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Abstract

There is growing interest in uncovering genetic kinship patterns in past societies using low-
coverage paleogenomes. Here, we benchmark four tools for kinship estimation with such data:
IcMLkin, NgsRelate, KIN, and READ, which differ in their input, IBD-estimation methods and
statistical approaches. We used pedigree and ancient genome sequence simulations to
evaluate these tools when only a limited number (1K to 50K) of shared SNPs (with minor allele
frequency 20.01) are available. The performance of all four tools was comparable using 220K
SNPs. We found that first-degree related pairs can be accurately classified even with 1K
SNPs, with 85% F1 scores using READ and 96% using NgsRelate or IcMLkin. Distinguishing
third-degree relatives from unrelated pairs or second-degree relatives was also possible with
high accuracy (F1 >90%) with 5K SNPs using NgsRelate and IcMLkin, while READ and KIN
showed lower success (69% and 79%, respectively). Meanwhile, noise in population allele
frequencies and inbreeding (first cousin mating) led to deviations in kinship coefficients, with
different sensitivities across tools. We conclude that using multiple tools in parallel might be
an effective approach to achieve robust estimates on ultra-low coverage genomes.
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Background

The use of paleogenomes for inferring genetic kin relations in ancient human populations is
growing at an accelerating pace. These studies have unraveled diverse types of social
relations of past human societies, from the composition of households [1,2] or burial treatment
of mass murder victims [3] to matrilineal [4] or patrilineal traditions studied in graves [5-8].
However, determining kinship degree using single nucleotide polymorphism (SNP) data from
low-coverage genomes is fraught with difficulties, mainly arising from data scarcity. The
majority of published paleogenomes are below 1x coverage and thus do not allow reliable
diploid genotyping, required by popular kinship estimation tools such as KING [9]. Although
imputation has recently been shown to produce reliable diploid genotypes using shotgun
genomes >0.5x [10,11], a substantial fraction of paleogenomes still do not reach this threshold;
e.g., in the AADR repository (v54.1.p1) [12], out of 2041 published shotgun genomes with
reported coverage from their original source, 916 (%45) have coverage <0.5x.

A number of solutions finetuned for performance on low coverage ancient DNA (aDNA) data
have been published over the last years. These algorithms use pseudohaploid genotypes (e.g.
[13]), genotype likelihoods (e.g. [14—16]) or read information (e.g. [17]), instead of diploid calls.
These methods also differ in (a) how they normalize the pairwise mismatch values between
two genomes to infer the kinship degree, and (b) whether they use method-of-moment
estimators or probabilistic approaches. The most widely cited tool, READ [13], compares the
rate of average mismatch (P0) between a genome pair with the median (or maximum) PO of
a large enough sample from the same population, assuming this median estimate represents
the expected PO of an unrelated pair. This is similar to the pairwise mismatch rate (PMR)
calculation by Kennett and colleagues [4]. Two other commonly used tools, IcMLkin (v2)
[14,15] and NgsRelate (v2) [16], use genotype likelihoods and population allele frequency
estimates to infer the kinship degree between pairs within a likelihood framework. The
TKGWV2 [18] algorithm also uses population allele frequencies within a method-of-moments
framework. Finally, the recently published method, KIN [17], uses a likelihood-based
framework as well as a Hidden Markov Model (HMM) to infer segments of identity-by-descent
(IBD) between pairs of individuals. KIN also uses the average mismatch in a sample for
normalizing PO rates for inferring identity-by-descent (IBD), akin to READ.

Although each of these methods is being widely used by the paleogenomics community, their
relative accuracy and performances have not been systematically investigated. One recent
exception is a study by Marsh and colleagues [19], who compared these methods using real
ancient and modern-day genomic datasets. The authors lacked knowledge of real
relationships but studied how consistency among estimates was affected by downsampling
high-coverage genomes, reporting that READ, PMR, and TKGWV2 were less affected by low
coverage than IcMLkin and NgsRelate. However, this study was limited by the lack of a ground
truth set of relationships.

Here, we compare the performances of four commonly used algorithms, IcMLkin, NgsRelate,
READ, and KIN, using ancient-like genomic data from pedigree simulations to distinguish
close kin (1st- to 3rd-degree relatives) and non-kin. We test the effects of ultra-low coverages
(using down to 1000 SNPs per pair), inbreeding, and noise in allele frequency estimates. We
chose READ, IcMLkin and NgsRelate as these are among the most widely used algorithms
on low-coverage genomes (Table 1). Meanwhile, we chose KIN along with NgsRelate as

2


https://www.zotero.org/google-docs/?Dxs86Q
https://www.zotero.org/google-docs/?GUyphh
https://www.zotero.org/google-docs/?QcWaPn
https://www.zotero.org/google-docs/?ewiPKP
https://www.zotero.org/google-docs/?8FPu6t
https://www.zotero.org/google-docs/?aPIKeJ
https://www.zotero.org/google-docs/?xV7X15
https://www.zotero.org/google-docs/?7delQW
https://www.zotero.org/google-docs/?X2rI2V
https://www.zotero.org/google-docs/?rGUQTq
https://www.zotero.org/google-docs/?WkfR9T
https://www.zotero.org/google-docs/?rEYzkw
https://www.zotero.org/google-docs/?MPAoV4
https://www.zotero.org/google-docs/?FC1HB3
https://www.zotero.org/google-docs/?GX3KHR
https://www.zotero.org/google-docs/?FnXPjt
https://www.zotero.org/google-docs/?FUlE5j
https://doi.org/10.1101/2023.11.08.566300
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.08.566300; this version posted November 12, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

83 these algorithms are designed to separate genetic correlations due to direct kinship or
84  inbreeding. Importantly, READ and KIN use sample-based normalization, while IcMLkin and
85 NgsRelate use population allele frequencies to infer IBD.
86
87  Data Description
88
89  We simulated pedigrees with Ped-sim (v1.3) [20] and human sex-specific empirical genetic
90 maps to produce 480 related pairs of individuals, including first-, second-, and third-degree
91 relationships, as well as first- and second-degree relatives with one individual being inbred
92 (Figure 1; Table 2; Methods). We further collected 29,706 unrelated pairs from the pedigrees.
93 In the simulations, we generated all alternative types of same-degree kinship (e.g., parent-
94  offspring and siblings for first-degree kin) and also all sex constellations because both
95 parameters can change the number of recombinations that separate a pair, and hence the
96 variation in IBD sharing [20,21]. We generated 48 pairs for each of the 8 relationship types
97 (Table 2). We created 600 founder genotypes used in the pedigree simulation from the 1000
98 Genomes Dataset v3 [22] Tuscany (TSI) population SNPs (Methods). The founder genotypes
99 thus involve realistic SNP densities and SNP types, but the founders themselves are artificial
100  and do not carry background relatedness or runs of homozygosity (ROH), which we preferred
101 in order to simplify interpretation. To further render the dataset realistic, we used the Ped-sim
102  generated pedigree genotypes to simulate aDNA-like sequencing data with the gargammel
103  tool for 200,000 SNPs [23]; we then performed the same procedures as applied to standard
104 paleogenome sequencing libraries (Methods). Next, we randomly downsampled the
105  genotypes to a range of shared SNP counts between related and unrelated pairs, from 50K,
106 20K, 10K, 5K to 1K autosomal SNPs. For each pair and SNP count, we further produced five
107  replicates by randomly downsampling SNP sets. We ran IcMLkin, NgsRelate, READ, and KIN
108 on this data (using perfect information on background allele frequencies with IcMLkin and
109 NgsRelate), and recorded the 6 (kinship coefficient) and kinship degree assignments.
110  Importantly, we could not run KIN on the sparsest dataset of 1K SNPs, presumably because
111 the algorithm does not converge at such low coverage. We further performed two alternative
112  analyses: (a) we ran NgsRelate after introducing two types of error to background allele
113  frequencies, and (b) we produced genomes with background relatedness using a coalescent
114  simulation and ran NgsRelate and KIN on this dataset (Methods).
115
116  Analyses
117
118 Comparable performances at 220K SNPs but weaker results with READ and KIN at
119  lower SNP counts
120
121 Both 6 distributions across all studied pairs and replicates (Figures 2-4; Figure S1), the mean
122 6 estimates (Figure 5), as well as correct kinship degree assignment rates (Figure 6) were
123  largely similar among IcMLkin, NgsRelate, READ, and KIN for first- to third-degree relatives
124  and unrelated pairs, using downsampled sets of either 50K or 20K SNPs. As expected, the
125  variance in 6 tended to be negatively correlated with the SNP count due to random noise, and
126  all 6 estimates had higher variance between siblings than between parent-offspring due to
127  randomness of recombination (as siblings share "2 of autosomes only on average, while
128  parent-offspring share exactly 'z of their autosomes).
129
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130  We found that identifying first-degree relatives is possible with 25K SNPs with all four tools
131 using this dataset with high reliability (=97.5% correct assignment). Even with 1K SNPs, READ
132  could perform correct first-degree assignments at a frequency of 85.2%, and NgsRelate and
133  IcMLkin at a frequency of >96% (Figure 6). Note that KIN did not run with our 1K SNP data
134  as it gave sporadic errors (Methods).

