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Abstract 17 

There is growing interest in uncovering genetic kinship patterns in past societies using low-18 

coverage paleogenomes. Here, we benchmark four tools for kinship estimation with such data: 19 

lcMLkin, NgsRelate, KIN, and READ, which differ in their input, IBD-estimation methods and 20 

statistical approaches. We used pedigree and ancient genome sequence simulations to 21 

evaluate these tools when only a limited number (1K to 50K) of shared SNPs (with minor allele 22 

frequency g0.01) are available. The performance of all four tools was comparable using g20K 23 

SNPs. We found that first-degree related pairs can be accurately classified even with 1K 24 

SNPs, with 85% F1 scores using READ and 96% using NgsRelate or lcMLkin. Distinguishing 25 

third-degree relatives from unrelated pairs or second-degree relatives was also possible with 26 

high accuracy (F1 >90%) with 5K SNPs using NgsRelate and lcMLkin, while READ and KIN 27 

showed lower success (69% and 79%, respectively). Meanwhile, noise in population allele 28 

frequencies and inbreeding (first cousin mating) led to deviations in kinship coefficients, with 29 

different sensitivities across tools. We conclude that using multiple tools in parallel might be 30 

an effective approach to achieve robust estimates on ultra-low coverage genomes. 31 
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Background 35 

 36 

The use of paleogenomes for inferring genetic kin relations in ancient human populations is 37 

growing at an accelerating pace. These studies have unraveled diverse types of social 38 

relations of past human societies, from the composition of households [1,2] or burial treatment 39 

of mass murder victims [3] to matrilineal [4] or patrilineal traditions studied in graves [5–8]. 40 

However, determining kinship degree using single nucleotide polymorphism (SNP) data from 41 

low-coverage genomes is fraught with difficulties, mainly arising from data scarcity. The 42 

majority of published paleogenomes are below 1x coverage and thus do not allow reliable 43 

diploid genotyping, required by popular kinship estimation tools such as KING [9]. Although 44 

imputation has recently been shown to produce reliable diploid genotypes using shotgun 45 

genomes >0.5x [10,11], a substantial fraction of paleogenomes still do not reach this threshold; 46 

e.g., in the AADR repository (v54.1.p1) [12], out of 2041 published shotgun genomes with 47 

reported coverage from their original source, 916 (%45) have coverage <0.5x.  48 

 49 

A number of solutions finetuned for performance on low coverage ancient DNA (aDNA) data 50 

have been published over the last years. These algorithms use pseudohaploid genotypes (e.g. 51 

[13]), genotype likelihoods (e.g. [14–16]) or read information (e.g. [17]), instead of diploid calls. 52 

These methods also differ in (a) how they normalize the pairwise mismatch values between 53 

two genomes to infer the kinship degree, and (b) whether they use method-of-moment 54 

estimators or probabilistic approaches. The most widely cited tool, READ [13], compares the 55 

rate of average mismatch (P0) between a genome pair with the median (or maximum) P0 of 56 

a large enough sample from the same population, assuming this median estimate represents 57 

the expected P0 of an unrelated pair. This is similar to the pairwise mismatch rate (PMR) 58 

calculation by Kennett and colleagues [4]. Two other commonly used tools, lcMLkin (v2) 59 

[14,15] and NgsRelate (v2) [16], use genotype likelihoods and population allele frequency 60 

estimates to infer the kinship degree between pairs within a likelihood framework. The 61 

TKGWV2 [18] algorithm also uses population allele frequencies within a method-of-moments 62 

framework. Finally, the recently published method, KIN [17], uses a likelihood-based 63 

framework as well as a Hidden Markov Model (HMM) to infer segments of identity-by-descent 64 

(IBD) between pairs of individuals. KIN also uses the average mismatch in a sample for 65 

normalizing P0 rates for inferring identity-by-descent (IBD), akin to READ. 66 

 67 

Although each of these methods is being widely used by the paleogenomics community, their 68 

relative accuracy and performances have not been systematically investigated. One recent 69 

exception is a study by Marsh and colleagues [19], who compared these methods using real 70 

ancient and modern-day genomic datasets. The authors lacked knowledge of real 71 

relationships but studied how consistency among estimates was affected by downsampling 72 

high-coverage genomes, reporting that READ, PMR, and TKGWV2 were less affected by low 73 

coverage than lcMLkin and NgsRelate. However, this study was limited by the lack of a ground 74 

truth set of relationships. 75 

 76 

Here, we compare the performances of four commonly used algorithms, lcMLkin, NgsRelate, 77 

READ, and KIN, using ancient-like genomic data from pedigree simulations to distinguish 78 

close kin (1st- to 3rd-degree relatives) and non-kin. We test the effects of ultra-low coverages 79 

(using down to 1000 SNPs per pair), inbreeding, and noise in allele frequency estimates. We 80 

chose READ, lcMLkin and NgsRelate as these are among the most widely used algorithms 81 

on low-coverage genomes (Table 1). Meanwhile, we chose KIN along with NgsRelate as 82 
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these algorithms are designed to separate genetic correlations due to direct kinship or 83 

inbreeding. Importantly, READ and KIN use sample-based normalization, while lcMLkin and 84 

NgsRelate use population allele frequencies to infer IBD. 85 

 86 

Data Description 87 

 88 

We simulated pedigrees with Ped-sim (v1.3) [20] and human sex-specific empirical genetic 89 

maps to produce 480 related pairs of individuals, including first-, second-, and third-degree 90 

relationships, as well as first- and second-degree relatives with one individual being inbred 91 

(Figure 1; Table 2; Methods). We further collected 29,706 unrelated pairs from the pedigrees. 92 

In the simulations, we generated all alternative types of same-degree kinship (e.g., parent-93 

offspring and siblings for first-degree kin) and also all sex constellations because both 94 

parameters can change the number of recombinations that separate a pair, and hence the 95 

variation in IBD sharing [20,21]. We generated 48 pairs for each of the 8 relationship types 96 

(Table 2). We created 600 founder genotypes used in the pedigree simulation from the 1000 97 

Genomes Dataset v3 [22] Tuscany (TSI) population SNPs (Methods). The founder genotypes 98 

thus involve realistic SNP densities and SNP types, but the founders themselves are artificial 99 

and do not carry background relatedness or runs of homozygosity (ROH), which we preferred 100 

in order to simplify interpretation. To further render the dataset realistic, we used the Ped-sim 101 

generated pedigree genotypes to simulate aDNA-like sequencing data with the gargammel 102 

tool for 200,000 SNPs [23]; we then performed the same procedures as applied to standard 103 

paleogenome sequencing libraries (Methods). Next, we randomly downsampled the 104 

genotypes to a range of shared SNP counts between related and unrelated pairs, from 50K, 105 

20K, 10K, 5K to 1K autosomal SNPs. For each pair and SNP count, we further produced five 106 

replicates by randomly downsampling SNP sets. We ran lcMLkin, NgsRelate, READ, and KIN 107 

on this data (using perfect information on background allele frequencies with lcMLkin and 108 

NgsRelate), and recorded the θ (kinship coefficient) and kinship degree assignments. 109 

Importantly, we could not run KIN on the sparsest dataset of 1K SNPs, presumably because 110 

the algorithm does not converge at such low coverage. We further performed two alternative 111 

analyses: (a) we ran NgsRelate after introducing two types of error to background allele 112 

frequencies, and (b) we produced genomes with background relatedness using a coalescent 113 

simulation and ran NgsRelate and KIN on this dataset (Methods). 114 

 115 

Analyses 116 

 117 

Comparable performances at ≥20K SNPs but weaker results with READ and KIN at 118 

lower SNP counts 119 

 120 

Both θ distributions across all studied pairs and replicates (Figures 2-4; Figure S1), the mean 121 

