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Abstract10

Circulating tumor DNA (ctDNA) monitoring, while sufficiently advanced to reflect tumor evolution in11

real time and inform on cancer diagnosis, treatment, and prognosis, mainly relies on DNA that originates12

from cell death via apoptosis or necrosis. In solid tumors, chemotherapy and immune infiltration can13

induce spatially variable rates of cell death, with the potential to bias and distort the clonal composition14

of ctDNA. Using a stochastic evolutionary model of boundary-driven growth, we study how elevated15

cell death on the edge of a tumor can simultaneously impact driver mutation accumulation and the16

representation of tumor clones and mutation detectability in ctDNA. We describe conditions in which17

invasive clones end up over-represented in ctDNA, clonal diversity can appear elevated in the blood, and18

spatial bias in shedding can inflate subclonal variant allele frequencies (VAFs). Additionally, we find that19

tumors that are mostly quiescent can display similar biases, but are far less detectable, and the extent of20

perceptible spatial bias strongly depends on sequence detection limits. Overall, we show that spatially21

structured shedding might cause liquid biopsies to provide highly biased profiles of tumor state. While22

this may enable more sensitive detection of expanding clones, it could also increase the risk of targeting23
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a subclonal variant for treatment. Our results indicate that the effects and clinical consequences of24

spatially variable cell death on ctDNA composition present an important area for future work.25

Keywords: tumor growth model; tumor evolution; spatial evolution; ctDNA; tumor DNA shedding26

Introduction27

A once far-fetched idea that a blood sample can precisely inform on cancer diagnosis, treatment, and prognosis28

is quickly becoming clinical reality (Wan et al., 2017). This is largely due to advances in the quantification29

of DNA fragments from cancer cells shed into the bloodstream, known as circulating tumor DNA (ctDNA),30

which are primarily released from the tumor via apoptosis, necrosis, and active secretion (De Rubis et al.,31

2019). While tissue biopsies have been a critical component in cancer care, providing a snapshot of the tumor-32

host microenvironment, they are invasive and repeated biopsies over time to monitor cancer progression and33

optimize therapies are seldom feasible. Moreover, even when accessible, a single biopsy sample may not34

represent an entire tumor, which usually displays significant spatial heterogeneity. ctDNA-based “liquid35

biopsies”, on the other hand, do not have some of these drawbacks and can act as a noninvasive cancer36

biomarker, allowing analyses of the tumor’s genetic evolution more frequently and comprehensively (Cha37

et al., 2023; Ulz et al., 2017; Kujala et al., 2022). Two major applications of ctDNA already used in the38

clinic are for the monitoring of tumor burden before, during, and after treatment, and for the detection of39

post-treatment relapse (Mattox et al., 2019; Ignatiadis et al., 2021). Liquid biopsies have also shown great40

promise in predicting relapse, progression free survival, and overall survival across a variety of tumor types41

and stages (Reinert et al., 2019; Chae et al., 2019; Sanz-Garcia et al., 2022; Cha et al., 2023).42

Despite its potential to revolutionize cancer monitoring and treatment, ctDNA can also show poor con-43

cordance between blood and tissue, hampering its general clinical utility (Chae et al., 2017; Merker et al.,44

2018). The main causes for this include access to only minuscule concentrations of ctDNA in a plasma45

sample, the limits of current sequencing technologies, the confounding effects of non-cancerous mutations46

and intra-tumor heterogeneity (Jahangiri and Hurst, 2019). While improvements in assay sensitivity and47

specificity could help to better resolve the ground truth composition of observed ctDNA in a blood sam-48

ple, we need different methods to better understand and correct possible inaccuracies arising from biased49

representations of the different tumor clones in ctDNA fragments.50

Changes to ctDNA yield and representation of different mutations have been observed before and during51

chemotherapy, altering the detectability of resistance-causing mutations (Schwaederlé et al., 2017; Ma et al.,52
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2016; Tran et al., 2023). The majority of cfDNA fragments are around 100-160 base pairs long, which is53

consistent with apoptosis-induced digestion of nuclear DNA into fragments the circumference of a nucleosome54

(Stroun et al., 2001; Roth et al., 2011; Hu et al., 2021). Elevated apoptosis can increase the amount and55

clinical detectability of ctDNA in the bloodstream (Marques et al., 2020) and varying apoptosis rates between56

clones can in theory lead them to become disproportionately represented in the bloodstream (Heitzer et al.,57

2020). In addition to the intrinsic differences in growth and death rates for different clones, heterogeneity in58

the tumor microenvironment due to immune infiltration, hypoxia, or treatment onset can also significantly59

impact rates of apoptosis (Kaufmann and Earnshaw, 2000; Trédan et al., 2007; Murthy et al., 2021; Giordano60

et al., 2016; Zhou et al., 2006; Marques et al., 2020; Kato et al., 2016; Rostami et al., 2020). These can in turn61

influence the evolutionary fate of a tumor by altering its local selective pressures and genetic heterogeneity62

(Meads et al., 2008).63

While there are many models studying tumor growth and evolution, the degree to which this underlying64

genetic distortion between blood and tumor tissue exists, and the evolutionary mechanisms that shape it,65

are not directly considered, either in models of tumor evolution derived from ctDNA (Abouali et al., 2022),66

or in clinical studies of ctDNA concordance (Stetson et al., 2019). Recent mathematical models studied67

how varying the apoptosis rates of tumor cells could influence the time to detection of early-stage tumors68