135

136  Effectively distinguishing between second- versus third-degree kin, and third-degree kin
137  versus unrelated pairs was more challenging. Still, NgsRelate and IcMLkin reached acceptable
138  performances using down to 1K SNPs and READ and KIN using 210K SNPs, with >80%
139  correct assignment.

140

141 We also observed a number of systematic differences among the tools. READ performs
142  generally worse than the other three tools with this data in terms of higher variance in 6
143  estimates and lower assignment accuracy (Figures 2-5). Meanwhile, KIN 6 distributions have
144  lower variance than the other tools but not improved accuracy, with higher degrees of
145  misassignment than IcMLkin and NgsRelate (Figure 6). For instance, using 5K SNPs, the
146  correct assignment of first-degree relatives was 99.6% for both IcMLkin and NgsRelate,
147  compared to 98.5% for KIN and 97.5% for READ. For third-degree relatives, using again 5K
148  SNPs, correct assignment rates were 91.5% for IcMLkin and 89.6% for NgsRelate, in contrast
149  to 75.2% for KIN and 66.7% for READ.

150

151 Bias and variation in 8 estimates among the four tools

152

153  Eventhough average 0 estimates are close to expected values under most conditions, leading
154  to correct assignment, slight shifts from expected values can be noticed in Figures 2-4. We
155  first inspected these biases among the four tools (Methods). Figure 5 shows the means of the
156  replicate pairs. One consistent trend was underestimating 6 in first-degree relationships and
157  grandparent-grandchild pairs and overestimating 6 among unrelated pairs. Further, KIN
158 diverges from the other tools in displaying the strongest downward bias for related pairs but
159  the least upward bias for unrelated pairs. The observed biases are not strongly correlated with
160  SNP counts, except for KIN estimates. Finally, NgsRelate and IcMLkin appear least biased,
161 but not for all kinship types; e.g. for great-grandparent-great-granchild pairs, READ estimates
162  are closest to expectation. Overall, we find that 6 estimates from all tools display slight biases,
163  but their level and directions depend on the relationship type and tool (Figure 5; Supp Table
164 1). This pattern was also apparent when comparing absolute mean differences from
165  expectation (residuals) using a linear mixed effect model; we tested all 8 kinship types
166  separately, and for each type, at least one pair of software showed significant differences in
167  the magnitude of residuals (at t-test p<0.05) (Supp Table 2). These trends, though, appear to
168 have limited impact on classification accuracy: e.g. for siblings, NgsRelate displays the
169  strongest downward bias in average 6 estimates, but its classification accuracy is higher than
170  both READ and KIN and is on a par with IcMLkin (Figure 6). Expectedly, SNP count also had
171 asignificant effect on residuals, with larger residuals at lower SNP counts (Supp Table 2).
172

173  We next studied whether variance among 6 estimates (as opposed to bias) significantly differs
174  among tools. For this, we ran Levene’s test for variance differences, comparing estimates
175  between the four tools for each relatedness type and SNP count separately (Supp Table 3).
176  This revealed significant differences in 6 variances among the tools, especially with <10K
177  SNPs (72/90 of comparisons with p<0.05), which is consistent with their variable classification
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178  performance at low coverages (Figure 6). The only exceptions were grandparent-grandchild
179  and great-grandparent-great-grandchild pairs, for which variances were similar among tools.
180 The reason for this difference is not obvious but might be related to these kinship types
181  involving fewer observable recombination events than other types [21].

182

183  Higher classification accuracy with NgsRelate and IcMLkin

184

185 We next calculated standard accuracy metrics to represent the four tools’ classification
186  performances (Figure 7). All tools had high (>98%) F1 accuracy values for first-degree
187  relatives down to 5K SNPs. Even using 1K SNPs, READ had F1 86% while NgsRelate and
188  IcMLkin had F1 96%. Note again that KIN did not perform at this SNP count in our experiments
189  due to sporadic errors (Methods) (Supp Table 4).

190

191 Beyond first-degree relationships, NgsRelate and IcMLkin performance was superior to those
192  of READ and KIN, especially at low SNP counts. For instance, for second-degree relatives at
193 5K SNPs, IcMLkin and NgsRelate had F1 values of 93% and 94%, respectively, while READ
194  F1 was only 83%, and that of KIN was 88%, similar to values reported by [17]. This is again
195  consistent with the higher variation of 6 estimates by READ.

196

197  No major improvement in classification using geometric over arithmetic mean as a
198 threshold

199

200 Assignment of pairs to various kinship degrees is traditionally accomplished by using the
201  midpoint between two expected 6 values (61 and 6.) as a threshold, i.e. (6; + 6,)/2 (e.g. [13]).
202  For example, the expected second- and third-degree 6 values are 0.125 and 0.0625, and thus,
203 the threshold is their arithmetic mean, 0.093, with pairs with 6 0.090 assigned to the third-
204  degree kinship class (Supp Table 5). Because 6 and kinship degrees are not linearly
205 correlated (e.g. see Figure 2), we asked if the geometric mean [,/(8; X 65)], which will be
206  smaller than the arithmetic mean (0.088 in the above case), may provide a more suitable
207  threshold. We ran the classification of the same pairs using the same 6 estimates from all four
208 tools using the geometric mean as the threshold. We found slightly higher true positive rates
209 using the geometric mean over the arithmetic mean for all categories except third-degree
210 relatives (Figure S2). Overall, the differences between the thresholds appear too modest to
211 entail a change in assignment strategy.

212

213 Noise in population allele frequency can lead to over- or underestimation of 6

214

215  The above results suggest that, at low SNP counts, READ and KIN display lower performance
216  than IcMLkin and NgsRelate. The former pair of tools both use the median mismatch rate in a
217  sample of pairs for normalization, whereas IcMLkin and NgsRelate both use population allele
218  frequency estimates. We reasoned that our use of perfect knowledge of allele frequencies
219  (frequencies used to create the founders) may have favored the performance of IcMLkin and
220 NgsRelate. To study the extent of noise in allele frequency estimates on the latter methods,
221  we performed two additional simulations. Here, we used only NgsRelate, given its highly
222  similar logic and performance with IcMLkin, and only studied 96 first-degree pairs (48 siblings
223  and 48 parent-offspring pairs) for simplicity. First, we introduced random Gaussian noise to
224  the allele frequency estimates with standard deviations of 0.5 and 1 (Methods) (Figure S3).
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225  As expected, higher random noise led to systematic overestimation of 6 (>0.25) for all 96 pairs
226  (Figure 8A-B; Figure S4). This happens because inaccurate background allele frequencies
227  inflate the impact of being identical-by-state (IBS) between any pair.