θ estimates (Figure 5), as well as correct kinship degree assignment rates (Figure 6) were 122 

largely similar among lcMLkin, NgsRelate, READ, and KIN for first- to third-degree relatives 123 

and unrelated pairs, using downsampled sets of either 50K or 20K SNPs. As expected, the 124 

variance in θ tended to be negatively correlated with the SNP count due to random noise, and 125 

all θ estimates had higher variance between siblings than between parent-offspring due to 126 

randomness of recombination (as siblings share ½ of autosomes only on average, while 127 

parent-offspring share exactly ½ of their autosomes).  128 

 129 
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We found that identifying first-degree relatives is possible with g5K SNPs with all four tools 130 

using this dataset with high reliability (g97.5% correct assignment). Even with 1K SNPs, READ 131 

could perform correct first-degree assignments at a frequency of 85.2%, and NgsRelate and 132 

lcMLkin at a frequency of >96% (Figure 6). Note that KIN did not run with our 1K SNP data 133 

as it gave sporadic errors (Methods).  134 

 135 

Effectively distinguishing between second- versus third-degree kin, and third-degree kin 136 

versus unrelated pairs was more challenging. Still, NgsRelate and lcMLkin reached acceptable 137 

performances using down to 1K SNPs and READ and KIN using g10K SNPs, with >80% 138 

correct assignment.  139 

 140 

We also observed a number of systematic differences among the tools. READ performs 141 

generally worse than the other three tools with this data in terms of higher variance in θ 142 

estimates and lower assignment accuracy (Figures 2-5). Meanwhile, KIN θ distributions have 143 

lower variance than the other tools but not improved accuracy, with higher degrees of 144 

misassignment than lcMLkin and NgsRelate (Figure 6). For instance, using 5K SNPs, the 145 

correct assignment of first-degree relatives was 99.6% for both lcMLkin and NgsRelate, 146 

compared to 98.5% for KIN and 97.5% for READ. For third-degree relatives, using again 5K 147 

SNPs, correct assignment rates were 91.5% for lcMLkin and 89.6% for NgsRelate, in contrast 148 

to 75.2% for KIN and 66.7% for READ. 149 

 150 

Bias and variation in θ estimates among the four tools 151 

 152 

Even though average θ estimates are close to expected values under most conditions, leading 153 

to correct assignment, slight shifts from expected values can be noticed in Figures 2-4. We 154 

first inspected these biases among the four tools (Methods). Figure 5 shows the means of the 155 

replicate pairs. One consistent trend was underestimating θ in first-degree relationships and 156 

grandparent-grandchild pairs and overestimating θ among unrelated pairs. Further, KIN 157 

diverges from the other tools in displaying the strongest downward bias for related pairs but 158 

the least upward bias for unrelated pairs. The observed biases are not strongly correlated with 159 

SNP counts, except for KIN estimates. Finally, NgsRelate and lcMLkin appear least biased, 160 

but not for all kinship types; e.g. for great-grandparent-great-granchild pairs, READ estimates 161 

are closest to expectation. Overall, we find that θ estimates from all tools display slight biases, 162 

but their level and directions depend on the relationship type and tool (Figure 5; Supp Table 163 

1). This pattern was also apparent when comparing absolute mean differences from 164 

expectation (residuals) using a linear mixed effect model; we tested all 8 kinship types 165 

separately, and for each type, at least one pair of software showed significant differences in 166 

the magnitude of residuals (at t-test p<0.05) (Supp Table 2). These trends, though, appear to 167 

have limited impact on classification accuracy: e.g. for siblings, NgsRelate displays the 168 

strongest downward bias in average θ estimates, but its classification accuracy is higher than 169 

both READ and KIN and is on a par with lcMLkin (Figure 6). Expectedly, SNP count also had 170 

a significant effect on residuals, with larger residuals at lower SNP counts (Supp Table 2).   171 

 172 

We next studied whether variance among θ estimates (as opposed to bias) significantly differs 173 

among tools. For this, we ran Levene’s test for variance differences, comparing estimates 174 

between the four tools for each relatedness type and SNP count separately (Supp Table 3). 175 

This revealed significant differences in θ variances among the tools, especially with f10K 176 

SNPs (72/90 of comparisons with p<0.05), which is consistent with their variable classification 177 
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performance at low coverages (Figure 6). The only exceptions were grandparent-grandchild 178 

and great-grandparent-great-grandchild pairs, for which variances were similar among tools. 179 

The reason for this difference is not obvious but might be related to these kinship types 180 

involving fewer observable recombination events than other types [21].  181 

 182 

Higher classification accuracy with NgsRelate and lcMLkin  183 

 184 

We next calculated standard accuracy metrics to represent the four tools’ classification 185 

performances (Figure 7). All tools had high (>98%) F1 accuracy values for first-degree 186 

relatives down to 5K SNPs. Even using 1K SNPs, READ had F1 86% while NgsRelate and 187 

lcMLkin had F1 96%. Note again that KIN did not perform at this SNP count in our experiments 188 

due to sporadic errors (Methods) (Supp Table 4).  189 

 190 

Beyond first-degree relationships, NgsRelate and lcMLkin performance was superior to those 191 

of READ and KIN, especially at low SNP counts. For instance, for second-degree relatives at 192 

5K SNPs, lcMLkin and NgsRelate had F1 values of 93% and 94%, respectively, while READ 193 

F1 was only 83%, and that of KIN was 88%, similar to values reported by [17]. This is again 194 

consistent with the higher variation of θ estimates by READ. 195 

 196 

No major improvement in classification using geometric over arithmetic mean as a 197 

threshold 198 

 199 

Assignment of pairs to various kinship degrees is traditionally accomplished by using the 200 

midpoint between two expected θ values (θ1 and θ2) as a threshold, i.e. (�1 + �2)/2 (e.g. [13]). 201 

For example, the expected second- and third-degree θ values are 0.125 and 0.0625, and thus, 202 

the threshold is their arithmetic mean, 0.093, with pairs with θ 0.090 assigned to the third-203 

degree kinship class (Supp Table 5). Because θ and kinship degrees are not linearly 204 

correlated (e.g. see Figure 2), we asked if the geometric mean [√(�1 × �2)], which will be 205 

smaller than the arithmetic mean (0.088 in the above case), may provide a more suitable 206 

threshold. We ran the classification of the same pairs using the same θ estimates from all four 207 

tools using the geometric mean as the threshold. We found slightly higher true positive rates 208 

using the geometric mean over the arithmetic mean for all categories except third-degree 209 

relatives (Figure S2). Overall, the differences between the thresholds appear too modest to 210 

entail a change in assignment strategy.  211 

 212 

Noise in population allele frequency can lead to over- or underestimation of θ 213 

 214 

The above results suggest that, at low SNP counts, READ and KIN display lower performance 215 

than lcMLkin and NgsRelate. The former pair of tools both use the median mismatch rate in a 216 

sample of pairs for normalization, whereas lcMLkin and NgsRelate both use population allele 217 

frequency estimates. We reasoned that our use of perfect knowledge of allele frequencies 218 

(frequencies used to create the founders) may have favored the performance of lcMLkin and 219 

NgsRelate. To study the extent of noise in allele frequency estimates on the latter methods, 220 

we performed two additional simulations. Here, we used only NgsRelate, given its highly 221 

similar logic and performance with lcMLkin, and only studied 96 first-degree pairs (48 siblings 222 

and 48 parent-offspring pairs) for simplicity. First, we introduced random Gaussian noise to 223 

the allele frequency estimates with standard deviations of 0.5 and 1 (Methods) (Figure S3). 224 
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As expected, higher random noise led to systematic overestimation of θ (>0.25) for all 96 pairs 225 

(Figure 8A-B; Figure S4). This happens because inaccurate background allele frequencies 226 

inflate the impact of being identical-by-state (IBS) between any pair.  227 

 228 

Second, we tested the effect of noise related to imprecise allele frequency estimation. For this, 229 

we calculated allele frequencies from 72 simulated genomes of 1x comprising parent-offspring 230 

pairs and 96 simulated genomes of 1x comprising sibling pairs, i.e. with limited accuracy 231 

