

1 Modeling the effect of spatial structure on solid tumor evolution
2 and ctDNA composition

3 Thomas Rachman^{1, 2}, David Bartlett³, William Laframboise³, Patrick Wagner³, Russell
4 Schwartz¹, and Oana Carja ^{*1}

5 ¹Computational Biology Department, School of Computer Science, Carnegie Mellon
6 University, Pittsburgh, PA, USA

7 ²Joint Carnegie Mellon University-University of Pittsburgh Ph.D. Program in
8 Computational Biology

9 ³Allegheny Cancer Institute, Allegheny Health Network, Pittsburgh PA

10 **Abstract**

11 Circulating tumor DNA (ctDNA) monitoring, while sufficiently advanced to reflect tumor evolution in
12 real time and inform on cancer diagnosis, treatment, and prognosis, mainly relies on DNA that originates
13 from cell death via apoptosis or necrosis. In solid tumors, chemotherapy and immune infiltration can
14 induce spatially variable rates of cell death, with the potential to bias and distort the clonal composition
15 of ctDNA. Using a stochastic evolutionary model of boundary-driven growth, we study how elevated
16 cell death on the edge of a tumor can simultaneously impact driver mutation accumulation and the
17 representation of tumor clones and mutation detectability in ctDNA. We describe conditions in which
18 invasive clones end up over-represented in ctDNA, clonal diversity can appear elevated in the blood, and
19 spatial bias in shedding can inflate subclonal variant allele frequencies (VAFs). Additionally, we find that
20 tumors that are mostly quiescent can display similar biases, but are far less detectable, and the extent of
21 perceptible spatial bias strongly depends on sequence detection limits. Overall, we show that spatially
22 structured shedding might cause liquid biopsies to provide highly biased profiles of tumor state. While
23 this may enable more sensitive detection of expanding clones, it could also increase the risk of targeting

*To whom correspondence should be addressed. Email: oana@cmu.edu; oana.carja@gmail.com

24 a subclonal variant for treatment. Our results indicate that the effects and clinical consequences of
25 spatially variable cell death on ctDNA composition present an important area for future work.

26 **Keywords:** tumor growth model; tumor evolution; spatial evolution; ctDNA; tumor DNA shedding

27 **Introduction**

28 A once far-fetched idea that a blood sample can precisely inform on cancer diagnosis, treatment, and prognosis
29 is quickly becoming clinical reality (Wan et al., 2017). This is largely due to advances in the quantification
30 of DNA fragments from cancer cells shed into the bloodstream, known as circulating tumor DNA (ctDNA),
31 which are primarily released from the tumor via apoptosis, necrosis, and active secretion (De Rubis et al.,
32 2019). While tissue biopsies have been a critical component in cancer care, providing a snapshot of the tumor-
33 host microenvironment, they are invasive and repeated biopsies over time to monitor cancer progression and
34 optimize therapies are seldom feasible. Moreover, even when accessible, a single biopsy sample may not
35 represent an entire tumor, which usually displays significant spatial heterogeneity. ctDNA-based “liquid
36 biopsies”, on the other hand, do not have some of these drawbacks and can act as a noninvasive cancer
37 biomarker, allowing analyses of the tumor’s genetic evolution more frequently and comprehensively (Cha
38 et al., 2023; Ulz et al., 2017; Kujala et al., 2022). Two major applications of ctDNA already used in the
39 clinic are for the monitoring of tumor burden before, during, and after treatment, and for the detection of
40 post-treatment relapse (Mattox et al., 2019; Ignatiadis et al., 2021). Liquid biopsies have also shown great
41 promise in predicting relapse, progression free survival, and overall survival across a variety of tumor types
42 and stages (Reinert et al., 2019; Chae et al., 2019; Sanz-Garcia et al., 2022; Cha et al., 2023).

43 Despite its potential to revolutionize cancer monitoring and treatment, ctDNA can also show poor con-
44 cordance between blood and tissue, hampering its general clinical utility (Chae et al., 2017; Merker et al.,
45 2018). The main causes for this include access to only minuscule concentrations of ctDNA in a plasma
46 sample, the limits of current sequencing technologies, the confounding effects of non-cancerous mutations
47 and intra-tumor heterogeneity (Jahangiri and Hurst, 2019). While improvements in assay sensitivity and
48 specificity could help to better resolve the ground truth composition of observed ctDNA in a blood sam-
49 ple, we need different methods to better understand and correct possible inaccuracies arising from biased
50 representations of the different tumor clones in ctDNA fragments.

51 Changes to ctDNA yield and representation of different mutations have been observed before and during
52 chemotherapy, altering the detectability of resistance-causing mutations (Schwaederlé et al., 2017; Ma et al.,

53 2016; Tran et al., 2023). The majority of cfDNA fragments are around 100-160 base pairs long, which is
54 consistent with apoptosis-induced digestion of nuclear DNA into fragments the circumference of a nucleosome
55 (Stroun et al., 2001; Roth et al., 2011; Hu et al., 2021). Elevated apoptosis can increase the amount and
56 clinical detectability of ctDNA in the bloodstream (Marques et al., 2020) and varying apoptosis rates between
57 clones can in theory lead them to become disproportionately represented in the bloodstream (Heitzer et al.,
58 2020). In addition to the intrinsic differences in growth and death rates for different clones, heterogeneity in
59 the tumor microenvironment due to immune infiltration, hypoxia, or treatment onset can also significantly
60 impact rates of apoptosis (Kaufmann and Earnshaw, 2000; Trédan et al., 2007; Murthy et al., 2021; Giordano
61 et al., 2016; Zhou et al., 2006; Marques et al., 2020; Kato et al., 2016; Rostami et al., 2020). These can in turn
62 influence the evolutionary fate of a tumor by altering its local selective pressures and genetic heterogeneity
63 (Meads et al., 2008).