228

229  Second, we tested the effect of noise related to imprecise allele frequency estimation. For this,
230  we calculated allele frequencies from 72 simulated genomes of 1x comprising parent-offspring
231  pairs and 96 simulated genomes of 1x comprising sibling pairs, i.e. with limited accuracy
232  (Methods). Intriguingly, this type of noise led to a slight but systematic underestimation of 6,
233  with all 48 parent-offspring pairs having 8 <0.25 and 37/48 sibling pairs having 6 <0.25 (Figure
234  8A-B; Figure S4). The variability among sibling pairs is again likely caused by randomness in
235 recombination. The reason for this underestimation trend could be related to the lower
236  representation of relatively rare variants when estimating allele frequencies from low-coverage
237 genomes (Figure S3). Indeed, the underestimation trend was mitigated when using allele
238 frequencies estimated from 5x genomes instead (Figure 8A-B; Figure S4).

239

240  Overall, these results suggest that different sources of noise in population allele frequency
241  estimates can compromise the performance of IcMLkin and NgsRelate. This would also be
242  consistent with the results by Marsh and colleagues [19], who reported low performance of
243  the latter two tools on real genomic datasets.

244

245 Background relatedness has a limited effect on kinship estimates

246

247  To investigate whether background relatedness among founders may shift 6 estimates we
248  produced founder genomes using a coalescent simulator and a demographic model describing
249  European Neolithic ancestry; we then generated a second dataset comprising n=48 parent-
250  offspring pairs from these (Methods). We next ran READ and NgsRelate on 1K and 20K SNP
251 sets and compared the 6 values with those from the primary dataset with synthetic founders
252  with no background relatedness. We found READ 6 estimates were practically the same when
253 genomes contained background relatedness, while NgsRelate tended to underestimate 6
254  albeit minimally (<0.025) (Figure 8C). This suggests that, at least in our simulated scenario of
255  European Neolithic ancestry, the presence of background relatedness among founders might
256  not substantially influence the accuracy or reliability of 6 estimates produced by READ and
257  NgsRelate using the 1K and 20K SNP sets.

258

259  The effect of inbreeding on 6 estimates

260

261 Inbreeding, either through consanguinity or small population size, can create distal IBD loops
262  between pairs of individuals (Figure 1); it will thus increase IBD and elevate 6 estimates
263 beyond that expected from the proximal relationship. Both past and present human
264  populations are known to vary with respect to average inbreeding levels [24—-26]. Among the
265 tools tested here, READ and IcMLkin estimate raw IBD sharing without accounting for
266 inbreeding. NgsRelate estimates the nine Jacquard coefficients (Ji.9) separately and thus
267  could theoretically differentiate between IBD due to proximal loops (J; and Js) versus IBD via
268  distal loops (J3 and Js) [16]. KIN, meanwhile, estimates runs of homozygosity (ROH) created
269 by inbreeding in each genome and takes into account ROH-induced IBD when estimating the
270  IBD-sharing level between a pair [17].

271
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272  We tested the four tools first using parent-offspring simulations, where the parents of the
273  offspring were the first cousins. Average 6 from READ, IcMLkin, and NgsRelate were 0.27-
274  0.28, as expected (Figure 9A, Figure S5). KIN estimates were all 0.25 (except for a single
275  pair using 50K SNPs), suggesting that this algorithm effectively accounts for IBD caused by
276  inbreeding. For NgsRelate, we also calculated a modified 8 version, 8 = J, /2 + Jg/4, which is
277  expected to reflect proximal IBD sharing without IBD due to distal loops. These 8 estimates
278  were slightly but systematically lower than what would be expected from proximal loops (~0.24
279  using 25K SNPs).

280

281  We also simulated grandparent-grandchild pairs, with the grandchild being the offspring of first
282  cousins. Interestingly, KIN gave an error when we ran it with this data (Methods). READ,
283  IcMLkin, and NgsRelate 6 values were higher than expected from proximal loops (Figure 9B,
284  Figure S6). This time, NgsRelate § values were also overestimated, but at a lower degree
285 than the above three 6 estimates.

286

287  NgsRelate also estimates individual inbreeding coefficients, F, which should be 0.0625 for first
288  cousin mating. The NgsRelate mean F estimates for the child were 0.075 for 1K SNPs, but
289  0.051-0.055 for 25K SNPs in the parent-offspring dataset; likewise, mean Fwas 0.068 for 1K
290 SNPs but 0.041-0.048 for 25K SNPs in the grandparent-grandchild dataset, suggesting that
291 NgsRelate tends to over- or underestimate Fin some settings.

292

293 Discussion

294

295  Our benchmarking revealed a number of interesting observations on the four tools tested.
296  First, all tools perform well and are consistent with each other down to 20K shared SNPs, even
297  in the separation of third-degree and unrelated pairs (Figure 6). This SNP count lower limit
298 corresponds to two genomes each with ~0.1x coverage genotyped on the 1240k SNP panel
299 [12,27], or each with ~0.06x genotyped on a 1000 Genomes v3 Africa diversity panel of ~4.7
300 million SNPs [28]. Theoretically, this lower limit also applies to comparisons between a 1x
301 genome and a 0.004x genome, using the latter SNP panel.

302

303 Nevertheless, we mark that these results reflect upper bounds for performance in real
304  datasets, for a number of reasons:

305 (a) Our IcMLkin and NgsRelate analyses use perfect information on background allele
306 frequencies, which may be slightly or highly unrealistic in real settings, depending on the
307 dataset.

308 (b) Our sets of sample pairs used for normalizing mismatch rates, used by READ and KIN, do
309 notinclude population structure, which would have led to an overestimation of kinship degree
310  as pointed out by Popli and colleagues [17].

311 (¢) Our primary genome simulation dataset lacks background relatedness among the
312  founders, which would be present at variable degrees in real data and could confound
313  estimates of proximal IBD. This involves results from all four tools. Still, our experiment with
314  founders obtained from a realistic demographic model did not create a major shift in 6
315  estimates.

316  (d) We did not include identical genomes or fourth-degree kin in the simulations. This would
317 have lowered accuracy in the classification of first-degree and third-degree categories,
318  respectively.


https://www.zotero.org/google-docs/?jSjWTY
https://www.zotero.org/google-docs/?ejf8dh
https://www.zotero.org/google-docs/?0E0SwO
https://doi.org/10.1101/2023.11.08.566300
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.08.566300; this version posted November 12, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

319

320 Inour primary simulations, NgsRelate and IcMLkin were found to be more accurate than READ
321  and KIN, with lower false positive and false negative rates, especially when using <20K shared
322 SNPs. The former tools both use genotype likelihoods and population allele frequencies.
323  However, as our trials with noise-added or imperfectly estimated population allele frequencies
324  reveal, this performance might be compromised in real-life applications. In fact, in our own
325  experience, READ results appear highly robust and reproducible compared to those of other
326 tools (e.g. [2,29]).

327

328  Another interesting observation was that KIN, which includes inference of both ROH and
329 shared IBD segments using HMMs, did not perform much better than READ in accuracy. We
330 also could not successfully run KIN on 1K SNP datasets and one dataset that included
331  inbreeding. Still, among the three tools tested, KIN is unique in providing likelihoods for kinship
332 degree assignment, as well as separating parent-offspring and sibling pairs.