(Avanzini et al., 2020) or the effect of differential shedding on the representation of different metastases69

in ctDNA (Rhrissorrakrai et al., 2023), but ignore the underlying evolutionary process or study neutral,70

non-spatial evolution. Separately, a model by Fu et al. (2015) showed how reduced chemotherapy exposure71

in a sanctuary site can promote acquired resistance, but this work did not specifically model the effects on72

ctDNA genetic distortions.73

Here we combine a stochastic model of boundary-driven tumor evolution (Waclaw et al., 2015; Bozic74

et al., 2019; Chkhaidze et al., 2019; Noble et al., 2022; Lewinsohn et al., 2023) with a model of differential75

apoptosis and cellular shedding and study the effects of spatially-heterogeneous cellular apoptosis on ctDNA76

composition and its genetic distortion relative to the tumor tissue. We spatially constrain tumor evolution77

by assuming that differential drug penetration or immune system infiltration leads to increased cell death78

and DNA fragment shedding on the edge of the growing tumor. We compare results across a variety of79

modeling choices, such as differences between quiescent or proliferative tumors, and track the distortion of80

clones and subclonal mutations in the ctDNA over time.81

We find that, as cancers grow and shed DNA into the bloodstream, the clones responsible for expansion82

into the edge environment are consistently overrepresented in the ctDNA and, in some cases, when progression83
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results in highly heterogeneous tumors, homogeneous regions trapped in the tumor core are underrepresented84

in the blood. We further show that over-representation of clones from high-shedding tumor regions can lead to85

differences in the number of detectable subclonal driver mutations, and that the chosen sequencing detection86

limit can have a complex effect on the extent of the observed genetic differences. We also discuss the potential87

clinical relevance of distortions in ctDNA genetic variability during clinically significant events, such as the88

appearance of an expanding subclone or cell turnover-driven increases in clonal diversity.89

For liquid biopsy technologies and ctDNA analyses to transform cancer care, from early screening and90

diagnosis through treatment and long-term follow-up, we need to better understand how to interpret the91

genetic diversity measured in the blood and how it can be used to inform on the true composition of92

the tumor tissue. Overall, our results showcase how spatial heterogeneity in apoptosis and cellular shedding93

across different regions of a tumor can significantly bias the mutational composition of ctDNA and emphasize94

important directions for further theoretical and clinical investigation into the effect of the microenvironment95

on ctDNA origin and quantification.96

97

Methods98

The tumor growth model. While there are many models of tumor growth, to analyze the role of solid99

tumor spatial structure in shaping the observed variation in ctDNA, we use a model of boundary-driven100

growth, in which cells on the periphery of a tumor are assumed to experience higher proliferation rates101

over time, as compared to the tumor core. This type of spatially-restricted growth is usually observed in102

tissues with weak physical resistance and it can significantly alter tumor evolution by blunting the strength103

of selection, promoting clonal interference, and increasing mutation burden from the tumor core to its edges104

(Waclaw et al., 2015; Noble et al., 2022). Because of its simplicity and well-understood properties, it is an105

excellent starting point for exploring how spatial variation in apoptosis can impact ctDNA release and can106

bias the observed genetic differences between blood and main tissue.107

In our Eden model, cells grow on a 2D regular lattice and each cell has 8 neighbors (a Moore neighbor-108

hood), similar to Waclaw et al. (2015); Chkhaidze et al. (2019); Noble et al. (2022); Lewinsohn et al. (2023).109

Each simulation begins with a single cell and terminates when the population either goes extinct or reaches110

a size of 60,000 voxels. In the initial stage of growth, the tumor experiences an environment with death rate111

d1. Once the tumor reaches a large enough size (here, a radius of 90 voxels or, equivalently, 3 billion cells)112
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Figure 1: A. Illustration of the model. Tumors grow to a clinically detectable size (a 2D cross-section of a 3
billion cell tumor), and are then partially exposed to a new environment, where the cells die with rate d2. The
growth rate in the new environment determines the invasive potential of a clone. If the death rate d2 is higher
than the initial birth rate, only clones with mutations increasing the growth rate to a positive number can
grow in the new environment, so invasion is driver-dependent. Otherwise, it is driver-independent. Tumor
growth can be proliferative or quiescent. In the former, cells divide when they have an empty neighbor on
the lattice and die at a rate independent of their neighbors. In the latter, cells also divide when they have
an empty neighbor on the lattice, however cell death also requires empty neighbors. The shedding rate of
DNA into the blood is assumed to be proportionate to the death rate. B. Example trajectories, driver-
dependent invasion. Trajectories of clone fractions and total population size for driver dependent invasion,
with visualizations of the 2D tumor at selected timepoints. Each color corresponds to a unique clone, also
shown in the trajectory plot. C. Example trajectories, driver-independent invasion. Trajectories of clone
fractions and total population size for driver independent invasion, with visualizations of the 2D tumor at
selected timepoints. For both cases, µ = 0.001, s = 0.1, d1 = 0.1, b = 0.7. For driver-dependent invasion,
d2 = 0.9. For driver independent invasion, d2 = 0.69.

we assume the tumor is detected and treatment can occur that can shrink the initial tumor. After detection,113

we assume that, due to differential chemotherapy drug penetration or differences in immune infiltration and114

oxygenation, spatial differences in apoptosis appear between between the tumor core and the edge of the115
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tumor. Specifically, cells in the core, or the sanctuary site (radius R ≤ 90), continue to experience death at116

rate d1, while on the tumor edge, cells have death rate d2 ≤ d1. For the sake of simplicity, we do not model117

angiogenesis or interactions of cancer cells with other cell types.118

This spatial difference in death rates effectively creates a selective barrier for tumor expansion. We119

consider two parameter regimes: d1 < b < d2 and d1 < d2 < b, which we call “driver-dependent" and120