(Methods). Intriguingly, this type of noise led to a slight but systematic underestimation of θ, 232 

with all 48 parent-offspring pairs having θ <0.25 and 37/48 sibling pairs having θ <0.25 (Figure 233 

8A-B; Figure S4). The variability among sibling pairs is again likely caused by randomness in 234 

recombination. The reason for this underestimation trend could be related to the lower 235 

representation of relatively rare variants when estimating allele frequencies from low-coverage 236 

genomes (Figure S3). Indeed, the underestimation trend was mitigated when using allele 237 

frequencies estimated from 5x genomes instead (Figure 8A-B; Figure S4).  238 

 239 

Overall, these results suggest that different sources of noise in population allele frequency 240 

estimates can compromise the performance of lcMLkin and NgsRelate. This would also be 241 

consistent with the results by Marsh and colleagues [19], who reported low performance of 242 

the latter two tools on real genomic datasets.  243 

 244 

Background relatedness has a limited effect on kinship estimates 245 

 246 

To investigate whether background relatedness among founders may shift θ estimates we 247 

produced founder genomes using a coalescent simulator and a demographic model describing 248 

European Neolithic ancestry; we then generated a second dataset comprising n=48 parent-249 

offspring pairs from these (Methods). We next ran READ and NgsRelate on 1K and 20K SNP 250 

sets and compared the θ values with those from the primary dataset with synthetic founders 251 

with no background relatedness. We found READ θ estimates were practically the same when 252 

genomes contained background relatedness, while NgsRelate tended to underestimate θ 253 

albeit minimally (<0.025) (Figure 8C). This suggests that, at least in our simulated scenario of 254 

European Neolithic ancestry, the presence of background relatedness among founders might 255 

not substantially influence the accuracy or reliability of θ estimates produced by READ and 256 

NgsRelate using the 1K and 20K SNP sets. 257 

 258 

The effect of inbreeding on θ estimates 259 

 260 

Inbreeding, either through consanguinity or small population size, can create distal IBD loops 261 

between pairs of individuals (Figure 1); it will thus increase IBD and elevate θ estimates 262 

beyond that expected from the proximal relationship. Both past and present human 263 

populations are known to vary with respect to average inbreeding levels [24–26]. Among the 264 

tools tested here, READ and lcMLkin estimate raw IBD sharing without accounting for 265 

inbreeding. NgsRelate estimates the nine Jacquard coefficients (J1-9) separately and thus 266 

could theoretically differentiate between IBD due to proximal loops (J7 and J8) versus IBD via 267 

distal loops (J3 and J5) [16]. KIN, meanwhile, estimates runs of homozygosity (ROH) created 268 

by inbreeding in each genome and takes into account ROH-induced IBD when estimating the 269 

IBD-sharing level between a pair [17].  270 

 271 
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We tested the four tools first using parent-offspring simulations, where the parents of the 272 

offspring were the first cousins. Average θ from READ, lcMLkin, and NgsRelate were 0.27-273 

0.28, as expected (Figure 9A, Figure S5). KIN estimates were all 0.25 (except for a single 274 

pair using 50K SNPs), suggesting that this algorithm effectively accounts for IBD caused by 275 

inbreeding. For NgsRelate, we also calculated a modified θ version, �̂ = �7/2 + �8/4, which is 276 

expected to reflect proximal IBD sharing without IBD due to distal loops. These �̂ estimates 277 

were slightly but systematically lower than what would be expected from proximal loops (~0.24 278 

using g5K SNPs).  279 

 280 

We also simulated grandparent-grandchild pairs, with the grandchild being the offspring of first 281 

cousins. Interestingly, KIN gave an error when we ran it with this data (Methods). READ, 282 

lcMLkin, and NgsRelate θ values were higher than expected from proximal loops (Figure 9B, 283 

Figure S6). This time, NgsRelate �̂ values were also overestimated, but at a lower degree 284 

than the above three θ estimates.  285 

 286 

NgsRelate also estimates individual inbreeding coefficients, F, which should be 0.0625 for first 287 

cousin mating. The NgsRelate mean F estimates for the child were 0.075 for 1K SNPs, but 288 

0.051-0.055 for g5K SNPs in the parent-offspring dataset; likewise, mean F was 0.068 for 1K 289 

SNPs but 0.041-0.048 for g5K SNPs in the grandparent-grandchild dataset, suggesting that 290 

NgsRelate tends to over- or underestimate F in some settings. 291 

 292 

Discussion 293 

 294 

Our benchmarking revealed a number of interesting observations on the four tools tested. 295 

First, all tools perform well and are consistent with each other down to 20K shared SNPs, even 296 

in the separation of third-degree and unrelated pairs (Figure 6). This SNP count lower limit 297 

corresponds to two genomes each with ~0.1x coverage genotyped on the 1240k SNP panel 298 

[12,27], or each with ~0.06x genotyped on a 1000 Genomes v3 Africa diversity panel of ~4.7 299 

million SNPs [28]. Theoretically, this lower limit also applies to comparisons between a 1x 300 

genome and a 0.004x genome, using the latter SNP panel. 301 

 302 

Nevertheless, we mark that these results reflect upper bounds for performance in real 303 

datasets, for a number of reasons:  304 

(a) Our lcMLkin and NgsRelate analyses use perfect information on background allele 305 

frequencies, which may be slightly or highly unrealistic in real settings, depending on the 306 

dataset.  307 

(b) Our sets of sample pairs used for normalizing mismatch rates, used by READ and KIN, do 308 

not include population structure, which would have led to an overestimation of kinship degree 309 

as pointed out by Popli and colleagues [17]. 310 

(c) Our primary genome simulation dataset lacks background relatedness among the 311 

founders, which would be present at variable degrees in real data and could confound 312 

estimates of proximal IBD. This involves results from all four tools. Still, our experiment with 313 

founders obtained from a realistic demographic model did not create a major shift in θ 314 

estimates.   315 

(d) We did not include identical genomes or fourth-degree kin in the simulations. This would 316 

have lowered accuracy in the classification of first-degree and third-degree categories, 317 

respectively. 318 
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 319 

In our primary simulations, NgsRelate and lcMLkin were found to be more accurate than READ 320 

and KIN, with lower false positive and false negative rates, especially when using <20K shared 321 

SNPs. The former tools both use genotype likelihoods and population allele frequencies. 322 

However, as our trials with noise-added or imperfectly estimated population allele frequencies 323 

reveal, this performance might be compromised in real-life applications. In fact, in our own 324 

experience, READ results appear highly robust and reproducible compared to those of other 325 

tools (e.g. [2,29]). 326 

 327 

Another interesting observation was that KIN, which includes inference of both ROH and 328 

shared IBD segments using HMMs, did not perform much better than READ in accuracy. We 329 

also could not successfully run KIN on 1K SNP datasets and one dataset that included 330 

inbreeding. Still, among the three tools tested, KIN is unique in providing likelihoods for kinship 331 

degree assignment, as well as separating parent-offspring and sibling pairs. 332 

 333 

Overall, our results suggest no single tool may be universally superior in estimating kinship 334 

levels with low-coverage genomes. Using multiple tools in parallel and interpreting the results 335 

in light of the superiorities and weaknesses of each tool and the particularities of each dataset 336 

(e.g. knowledge of allele frequencies, genetic structure within the sample, and the possibility 337 

of inbreeding) may be the most prudent approach. Meanwhile, the archaeogenomics 338 

community may continue to seek novel and more powerful methods, such as combining the 339 

two alternative normalization approaches (population allele frequencies and the median 340 

mismatch in a sample) and using haplotype information [30] to calculate more robust kinship 341 

coefficients. 342 

 343 

Materials and Methods 344 

 345 

Pedigree Simulations 346 

 347 

The goal of this study is to determine how common kinship estimation tools perform on ultra-348 

low coverage ancient genome data. To assess this most effectively, we simulated ancient 349 

genome data representing pairs of individuals with known relationships. Briefly, we used 350 

pedigree simulation software Ped-sim (v1.3) [20] to produce genotypes from pedigrees of 351 

various relationship degrees and types separately, including first-, second-, and third-degree 352 

relatedness without inbreeding, as well as first-degree and second-degree relatedness with 353 

first-cousin mating. Ped-sim creates individual genotypes based on user-specified pedigrees, 354 

using founder individual genotypes and a recombination map (i.e. genetic map) as input.  355 