333

334  Overall, our results suggest no single tool may be universally superior in estimating kinship
335 levels with low-coverage genomes. Using multiple tools in parallel and interpreting the results
336 in light of the superiorities and weaknesses of each tool and the particularities of each dataset
337 (e.g. knowledge of allele frequencies, genetic structure within the sample, and the possibility
338 of inbreeding) may be the most prudent approach. Meanwhile, the archaeogenomics
339 community may continue to seek novel and more powerful methods, such as combining the
340 two alternative normalization approaches (population allele frequencies and the median
341  mismatch in a sample) and using haplotype information [30] to calculate more robust kinship
342  coefficients.

343
344  Materials and Methods
345
346  Pedigree Simulations
347

348  The goal of this study is to determine how common kinship estimation tools perform on ultra-
349 low coverage ancient genome data. To assess this most effectively, we simulated ancient
350 genome data representing pairs of individuals with known relationships. Briefly, we used
351  pedigree simulation software Ped-sim (v1.3) [20] to produce genotypes from pedigrees of
352  various relationship degrees and types separately, including first-, second-, and third-degree
353 relatedness without inbreeding, as well as first-degree and second-degree relatedness with
354  first-cousin mating. Ped-sim creates individual genotypes based on user-specified pedigrees,
355  using founder individual genotypes and a recombination map (i.e. genetic map) as input.

356

357  We created founder genotype data from scratch as follows: We chose autosomal biallelic
358  SNPs with minor allele frequencies (MAF) 20.01 from the modern-day Tuscany (TSI) samples
359 (n=112) from the 1000 Genomes Project v3 [22]. For the 8,677,101 such SNPs, we further
360 calculated the alternative allele frequency (AAF) in the TSI. We then created the diploid
361  genotype of each founder by randomly choosing, for each SNP independently, the alternative
362 or reference allele with probability AAF and 1-AAF, respectively, and repeating this twice to
363 create a diploid genotype. Note that this approach eliminates any background relatedness
364 among founders as well as any homozygosity tracts within founder genomes; even though
365 this is not realistic, our choice simplifies the interpretation of the kinship estimation results. We
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366 repeated the creation of founder data 12 times (runs), each time producing different sets of
367  founders.

368

369 We thus generated 120 unrelated founders (10 for each run, each with n=12) used for first-
370  degree and 240 unrelated founders (20 for each run, each with n=12) for second- and third-
371  degree pedigree simulations each; 600 in total.

372

373  We then employed Ped-sim (v1.3) [20] to simulate pedigrees using this founder pool. We used
374  alinearly interpolated sex-specific recombination map [31] with the “-m” option and crossover
375 interference model [32] using the “--intf’ option of Ped-sim. We simulated pedigrees with all
376  possible sex combinations in a relationship (e.g. male-female, female-female, and male-male
377  siblings) by providing “def” files with the “-d” option. We provided Ped-sim the sexes of founder
378 individuals with the “--sexes” option. In addition, we used the “--keep_phase --founder _ids --
379  fam --miss_rate 0" parameters for running Ped-sim.

380

381  We thus simulated n=72 pedigrees composed of first-degree, n=96 second-degree, and n=96
382  third-degree related pairs. For instance, for each of the 12 runs generated for first-degree
383 relationships, we chose 6 pedigrees (2 for parent-offspring and 4 for siblings). The founders
384  of each pedigree and simulated individuals from distinct pedigrees were treated as “unrelated”.
385

386  From these simulated pedigrees, we chose n=48 pairs for each relationship type (Table 2).
387  For instance, for parent-offspring relationships, we chose n=24 parent-offspring trios, n=48
388  pairs, which resulted in n=24x3=72 unique individuals in total. Overall, the number of unique
389 individuals used for parent-offspring, grandparent-grandchild, and great-grandparent-great-
390  grandchild relationships was n=72 each, while the number of unique individuals used in sibling,
391  half-sibling, first cousin, avuncular, and grand avuncular pedigrees was n=96 each.

392

393 For the pedigree simulations with inbreeding, first-degree and second-degree pedigrees
394  (parent-offspring and grandparent-grandchild relationships) were simulated in the presence of
395 first-cousin mating (i.e., the parents of an offspring or a grandchild are first cousins,
396 respectively). For these pedigrees with inbreeding, we also used n=48 pairs for each
397  relationship type (Table 2).

398

399  Ancient Sequence Simulation

400

401  To create realistic ancient genotypes from this simulated genotype data that contains various
402  types of error inherent in aDNA, we simulated aDNA-like sequencing data and processed this
403 using our standard pipeline for paleogenome sequencing data (see section “Preprocessing of
404  Simulated Ancient Genomes”). Because our aim was to examine kinship estimation at low
405  SNP counts, we sought to speed up these downstream steps by limiting the genotype data to
406  a smaller SNP set. For this, we used an in-house bash script to randomly downsample the
407 8,677,101 autosomal biallelic SNPs to 200,000 SNPs and used these genotypes for all pairs
408 of simulated individuals. By limiting the number of reads produced, we could significantly
409 reduce the computation time required for alignment.

410

411 We next used the gargammel software [23] to simulate aDNA-like lllumina sequencing read
412  data. This ancient read simulator cuts a given FASTA file into variable short lengths mimicking
413  the distribution of read lengths from aDNA libraries, adds post-mortem DNA damage (PMD),
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414  adds lllumina adapters to read ends, and finally, introduces sequencing errors and quality
415  scores to produce ancient-looking FASTQ files. To generate input FASTA files for gargammel,
416  for each individual separately (two files for each individual representing either allele), at each
417  SNP position, we inserted alternative alleles according to their genotype into the human
418 reference genome (GRCh37) via the VCFtools “consensus” command [33]. We then cut the
419  FASTA files into 100 bp sequence intervals surrounding each of the 200K SNPs (50 bp on
420 each side) using BEDtools command “get fasta” [34]. For aDNA read size distribution, we used
421  the size distribution file (sizedist.size) from gargammel with “-s” option, but we removed values
422  higher than 120 bp, resulting in a distribution with a mean of 66.2 bp and a median of 61 bp,
423  ranging between 35 bps and 119 bps. We specified the deamination patterns as “-damage
424  0.024, 0.36, 0.009, 0.55" using the Briggs model parameters [35]. Sequencing errors were
425 introduced using default parameters. We thus generated ancient read data with 5x depth of
426  coverage per individual, without any present-day human or microbial contamination by
427  specifying “--comp 0,0, 1" option.

428

429  Preprocessing of Simulated Ancient Genomes

430

431  We processed the gargammel-simulated read data following the same procedure as applied
432 to ancient genome sequencing libraries in our group and other research teams (e.g.,
433  [2,28,29]). Firstly, we removed the adapters from the simulated ancient reads and then merged
434  the paired-end reads [36]. Secondly, the generated single-end ancient reads were mapped to
435 a human reference genome (hs37d5) using the bwa software “samse” function (v0.7.15) [37]
436  with the “-aln” option, and parameters are set to “-/ 16500”, “-n 0.01” and “-0 2’. We eliminated
437  the reads with a minimum of 10% mismatches to the human reference genome. Finally, the
438 remaining reads were trimmed 10 bps from both ends to remove the PMD-related C-to-T and
439  G-to-A substitutions using the bamUtil software with the “trimBAM’ option [38].

440

441  Genotyping and Downsampling

442

443  After lllumina sequencing read simulation and alignment, we randomly downsampled the BAM
444  files of all simulated individuals from 5x to 1x coverage using Picard Tools DownsampleSam
445  (2.25.4) [39]. Because our goal is to study the performance of the kinship coefficient estimation
446  (6) by READ, NgsRelate, IcMLkin, and KIN on low-depth ancient data, most of our analyses
447  involve subsamples of the 1x data (only one read per SNP). We used the 5x data only in
448  testing noise in population allele frequencies.