“driver-independent" invasion, respectively (Figure 1). In the driver-dependent regime, only lineages that121

have acquired sufficient driver mutations can expand past the core radius R, while, with driver-independent122

invasion, all lineages continue to grow in the presence of the new edge environment. At each time step,123

a random cell is chosen uniformly from the population, and attempts division with a probability equal to124

its birth rate b ∗ (1 + s)n, where b is the baseline birth rate in the population, s is the selective advantage125

of driver mutations, and n is the chosen cell’s driver mutation count. If the cell attempts division, it126

places a daughter cell in a randomly-chosen empty site in its Moore neighborhood. If the cell is completely127

surrounded, it cannot divide. Upon division, we assume that the daughter cell acquires a Poisson-distributed128

number of additional driver mutations, with rate µ. We assume each mutation appears only once (infinite129

site assumption). After attempting division, the chosen cell is removed from the population with probability130

equal to its death rate di, where i ∈ 1, 2 indicates which region of the tumor the cell inhabits.131

We also analyze a version of the main model where cells do not die if they are fully surrounded, so that132

the tumor core remains in a quiescent state and where selection acts by reducing the apoptosis rate rather133

than increasing birth rate, so that d← d ∗ (1− s).134

135

Parameter Choices. To significantly save on simulation time and memory, we assume a Poisson distributed136

driver mutation rate of µ = 0.001, roughly 100 times the estimated empirical rate, which we denote by137

µreal = 1e−5, as in Bozic et al. (2019). We also simulate the tumors in 2D, so that the spatial heterogeneity138

reflects that of a cross section of a much larger 3D tumor, a rationale used in Noble et al. (2022) for similar139

2D spatial models. Each 2D voxel then represents µ
µreal

identical cells. For a simulation with m voxels, we140

roughly approximate the 3D tumor size, N , to be that of a sphere, with a cross section equal in area to the141

number of 2D cells, such that N = 4
3π(

µ
µreal

m
π
)

3

2 . We further choose a sanctuary site radius, R, ranging from142

20 to 60 voxels. Assuming 20µm diameter tumor cells, and 100 cells per 2D voxel, this R would correspond143

to an equivalent tumor with a radius of 0.4 to 1.2cm and approximately 1000 to 20,000 cells, representing144

a cross section of a 3D tumor of roughly 30 million - 1 billion cells (Del Monte, 2009). We simulate tumors145

until they expand well beyond the core sanctuary site and stop the simulations when tumors reach a size of146
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60,000 voxels, corresponding to a tumor size of approximately 10 billion cells or a radius of 2.5cm. Without147

loss of generality, throughout what follows, we also assume a constant selective benefit for driver mutations,148

s = 0.1.149

150

N Final tumor size
R Core / sanctuary site radius
b Initial cell birth rate
d1 Cell death rate in the tumor core
d2 Cell death rate in the tumor edge
s Driver mutation fitness advantage
µ Poisson-distributed driver mutation rate

Table 1: Main parameters used in the model.

Modeling clone fractions and variant allele frequencies (VAFs) in ctDNA.151

To compute clone frequencies in the ctDNA, let Nij be the number of cells of clone i from region j, with152

corresponding death rate dj . We assume that shedding into the blood is proportional to the death rate of a153

tumor region (Avanzini et al., 2020), i.e. the fraction of a tumor clone in the ctDNA population at time t154

can be computed as a weighted average over the frequency of the clone in each region,
∑

j
djNij(t)

∑
i

∑
j
djNij(t)

.155

While this represents the clone’s fraction of the tumor population, to test the effect of clone fraction156

distortion on mutation detection, we also estimate clinically realistic VAFs in the blood, which also contains157

DNA fragments from healthy tissue. To do this, we compute the frequencies of each driver mutation belonging158

to each clone and then estimate the fraction of the total number of fragments that originate from the tumor159

(the tumor fraction). At the point of diagnosis, Phallen et al. found that the mean tumor fraction in the160

bloodstream for stage I and II breast, lung, ovarian, and colorectal tumors was 1% (Phallen et al., 2017).161

We calibrate the simulated tumor fraction by assuming this is the fraction for proliferative tumors at the162

point of detection, assumed to occur at 3 billion cells, with initial death rate of d1 = 0.1.163

To estimate a shedding probability, we adapt a formula from Avanzini et al. (2020). Assuming an164

exponentially growing tumor with a constant growth rate, the formula computes the number of fragments165

shed into the bloodstream as a Poisson-distributed random variable, with mean C = Ndq
ε+r

, where N , d, q,166

ε and r are the number of cells, death rate, shedding rate, decay rate, and growth rate respectively. We167

estimate C using the Phallen data set, which found the median DNA concentration in plasma to be 29 ng/ml.168

Repeating a calculation from their paper, a haploid genome weighs roughly 0.0033ng, suggesting that there169

are 8788 haploid genome equivalents (HGEs) in 1ml of plasma. With 5L total blood volume in the human170
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body and 55% plasma, we can therefore estimate C to be 5000 × 0.55 × 8788 × 0.01 = 241, 670. While the171

formula depends on r (the tumor birth rate can in fact slightly alter the total ctDNA molecules present in172

a blood draw), the tumor population changes on the order of days, while DNA decays in the blood with a173

half life of about 30 minutes (Sanz-Garcia et al., 2022). This implies ε = 48 ln 2 ≈ 33.3, while r < 1. In a174

spatial setting, the effective growth rate is even lower, because cells do not divide when surrounded, so we175

assume r ≈ 0. Setting C = 3e9×0.1×q
ε

, we estimate q ≈ 0.026.176

The mean number of tumor fragments at other time points is then computed as Ct =
Nqd
ε

, where d is177

the mean death rate of the whole tumor. For a mutation m with tissue frequency fm and overall death rate178

dm, we write the total number of fragments with that mutation as Cm ∼ Pois( fNdmq
ε