 356 

We created founder genotype data from scratch as follows: We chose autosomal biallelic 357 

SNPs with minor allele frequencies (MAF) g0.01 from the modern-day Tuscany (TSI) samples 358 

(n=112) from the 1000 Genomes Project v3 [22]. For the 8,677,101 such SNPs, we further 359 

calculated the alternative allele frequency (AAF) in the TSI. We then created the diploid 360 

genotype of each founder by randomly choosing, for each SNP independently, the alternative 361 

or reference allele with probability AAF and 1-AAF, respectively, and repeating this twice to 362 

create a diploid genotype. Note that this approach eliminates any background relatedness 363 

among founders as well as any homozygosity tracts within founder genomes; even though 364 

this is not realistic, our choice simplifies the interpretation of the kinship estimation results. We 365 
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repeated the creation of founder data 12 times (runs), each time producing different sets of 366 

founders.  367 

 368 

We thus generated 120 unrelated founders (10 for each run, each with n=12) used for first-369 

degree and 240 unrelated founders (20 for each run, each with n=12) for second- and third-370 

degree pedigree simulations each; 600 in total.  371 

 372 

We then employed Ped-sim (v1.3) [20] to simulate pedigrees using this founder pool. We used 373 

a linearly interpolated sex-specific recombination map [31] with the <-m= option and crossover 374 

interference model [32] using the <--intf= option of Ped-sim. We simulated pedigrees with all 375 

possible sex combinations in a relationship (e.g. male-female, female-female, and male-male 376 

siblings) by providing <def= files with the <-d= option. We provided Ped-sim the sexes of founder 377 

individuals with the <--sexes= option. In addition, we used the <--keep_phase --founder_ids --378 

fam --miss_rate 0= parameters for running Ped-sim.  379 

 380 

We thus simulated n=72 pedigrees composed of first-degree, n=96 second-degree, and n=96 381 

third-degree related pairs. For instance, for each of the 12 runs generated for first-degree 382 

relationships, we chose 6 pedigrees (2 for parent-offspring and 4 for siblings). The founders 383 

of each pedigree and simulated individuals from distinct pedigrees were treated as <unrelated=.  384 

 385 

From these simulated pedigrees, we chose n=48 pairs for each relationship type (Table 2). 386 

For instance, for parent-offspring relationships, we chose n=24 parent-offspring trios, n=48 387 

pairs, which resulted in n=24x3=72 unique individuals in total. Overall, the number of unique 388 

individuals used for parent-offspring, grandparent-grandchild, and great-grandparent-great-389 

grandchild relationships was n=72 each, while the number of unique individuals used in sibling, 390 

half-sibling, first cousin, avuncular, and grand avuncular pedigrees was n=96 each.  391 

 392 

For the pedigree simulations with inbreeding, first-degree and second-degree pedigrees 393 

(parent-offspring and grandparent-grandchild relationships) were simulated in the presence of 394 

first-cousin mating (i.e., the parents of an offspring or a grandchild are first cousins, 395 

respectively). For these pedigrees with inbreeding, we also used n=48 pairs for each 396 

relationship type (Table 2). 397 

 398 

Ancient Sequence Simulation 399 

 400 

To create realistic ancient genotypes from this simulated genotype data that contains various 401 

types of error inherent in aDNA, we simulated aDNA-like sequencing data and processed this 402 

using our standard pipeline for paleogenome sequencing data (see section <Preprocessing of 403 

Simulated Ancient Genomes=). Because our aim was to examine kinship estimation at low 404 

SNP counts, we sought to speed up these downstream steps by limiting the genotype data to 405 

a smaller SNP set. For this, we used an in-house bash script to randomly downsample the 406 

8,677,101 autosomal biallelic SNPs to 200,000 SNPs and used these genotypes for all pairs 407 

of simulated individuals. By limiting the number of reads produced, we could significantly 408 

reduce the computation time required for alignment.  409 

 410 

We next used the gargammel software [23] to simulate aDNA-like Illumina sequencing read 411 

data. This ancient read simulator cuts a given FASTA file into variable short lengths mimicking 412 

the distribution of read lengths from aDNA libraries, adds post-mortem DNA damage (PMD), 413 
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adds Illumina adapters to read ends, and finally, introduces sequencing errors and quality 414 

scores to produce ancient-looking FASTQ files. To generate input FASTA files for gargammel, 415 

for each individual separately (two files for each individual representing either allele), at each 416 

SNP position, we inserted alternative alleles according to their genotype into the human 417 

reference genome (GRCh37) via the VCFtools <consensus= command [33]. We then cut the 418 

FASTA files into 100 bp sequence intervals surrounding each of the 200K SNPs (50 bp on 419 

each side) using BEDtools command <get fasta= [34]. For aDNA read size distribution, we used 420 

the size distribution file (sizedist.size) from gargammel with <-s= option, but we removed values 421 

higher than 120 bp, resulting in a distribution with a mean of 66.2 bp and a median of 61 bp, 422 

ranging between 35 bps and 119 bps. We specified the deamination patterns as <-damage 423 

0.024, 0.36, 0.009, 0.55= using the Briggs model parameters [35]. Sequencing errors were 424 

introduced using default parameters. We thus generated ancient read data with 5x depth of 425 

coverage per individual, without any present-day human or microbial contamination by 426 

specifying <--comp 0,0,1= option. 427 

 428 

Preprocessing of Simulated Ancient Genomes 429 

 430 

We processed the gargammel-simulated read data following the same procedure as applied 431 

to ancient genome sequencing libraries in our group and other research teams (e.g., 432 

[2,28,29]). Firstly, we removed the adapters from the simulated ancient reads and then merged 433 

the paired-end reads [36]. Secondly, the generated single-end ancient reads were mapped to 434 

a human reference genome (hs37d5) using the bwa software <samse= function (v0.7.15) [37] 435 

with the <-aln= option, and parameters are set to <-l 16500=, <-n 0.01= and <-o 2=. We eliminated 436 

the reads with a minimum of 10% mismatches to the human reference genome. Finally, the 437 

remaining reads were trimmed 10 bps from both ends to remove the PMD-related C-to-T and 438 

G-to-A substitutions using the bamUtil software with the <trimBAM= option [38]. 439 

 440 

Genotyping and Downsampling 441 

 442 

After Illumina sequencing read simulation and alignment, we randomly downsampled the BAM 443 

files of all simulated individuals from 5x to 1x coverage using Picard Tools DownsampleSam 444 

(2.25.4) [39]. Because our goal is to study the performance of the kinship coefficient estimation 445 

(θ) by READ, NgsRelate, lcMLkin, and KIN on low-depth ancient data, most of our analyses 446 

involve subsamples of the 1x data (only one read per SNP). We used the 5x data only in 447 

testing noise in population allele frequencies.  448 

 449 

We next performed pseudo-haploid genotyping from simulated ancient genomes with 1x depth 450 

of coverage. Pseudo-haploidization is a regular step in most aDNA genome studies (see 451 

Section 1.3.5). This was performed using the SAMtools (v.1.9) <mpileup= function [40], 452 

followed by running pileupCaller (v1.4.0.5) with the <--randomHaploid= parameter [41]. 453 

Specifically, to generate text pileup files for all BAM files, we used the random subset of 200K 454 

autosomal SNPs that we had selected earlier (see Section 2.1). Mapping quality and base 455 

quality filters were set to Phred score >30 in SAMtools (v.1.9) mpileup. Second, the output 456 

pileup files were given as input to pileupCaller software to produce pseudo-haploid genotype 457 

data by randomly sampling one read and recording its allele at each SNP. Third, the output 458 

files were converted to packedped format using ADMIXTOOLS convertf package [42] with 459 

parameter <-p= and then to transpose ped/fam format using PLINK (v1.9) [43]. Last, we 460 

retained only non-missing genotype calls for each pair of individuals using PLINK (v1.9) with 461 
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the option <-geno 0= (note that missing SNPs are removed only for the analysed pair). This 462 

reduced the number of SNPs from 200K to an average of 77K for 1x depth of coverage. 463 