64 While there are many models studying tumor growth and evolution, the degree to which this underlying
65 genetic distortion between blood and tumor tissue exists, and the evolutionary mechanisms that shape it,
66 are not directly considered, either in models of tumor evolution derived from ctDNA (Abouali et al., 2022),
67 or in clinical studies of ctDNA concordance (Stetson et al., 2019). Recent mathematical models studied
68 how varying the apoptosis rates of tumor cells could influence the time to detection of early-stage tumors
69 (Avanzini et al., 2020) or the effect of differential shedding on the representation of different metastases
70 in ctDNA (Rhrissorakrai et al., 2023), but ignore the underlying evolutionary process or study neutral,
71 non-spatial evolution. Separately, a model by Fu et al. (2015) showed how reduced chemotherapy exposure
72 in a sanctuary site can promote acquired resistance, but this work did not specifically model the effects on
73 ctDNA genetic distortions.

74 Here we combine a stochastic model of boundary-driven tumor evolution (Waclaw et al., 2015; Bozic
75 et al., 2019; Chkhaidze et al., 2019; Noble et al., 2022; Lewinsohn et al., 2023) with a model of differential
76 apoptosis and cellular shedding and study the effects of spatially-heterogeneous cellular apoptosis on ctDNA
77 composition and its genetic distortion relative to the tumor tissue. We spatially constrain tumor evolution
78 by assuming that differential drug penetration or immune system infiltration leads to increased cell death
79 and DNA fragment shedding on the edge of the growing tumor. We compare results across a variety of
80 modeling choices, such as differences between quiescent or proliferative tumors, and track the distortion of
81 clones and subclonal mutations in the ctDNA over time.

82 We find that, as cancers grow and shed DNA into the bloodstream, the clones responsible for expansion
83 into the edge environment are consistently overrepresented in the ctDNA and, in some cases, when progression

84 results in highly heterogeneous tumors, homogeneous regions trapped in the tumor core are underrepresented
85 in the blood. We further show that over-representation of clones from high-shedding tumor regions can lead to
86 differences in the number of detectable subclonal driver mutations, and that the chosen sequencing detection
87 limit can have a complex effect on the extent of the observed genetic differences. We also discuss the potential
88 clinical relevance of distortions in ctDNA genetic variability during clinically significant events, such as the
89 appearance of an expanding subclone or cell turnover-driven increases in clonal diversity.

90 For liquid biopsy technologies and ctDNA analyses to transform cancer care, from early screening and
91 diagnosis through treatment and long-term follow-up, we need to better understand how to interpret the
92 genetic diversity measured in the blood and how it can be used to inform on the true composition of
93 the tumor tissue. Overall, our results showcase how spatial heterogeneity in apoptosis and cellular shedding
94 across different regions of a tumor can significantly bias the mutational composition of ctDNA and emphasize
95 important directions for further theoretical and clinical investigation into the effect of the microenvironment
96 on ctDNA origin and quantification.

97

98 Methods

99 **The tumor growth model.** While there are many models of tumor growth, to analyze the role of solid
100 tumor spatial structure in shaping the observed variation in ctDNA, we use a model of boundary-driven
101 growth, in which cells on the periphery of a tumor are assumed to experience higher proliferation rates
102 over time, as compared to the tumor core. This type of spatially-restricted growth is usually observed in
103 tissues with weak physical resistance and it can significantly alter tumor evolution by blunting the strength
104 of selection, promoting clonal interference, and increasing mutation burden from the tumor core to its edges
105 (Waclaw et al., 2015; Noble et al., 2022). Because of its simplicity and well-understood properties, it is an
106 excellent starting point for exploring how spatial variation in apoptosis can impact ctDNA release and can
107 bias the observed genetic differences between blood and main tissue.

108 In our Eden model, cells grow on a 2D regular lattice and each cell has 8 neighbors (a Moore neighbor-
109 hood), similar to Waclaw et al. (2015); Chkhaidze et al. (2019); Noble et al. (2022); Lewinsohn et al. (2023).
110 Each simulation begins with a single cell and terminates when the population either goes extinct or reaches
111 a size of 60,000 voxels. In the initial stage of growth, the tumor experiences an environment with death rate
112 d_1 . Once the tumor reaches a large enough size (here, a radius of 90 voxels or, equivalently, 3 billion cells)