). For a 15ml blood179

draw (0.3% of the total supply), we scale the mean number of fragments by 0.003. Let Ctot0 be the total180

fragments in a 15ml blood draw, at the point of detection. Then Ctot0 ∼ Pois(5000× 0.55× 8800× 0.003).181

We assume the mean number of non-tumor fragments remains constant at Ch = 0.99 ∗ Ctot0 . If we assume182

all cells are diploid, each mutation appears on a single chromosome copy and we ignore the possibility of183

recurrent mutation or subsequent allelic gain or loss, we can write the expression for the spatially biased184

VAF of a specific mutation in the blood as
Pois( 1

2
Cm)

Pois(Ct+Ch)
. To analyze the effect of spatially correlated death185

rates on the detection of tumor mutations, we compute both spatially biased and unbiased VAFs by using186

the mean death rate of the specific mutation (dm) for the former, and the mean death rate of the entire187

tumor (replace dm with d in the expression for Cm) for the latter.188

189

Inverse Simpson diversity as a measure of intratumor heterogeneity, ITH. Since an important190

goal of this work is understanding how ctDNA data collected from the blood may distort estimates of clonal191

heterogeneity present in the main solid tumor, we use the inverse Simpson diversity index to quantify and192

compare heterogeneity estimates from blood and tissue sequences. The inverse Simpson diversity index is a193

classic diversity measure employed in many previous studies of population diversity which takes into account194

the number of lineages present, as well as the relative abundance of each (Buckland et al., 2005; Noble et al.,195

2022). For a set of clone fractions f1, ..., fN , with
∑N

1 fi = 1, it is defined as D = 1∑
N
1

f2

i

.196

197

Results198

Spatial differences in apoptosis and shedding can bias clone fractions in ctDNA199
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To study how the spatial structure of a solid tumor, through spatial heterogeneity in apoptosis, can bias200

the observed ctDNA in blood draws, we first analyze the difference in the clonal fractions between blood201

and tumor tissue. In Figure 2, we compare results for proliferative versus quiescent cell models, small202

versus large sanctuary sites and driver-dependent versus driver-independent invasion. Across all modeling203

scenarios, Figure 2 shows that new clones on the expanding front tend to be over-emphasized in the ctDNA,204

while older clones, trapped in the tumor sanctuary, tend to be under-represented. The magnitude of the205

differences in clonal fraction and their likelihood to impact clinical detectability depend on the accumulated206

clonal diversity on the edge of the tumor, mediated by the edge environmental effects.207

In the driver-dependent case (Figures 2A and B), the few driver clones able to invade the new environ-

ment experience a higher death rate during expansion on the edge and end up over-represented in the blood,

making the absolute difference between the blood and tissue clone fractions substantial. The maximum

difference between the two occurs in the limiting case of a single clone, originating on the expanding front

and growing without competition in the new edge environment. For proliferative tumors, we can write an

upper bound for this clone fraction difference. If we assume the tumor initiates with death rate d1 and grows

to a constant size S, after which a single invasive subclone grows to size x, experiencing death rate d2, the

difference in the expected clone fraction can be written as

f =
d2x

d2x+ d1S
−

x

x+ S
.

It is easy to show that the maximum value of f is
√
d2−

√
d1√

d2+
√
d1

, which occurs when x = S
√

d1

d2

. We plot the208

maximum possible clone fraction difference for all d1 and d2 in Supplementary Figure S1 and show that209

despite the apparently high choice of d2 in some of our simulations, large differences in estimated clonal210

frequencies can occur with very small absolute death rates. In line with the prediction that the peak clone211

fraction difference does not depend on region size, simulations also show that, for driver-dependent invasion,212

the size of the tumor sanctuary does not greatly impact the distribution of clonal fraction differences (Figures213

2A and B).214

The sanctuary size does affect the results for proliferative driver-independent tumors, which show very215

little difference between the ctDNA and main tissue, when the sanctuary site is small (Figure 2C). This is216

because early clones from the small sanctuary region can invade the edge environment before the appearance217

and spread of later clones, and are therefore represented throughout all tumor regions that differentially shed218

into the blood. This effect is still present with a larger sanctuary site, since the observed minimum clonal219
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Figure 2: Clone fraction differences between blood and tissue: (A-D) Each plot shows the results
of 50 simulation runs, where each point represents the difference between clonal frequencies estimated from
the blood versus those present in the tumor, for a single clone, with the color showing the age of the clone
relative to the total simulation time. Tumors were grown from a single cell until reaching a 2D cross-section
of a 10 billion cell tumor. For all simulations, µ = 0.001, s = 0.1, d1 = 0.1, b = 0.7. For driver-dependent
invasion, d2 = 0.9. For driver independent invasion, d2 = 0.69. The orange and blue lines show the average
positive and negative clone fraction difference, respectively. Only clones comprising at least 10% of the
tumor were included in the average. Shading is ±1 s.d. We show the same plots over normalized time in
Supplementary Figure S2.

fraction difference is still much smaller than the corresponding one in the driver-dependent case (compare220

Figures 2B and D).221

For quiescent tumors, ctDNA can only come from the shedding of cells on the expanding front, which is222

determined by the total size of the tumor prior to detection, and the sanctuary size again has little effect on223

the observed differences (Figures 2B and D). Despite this, the magnitude of the differences in death rates224

are comparable to proliferative tumors. However, we notice that quiescent tumors distort clone fractions225

across all population sizes and time points, due to the additional spatial bias in death rate. One thing to226

note is that, while here we assume that differences in shedding are caused by spatial heterogeneity in death227

rates, we expect results to be similar in any extension of the model in which clones are weighted differently228

in the ctDNA than the tissue, for example, with differential access to the bloodstream based on proximity229
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to blood vessels or via a model of active secretion. Additionally, we find that the version of the model where230

driver mutations reduce death rate, akin to apoptosis resistance, results in similar clone fraction distortions231