Missing genotype calls in low-coverage ancient genomes led to a considerable decrease in 464 

the number of SNPs. 465 

 466 

To explore the lower limits of using ancient genomes for genetic relatedness estimation, we 467 

randomly took subsets of 1K, 5K, 10K, 20K, and 50K SNPs shared between each simulated 468 

pair. This randomized downsampling was repeated five times for each subset. This allowed 469 

us to study how much kinship coefficient estimates vary depending on the set of variants used 470 

for the analysis. We note that the term, replicate, used for the downstream analysis refers to 471 

this repeated downsampling (n=5).  472 

 473 

Simulations with Background Relatedness 474 

 475 

In addition to the primary dataset we generated using synthetic founders from the 1000 476 

Genomes Dataset v3 TSI population (n=112), we created another founder dataset comprising 477 

250 founder individuals with background relatedness. For this, we employed the msprime 478 

engine [44,45] in the mode of <HomSap= from the stdpopsim library [46,47] to simulate the 479 

genetic data of these founder individuals. We utilized the <HapMapII-GRCh37= [48] with the <-480 

g= option as the recombination map. We simulated the 500 haploid genomes descended from 481 

the Linearbandkeramik (LBK) population, which can be described as early European farmers 482 

of Anatolian descent [49], of the multi-population model of ancient Eurasia model [50], with 483 

the <-d AncientEurasia-9K19 0 500= option. Note that this ancestry is supposed to be close to 484 

that of the TSI [49]. Subsequently, we transformed the succinct tree sequence output 485 

generated by the stdpopsim software into VCF using the tskit library [51] <vcf= command with 486 

the <--ploidy 2= option. We then narrowed our analysis to 200K randomly selected SNP 487 

positions through a customized bash script. These selected positions were further used to 488 

extract reference bases from the human reference genome (hs37d5) using the <getfasta= 489 

command of BEDtools (v2.27.1) [34]. We estimated the transition:transversion rate statistics 490 

from the 1000 Genomes Dataset v3 TSI population (n=112) to assign alternative alleles to the 491 

retrieved reference positions. With this information, we stochastically generated alternative 492 

alleles for each position in our dataset, employing a customized R script. This approach was 493 

instrumental in replicating genetic variation according to the observed rates within the TSI 494 

population, offering a realistic distribution of allele frequencies within our simulated dataset. 495 

The rest of the pipeline, comprising pedigree simulation, ancient sequence simulation, 496 

preprocessing, genotyping, and downsampling was identical to that used to create our primary 497 

dataset. 498 

 499 

Genetic Relatedness Estimation Using READ, NgsRelate, lcMLkin, and KIN 500 

 501 

READ. READ [13] is a non-parametric genetic relatedness estimation algorithm. READ 502 

compares pseudo-haploid genotypes between pairs and calculates the proportion of mismatch 503 

positions, i.e., the pairwise mismatch rate (P0), in non-overlapping windows of 1 Mbps. READ 504 

then calculates the genome-wide average P0 per pair and normalizes this using a P0 value 505 

corresponding to an average unrelated pair. This can be either the mean, maximum, or median 506 

(default) of all P0 values in a sample, assuming the average pair is unrelated, or it may be a 507 

user-specified value.  508 

 509 
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We ran READ with pseudo-haploid genotype data of the simulated individual pairs using 510 

default parameters. For each of the 8 relationship types, each SNP count, and each random 511 

replicate separately, we combined all READ results for all pairs into one set. These sets 512 

included both n=48 pairs of a specific relationship type (e.g. siblings) and also unrelated pairs 513 

from different pedigrees of this type. The number of unrelated pairs varied between 2468-4458 514 

across relationship types (because some of the pedigrees we produced within the same run 515 

included the same founders, we filtered out any pair that shared founders from the <unrelated 516 

pairs= category). As these sets were mainly composed of unrelated individuals, we used their 517 

median P0 value for normalization (~0.24), which is also the suggestion of the software 518 

developers. The kinship coefficient (θ) estimate for each related and unrelated pair was 519 

calculated using the formula:  520 � = 1 2 (�0Ă���/�0ÿÿþ��Ā) 521 

 522 

This θ estimation approach can yield negative results when a pair shares fewer alleles IBS 523 

than the ones of the average unrelated pair [52], suggesting a non-kin relationship. Thus, we 524 

set the negative θ estimates to 0. 525 

 526 

NgsRelate. NgsRelate (v2) [16] (hereon NgsRelate) uses maximum likelihood (ML) for 527 

estimating genetic relatedness given genotype information and population allele frequencies. 528 

NgsRelate further relies on genotype likelihoods (GL) to account for the uncertainty in low-529 

coverage ancient data. NgsRelate uses an expectation-maximization algorithm to estimate 530 

nine condensed Jacquard coefficients (J1, J2,..., J9) given GL and population allele 531 

frequencies; these coefficients are then used for the direct calculation of kinship: 532 

 533 � =  �1 + 0.5 × (�3 + �5 + �7) + 0.25 × �8 534 

 535 

To calculate the GLs for each individual separately from the gargammel-produced BAM files 536 

we used the ANGSD program [53] with the <--gl 2= option. We limited GL calculation to 200K 537 

autosomal SNPs using the <sites= parameter for every individual. This left us with 199,095 538 

SNPs passing ANGSD default filters (base quality > 13). The beagle text output file of ANGSD 539 

(--doGlf 2) was manipulated to generate a GL file containing only two individuals with their 540 

shared SNPs. We eliminated pairwise missing SNPs by keeping only sites with GL values not 541 

equal to 0.33 for three genotype states (major/major, major/minor, minor/minor) for both 542 

individuals with a custom script. Next, we randomly downsampled the shared SNPs between 543 

every pair of individuals to 1K, 5K, 1K, 20K, and 50K, five times each, using an in-house bash 544 

script. Then, every pair’s GL files with five different SNP subsets were converted to the binary 545 

GL file format NgsRelate accepts. The background allele frequency files for corresponding 546 

SNPs were prepared using their MAF of the 1000 Genomes TSI sample with n=112 individuals 547 

(see below for our NgsRelate trials with alternative background allele frequencies). As the 548 

autosomal bi-allelic variants with MAF < 0.01 were excluded from the simulations, the MAF 549 

threshold of NgsRelate was set to 0 with the option <-l <; this is because the NgsRelate default 550 

is 0.05 and we wished to use the same threshold across the software. The output file produced 551 

by NgsRelate for each pair includes a θ value corresponding to a kinship coefficient estimate. 552 

We used this estimated value for subsequent analysis. 553 

 554 

NgsRelate with alternative background allele frequencies. With NgsRelate, we also 555 

conducted trials with alternative background MAF. This analysis was restricted to the two first-556 
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degree relatedness categories, parent-offspring (n=48) and siblings (n=48); we reasoned 557 

these effects would be consistent across different relatedness types. We ran the ANGSD 558 

program with the abovementioned parameters for 200K autosomal SNPs on the BAM files. 559 

We processed the resulting GL file to obtain pairwise GL files with no missing SNPs. We then 560 

used three alternative background MAF calculations:  561 

 562 

(1a) MAFs from the 1000 Genomes TSI population (n=112) as in the original analyses.  563 

(1b) MAFs calculated from gargammel-produced 5x coverage BAM files of the same 564 

individuals used in this analysis: 72 individuals comprising the 48 parent-offspring, and 96 565 

individuals comprising the 48 sibling pairs. For this, we ran the ANGSD program with the same 566 

parameters on the 5x coverage BAMs and obtained MAFs for both relatedness categories 567 

separately.  568 

(1c) MAFs estimated from gargammel-produced 1x coverage BAM files of the same 569 

individuals. These were the files used for producing the GL files with ANGSD in the primary 570 

analyses.  571 

 572 

We also used modified MAFs in three ways:  573 

(2a) No noise.  574 

(2b) Adding a low level of random noise. Here, we introduced random noise to the original 575 