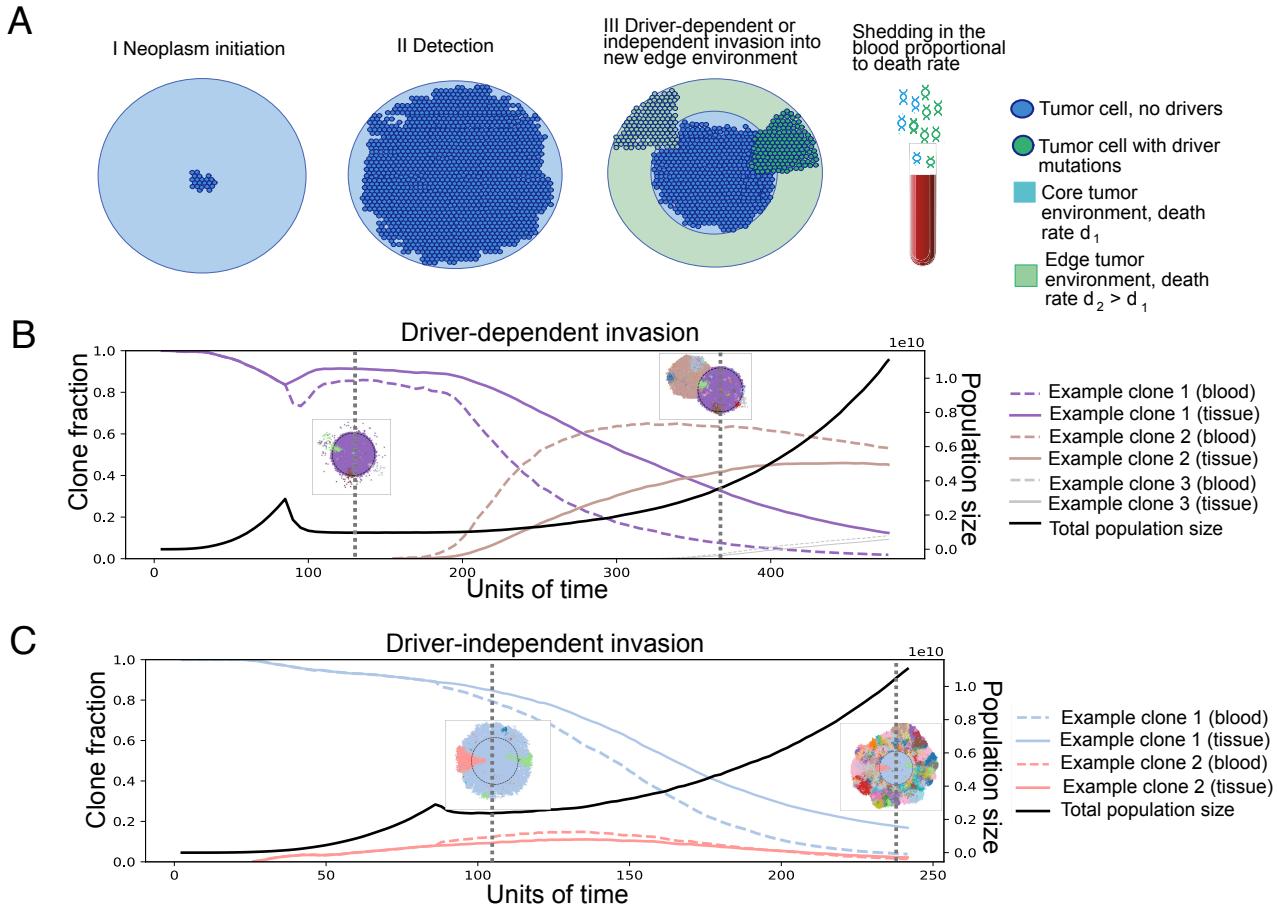


Figure 1: **A.** Illustration of the model. Tumors grow to a clinically detectable size (a 2D cross-section of a 3 billion cell tumor), and are then partially exposed to a new environment, where the cells die with rate d_2 . The growth rate in the new environment determines the invasive potential of a clone. If the death rate d_2 is higher than the initial birth rate, only clones with mutations increasing the growth rate to a positive number can grow in the new environment, so invasion is driver-dependent. Otherwise, it is driver-independent. Tumor growth can be proliferative or quiescent. In the former, cells divide when they have an empty neighbor on the lattice and die at a rate independent of their neighbors. In the latter, cells also divide when they have an empty neighbor on the lattice, however cell death also requires empty neighbors. The shedding rate of DNA into the blood is assumed to be proportionate to the death rate. **B.** Example trajectories, driver-dependent invasion. Trajectories of clone fractions and total population size for driver dependent invasion, with visualizations of the 2D tumor at selected timepoints. Each color corresponds to a unique clone, also shown in the trajectory plot. **C.** Example trajectories, driver-independent invasion. Trajectories of clone fractions and total population size for driver independent invasion, with visualizations of the 2D tumor at selected timepoints. For both cases, $\mu = 0.001$, $s = 0.1$, $d_1 = 0.1$, $b = 0.7$. For driver-dependent invasion, $d_2 = 0.9$. For driver independent invasion, $d_2 = 0.69$.

113 we assume the tumor is detected and treatment can occur that can shrink the initial tumor. After detection,
 114 we assume that, due to differential chemotherapy drug penetration or differences in immune infiltration and
 115 oxygenation, spatial differences in apoptosis appear between the tumor core and the edge of the

116 tumor. Specifically, cells in the core, or the sanctuary site (radius $R \leq 90$), continue to experience death at
117 rate d_1 , while on the tumor edge, cells have death rate $d_2 \leq d_1$. For the sake of simplicity, we do not model
118 angiogenesis or interactions of cancer cells with other cell types.

119 This spatial difference in death rates effectively creates a selective barrier for tumor expansion. We
120 consider two parameter regimes: $d_1 < b < d_2$ and $d_1 < d_2 < b$, which we call "driver-dependent" and
121 "driver-independent" invasion, respectively (Figure 1). In the driver-dependent regime, only lineages that
122 have acquired sufficient driver mutations can expand past the core radius R , while, with driver-independent
123 invasion, all lineages continue to grow in the presence of the new edge environment. At each time step,
124 a random cell is chosen uniformly from the population, and attempts division with a probability equal to
125 its birth rate $b * (1 + s)^n$, where b is the baseline birth rate in the population, s is the selective advantage
126 of driver mutations, and n is the chosen cell's driver mutation count. If the cell attempts division, it
127 places a daughter cell in a randomly-chosen empty site in its Moore neighborhood. If the cell is completely
128 surrounded, it cannot divide. Upon division, we assume that the daughter cell acquires a Poisson-distributed
129 number of additional driver mutations, with rate μ . We assume each mutation appears only once (infinite
130 site assumption). After attempting division, the chosen cell is removed from the population with probability
131 equal to its death rate d_i , where $i \in 1, 2$ indicates which region of the tumor the cell inhabits.