(Supplementary Figure S3).232

233

Differential shedding can make us overestimate the true intra-tumor heterogeneity234

In Figure 3 we use the inverse Simpson diversity index across normalized time points as a proxy for235

ITH in the ctDNA and in the tissue, over the course of tumor progression. We find that driver-independent236

tumors with a large sanctuary site consistently show a large difference between blood and tissue ITH (Figure237

3D), while tumors with a small sanctuary site do not show any difference. This is a consequence of the clone238

fraction differences observed in Figure 2, which, for proliferative tumors, vanish once the sanctuary site is239

too small. Also consistent with Figure 2, quiescent driver-independent tumors show elevated ITH for both240

sanctuary sizes (Supplementary Figure S4). As expected, driver-dependent tumor growth is driven by241

very few clones following detection, which results in much lower overall clonal diversity (Figures 3A, B and242

Supplementary Figure S4).243
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Figure 3: Discrepancies between blood and tissue clonal diversity. The subplots show the inverse
Simpson diversity index of the clonal frequencies in the blood and tissue for each clone in 50 simulated
tumors. Timepoints are normalized by run and then binned and down-sampled. Tumors were grown from
a single cell until reaching a 2D cross-section of a 10 billion cell tumor. For all simulations, µ = 0.001, s =
0.1, d1 = 0.1, b = 0.7. For driver-dependent regrowth, d2 = 0.9. For driver independent regrowth, d2 = 0.69.
Shading represents ±1 s.d. The figure shows results for proliferative tumors only. For all scenarios, see
Supplementary Figure S4.
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244

The effect of sequencing detection limits and sanctuary site size on observed VAFs in the blood245

We next analyze how biased clonal fractions in the blood translate into biased observed VAFs, under246

various sequencing detection limits. In Figure 4, we consider sequence detection limits of 10−3 and 10−2,247

which are often utilized for panel-based assays optimized for MRD detection (Chin et al., 2019). As expected,248

a higher sequence detection limit of 10−2 diminishes the number of detected drivers (VAF exceeds the249

detection limit) and increases the tumor size at which the first mutations are detected, compared to a limit250

of 10−3 (Figure 4A). This effect is more pronounced in quiescent tumors than proliferative ones. While251

driver-independent tumors produce many more mutations, responsible for the higher ITH shown in (Figure252

3), they are nonetheless very low-frequency and so the number of mutations above a 10−2 threshold is253

comparable to that of driver-independent tumors. Most mutations evade detection entirely, as the overall254

percentage of driver mutations detected at any point is below 10% for all scenarios (Supplementary Figure255

S5 C-D).256

In Figure 4B, we compare the percent change in number of detectable drivers when the simulated VAFs257

are compared to VAFs from a spatially uniform null model, computed assuming the tumor sheds all clones258

at the same rate. We show that spatial tumor heterogeneity can greatly affect the number of detectable259

driver mutations in the blood, and sequencing detection limits can further alter the extent of this bias, with260

the timing and magnitude of difference spikes further dependent on the detection limit of the sequencing261

technology.262

Because clonal VAFs cannot change due to shedding differences, the effect depends entirely on the de-263

tection limit relative to subclonal VAFs. We see that spatial bias in proliferative driver-dependent tumors264

increases when the detection limit is raised, but quiescent spatial bias either decreases in magnitude and265

appears at a larger tumor size, or disappears all together. We show the percent spatial bias over normalized266

time in Supplementary Figure S5 B.267

In Figures 4C-F, we examine the dependency of spatial bias on detection limit by plotting the frequency268

versus the mean tumor radius of every mutation present in 50 simulation runs at the point of maximal269

spatial bias (the labeled peaks in Figure 4B). Plots corresponding to the peaks of the other scenarios are270

shown in Supplementary Figure S6. We observe a cluster of clonal mutations in the core of the tumor271

(colored black), which are equally represented in the blood and tissue. Due to boundary-driven growth,272

subclonal mutations accumulate more on the edge of the tumor and tend to remain there across generations,273

increasing the frequency of mutations further from the core. Because the mutations also shed at higher rates,274
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Figure 4: Influence of spatial bias on limits of detection. A. Plots of the number of detectable
driver mutations starting from the point of relapse for minimum detection frequencies of 1e-3 and 1e-2 for
proliferative and quiescent tumors relapsing at ∼ 108 and ∼ 109 cells. Mutations were detectable if the
estimated VAF exceeded the detection limit. VAFs were estimated based on a tumor fraction of 1% for a 3
billion-cell tumor with death rate of 0.1 (see Methods). B. Percent change in number of detectable drivers
when the VAFs in A are compared to VAFs computed assuming the tumor sheds all clones at the same
rate for the same detection limits (see Methods). C-F. Scatter plots of mean spatially biased VAFs (green)
and unbiased VAFs (blue) at the size where the average spatial bias over all replicates is maximal (marked
with the corresponding letter in B). Each plot shows all mutations for 50 replicates of the corresponding
simulation scenario. The x-axis is the mean distance of the mutation from the tumor’s center. Black points
are clonal mutations, which show perfect overlap between the blood and tissue. The vertical line marks the
end of the sanctuary region.