MAFs from the TSI while ensuring the resulting values remained within the valid range of 0 to 576 

0.5. For this, we first transformed the MAF values with the logit function: logit(þ) = log (þ/(1 2577 þ). The purpose of this transformation is to stretch the original allele frequencies to the entire 578 

real number space, making them amenable to adding random noise. Then, we generated the 579 

noise-added allele frequency values following a Gaussian distribution with a mean based on 580 

the logit-transformed MAF values and a standard deviation of 0.5. Then, we applied the expit 581 

function (inverse of logit function): ÿþþ�ā(þ) = 1/(1 + exp(2þ)), to the random values to 582 

transform them back to the 0 to 1 interval. Lastly, we adjusted the MAF values to ensure they 583 

fell within the valid range of 0 to 0.5. This adjustment involved subtracting any values that 584 

exceeded 0.5 from 1.  585 

(2c) Adding a high level of random noise. Here, we repeated the same steps as in (2b), but 586 

we added Gaussian noise with a standard deviation of 1 (instead of 0.5).  587 

 588 

All possible combinations of the three MAF calculations and three noise introductions yielded 589 

nine different MAF values (original MAFs and their two different noise-added versions, MAFs 590 

calculated from 5x genomes and their two different noise-added versions, and MAFs 591 

calculated from 1x genomes and their two different noise-added versions). Then, we ran 592 

NgsRelate with the parameters mentioned above for each pair of parent-offspring and sibling 593 

categories with these nine different background MAF values. 594 

  595 

lcMLkin. Another relatedness estimation software using genotype likelihood and population 596 

allele frequencies is lcMLkin [14]. Assuming a non-inbred population (unlike NgsRelate) and 597 

biallelic loci in linkage equilibrium, lcMLkin estimates the maximum likelihood of Cotterman 598 

coefficients also using the Expectation Maximization (EM) algorithm and determines the 599 

coefficient of relatedness as ÿ = ý1/2 + ý2. Like NgsRelate, the uncertainty in genotype calls 600 

of low-coverage NGS data is modeled by summing log-likelihood values of every possible 601 

genotype for each site across the genome. 602 

 603 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2023. ; https://doi.org/10.1101/2023.11.08.566300doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?26J7at
https://doi.org/10.1101/2023.11.08.566300
http://creativecommons.org/licenses/by-nd/4.0/


14 
 

We prepared input VCF files for each pair to run lcMLkin (v2.1) [54] implemented for Python3. 604 

For that purpose, we used BCFtools mpileup and call commands [55] to estimate the genotype 605 

likelihoods of each individual using BAM files for the 200K SNP set with the mapping and base 606 

quality filter parameters <-q10= and <-Q13=, respectively. These thresholds were selected 607 

based on the default filters of ANGSD to estimate GLs for NgsRelate analysis. In this way, we 608 

aimed to render the kinship coefficient estimate results from lcMLkin comparable with the 609 

estimates from NgsRelate. Besides the VCF files of target samples, lcMLkin requires the 610 

genotype data of the selected background population for allele frequency estimation. This 611 

genotype data is provided in PLINK format (bed/bim/fam) with an argument <-p=. We prepared 612 

this genotype data using the 200K autosomal SNPs (MAF > 0.01) chosen from the n=112 TSI 613 

sample defined earlier. We changed the default allele frequency thresholds integrated into the 614 

lcMLkin python script from minimum 0.05 and maximum 0.95 to minimum 0.01 and maximum 615 

0.99. We filtered out missing (non-shared) SNPs from VCF files using an in-house bash script 616 

to collect only overlapping SNPs between each simulated pair for the subsequent random 617 

downsampling step. After that, we randomly selected 1K, 5K, 10K, 20K, and 50K shared SNPs 618 

between pairs of samples, independently five times each, and generated downsampled VCF 619 

files using BCFtools view [55] with the <-R= parameter. As the LD pruning application of lcMLkin 620 

removes closely linked SNPs from the relatedness analysis, we modified the program script 621 

such that downsampled SNPs are not pruned by LD. This was done for simplicity to ensure 622 

we use the same number of SNPs in each trial and across different software. Also, with f50K 623 

SNPs across the genome, linkage between neighboring SNPs will be minimal. 624 

 625 

The relatedness coefficient (r) is represented with the <P I_HAT= estimate in the output files of 626 

lcMLkin. We calculated the kinship coefficient value as � = r/2. 627 

 628 

KIN. KIN [17] has been recently developed to estimate kinship using a Hidden Markov Model-629 

based approach. The properties of KIN that distinguish it from the above-mentioned tools are 630 

(i) the ability to differentiate between parent-offspring and sibling pairs, (ii) taking into account 631 

inbreeding as inferred from runs of homozygosity (ROH) for relatedness classification, (iii) 632 

correcting for contamination. Similar to READ, KIN does not depend on population allele 633 

frequencies but estimates P0 in genomic windows directly from read data (BAM files) with a 634 

minimum 0.05x depth of coverage. Additionally, it incorporates the probability of window-635 

based ROH tracts in each individual estimated by an ROH−HMM model while fitting an IBD 636 

sharing pattern of pairs to the predefined relatedness models (unrelated, 5th degree, 4th 637 

degree, 3rd degree, 2nd degree, 1st degree and identical) provided by the KIN−HMM model. 638 

Then, KIN assigns the most likely relationship degree for a pair with the highest likelihood. 639 

 640 

As KIN does not work with only two individuals and as we wanted to use one pair at one time 641 

to control the shared SNP counts between individuals, we first grouped our BAM files into 642 

triplets for each relationship type, including one pair of BAM files to be analyzed and one BAM 643 

file of a randomly chosen simulated individual. We determined the read depth of each site at 644 

the predefined 200K SNPs for each triplet using SAMtools (v1.9) [40] <depth= with the <-q 30 -645 

Q 30= options. Then, we removed sites that do not contain at least one read shared between 646 

a pair of individuals using a custom bash script since we wanted to keep only shared SNPs 647 

for the subsequent analysis. 648 

 649 

We thus randomly downsampled remaining sites to 1K, 5K, 10K, 20K, and 50K, independently 650 

five times each, for each pair, and gave these downsampled SNP lists as input with <--bed= 651 
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argument to run the KINgaroo algorithm, a python package to generate ROH estimates and 652 

input files for KIN. We ran KINgaroo with default parameters without contamination correction 653 

(using the <--cnt 0= option) and without indexing and sorting of BAM files (using the <--s 0= 654 

option) for each triplet separately to generate input files necessary for KIN twenty-five times 655 

(n=5 SNP counts x n=5 replicates).  656 

 657 

Intriguingly, while processing 1K SNP datasets KINgaroo gave sporadic errors, independent 658 

of which relationship type was used. Specifically, the algorithm has an <Index Error= 659 

(<IndexError: Can not process input data=) for several different triplets and replicates with 1K 660 

SNPs. Meanwhile, when we ran KINgaroo again with the same triplets but a different set of 661 

1K SNPs without changing any parameter, KINgaroo finished the analysis without error. To 662 

further be sure that the problem was related to the usage of 1K SNPs, we continuously ran 663 

KINgaroo while using the same or different triplets and different sets of 1K SNPs, but we 664 

encountered the same error. We also used the same triplets sharing higher SNP counts (5K, 665 

10K, 20K, and 50K) to run KINgaroo repeatedly; these worked successfully. As we could not 666 

understand the reason why the algorithm did not work (possibly could not converge) on some 667 

SNP sets, we decided to exclude 1K SNPs and we continued the downstream analysis with 668 

higher SNP counts, from 5K to 50K.  669 

 670 

We separately collected pairwise mismatch values (P0) of pairs for each relationship type 671 