132 We also analyze a version of the main model where cells do not die if they are fully surrounded, so that
133 the tumor core remains in a quiescent state and where selection acts by reducing the apoptosis rate rather
134 than increasing birth rate, so that $d \leftarrow d * (1 - s)$.

135

136 **Parameter Choices.** To significantly save on simulation time and memory, we assume a Poisson distributed
137 driver mutation rate of $\mu = 0.001$, roughly 100 times the estimated empirical rate, which we denote by
138 $\mu_{real} = 1e-5$, as in Bozic et al. (2019). We also simulate the tumors in 2D, so that the spatial heterogeneity
139 reflects that of a cross section of a much larger 3D tumor, a rationale used in Noble et al. (2022) for similar
140 2D spatial models. Each 2D voxel then represents $\frac{\mu}{\mu_{real}}$ identical cells. For a simulation with m voxels, we
141 roughly approximate the 3D tumor size, N , to be that of a sphere, with a cross section equal in area to the
142 number of 2D cells, such that $N = \frac{4}{3}\pi(\frac{\mu}{\mu_{real}} \frac{m}{\pi})^{\frac{3}{2}}$. We further choose a sanctuary site radius, R , ranging from
143 20 to 60 voxels. Assuming $20\mu\text{m}$ diameter tumor cells, and 100 cells per 2D voxel, this R would correspond
144 to an equivalent tumor with a radius of 0.4 to 1.2cm and approximately 1000 to 20,000 cells, representing
145 a cross section of a 3D tumor of roughly 30 million - 1 billion cells (Del Monte, 2009). We simulate tumors
146 until they expand well beyond the core sanctuary site and stop the simulations when tumors reach a size of

147 60,000 voxels, corresponding to a tumor size of approximately 10 billion cells or a radius of 2.5cm. Without
 148 loss of generality, throughout what follows, we also assume a constant selective benefit for driver mutations,
 149 $s = 0.1$.

150

N	Final tumor size
R	Core / sanctuary site radius
b	Initial cell birth rate
d_1	Cell death rate in the tumor core
d_2	Cell death rate in the tumor edge
s	Driver mutation fitness advantage
μ	Poisson-distributed driver mutation rate

Table 1: Main parameters used in the model.

151 **Modeling clone fractions and variant allele frequencies (VAFs) in ctDNA.**

152 To compute clone frequencies in the ctDNA, let N_{ij} be the number of cells of clone i from region j , with
 153 corresponding death rate d_j . We assume that shedding into the blood is proportional to the death rate of a
 154 tumor region (Avanzini et al., 2020), i.e. the fraction of a tumor clone in the ctDNA population at time t
 155 can be computed as a weighted average over the frequency of the clone in each region, $\frac{\sum_j d_j N_{ij}(t)}{\sum_i \sum_j d_j N_{ij}(t)}$.

156 While this represents the clone's fraction of the tumor population, to test the effect of clone fraction
 157 distortion on mutation detection, we also estimate clinically realistic VAFs in the blood, which also contains
 158 DNA fragments from healthy tissue. To do this, we compute the frequencies of each driver mutation belonging
 159 to each clone and then estimate the fraction of the total number of fragments that originate from the tumor
 160 (the tumor fraction). At the point of diagnosis, Phallen et al. found that the mean tumor fraction in the
 161 bloodstream for stage I and II breast, lung, ovarian, and colorectal tumors was 1% (Phallen et al., 2017).
 162 We calibrate the simulated tumor fraction by assuming this is the fraction for proliferative tumors at the
 163 point of detection, assumed to occur at 3 billion cells, with initial death rate of $d_1 = 0.1$.

164 To estimate a shedding probability, we adapt a formula from Avanzini et al. (2020). Assuming an
 165 exponentially growing tumor with a constant growth rate, the formula computes the number of fragments
 166 shed into the bloodstream as a Poisson-distributed random variable, with mean $C = \frac{N d q}{\epsilon + r}$, where N , d , q ,
 167 ϵ and r are the number of cells, death rate, shedding rate, decay rate, and growth rate respectively. We
 168 estimate C using the Phallen data set, which found the median DNA concentration in plasma to be 29 ng/ml.
 169 Repeating a calculation from their paper, a haploid genome weighs roughly 0.0033ng, suggesting that there
 170 are 8788 haploid genome equivalents (HGEs) in 1ml of plasma. With 5L total blood volume in the human

171 body and 55% plasma, we can therefore estimate C to be $5000 \times 0.55 \times 8788 \times 0.01 = 241,670$. While the
172 formula depends on r (the tumor birth rate can in fact slightly alter the total ctDNA molecules present in
173 a blood draw), the tumor population changes on the order of days, while DNA decays in the blood with a
174 half life of about 30 minutes (Sanz-Garcia et al., 2022). This implies $\epsilon = 48 \ln 2 \approx 33.3$, while $r < 1$. In a
175 spatial setting, the effective growth rate is even lower, because cells do not divide when surrounded, so we
176 assume $r \approx 0$. Setting $C = \frac{3e9 \times 0.1 \times q}{\epsilon}$, we estimate $q \approx 0.026$.