filtering for larger mutations can increase bias, but will decrease it once the majority of detectable VAFs are275

clonal (Figure 4F). Of clinical relevance is the case where subclonal variants are exaggerated to near-clonal276

frequencies, which occurs in the driver-dependent case (Figure 4C-F). This showcases the benefits and277

risks of distorted ctDNA: while exaggerated subclonal mutations would provide more biomarkers to aid in278

detecting recurrence, they would make poor targets for treatment.279

Discussion280

As cancers grow, they slough off cells and DNA from apoptotic or necrotic cancer cells, which enter the281

bloodstream. Through the use of technologies such as next-generation sequencing, these fragments of DNA282

can reveal a wealth of information about cancer, without the need for invasive surgical biopsies. Here we283

explore how boundary-driven tumor growth and spatial heterogeneity in cellular death rates impact both284
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the clonal evolution of the tumor, and its representation in ctDNA. We find that the appearance of genetic285

distortions between blood and tissue ultimately depends on whether the tumor’s genetic heterogeneity varies286

with respect to rates of apoptosis and ctDNA shedding, which themselves can vary between tumors or over287

time, for a single tumor. When there is a strong correlation, such as when a change in cellular death rate288

occurs in direction of tumor growth, ctDNA can drastically bias which clones are observed and can lead to289

biased estimates of intratumor heterogeneity (ITH).290

In the driver-dependent case and, to a lesser extent, the driver-independent case explored here, this bias291

can be beneficial, by increasing the visibility of and sensitivity for the particular mutations responsible for292

tumor progression. Spatial differences in cell death rates could also lead to subclonal mutations appearing293

at clonal frequencies in ctDNA, thus increasing the likelihood that they are mistaken for clonal mutations294

and chosen as therapeutic targets (Figure 4). Our results agree with findings that quiescent tumors may be295

difficult to detect in the bloodstream (Figure 4A), and further suggest that any detectable ctDNA is likely296

to dramatically under-represent some tumor regions with reduced shedding (Figure 2). One possibility is297

that a lesion with a quiescent interior could be nearly undetectable and suddenly begin to shed appreciably298

due to a clonal expansion. Because of the extremely biased location of shedding in quiescent tumors, the299

overall size should not be assumed to correlate well with ctDNA yield. The potential for exaggerated observed300

heterogeneity in the blood relative to the tissue for tumors experiencing high apoptosis on the expanding301

front suggests that low-frequency clones, with a high probability to go undetected in a tissue sample, could302

be better captured in the blood and provide an early indicator of heterogeneous growth. At the same303

time, when clinical studies find greater heterogeneity in blood than in tissue samples, this is usually mainly304

attributed to missed heterogeneity in the tissue sample. However, localized high death rates could generate305

more mutations and at the same time enrich these in ctDNA, through increased shedding. This both poses306

a potential confounding factor for assessing tumor mutational burden from ctDNA, while simultaneously307

supporting the potential of blood-based diagnostics to be a more sensitive indicator of changing levels of308

heterogeneity than tissue biopsies. Recent work has found that in contrast to high tissue mutational burden,309

which may indicate high neoantigen load and better overall survival, high blood mutational burden may better310

reflect overall ITH and therefore indicate poor overall survival (Fridland et al., 2021). High heterogeneity311

correlated to high-shedding regions could contribute to this discordance.312

This general principle that genetic distortion between blood and tissue is a function of clonal dynamics is313

not limited to spatial heterogeneity in intrinsic death rates, and could also arise as the result of differential314

access to blood vessels or nutrients. Further specific scenarios can be theoretically and clinically explored,315
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such as local metastasis of a primary breast tumor to the lymph nodes, or the microinvasion of a colorectal316

tumor into the subserosal tissue, particularly during neoadjuvant treatment when the tumor faces novel317

selective pressure. In both of these cases, there is recent evidence that ctDNA shedding can vary as a318

function of spatial location. Clonal replacement during treatment for early stage breast tumors is also well319

documented, and a small study of early stage breast cancer patients discovered mutations private to clones320

that invaded the lymph nodes. In one patient, as an example of subclone over-representation, these mutations321

comprised the majority of detected ctDNA (Bredno et al., 2020; Caswell-Jin et al., 2019; Barry et al., 2018).322

While our simulations consider only a single form of spatial growth and do not incorporate a fully323

realistic downstream analysis of ctDNA, here we nonetheless show that even a simple model of spatially324

heterogeneous tumor growth and shedding can showcase how blood sample data may not represent the325

tissue accurately, depending on the evolutionary processes shaping the tumor around the time of a blood326

draw. Further biases as a result of low tumor fraction in cfDNA, copy number variation, germline mutations,327

hematopoetic mutations, and heterogeneity absent from small tissue samples introduce significant additional328

complexity that we ignore here (Kammesheidt et al., 2018; Chan et al., 2020). Future directions include329

incorporating a spatial model of blood vessel distribution that impacts drug delivery, oxygenation, and the330

resulting apoptosis and shedding rates. Rather than modeling changes to overall clone frequencies under331

an infinite sites assumption, incorporating a specific resistance model would further allow predictions of the332

detectability of specific drivers. Here we assume that changes to birth and death rates happen incrementally333

through a series of point mutations, while specific models of chemotherapy resistance or immune escape334

may have a different effect on growth rates and the resulting shedding. Because the expanding clones in335

our model continue to experience high apoptosis, our results would best apply when apoptosis reduction is336

absent or only partial in the resistant population, such as in apoptosis-induced compensatory proliferation337

(AICP) (Friedman, 2016).338

A further area of study is using model insights to correct for the observed bias between ctDNA and tissue339

genetics. The work here reveals some of the circumstances in which we would expect such a bias to manifest340

and the mechanisms by which it would occur, but systematically inverting that bias to reconstruct with341

maximum fidelity the clonal composition of the tumor from the blood data will require further work. For342

example, some important applications of tumor genome samples to clonal lineage tracing (“tumor phyloge-343

netics”) depend on accurate quantification of allele frequencies, and extending such methods to use blood344

data productively will require ways to not only identify, but also correct for these biases. It will be important345

to characterize the circumstances under which this problem is invertible and what additional data might be346
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needed.347