449

450  We next performed pseudo-haploid genotyping from simulated ancient genomes with 1x depth
451  of coverage. Pseudo-haploidization is a regular step in most aDNA genome studies (see
452  Section 1.3.5). This was performed using the SAMtools (v.1.9) “mpileup” function [40],
453 followed by running pileupCaller (v1.4.0.5) with the “--randomHaploid’ parameter [41].
454  Specifically, to generate text pileup files for all BAM files, we used the random subset of 200K
455  autosomal SNPs that we had selected earlier (see Section 2.1). Mapping quality and base
456  quality filters were set to Phred score >30 in SAMtools (v.1.9) mpileup. Second, the output
457  pileup files were given as input to pileupCaller software to produce pseudo-haploid genotype
458 data by randomly sampling one read and recording its allele at each SNP. Third, the output
459 files were converted to packedped format using ADMIXTOOLS convertf package [42] with
460 parameter “-p” and then to transpose ped/fam format using PLINK (v1.9) [43]. Last, we
461  retained only non-missing genotype calls for each pair of individuals using PLINK (v1.9) with
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462  the option “-geno (" (note that missing SNPs are removed only for the analysed pair). This
463  reduced the number of SNPs from 200K to an average of 77K for 1x depth of coverage.
464  Missing genotype calls in low-coverage ancient genomes led to a considerable decrease in
465  the number of SNPs.

466

467  To explore the lower limits of using ancient genomes for genetic relatedness estimation, we
468 randomly took subsets of 1K, 5K, 10K, 20K, and 50K SNPs shared between each simulated
469  pair. This randomized downsampling was repeated five times for each subset. This allowed
470  usto study how much kinship coefficient estimates vary depending on the set of variants used
471  for the analysis. We note that the term, replicate, used for the downstream analysis refers to
472  this repeated downsampling (n=5).

473

474  Simulations with Background Relatedness

475

476 In addition to the primary dataset we generated using synthetic founders from the 1000
477  Genomes Dataset v3 TSI population (n=112), we created another founder dataset comprising
478 250 founder individuals with background relatedness. For this, we employed the msprime
479  engine [44,45] in the mode of “HomSap” from the stdpopsim library [46,47] to simulate the
480  genetic data of these founder individuals. We utilized the “HapMapl/l-GRCh37’ [48] with the “-
481 g option as the recombination map. We simulated the 500 haploid genomes descended from
482  the Linearbandkeramik (LBK) population, which can be described as early European farmers
483  of Anatolian descent [49], of the multi-population model of ancient Eurasia model [50], with
484  the “-d AncientEurasia-9K19 0 500’ option. Note that this ancestry is supposed to be close to
485 that of the TSI [49]. Subsequently, we transformed the succinct tree sequence output
486  generated by the stdpopsim software into VCF using the tskit library [51] “vcf’ command with
487  the “--ploidy 2’ option. We then narrowed our analysis to 200K randomly selected SNP
488  positions through a customized bash script. These selected positions were further used to
489  extract reference bases from the human reference genome (hs37d5) using the “getfasta”
490 command of BEDtools (v2.27.1) [34]. We estimated the transition:transversion rate statistics
491  from the 1000 Genomes Dataset v3 TSI population (n=112) to assign alternative alleles to the
492  retrieved reference positions. With this information, we stochastically generated alternative
493 alleles for each position in our dataset, employing a customized R script. This approach was
494  instrumental in replicating genetic variation according to the observed rates within the TSI
495  population, offering a realistic distribution of allele frequencies within our simulated dataset.
496 The rest of the pipeline, comprising pedigree simulation, ancient sequence simulation,
497  preprocessing, genotyping, and downsampling was identical to that used to create our primary
498 dataset.

499

500 Genetic Relatedness Estimation Using READ, NgsRelate, IcMLkin, and KIN

501

502 READ. READ [13] is a non-parametric genetic relatedness estimation algorithm. READ
503 compares pseudo-haploid genotypes between pairs and calculates the proportion of mismatch
504  positions, i.e., the pairwise mismatch rate (PO0), in non-overlapping windows of 1 Mbps. READ
505 then calculates the genome-wide average PO per pair and normalizes this using a PO value
506  corresponding to an average unrelated pair. This can be either the mean, maximum, or median
507 (default) of all PO values in a sample, assuming the average pair is unrelated, or it may be a
508 user-specified value.

509
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510 We ran READ with pseudo-haploid genotype data of the simulated individual pairs using
511  default parameters. For each of the 8 relationship types, each SNP count, and each random
512  replicate separately, we combined all READ results for all pairs into one set. These sets
513 included both n=48 pairs of a specific relationship type (e.g. siblings) and also unrelated pairs
514  from different pedigrees of this type. The number of unrelated pairs varied between 2468-4458
515  across relationship types (because some of the pedigrees we produced within the same run
516 included the same founders, we filtered out any pair that shared founders from the “unrelated
517  pairs” category). As these sets were mainly composed of unrelated individuals, we used their
518 median PO value for normalization (~0.24), which is also the suggestion of the software
519 developers. The kinship coefficient (6) estimate for each related and unrelated pair was
520 calculated using the formula:

521 0=1- (POpair/POmedian)

522

523  This 6 estimation approach can yield negative results when a pair shares fewer alleles IBS
524  than the ones of the average unrelated pair [52], suggesting a non-kin relationship. Thus, we
525  set the negative 6 estimates to 0.

526

527 NgsRelate. NgsRelate (v2) [16] (hereon NgsRelate) uses maximum likelihood (ML) for
528  estimating genetic relatedness given genotype information and population allele frequencies.
529  NgsRelate further relies on genotype likelihoods (GL) to account for the uncertainty in low-
530 coverage ancient data. NgsRelate uses an expectation-maximization algorithm to estimate
531 nine condensed Jacquard coefficients (J1, Jz,..., Jo) given GL and population allele
532  frequencies; these coefficients are then used for the direct calculation of kinship:

533

534 0=],+05%xJs+]Js+];)+0.25xJg

535

536  To calculate the GLs for each individual separately from the gargammel-produced BAM files
537  we used the ANGSD program [53] with the “--g/ 2’ option. We limited GL calculation to 200K
538 autosomal SNPs using the “sites” parameter for every individual. This left us with 199,095
539  SNPs passing ANGSD default filters (base quality > 13). The beagle text output file of ANGSD
540 (--doGlf 2) was manipulated to generate a GL file containing only two individuals with their
541  shared SNPs. We eliminated pairwise missing SNPs by keeping only sites with GL values not
542  equal to 0.33 for three genotype states (major/major, major/minor, minor/minor) for both
543  individuals with a custom script. Next, we randomly downsampled the shared SNPs between
544  every pair of individuals to 1K, 5K, 1K, 20K, and 50K, five times each, using an in-house bash
545  script. Then, every pair's GL files with five different SNP subsets were converted to the binary
546  GL file format NgsRelate accepts. The background allele frequency files for corresponding
547  SNPs were prepared using their MAF of the 1000 Genomes TSI sample with n=112 individuals
548 (see below for our NgsRelate trials with alternative background allele frequencies). As the
549  autosomal bi-allelic variants with MAF < 0.01 were excluded from the simulations, the MAF
550 threshold of NgsRelate was set to 0 with the option “-/“; this is because the NgsRelate default
551 is 0.05 and we wished to use the same threshold across the software. The output file produced
552 by NgsRelate for each pair includes a 6 value corresponding to a kinship coefficient estimate.
553  We used this estimated value for subsequent analysis.