177 The mean number of tumor fragments at other time points is then computed as $C_t = \frac{Nq\bar{d}}{\epsilon}$, where \bar{d} is
178 the mean death rate of the whole tumor. For a mutation m with tissue frequency f_m and overall death rate
179 \bar{d}_m , we write the total number of fragments with that mutation as $C_m \sim \text{Pois}(\frac{fN\bar{d}_m q}{\epsilon})$. For a 15ml blood
180 draw (0.3% of the total supply), we scale the mean number of fragments by 0.003. Let C_{tot_0} be the total
181 fragments in a 15ml blood draw, at the point of detection. Then $C_{tot_0} \sim \text{Pois}(5000 \times 0.55 \times 8800 \times 0.003)$.
182 We assume the mean number of non-tumor fragments remains constant at $C_h = 0.99 * C_{tot_0}$. If we assume
183 all cells are diploid, each mutation appears on a single chromosome copy and we ignore the possibility of
184 recurrent mutation or subsequent allelic gain or loss, we can write the expression for the spatially biased
185 VAF of a specific mutation in the blood as $\frac{\text{Pois}(\frac{1}{2}C_m)}{\text{Pois}(C_t + C_h)}$. To analyze the effect of spatially correlated death
186 rates on the detection of tumor mutations, we compute both spatially biased and unbiased VAFs by using
187 the mean death rate of the specific mutation (\bar{d}_m) for the former, and the mean death rate of the entire
188 tumor (replace \bar{d}_m with \bar{d} in the expression for C_m) for the latter.

189

190 **Inverse Simpson diversity as a measure of intratumor heterogeneity, ITH.** Since an important
191 goal of this work is understanding how ctDNA data collected from the blood may distort estimates of clonal
192 heterogeneity present in the main solid tumor, we use the inverse Simpson diversity index to quantify and
193 compare heterogeneity estimates from blood and tissue sequences. The inverse Simpson diversity index is a
194 classic diversity measure employed in many previous studies of population diversity which takes into account
195 the number of lineages present, as well as the relative abundance of each (Buckland et al., 2005; Noble et al.,
196 2022). For a set of clone fractions f_1, \dots, f_N , with $\sum_1^N f_i = 1$, it is defined as $D = \frac{1}{\sum_1^N f_i^2}$.

197

198 Results

199 Spatial differences in apoptosis and shedding can bias clone fractions in ctDNA

200 To study how the spatial structure of a solid tumor, through spatial heterogeneity in apoptosis, can bias
201 the observed ctDNA in blood draws, we first analyze the difference in the clonal fractions between blood
202 and tumor tissue. In **Figure 2**, we compare results for proliferative versus quiescent cell models, small
203 versus large sanctuary sites and driver-dependent versus driver-independent invasion. Across all modeling
204 scenarios, **Figure 2** shows that new clones on the expanding front tend to be over-emphasized in the ctDNA,
205 while older clones, trapped in the tumor sanctuary, tend to be under-represented. The magnitude of the
206 differences in clonal fraction and their likelihood to impact clinical detectability depend on the accumulated
207 clonal diversity on the edge of the tumor, mediated by the edge environmental effects.

In the driver-dependent case (**Figures 2A and B**), the few driver clones able to invade the new environment experience a higher death rate during expansion on the edge and end up over-represented in the blood, making the absolute difference between the blood and tissue clone fractions substantial. The maximum difference between the two occurs in the limiting case of a single clone, originating on the expanding front and growing without competition in the new edge environment. For proliferative tumors, we can write an upper bound for this clone fraction difference. If we assume the tumor initiates with death rate d_1 and grows to a constant size S , after which a single invasive subclone grows to size x , experiencing death rate d_2 , the difference in the expected clone fraction can be written as

$$f = \frac{d_2 x}{d_2 x + d_1 S} - \frac{x}{x + S}.$$

208 It is easy to show that the maximum value of f is $\frac{\sqrt{d_2} - \sqrt{d_1}}{\sqrt{d_2} + \sqrt{d_1}}$, which occurs when $x = S\sqrt{\frac{d_1}{d_2}}$. We plot the
209 maximum possible clone fraction difference for all d_1 and d_2 in **Supplementary Figure S1** and show that
210 despite the apparently high choice of d_2 in some of our simulations, large differences in estimated clonal
211 frequencies can occur with very small absolute death rates. In line with the prediction that the peak clone
212 fraction difference does not depend on region size, simulations also show that, for driver-dependent invasion,
213 the size of the tumor sanctuary does not greatly impact the distribution of clonal fraction differences (**Figures**
214 **2A and B**).

215 The sanctuary size does affect the results for proliferative driver-independent tumors, which show very
216 little difference between the ctDNA and main tissue, when the sanctuary site is small (**Figure 2C**). This is
217 because early clones from the small sanctuary region can invade the edge environment before the appearance
218 and spread of later clones, and are therefore represented throughout all tumor regions that differentially shed
219 into the blood. This effect is still present with a larger sanctuary site, since the observed minimum clonal