At a basic level, ctDNA can reveal information about the likely presence and burden of cancer within348

the body. To make full use of this new technology, further work is needed to understand all of the ways that349

ctDNA can provide a distorted mirror of the main tissue, how tumor evolution shapes these biases and how350

to correct for them.351

Code and data availability352
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List of Figures515

Figure 1. A. Illustration of the model. Tumors grow to a clinically detectable size (a 2D cross-section of516

a 3 billion cell tumor), and are then partially exposed to a new environment, where the cells517

die with rate d2. The growth rate in the new environment determines the invasive potential of518

a clone. If the death rate d2 is higher than the initial birth rate, only clones with mutations519

increasing the growth rate to a positive number can grow in the new environment, so invasion520

is driver-dependent. Otherwise, it is driver-independent. Tumor growth can be proliferative521

or quiescent. In the former, cells divide when they have an empty neighbor on the lattice and522

die at a rate independent of their neighbors. In the latter, cells also divide when they have an523

empty neighbor on the lattice, however cell death also requires empty neighbors. The shedding524

rate of DNA into the blood is assumed to be proportionate to the death rate. B. Example525

trajectories, driver-dependent invasion. Trajectories of clone fractions and total population size526

for driver dependent invasion, with visualizations of the 2D tumor at selected timepoints. Each527

color corresponds to a unique clone, also shown in the trajectory plot. C. Example trajectories,528

driver-independent invasion. Trajectories of clone fractions and total population size for driver529

independent invasion, with visualizations of the 2D tumor at selected timepoints. For both530

cases, µ = 0.001, s = 0.1, d1 = 0.1, b = 0.7. For driver-dependent invasion, d2 = 0.9. For driver531

independent invasion, d2 = 0.69.532

Figure 2. Clone fraction differences between blood and tissue: (A-D) Each plot shows the results533

of 50 simulation runs, where each point represents the difference between clonal frequencies534

estimated from the blood versus those present in the tumor, for a single clone, with the color535

showing the age of the clone relative to the total simulation time. Tumors were grown from536

a single cell until reaching a 2D cross-section of a 10 billion cell tumor. For all simulations,537

µ = 0.001, s = 0.1, d1 = 0.1, b = 0.7. For driver-dependent invasion, d2 = 0.9. For driver538

independent invasion, d2 = 0.69. The orange and blue lines show the average positive and539

negative clone fraction difference, respectively. Only clones comprising at least 10% of the540

tumor were included in the average. Shading is ±1 s.d. We show the same plots over normalized541

time in Supplementary Figure S2.542

Figure 3. Discrepancies between blood and tissue clonal diversity. The subplots show the inverse543

Simpson diversity index of the clonal frequencies in the blood and tissue for each clone in 50544

simulated tumors. Timepoints are normalized by run and then binned and down-sampled.545
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Tumors were grown from a single cell until reaching a 2D cross-section of a 10 billion cell tumor.546

For all simulations, µ = 0.001, s = 0.1, d1 = 0.1, b = 0.7. For driver-dependent regrowth,547

d2 = 0.9. For driver independent regrowth, d2 = 0.69. Shading represents ±1 s.d. The figure548

shows results for proliferative tumors only. For all scenarios, see Supplementary Figure S4.549

Figure 4. Influence of spatial bias on limits of detection. A. Plots of the number of detectable550

driver mutations starting from the point of relapse for minimum detection frequencies of 1e-3551

and 1e-2 for proliferative and quiescent tumors relapsing at ∼ 108 and ∼ 109 cells. Mutations552

were detectable if the estimated VAF exceeded the detection limit. VAFs were estimated based553

on a tumor fraction of 1% for a 3 billion-cell tumor with death rate of 0.1 (see Methods). B.554

Percent change in number of detectable drivers when the VAFs in A are compared to VAFs555

computed assuming the tumor sheds all clones at the same rate for the same detection limits556

(see Methods). C-F. Scatter plots of mean spatially biased VAFs (green) and unbiased VAFs557

(blue) at the size where the average spatial bias over all replicates is maximal (marked with the558

corresponding letter in B). Each plot shows all mutations for 50 replicates of the corresponding559

simulation scenario. The x-axis is the mean distance of the mutation from the tumor’s center.560

Black points are clonal mutations, which show perfect overlap between the blood and tissue.561

The vertical line marks the end of the sanctuary region.562

Figure S1. A heatmap showing the maximum clone fraction difference possible for proliferative tumors with563

respect to all values of d1 and d2.564

Figure S2. Clone fraction differences between blood and tissue over normalized time: (A-D)565

Each plot shows the results of 50 simulation runs, where each point represents the difference566

between clonal frequencies estimated from the blood versus those present in the tumor, for a567

single clone, with the color showing the age of the clone relative to the total simulation time.568

Tumors were grown from a single cell until reaching a 2D cross-section of a 10 billion cell tumor.569

Because mutation accumulation is random, we used down-sampled, normalized time points to570

plot each simulation run within a similar time frame. For all simulations, µ = 0.001, s =571