(<p_all.csv= file under <hmm_parameters= directory created by KINgaroo) and calculated their 672 

median P0 values for each SNP count and replicate, corresponding to a P0 value of an 673 

average unrelated pair. To apply normalization for kinship estimation with these median values 674 

(~0.24), we manually changed the text files of P0, <p_0.txt= created by KINgaroo under the 675 

<hmm_parameters= directory. We then ran KIN with input files separately for each triplet using 676 

default parameters twenty times (n=4 SNP counts x n=5 replicates).  677 

 678 

In the grandparent-grandchild relationship with first cousin mating, KIN again did not perform. 679 

This time, the program raised an <OS Error= (<OSError: 680 

path/to/directory/likfiles/file1_._file2.csv not found=). Indeed, we found that KINgaroo had not 681 

produced the necessary csv file, although without any warning; the reason for this was again 682 

unclear.  683 

 684 

The output file of KIN includes the estimates of Jacquard coefficients (k0, k1, and k2) for each 685 

pair analyzed. We calculated the kinship coefficient using these estimates (� = ý1/4 + ý2/2) 686 

and used it for the subsequent analysis. 687 

 688 

Classification of kinship coefficient estimates 689 

 690 

To systematically test the reliability and robustness of kinship coefficient estimates by lcMLkin, 691 

NgsRelate, KIN, and READ on ancient samples, we categorized each simulated pair into one 692 

of four relationship categories, i.e., first-, second-, or third-degree related, or unrelated, using 693 

their θ estimates. Here, we used two assessment criteria. The first criterion we investigated 694 

was the arithmetic mean (average) of the theoretical kinship coefficient values. The arithmetic 695 

mean of two expected values θ1 and θ2 would be (�1 + �2)/2, i.e. the midpoint of expected 696 

kinship coefficient values of two relatedness degrees (Supp Table 5). For instance, pairs with 697 

0.1875 > θ > 0.09375 would be assigned as second-degree. READ and TKGWV2 also use 698 
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this mid-point cutoff approach to designate kinship estimates to the appropriate relatedness 699 

categories. 700 

 701 

The second classification criterion we explored was the geometric mean of theoretical kinship 702 

coefficient values. The geometric mean defines the average value of the set of the numbers 703 

under study based on their products, and it is always smaller than the arithmetic mean, being 704 

closer to the lower value when two values are used. The geometric mean of two expected 705 

values θ1 and θ2 would be √�1 × �2. As θ values decrease with lower degrees of relatedness 706 

in a non-linear fashion (see Figures 2-4), we decided to test if using the geometric mean may 707 

improve the accuracy of kinship type classification. The cutoffs used are shown in Supp Table 708 

5. For the third degree, we determined the threshold using theoretical kinship coefficients of 709 

the third-degree related and unrelated pairs, 0.0625 and 0.0, respectively. As zero values 710 

cannot be tolerated while calculating the geometric mean, we applied a modified geometric 711 

mean for third-degree cutoff using the splicejam (v0.0.63.900) package in R [56]. In this way, 712 

we derived the third-degree threshold as 0.03078.  713 

 714 

Classification and Accuracy 715 

 716 

To compare and contrast the classification performance of the relatedness methods, we 717 

created a confusion matrix using either the arithmetic or geometric mean criteria. For this, we 718 

used the confusionMatrix function of the R caret (v3.5) package [57]. Based on the estimated 719 

values, this creates a matrix summarizing predictions across a reference or known set of 720 

values. In this study, the known values correspond to the relationship categories we simulated: 721 

first-, second-, third-degree related, and unrelated. 722 

 723 

While producing a confusion matrix and calculating classification metrics in a multi-class 724 

scenario like this, it is important to maintain the balance between classes, i.e., an equal 725 

number of samples for each class. In our study, the first-degree class includes 96 pairs in total, 726 

and it has the lowest number of pairs compared to second (n=144 total, n=48 for each 727 

relationship type), third (n=144 total, n=48 for each relationship type), and unrelated 728 

(n=29,706) classes (Table 2). For this reason, we randomly selected only 96 second- and 729 

third-degree related and unrelated pairs using the <sample= function of R without replacement. 730 

We used the same number of each relationship type for second- and third-degree pairs (n=32 731 

each). After that, we prepared four different datasets for our tools, consisting of classified 732 

estimates based on either arithmetic or geometric mean and their actual classes. We 733 

separately applied the confusion matrix function to the datasets for each shared SNP count 734 

(1K, 5K, 10K, 20K, and 50K). 735 

 736 

The metrics we used for benchmarking each of the four tools were the true positive rate (TPR), 737 

true negative rate (TNR), false positive rate (FPR), false negative rate (FNR), precision, and 738 

the F-score (F1). To understand how often the four software correctly identified the estimates, 739 

we also determined the relative frequency of both true and false predictions for each class and 740 

SNP count. Additionally, we categorized the false predictions according to their inferred 741 

classes using the same confusion matrix again. 742 

 743 

Statistical Tests on Kinship Coefficient Estimates 744 

 745 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2023. ; https://doi.org/10.1101/2023.11.08.566300doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?1CWFUF
https://www.zotero.org/google-docs/?5pauhP
https://doi.org/10.1101/2023.11.08.566300
http://creativecommons.org/licenses/by-nd/4.0/


17 
 

Linear Mixed Effect Model. We used a linear mixed effect model (random-effect model or 746 

multi-level model) to study the effect of software choice and SNP count on θ estimates for 747 

each relationship type. The fixed effects were (a) the type of genetic relationship estimation 748 

tools we used, i.e., READ, NgsRelate, KIN, and lcMLkin, and (b) SNP counts shared between 749 

simulated individuals (5K, 10K, 20K, and 50K). Here, 1K SNPs were not included because 750 

KIN did not perform with this SNP count (see above). The pair of individuals used was included 751 

as a random effect. The θ estimates were the response variable.  752 

 753 

We used the lmer function in the R lmerTest package [58] with the R code: 754 þÿÿÿ(�~�ýĀāý�ÿÿ + �þ��āþĀý + (1|þ��ÿĀ)). We repeated the analysis with each relationship 755 

type separately. We used the R base function <summary= on the lmer object to visualize p-756 

values of pairwise mean θ difference among software and SNP counts, using lcMLkin and 50K 757 

SNPs as the baseline. To ensure data independence, if multiple pairs included the same 758 

individual (which happened among parent-offspring, grandparent-grandchild, and great–759 

grandparent–great–grandchild pairs), we chose only one of the pairs, so that our data did not 760 

include the same individual in multiple pairs. In this way, we kept only 24 pairs for these three 761 

relatedness types.  762 

 763 

Additionally, we applied the same linear mixed effect model but this time using as a response 764 

variable the absolute residuals, i.e., the absolute differences between the θ estimate of a pair 765 

and theoretical θ value, �ý� = |�ÿ�Ăÿýýÿþ 2 �|. This way, we investigated the possible 766 

deviations from the theoretical values while accounting for the variances between pairs. 767 

 768 

Levene’s test. We performed Levene’s test to explore the homogeneity of variances between 769 

the kinship coefficient estimates of the tools using the <leveneTest= function in the R <car= 770 

package [59]. We first divided the estimates from READ, NgsRelate, lcMLkin, and KIN into 771 

groups based on SNP counts and replicates. Then, we applied Levene’s test separately to 772 

each group using their kinship coefficient estimates.  773 
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Tables 792 

 793 

Table 1: Different methods and the number of publications using them for kinship estimation. 794 

The data was collected by revising literature citing the named articles in Google Scholar 795 

(retrieved November 4, 2023) and filtering for publications (including journal publications and 796 

preprints but excluding academic theses) that directly used the software (Supp Table 6). 797 