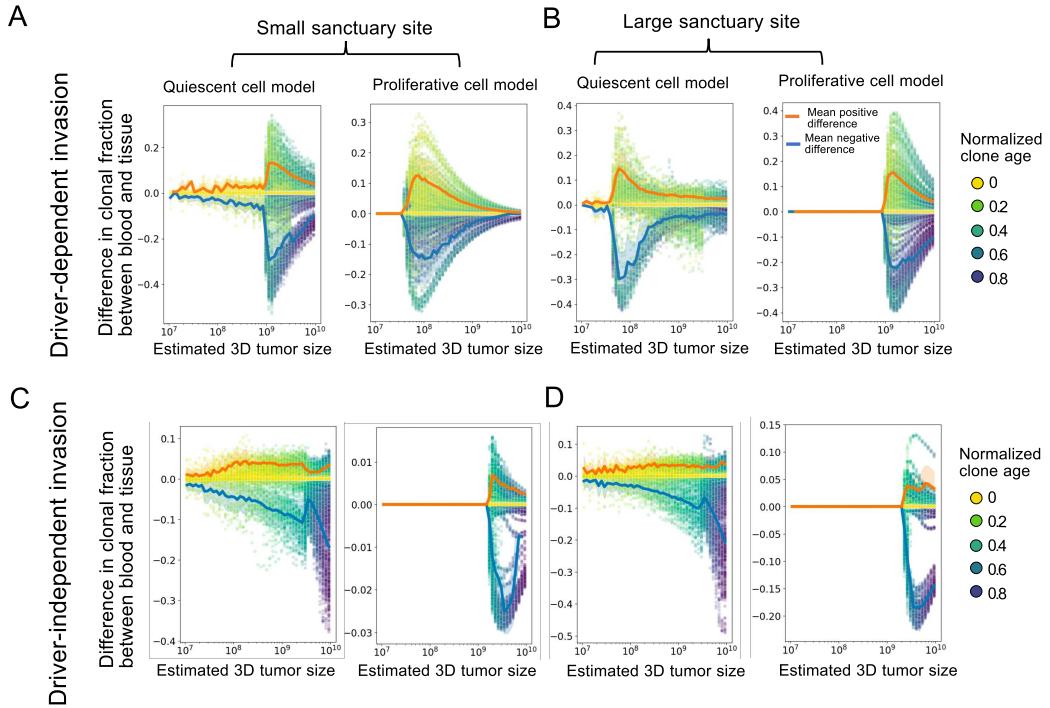


Figure 2: **Clone fraction differences between blood and tissue:** (A-D) Each plot shows the results of 50 simulation runs, where each point represents the difference between clonal frequencies estimated from the blood versus those present in the tumor, for a single clone, with the color showing the age of the clone relative to the total simulation time. Tumors were grown from a single cell until reaching a 2D cross-section of a 10 billion cell tumor. For all simulations, $\mu = 0.001$, $s = 0.1$, $d_1 = 0.1$, $b = 0.7$. For driver-dependent invasion, $d_2 = 0.9$. For driver independent invasion, $d_2 = 0.69$. The orange and blue lines show the average positive and negative clone fraction difference, respectively. Only clones comprising at least 10% of the tumor were included in the average. Shading is ± 1 s.d. We show the same plots over normalized time in **Supplementary Figure S2**.

220 fraction difference is still much smaller than the corresponding one in the driver-dependent case (compare
 221 **Figures 2B and D**).

222 For quiescent tumors, ctDNA can only come from the shedding of cells on the expanding front, which is
 223 determined by the total size of the tumor prior to detection, and the sanctuary size again has little effect on
 224 the observed differences (**Figures 2B and D**). Despite this, the magnitude of the differences in death rates
 225 are comparable to proliferative tumors. However, we notice that quiescent tumors distort clone fractions
 226 across all population sizes and time points, due to the additional spatial bias in death rate. One thing to
 227 note is that, while here we assume that differences in shedding are caused by spatial heterogeneity in death
 228 rates, we expect results to be similar in any extension of the model in which clones are weighted differently
 229 in the ctDNA than the tissue, for example, with differential access to the bloodstream based on proximity

230 to blood vessels or via a model of active secretion. Additionally, we find that the version of the model where
 231 driver mutations reduce death rate, akin to apoptosis resistance, results in similar clone fraction distortions
 232 (**Supplementary Figure S3**).

233

234 **Differential shedding can make us overestimate the true intra-tumor heterogeneity**

235 In **Figure 3** we use the inverse Simpson diversity index across normalized time points as a proxy for
 236 ITH in the ctDNA and in the tissue, over the course of tumor progression. We find that driver-independent
 237 tumors with a large sanctuary site consistently show a large difference between blood and tissue ITH (**Figure**
 238 **3D**), while tumors with a small sanctuary site do not show any difference. This is a consequence of the clone
 239 fraction differences observed in **Figure 2**, which, for proliferative tumors, vanish once the sanctuary site is
 240 too small. Also consistent with **Figure 2**, quiescent driver-independent tumors show elevated ITH for both
 241 sanctuary sizes (**Supplementary Figure S4**). As expected, driver-dependent tumor growth is driven by
 242 very few clones following detection, which results in much lower overall clonal diversity (**Figures 3A, B** and
 243 **Supplementary Figure S4**).