554

555 NgsRelate with alternative background allele frequencies. With NgsRelate, we also
556  conducted trials with alternative background MAF. This analysis was restricted to the two first-
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557  degree relatedness categories, parent-offspring (n=48) and siblings (n=48); we reasoned
558 these effects would be consistent across different relatedness types. We ran the ANGSD
559  program with the abovementioned parameters for 200K autosomal SNPs on the BAM files.
560 We processed the resulting GL file to obtain pairwise GL files with no missing SNPs. We then
561  used three alternative background MAF calculations:

562

563 (1a) MAFs from the 1000 Genomes TSI population (n=112) as in the original analyses.

564 (1b) MAFs calculated from gargammel-produced 5x coverage BAM files of the same
565 individuals used in this analysis: 72 individuals comprising the 48 parent-offspring, and 96
566 individuals comprising the 48 sibling pairs. For this, we ran the ANGSD program with the same
567 parameters on the 5x coverage BAMs and obtained MAFs for both relatedness categories
568 separately.

569 (1c) MAFs estimated from gargammel-produced 1x coverage BAM files of the same
570 individuals. These were the files used for producing the GL files with ANGSD in the primary
571  analyses.

572

573  We also used modified MAFs in three ways:

574  (2a) No noise.

575 (2b) Adding a low level of random noise. Here, we introduced random noise to the original
576  MAFs from the TSI while ensuring the resulting values remained within the valid range of 0 to
577  0.5. For this, we first transformed the MAF values with the logit function: logit(p) = log (p/(1 —
578 p). The purpose of this transformation is to stretch the original allele frequencies to the entire
579  real number space, making them amenable to adding random noise. Then, we generated the
580 noise-added allele frequency values following a Gaussian distribution with a mean based on
581 the logit-transformed MAF values and a standard deviation of 0.5. Then, we applied the expit
582  function (inverse of logit function): expit(p) = 1/(1 + exp(—p)), to the random values to
583 transform them back to the 0 to 1 interval. Lastly, we adjusted the MAF values to ensure they
584  fell within the valid range of 0 to 0.5. This adjustment involved subtracting any values that
585 exceeded 0.5 from 1.

586 (2c) Adding a high level of random noise. Here, we repeated the same steps as in (2b), but
587  we added Gaussian noise with a standard deviation of 1 (instead of 0.5).

588

589  All possible combinations of the three MAF calculations and three noise introductions yielded
590 nine different MAF values (original MAFs and their two different noise-added versions, MAFs
591  calculated from 5x genomes and their two different noise-added versions, and MAFs
592  calculated from 1x genomes and their two different noise-added versions). Then, we ran
593 NgsRelate with the parameters mentioned above for each pair of parent-offspring and sibling
594  categories with these nine different background MAF values.

595

596 IcMLkin. Another relatedness estimation software using genotype likelihood and population
597 allele frequencies is IcMLKkin [14]. Assuming a non-inbred population (unlike NgsRelate) and
598 biallelic loci in linkage equilibrium, IcMLkin estimates the maximum likelihood of Cotterman
599 coefficients also using the Expectation Maximization (EM) algorithm and determines the
600 coefficient of relatedness as r = k;/2 + k,. Like NgsRelate, the uncertainty in genotype calls
601  of low-coverage NGS data is modeled by summing log-likelihood values of every possible
602  genotype for each site across the genome.

603
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604  We prepared input VCF files for each pair to run IcMLkin (v2.1) [54] implemented for Python3.
605  Forthat purpose, we used BCFtools mpileup and call commands [55] to estimate the genotype
606 likelihoods of each individual using BAM files for the 200K SNP set with the mapping and base
607  quality filter parameters “-q10" and “-Q13’, respectively. These thresholds were selected
608 based on the default filters of ANGSD to estimate GLs for NgsRelate analysis. In this way, we
609 aimed to render the kinship coefficient estimate results from IcMLkin comparable with the
610 estimates from NgsRelate. Besides the VCF files of target samples, IcMLkin requires the
611  genotype data of the selected background population for allele frequency estimation. This
612  genotype data is provided in PLINK format (bed/bim/fam) with an argument “-p”. We prepared
613 this genotype data using the 200K autosomal SNPs (MAF > 0.01) chosen from the n=112 TSI
614  sample defined earlier. We changed the default allele frequency thresholds integrated into the
615  IcMLkin python script from minimum 0.05 and maximum 0.95 to minimum 0.01 and maximum
616  0.99. We filtered out missing (non-shared) SNPs from VCF files using an in-house bash script
617  to collect only overlapping SNPs between each simulated pair for the subsequent random
618 downsampling step. After that, we randomly selected 1K, 5K, 10K, 20K, and 50K shared SNPs
619  between pairs of samples, independently five times each, and generated downsampled VCF
620 files using BCFtools view [55] with the “-R’ parameter. As the LD pruning application of IcMLkin
621  removes closely linked SNPs from the relatedness analysis, we modified the program script
622  such that downsampled SNPs are not pruned by LD. This was done for simplicity to ensure
623  we use the same number of SNPs in each trial and across different software. Also, with <50K
624  SNPs across the genome, linkage between neighboring SNPs will be minimal.

625

626  The relatedness coefficient (r) is represented with the “P |_HAT’ estimate in the output files of
627  IcMLkin. We calculated the kinship coefficient value as 8 = r/2.

628

629  KIN. KIN [17] has been recently developed to estimate kinship using a Hidden Markov Model-
630 based approach. The properties of KIN that distinguish it from the above-mentioned tools are
631 (i) the ability to differentiate between parent-offspring and sibling pairs, (ii) taking into account
632 inbreeding as inferred from runs of homozygosity (ROH) for relatedness classification, (iii)
633  correcting for contamination. Similar to READ, KIN does not depend on population allele
634 frequencies but estimates PO in genomic windows directly from read data (BAM files) with a
635 minimum 0.05x depth of coverage. Additionally, it incorporates the probability of window-
636  based ROH tracts in each individual estimated by an ROH-HMM model while fitting an IBD
637  sharing pattern of pairs to the predefined relatedness models (unrelated, 5th degree, 4th
638  degree, 3rd degree, 2nd degree, 1st degree and identical) provided by the KIN-HMM model.
639  Then, KIN assigns the most likely relationship degree for a pair with the highest likelihood.
640

641  As KIN does not work with only two individuals and as we wanted to use one pair at one time
642  to control the shared SNP counts between individuals, we first grouped our BAM files into
643 triplets for each relationship type, including one pair of BAM files to be analyzed and one BAM
644 file of a randomly chosen simulated individual. We determined the read depth of each site at
645 the predefined 200K SNPs for each triplet using SAMtools (v1.9) [40] “depth” with the “-q 30 -
646 Q 30" options. Then, we removed sites that do not contain at least one read shared between
647  a pair of individuals using a custom bash script since we wanted to keep only shared SNPs
648  for the subsequent analysis.

649

650  We thus randomly downsampled remaining sites to 1K, 5K, 10K, 20K, and 50K, independently
651 five times each, for each pair, and gave these downsampled SNP lists as input with “--bed”
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652  argument to run the KINgaroo algorithm, a python package to generate ROH estimates and
653 input files for KIN. We ran KINgaroo with default parameters without contamination correction
654  (using the “--cnt 0" option) and without indexing and sorting of BAM files (using the “--s 0"
655  option) for each triplet separately to generate input files necessary for KIN twenty-five times
656  (n=5 SNP counts x n=5 replicates).