   798 

Software Study 
Number of publications 

using the software 

NgsRelate Korneliussen & Moltke, 2015 47 

NgsRelate v2 Hanghøj et al., 2019 57 

lcMLkin Lipatov et al., 2015 49 

lcMLkin v2 Žegarac et al., 2021 1 

READ Kuhn et al., 2018 128 

TKGWV2 Fernandes et al., 2021 6 

KIN Popli et al., 2023 3 
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Table 2: The relationships used for paleogenomic data simulation. Number of sex 799 

combinations: the number of different constellations of the sex of individuals in the same 800 

pedigree for each run (e.g. for parent-offspring, this is four depending on whether the parent 801 

or the child is female or male). Number of pairs: the number of independently simulated pairs 802 

for each type of relationship. <inb=: pairs where inbreeding simulated as the child or grandchild 803 

is the offspring of a first-cousin mating (Figure 1). 804 

  805 

Relationship Degree 
Number of 

sex 
combinations 

Number of 
individuals 

Number of 
pairs 

Parent-offspring First 4 72 48 
Siblings First 3 96 48 
Half-siblings Second 6 96 48 
Grandparent-grandchild Second 4 72 48 
Avuncular Second 8 96 48 
First cousins Third 10 96 48 
Great-grandparent-great-grandchild Third 8 72 48 
Grand avuncular Third 16 96 48 
Parent-offspring (inb) First 8 72 48 
Grandparent-grandchild (inb) Second 4 72 48 
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Figures 806 

 807 
Figure 1: Primary simulations and analysis workflow. For the primary dataset, we created 600 808 
synthetic founder genomes using variant and allele frequency information from the 1000 809 
Genomes Project v3 Tuscany (TSI) sample (Methods). We used these founder genomes to 810 
create pedigrees with Ped-sim and human genetic maps, from which we chose sets of related 811 
pairs of different types, with n=48 pairs created for each relationship type (2 types for first-812 
degree and 3 types each for second- and third-degree) (Table 2). We also created parent-813 
offspring and grandparent-grandchild pairs where the offspring was the child of first cousins. 814 
We subsampled these genotypes to 200K SNPs and created aDNA-like sequencing read data 815 
using the gargammel tool around these SNPs. The reads were then aligned to the reference 816 
genome to produce 5x BAM files, which were further downsampled to 1x (Methods). We called 817 
pseudohaploid genotypes or calculated genotype likelihoods (GL) for the same 200K SNPs 818 
and downsampled these to 1K-50K subsets, each SNP counts downsampled randomly 5 819 
times. The genotypes, GL, or BAM files were input into the four kinship estimation tools.  820 
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 821 
Figure 2: θ estimates of simulated first-degree pairs, (A) parent-offspring, and (B) siblings. 822 

The points represent the θ estimated by lcMLkin, NgsRelate, READ, and KIN for one pair of 823 

individuals sharing 1K, 5K, 10K, 20K, or 50K SNPs. KIN results for 1K are missing because 824 

the algorithm does not perform at this coverage. For each SNP subset and each relationship 825 

type, the total number of simulated pairs is 240. Horizontal lines show the theoretical θ values. 826 

The boxplots, jitter-added points, and density plots show the distribution of the same sample 827 

of 240 points.  828 
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 829 
Figure 3: θ estimates of simulated second-degree pairs,(A) half-siblings, (B) avuncular, and 830 

(C) grandparent-grandchild. The points represent θ estimated by lcMLkin, NgsRelate, READ, 831 

and KIN for one pair of individuals sharing 1K, 5K, 10K, 20K, or 50K SNPs. KIN results for 1K 832 

are missing because the algorithm does not perform at this coverage. For each SNP subset 833 

and each relationship type, the total number of simulated pairs is 240. Horizontal lines show 834 

the theoretical θ values. The boxplots, jitter-added points, and density plots show the 835 

distribution of the same sample of 240 points. 836 
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 837 
Figure 4: θ estimates of simulated third-degree pairs, (A) first cousins, (B) grand avuncular, 838 

and (C) great-grandparent-great-grandchild. The points represent θ estimated by lcMLkin, 839 

NgsRelate, READ, and KIN for one pair of third-degree related individuals sharing 1K, 5K, 840 

10K, 20K, or 50K SNPs. KIN results for 1K are missing because the algorithm does not 841 

perform at this coverage. For each SNP subset and each relationship type, the total number 842 

of simulated pairs is 240. Horizontal lines show the theoretical θ values. The boxplots, jitter-843 

added points, and density plots show the distribution of the same sample of 240 points. 844 
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 845 
Figure 5: The mean θ estimates across different tools and SNP counts for (A) first-degree 846 

pairs, (B) second-degree pairs, (C) third-degree pairs, and (D) unrelated pairs, using all pairs 847 

(n=48) and replicates (n=5 per pair). Results for each overlapping SNP count are described 848 

with distinctive colours. The points show the mean and the vertical lines show +/- one standard 849 

error, estimated using all pairs (n=48) and replicates (n=5 per pair). The red dashed line 850 

represents the theoretical θ value for the corresponding relatedness degree.  851 
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 852 
Figure 6: The relative frequency of pairs assigned to first-, second-, and third-degree related 853 

and unrelated categories by lcMLkin, NgsRelate, KIN, and READ. The kinship coefficient 854 

estimates from these tools were classified using the arithmetic mean of theoretical kinship 855 

coefficients. Colors refer to the assigned relatedness degree. The frequencies of pairs 856 

assigned to each category are indicated as percentages inside the bars (only for categories 857 

with frequency >5%). KIN results for 1K are missing because the algorithm does not perform 858 

at this coverage.  859 
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 860 
Figure 7: Classification performance of the four tools using the primary dataset. FPR: false 861 

positive rate, FNR: false negative rate, TPR: true positive rate, TNR: true negative rate, and 862 

F1: accuracy. The classification was performed using n=48 pairs x 5 replicates for each kinship 863 

type (n=96 for first-, n=96 for second-, n=96 for third-degree related, n=96 for unrelated), 864 

generated using the primary dataset (no inbreeding, perfect background allele frequencies, no 865 

background relatedness), and using the arithmetic mean to classify kinship coefficient 866 

estimates. Note that we randomly subsampled n=96 pairs for second- and third-degree related 867 

categories with each relationship type represented equally (n=32) to ensure balance. The 868 

colors represent the count of SNPs shared between individuals. KIN results for 1K are missing 869 

because the algorithm does not perform at this coverage.  870 
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 871 
Figure 8: The effects of background allele frequency noise and background relatedness on θ 872 

estimations. (A) Parent-offspring and (B) sibling θ distributions under noise in allele 873 

frequencies, calculated using NgsRelate using n=48 pairs each, and all 200K SNPs. <MAF 874 

without noise= indicates TSI allele frequencies (perfect information) or MAF from 5x and 1x 875 

genomes; <MAF with noise (sd=0.5)= and <MAF with noise (sd=1)= indicate cases where 876 

random Gaussian noise is added to allele frequencies; <MAF from 5x genomes= and <MAF 877 

from 1x genomes= indicate MAF called using genomes of the indicated coverage (Methods). 878 

(C) Parent-offspring θ distributions without or with background relatedness using NgsRelate 879 

and READ. The points show the mean (n=48 pairs x n=5 replicates) and the vertical lines 880 

show +/- one standard error (not visible in panel A) for 1K and 20K SNPs. <Without background 881 

relatedness=: the main simulations where synthetic founders were created without background 882 

relatedness. <With background relatedness=: simulations where we produced founders using 883 

a coalescent simulator and realistic demographic model.  884 
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 885 
Figure 9: The mean θ estimates across different tools and SNP counts for (A) parent-offspring 886 

pairs (first cousin mating) and (B) grandparent-grandchild pairs (first cousin mating). Results 887 

for each overlapping SNP count are described with distinctive colours. The points show the 888 

mean and the vertical lines show +/- one standard error, estimated using all pairs (n=48) and 889 

replicates (n=5 per pair). The kinship coefficient from NgsRelate (�̂) was calculated ignoring 890 

the inbreeding-related Jacquard coefficients: �̂ = �7 + �8/4. The red dashed line represents 891 

the theoretical kinship coefficient value for the corresponding relatedness degree. KIN results 892 

are missing for grandparent-grandchild results because the algorithm did not perform with this 893 

dataset (Methods).    894 
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