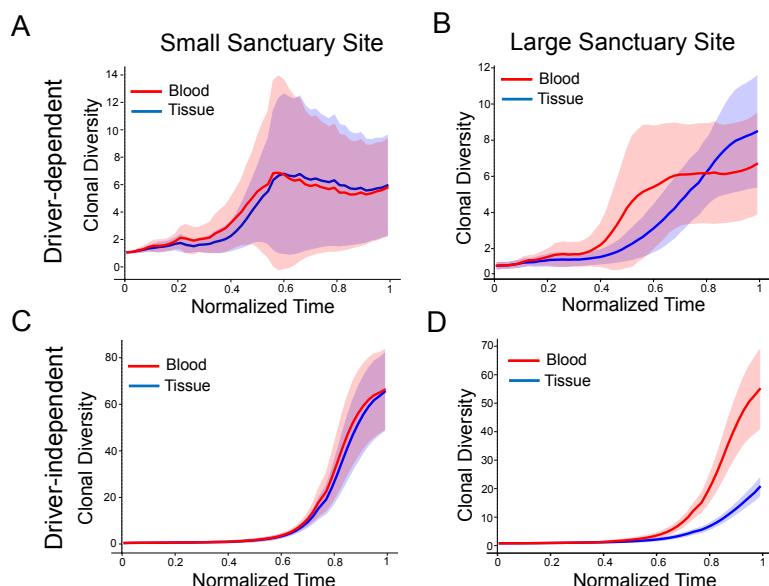


Figure 3: **Discrepancies between blood and tissue clonal diversity.** The subplots show the inverse Simpson diversity index of the clonal frequencies in the blood and tissue for each clone in 50 simulated tumors. Timepoints are normalized by run and then binned and down-sampled. Tumors were grown from a single cell until reaching a 2D cross-section of a 10 billion cell tumor. For all simulations, $\mu = 0.001$, $s = 0.1$, $d_1 = 0.1$, $b = 0.7$. For driver-dependent regrowth, $d_2 = 0.9$. For driver independent regrowth, $d_2 = 0.69$. Shading represents ± 1 s.d. The figure shows results for proliferative tumors only. For all scenarios, see **Supplementary Figure S4**.

244

245 **The effect of sequencing detection limits and sanctuary site size on observed VAFs in the blood**

246 We next analyze how biased clonal fractions in the blood translate into biased observed VAFs, under
247 various sequencing detection limits. In **Figure 4**, we consider sequence detection limits of 10^{-3} and 10^{-2} ,
248 which are often utilized for panel-based assays optimized for MRD detection (Chin et al., 2019). As expected,
249 a higher sequence detection limit of 10^{-2} diminishes the number of detected drivers (VAF exceeds the
250 detection limit) and increases the tumor size at which the first mutations are detected, compared to a limit
251 of 10^{-3} (**Figure 4A**). This effect is more pronounced in quiescent tumors than proliferative ones. While
252 driver-independent tumors produce many more mutations, responsible for the higher ITH shown in (**Figure**
253 **3**), they are nonetheless very low-frequency and so the number of mutations above a 10^{-2} threshold is
254 comparable to that of driver-independent tumors. Most mutations evade detection entirely, as the overall
255 percentage of driver mutations detected at any point is below 10% for all scenarios (**Supplementary Figure**
256 **S5 C-D**).

257 In **Figure 4B**, we compare the percent change in number of detectable drivers when the simulated VAFs
258 are compared to VAFs from a spatially uniform null model, computed assuming the tumor sheds all clones
259 at the same rate. We show that spatial tumor heterogeneity can greatly affect the number of detectable
260 driver mutations in the blood, and sequencing detection limits can further alter the extent of this bias, with
261 the timing and magnitude of difference spikes further dependent on the detection limit of the sequencing
262 technology.

263 Because clonal VAFs cannot change due to shedding differences, the effect depends entirely on the de-
264 tection limit relative to subclonal VAFs. We see that spatial bias in proliferative driver-dependent tumors
265 increases when the detection limit is raised, but quiescent spatial bias either decreases in magnitude and
266 appears at a larger tumor size, or disappears all together. We show the percent spatial bias over normalized
267 time in **Supplementary Figure S5 B**.

268 In **Figures 4C-F**, we examine the dependency of spatial bias on detection limit by plotting the frequency
269 versus the mean tumor radius of every mutation present in 50 simulation runs at the point of maximal
270 spatial bias (the labeled peaks in **Figure 4B**). Plots corresponding to the peaks of the other scenarios are
271 shown in **Supplementary Figure S6**. We observe a cluster of clonal mutations in the core of the tumor
272 (colored black), which are equally represented in the blood and tissue. Due to boundary-driven growth,
273 subclonal mutations accumulate more on the edge of the tumor and tend to remain there across generations,
274 increasing the frequency of mutations further from the core. Because the mutations also shed at higher rates,