0.1, d1 = 0.1, b = 0.7. For driver-dependent relapse, d2 = 0.9. For driver independent invasion,572

d2 = 0.69. The orange and blue lines show the average positive and negative clone fraction573

difference, respectively. Only clones comprising at least 10% of the tumor were included in the574

average. Shading is ±1 s.d.575

Figure S3. Clone fraction differences between blood and tissue with selection acting on death:576
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(A-D) Each plot shows the results of 50 simulation runs, where each point represents the577

difference between clonal frequencies estimated from the blood versus those present in the tumor578

for a single clone, with the color showing the age of the clone relative to the total simulation579

time. Tumors were grown from a single cell until reaching a 2D cross-section of a 10 billion cell580

tumor. For all simulations, µ = 0.001, s = 0.1, d1 = 0.1, b = 0.7. For driver-dependent relapse,581

d2 = 0.9. For driver independent invasion, d2 = 0.69. The orange and blue lines show the582

average positive and negative clone fraction difference, respectively. Only clones comprising at583

least 10% of the tumor were included in the average. Shading is ±1 s.d.584

Figure S4. Discrepancies between blood and tissue clonal diversity: Inverse Simpson index of clone585

frequencies in blood and tissue for each clone in 50 simulated tumors at simulation timepoints586

normalized by run and then binned and down-sampled. Tumors were grown from a single cell587

until reaching a 2D cross-section of a 10 billion cell tumor. For all simulations, µ = 0.001, s =588

0.1, d1 = 0.1, b = 0.7. For driver-dependent regrowth, d2 = 0.9. For driver independent regrowth,589

d2 = 0.69. Shading represents ±1 s.d.590

Figure S5. Number, percent spatial bias, and overall percentage of detectable drivers: (A) Plots591

of the number of detectable driver mutations starting from the point of relapse for minimum592

detection frequencies of 1e-3 and 1e-2, for proliferative and quiescent tumors, relapsing at ∼ 108593

and ∼ 109 cells, over normalized timepoints. Mutations were detectable if the estimated VAF594

exceeded the detection limit. VAFs were estimated based on a tumor fraction of 1% for a595

3 billion-cell tumor with death rate of 0.1 (see Methods). (B) Percent change in number of596

detectable drivers when the VAFs in (A) are compared to VAFs computed assuming the tumor597

sheds all clones at the same rate for the same detection limits, referred to as percent spatial bias598

(see Methods). (C) Overall percentage of detected driver mutations relative to population size.599

(D) Overall percentage of detected driver mutations relative to normalized timepoints.600

Figure S6. Spatial distribution of VAFs at points of maximal spatial bias for all scenarios: The601

top row of line plots are repeated from Figure 4B, showing the percent change in detected602

driver mutations for detection limits 1e−3 and 1e−2, under driver-dependent and independent603

invasion. Each scatterplot shows the distribution of VAFs corresponding to distance from the604

tumor center.605
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Supplementary Material: Supplementary Figures606
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Figure S1: A heatmap showing the maximum clone fraction difference possible for proliferative tumors with
respect to all values of d1 and d2.
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Figure S2: Clone fraction differences between blood and tissue over normalized time: (A-D)
Each plot shows the results of 50 simulation runs, where each point represents the difference between clonal
frequencies estimated from the blood versus those present in the tumor, for a single clone, with the color
showing the age of the clone relative to the total simulation time. Tumors were grown from a single cell
until reaching a 2D cross-section of a 10 billion cell tumor. Because mutation accumulation is random, we
used down-sampled, normalized time points to plot each simulation run within a similar time frame. For
all simulations, µ = 0.001, s = 0.1, d1 = 0.1, b = 0.7. For driver-dependent relapse, d2 = 0.9. For driver
independent invasion, d2 = 0.69. The orange and blue lines show the average positive and negative clone
fraction difference, respectively. Only clones comprising at least 10% of the tumor were included in the
average. Shading is ±1 s.d.
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Figure S3: Clone fraction differences between blood and tissue with selection acting on death:
(A-D) Each plot shows the results of 50 simulation runs, where each point represents the difference between
clonal frequencies estimated from the blood versus those present in the tumor for a single clone, with the color
showing the age of the clone relative to the total simulation time. Tumors were grown from a single cell until
reaching a 2D cross-section of a 10 billion cell tumor. For all simulations, µ = 0.001, s = 0.1, d1 = 0.1, b = 0.7.
For driver-dependent relapse, d2 = 0.9. For driver independent invasion, d2 = 0.69. The orange and blue
lines show the average positive and negative clone fraction difference, respectively. Only clones comprising
at least 10% of the tumor were included in the average. Shading is ±1 s.d.
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Figure S4: Discrepancies between blood and tissue clonal diversity: Inverse Simpson index of clone
frequencies in blood and tissue for each clone in 50 simulated tumors at simulation timepoints normalized
by run and then binned and down-sampled. Tumors were grown from a single cell until reaching a 2D
cross-section of a 10 billion cell tumor. For all simulations, µ = 0.001, s = 0.1, d1 = 0.1, b = 0.7. For driver-
dependent regrowth, d2 = 0.9. For driver independent regrowth, d2 = 0.69. Shading represents ±1 s.d.
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Figure S5: Number, percent spatial bias, and overall percentage of detectable drivers: (A)
Plots of the number of detectable driver mutations starting from the point of relapse for minimum detection
frequencies of 1e-3 and 1e-2, for proliferative and quiescent tumors, relapsing at ∼ 108 and ∼ 109 cells,
over normalized timepoints. Mutations were detectable if the estimated VAF exceeded the detection limit.
VAFs were estimated based on a tumor fraction of 1% for a 3 billion-cell tumor with death rate of 0.1 (see
Methods). (B) Percent change in number of detectable drivers when the VAFs in (A) are compared to
VAFs computed assuming the tumor sheds all clones at the same rate for the same detection limits, referred
to as percent spatial bias (see Methods). (C) Overall percentage of detected driver mutations relative to
population size. (D) Overall percentage of detected driver mutations relative to normalized timepoints.
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Figure S6: Spatial distribution of VAFs at points of maximal spatial bias for all scenarios: The
top row of line plots are repeated from Figure 4B, showing the percent change in detected driver mutations
for detection limits 1e − 3 and 1e − 2, under driver-dependent and independent invasion. Each scatterplot
shows the distribution of VAFs corresponding to distance from the tumor center.
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