657

658 Intriguingly, while processing 1K SNP datasets KINgaroo gave sporadic errors, independent
659 of which relationship type was used. Specifically, the algorithm has an “Index Error”
660  (“IndexError: Can not process input data”) for several different triplets and replicates with 1K
661  SNPs. Meanwhile, when we ran KINgaroo again with the same triplets but a different set of
662 1K SNPs without changing any parameter, KINgaroo finished the analysis without error. To
663  further be sure that the problem was related to the usage of 1K SNPs, we continuously ran
664  KINgaroo while using the same or different triplets and different sets of 1K SNPs, but we
665  encountered the same error. We also used the same triplets sharing higher SNP counts (5K,
666 10K, 20K, and 50K) to run KINgaroo repeatedly; these worked successfully. As we could not
667  understand the reason why the algorithm did not work (possibly could not converge) on some
668  SNP sets, we decided to exclude 1K SNPs and we continued the downstream analysis with
669  higher SNP counts, from 5K to 50K.

670

671  We separately collected pairwise mismatch values (P0O) of pairs for each relationship type
672 (“p_all.csv”file under “hmm_parameters” directory created by KINgaroo) and calculated their
673 median PO values for each SNP count and replicate, corresponding to a PO value of an
674  average unrelated pair. To apply normalization for kinship estimation with these median values
675 (~0.24), we manually changed the text files of PO, “p_0.txt" created by KINgaroo under the
676  “hmm_parameters” directory. We then ran KIN with input files separately for each triplet using
677  default parameters twenty times (n=4 SNP counts x n=5 replicates).

678

679 Inthe grandparent-grandchild relationship with first cousin mating, KIN again did not perform.
680 This time, the program raised an “‘0OS Error’ (“OSError:
681  path/to/directory/likfiles/file1_._file2.csv not found”). Indeed, we found that KINgaroo had not
682  produced the necessary csv file, although without any warning; the reason for this was again
683 unclear.

684

685  The output file of KIN includes the estimates of Jacquard coefficients (ko, ki, and k2) for each
686  pair analyzed. We calculated the kinship coefficient using these estimates (60 = k,/4 + k,/2)
687  and used it for the subsequent analysis.

688

689 Classification of kinship coefficient estimates

690

691  To systematically test the reliability and robustness of kinship coefficient estimates by IcMLkin,
692 NgsRelate, KIN, and READ on ancient samples, we categorized each simulated pair into one
693  of four relationship categories, i.e., first-, second-, or third-degree related, or unrelated, using
694  their 6 estimates. Here, we used two assessment criteria. The first criterion we investigated
695 was the arithmetic mean (average) of the theoretical kinship coefficient values. The arithmetic
696 mean of two expected values 6; and 62 would be (6, + 6,)/2, i.e. the midpoint of expected
697  kinship coefficient values of two relatedness degrees (Supp Table 5). For instance, pairs with
698 0.1875 > 6 > 0.09375 would be assigned as second-degree. READ and TKGWV2 also use
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699 this mid-point cutoff approach to designate kinship estimates to the appropriate relatedness
700  categories.

701

702  The second classification criterion we explored was the geometric mean of theoretical kinship
703  coefficient values. The geometric mean defines the average value of the set of the numbers
704  under study based on their products, and it is always smaller than the arithmetic mean, being
705  closer to the lower value when two values are used. The geometric mean of two expected
706  values 6; and 6. would be /08, x 6,. As 0 values decrease with lower degrees of relatedness
707  inanon-linear fashion (see Figures 2-4), we decided to test if using the geometric mean may
708  improve the accuracy of kinship type classification. The cutoffs used are shown in Supp Table
709 5. For the third degree, we determined the threshold using theoretical kinship coefficients of
710  the third-degree related and unrelated pairs, 0.0625 and 0.0, respectively. As zero values
711 cannot be tolerated while calculating the geometric mean, we applied a modified geometric
712  mean for third-degree cutoff using the splicejam (v0.0.63.900) package in R [56]. In this way,
713  we derived the third-degree threshold as 0.03078.

714

715  Classification and Accuracy

716

717  To compare and contrast the classification performance of the relatedness methods, we
718  created a confusion matrix using either the arithmetic or geometric mean criteria. For this, we
719  used the confusionMatrix function of the R caret (v3.5) package [57]. Based on the estimated
720  values, this creates a matrix summarizing predictions across a reference or known set of
721  values. In this study, the known values correspond to the relationship categories we simulated:
722  first-, second-, third-degree related, and unrelated.

723

724  While producing a confusion matrix and calculating classification metrics in a multi-class
725  scenario like this, it is important to maintain the balance between classes, i.e., an equal
726  number of samples for each class. In our study, the first-degree class includes 96 pairs in total,
727 and it has the lowest number of pairs compared to second (n=144 total, n=48 for each
728  relationship type), third (n=144 total, n=48 for each relationship type), and unrelated
729  (n=29,706) classes (Table 2). For this reason, we randomly selected only 96 second- and
730  third-degree related and unrelated pairs using the “sample” function of R without replacement.
731  We used the same number of each relationship type for second- and third-degree pairs (n=32
732  each). After that, we prepared four different datasets for our tools, consisting of classified
733  estimates based on either arithmetic or geometric mean and their actual classes. We
734  separately applied the confusion matrix function to the datasets for each shared SNP count
735 (1K, 5K, 10K, 20K, and 50K).

736

737  The metrics we used for benchmarking each of the four tools were the true positive rate (TPR),
738  true negative rate (TNR), false positive rate (FPR), false negative rate (FNR), precision, and
739  the F-score (F1). To understand how often the four software correctly identified the estimates,
740  we also determined the relative frequency of both true and false predictions for each class and
741  SNP count. Additionally, we categorized the false predictions according to their inferred
742  classes using the same confusion matrix again.

743

744  Statistical Tests on Kinship Coefficient Estimates

745
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746  Linear Mixed Effect Model. We used a linear mixed effect model (random-effect model or
747  multi-level model) to study the effect of software choice and SNP count on 6 estimates for
748  each relationship type. The fixed effects were (a) the type of genetic relationship estimation
749  tools we used, i.e., READ, NgsRelate, KIN, and IcMLkin, and (b) SNP counts shared between
750  simulated individuals (5K, 10K, 20K, and 50K). Here, 1K SNPs were not included because
751 KIN did not perform with this SNP count (see above). The pair of individuals used was included
752  as arandom effect. The 6 estimates were the response variable.

753

754 We used the Imer function in the R ImerTest package [58] with the R code:
755  lmer(6~Software + SNPcoune + (1|pairs)). We repeated the analysis with each relationship
756  type separately. We used the R base function “summary” on the Imer object to visualize p-
757  values of pairwise mean 6 difference among software and SNP counts, using IcMLkin and 50K
758 SNPs as the baseline. To ensure data independence, if multiple pairs included the same
759  individual (which happened among parent-offspring, grandparent-grandchild, and great—
760  grandparent—great—grandchild pairs), we chose only one of the pairs, so that our data did not
761  include the same individual in multiple pairs. In this way, we kept only 24 pairs for these three
762  relatedness types.

763

764  Additionally, we applied the same linear mixed effect model but this time using as a response
765  variable the absolute residuals, i.e., the absolute differences between the 6 estimate of a pair
766  and theoretical 6 value, AMD = |O¢xpectea — 0. This way, we investigated the possible
767  deviations from the theoretical values while accounting for the variances between pairs.

