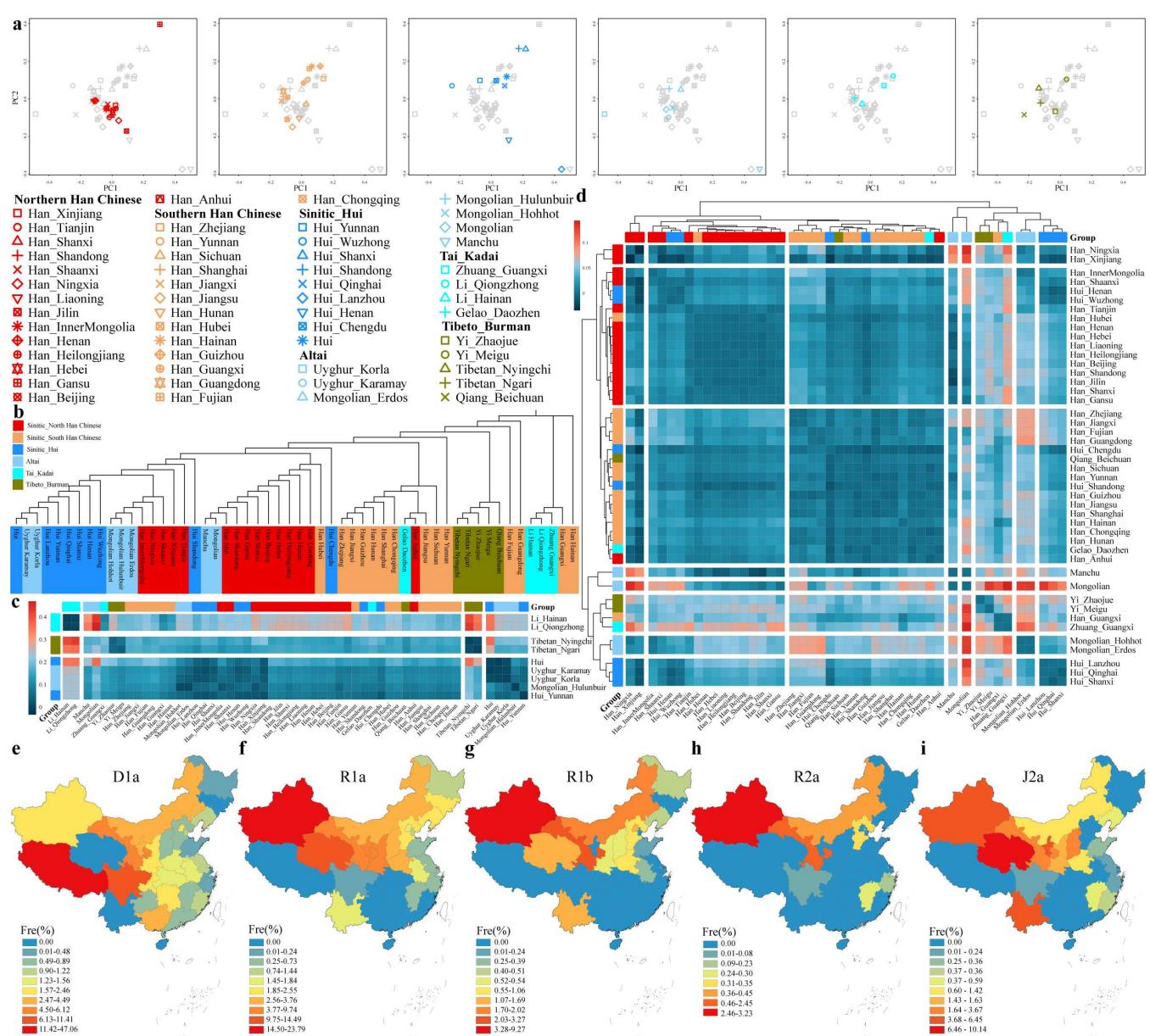


Figure 6. The genetic relationship among East Asians inferred from Y chromosome variations.

804

805

806