768

769 Levene’s test. We performed Levene’s test to explore the homogeneity of variances between
770  the kinship coefficient estimates of the tools using the “leveneTest’ function in the R “car’
771  package [59]. We first divided the estimates from READ, NgsRelate, IcMLkin, and KIN into
772  groups based on SNP counts and replicates. Then, we applied Levene’s test separately to
773  each group using their kinship coefficient estimates.
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792  Tables

793

794  Table 1: Different methods and the number of publications using them for kinship estimation.
795 The data was collected by revising literature citing the named articles in Google Scholar
796  (retrieved November 4, 2023) and filtering for publications (including journal publications and
797  preprints but excluding academic theses) that directly used the software (Supp Table 6).
798

Number of publications

Software Study using the software
NgsRelate Korneliussen & Moltke, 2015 47
NgsRelate v2 Hanghgj et al., 2019 57
lcMLkin Lipatov et al., 2015 49
IcMLkin v2 Zegarac et al., 2021 1
READ Kuhn et al., 2018 128
TKGWV2 Fernandes et al., 2021 6
KIN Popli et al., 2023 3
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Table 2: The relationships used for paleogenomic data simulation. Number of sex
combinations: the number of different constellations of the sex of individuals in the same
pedigree for each run (e.g. for parent-offspring, this is four depending on whether the parent
or the child is female or male). Number of pairs: the number of independently simulated pairs
for each type of relationship. “inb”: pairs where inbreeding simulated as the child or grandchild
is the offspring of a first-cousin mating (Figure 1).

Number of
Relationship Degree sex iﬂngiel:atl); Numa?f; of
combinations P
Parent-offspring First 4 72 48
Siblings First 3 96 48
Half-siblings Second 6 96 48
Grandparent-grandchild Second 4 72 48
Avuncular Second 8 96 48
First cousins Third 10 96 48
Great-grandparent-great-grandchild  Third 8 72 48
Grand avuncular Third 16 96 48
Parent-offspring (inb) First 8 72 48
Grandparent-grandchild (inb) Second 4 72 48
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Simulate ancient genomes with gargammel Align simulated reads Downsample and analyze kinship

Figure 1: Primary simulations and analysis workflow. For the primary dataset, we created 600
synthetic founder genomes using variant and allele frequency information from the 1000
Genomes Project v3 Tuscany (TSI) sample (Methods). We used these founder genomes to
create pedigrees with Ped-sim and human genetic maps, from which we chose sets of related
pairs of different types, with n=48 pairs created for each relationship type (2 types for first-
degree and 3 types each for second- and third-degree) (Table 2). We also created parent-
offspring and grandparent-grandchild pairs where the offspring was the child of first cousins.
We subsampled these genotypes to 200K SNPs and created aDNA-like sequencing read data
using the gargammel tool around these SNPs. The reads were then aligned to the reference
genome to produce 5x BAM files, which were further downsampled to 1x (Methods). We called
pseudohaploid genotypes or calculated genotype likelihoods (GL) for the same 200K SNPs
and downsampled these to 1K-50K subsets, each SNP counts downsampled randomly 5
times. The genotypes, GL, or BAM files were input into the four kinship estimation tools.
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Figure 2: 6 estimates of simulated first-degree pairs, (A) parent-offspring, and (B) siblings.
The points represent the 6 estimated by IcMLkin, NgsRelate, READ, and KIN for one pair of
individuals sharing 1K, 5K, 10K, 20K, or 50K SNPs. KIN results for 1K are missing because
the algorithm does not perform at this coverage. For each SNP subset and each relationship
type, the total number of simulated pairs is 240. Horizontal lines show the theoretical 6 values.
The boxplots, jitter-added points, and density plots show the distribution of the same sample
of 240 points.
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Figure 3: 6 estimates of simulated second-degree pairs,(A) half-siblings, (B) avuncular, and
(C) grandparent-grandchild. The points represent 6 estimated by IcMLkin, NgsRelate, READ,
and KIN for one pair of individuals sharing 1K, 5K, 10K, 20K, or 50K SNPs. KIN results for 1K
are missing because the algorithm does not perform at this coverage. For each SNP subset
and each relationship type, the total number of simulated pairs is 240. Horizontal lines show
the theoretical 6 values. The boxplots, jitter-added points, and density plots show the
distribution of the same sample of 240 points.
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838  Figure 4: 6 estimates of simulated third-degree pairs, (A) first cousins, (B) grand avuncular,
839 and (C) great-grandparent-great-grandchild. The points represent 6 estimated by IcMLKkin,
840 NgsRelate, READ, and KIN for one pair of third-degree related individuals sharing 1K, 5K,
841 10K, 20K, or 50K SNPs. KIN results for 1K are missing because the algorithm does not
842  perform at this coverage. For each SNP subset and each relationship type, the total number
843  of simulated pairs is 240. Horizontal lines show the theoretical 6 values. The boxplots, jitter-
844  added points, and density plots show the distribution of the same sample of 240 points.
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Figure 5: The mean 6 estimates across different tools and SNP counts for (A) first-degree
pairs, (B) second-degree pairs, (C) third-degree pairs, and (D) unrelated pairs, using all pairs
(n=48) and replicates (n=5 per pair). Results for each overlapping SNP count are described
with distinctive colours. The points show the mean and the vertical lines show +/- one standard
error, estimated using all pairs (n=48) and replicates (n=5 per pair). The red dashed line
represents the theoretical 8 value for the corresponding relatedness degree.
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Figure 6: The relative frequency of pairs assigned to first-, second-, and third-degree related
and unrelated categories by IcMLkin, NgsRelate, KIN, and READ. The kinship coefficient
estimates from these tools were classified using the arithmetic mean of theoretical kinship
coefficients. Colors refer to the assigned relatedness degree. The frequencies of pairs
assigned to each category are indicated as percentages inside the bars (only for categories
with frequency >5%). KIN results for 1K are missing because the algorithm does not perform
at this coverage.
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860
861  Figure 7: Classification performance of the four tools using the primary dataset. FPR: false

862  positive rate, FNR: false negative rate, TPR: true positive rate, TNR: true negative rate, and
863  F1:accuracy. The classification was performed using n=48 pairs x 5 replicates for each kinship
864 type (n=96 for first-, n=96 for second-, n=96 for third-degree related, n=96 for unrelated),
865  generated using the primary dataset (no inbreeding, perfect background allele frequencies, no
866  background relatedness), and using the arithmetic mean to classify kinship coefficient
867  estimates. Note that we randomly subsampled n=96 pairs for second- and third-degree related
868 categories with each relationship type represented equally (n=32) to ensure balance. The
869  colors represent the count of SNPs shared between individuals. KIN results for 1K are missing
870  because the algorithm does not perform at this coverage.
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Figure 8: The effects of background allele frequency noise and background relatedness on 6
estimations. (A) Parent-offspring and (B) sibling 6 distributions under noise in allele
frequencies, calculated using NgsRelate using n=48 pairs each, and all 200K SNPs. “MAF
without noise” indicates TSI allele frequencies (perfect information) or MAF from 5x and 1x
genomes; “MAF with noise (sd=0.5)" and “MAF with noise (sd=1)” indicate cases where
random Gaussian noise is added to allele frequencies; “MAF from 5x genomes” and “MAF
from 1x genomes” indicate MAF called using genomes of the indicated coverage (Methods).
(C) Parent-offspring 6 distributions without or with background relatedness using NgsRelate
and READ. The points show the mean (n=48 pairs x n=5 replicates) and the vertical lines
show +/- one standard error (not visible in panel A) for 1K and 20K SNPs. “Without background
relatedness”: the main simulations where synthetic founders were created without background
relatedness. “With background relatedness”: simulations where we produced founders using
a coalescent simulator and realistic demographic model.
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Figure 9: The mean 6 estimates across different tools and SNP counts for (A) parent-offspring
pairs (first cousin mating) and (B) grandparent-grandchild pairs (first cousin mating). Results
for each overlapping SNP count are described with distinctive colours. The points show the
mean and the vertical lines show +/- one standard error, estimated using all pairs (n=48) and
replicates (n=5 per pair). The kinship coefficient from NgsRelate () was calculated ignoring
the inbreeding-related Jacquard coefficients: 8 = J, + Jg/4. The red dashed line represents
the theoretical kinship coefficient value for the corresponding relatedness degree. KIN results
are missing for grandparent-grandchild results because the algorithm did not perform with this
dataset (Methods).
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