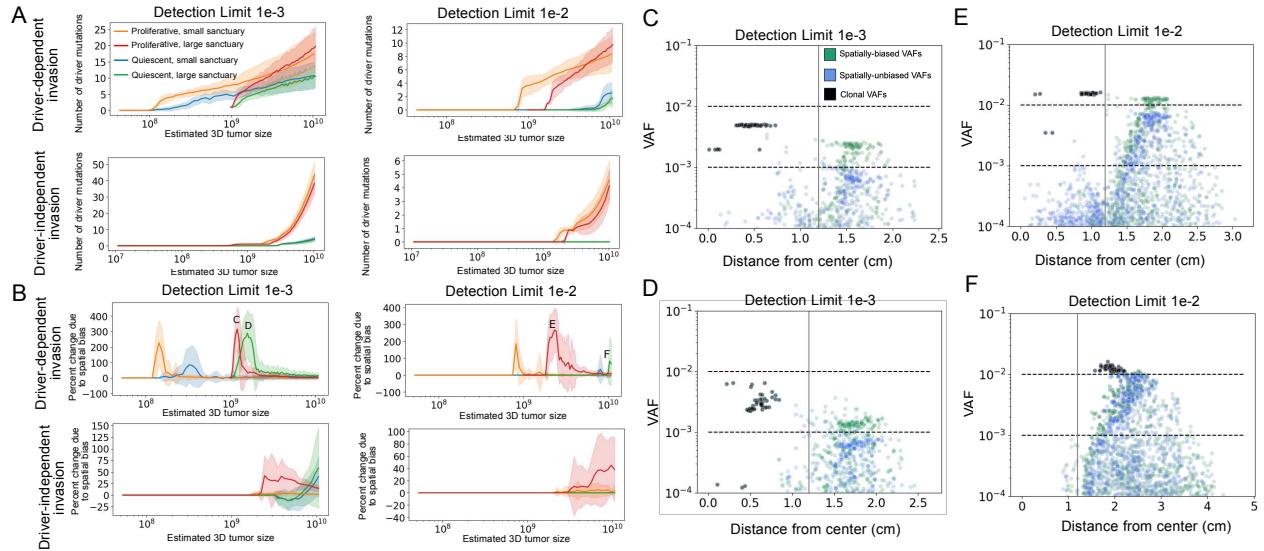


Figure 4: Influence of spatial bias on limits of detection. **A.** Plots of the number of detectable driver mutations starting from the point of relapse for minimum detection frequencies of 10^{-3} and 10^{-2} for proliferative and quiescent tumors relapsing at $\sim 10^8$ and $\sim 10^9$ cells. Mutations were detectable if the estimated VAF exceeded the detection limit. VAFs were estimated based on a tumor fraction of 1% for a 3 billion-cell tumor with death rate of 0.1 (see Methods). **B.** Percent change in number of detectable drivers when the VAFs in **A** are compared to VAFs computed assuming the tumor sheds all clones at the same rate for the same detection limits (see Methods). **C-F.** Scatter plots of mean spatially biased VAFs (green) and unbiased VAFs (blue) at the size where the average spatial bias over all replicates is maximal (marked with the corresponding letter in **B**). Each plot shows all mutations for 50 replicates of the corresponding simulation scenario. The x-axis is the mean distance of the mutation from the tumor's center. Black points are clonal mutations, which show perfect overlap between the blood and tissue. The vertical line marks the end of the sanctuary region.

275 filtering for larger mutations can increase bias, but will decrease it once the majority of detectable VAFs are
 276 clonal (**Figure 4F**). Of clinical relevance is the case where subclonal variants are exaggerated to near-clonal
 277 frequencies, which occurs in the driver-dependent case (**Figure 4C-F**). This showcases the benefits and
 278 risks of distorted ctDNA: while exaggerated subclonal mutations would provide more biomarkers to aid in
 279 detecting recurrence, they would make poor targets for treatment.

280 Discussion

281 As cancers grow, they slough off cells and DNA from apoptotic or necrotic cancer cells, which enter the
 282 bloodstream. Through the use of technologies such as next-generation sequencing, these fragments of DNA
 283 can reveal a wealth of information about cancer, without the need for invasive surgical biopsies. Here we
 284 explore how boundary-driven tumor growth and spatial heterogeneity in cellular death rates impact both

285 the clonal evolution of the tumor, and its representation in ctDNA. We find that the appearance of genetic
286 distortions between blood and tissue ultimately depends on whether the tumor's genetic heterogeneity varies
287 with respect to rates of apoptosis and ctDNA shedding, which themselves can vary between tumors or over
288 time, for a single tumor. When there is a strong correlation, such as when a change in cellular death rate
289 occurs in direction of tumor growth, ctDNA can drastically bias which clones are observed and can lead to
290 biased estimates of intratumor heterogeneity (ITH).

291 In the driver-dependent case and, to a lesser extent, the driver-independent case explored here, this bias
292 can be beneficial, by increasing the visibility of and sensitivity for the particular mutations responsible for
293 tumor progression. Spatial differences in cell death rates could also lead to subclonal mutations appearing
294 at clonal frequencies in ctDNA, thus increasing the likelihood that they are mistaken for clonal mutations
295 and chosen as therapeutic targets (**Figure 4**). Our results agree with findings that quiescent tumors may be
296 difficult to detect in the bloodstream (**Figure 4A**), and further suggest that any detectable ctDNA is likely
297 to dramatically under-represent some tumor regions with reduced shedding (**Figure 2**). One possibility is
298 that a lesion with a quiescent interior could be nearly undetectable and suddenly begin to shed appreciably
299 due to a clonal expansion. Because of the extremely biased location of shedding in quiescent tumors, the
300 overall size should not be assumed to correlate well with ctDNA yield. The potential for exaggerated observed
301 heterogeneity in the blood relative to the tissue for tumors experiencing high apoptosis on the expanding
302 front suggests that low-frequency clones, with a high probability to go undetected in a tissue sample, could
303 be better captured in the blood and provide an early indicator of heterogeneous growth. At the same
304 time, when clinical studies find greater heterogeneity in blood than in tissue samples, this is usually mainly
305 attributed to missed heterogeneity in the tissue sample. However, localized high death rates could generate
306 more mutations and at the same time enrich these in ctDNA, through increased shedding. This both poses
307 a potential confounding factor for assessing tumor mutational burden from ctDNA, while simultaneously
308 supporting the potential of blood-based diagnostics to be a more sensitive indicator of changing levels of
309 heterogeneity than tissue biopsies. Recent work has found that in contrast to high tissue mutational burden,
310 which may indicate high neoantigen load and better overall survival, high blood mutational burden may better
311 reflect overall ITH and therefore indicate poor overall survival (Fridland et al., 2021). High heterogeneity
312 correlated to high-shedding regions could contribute to this discordance.

313 This general principle that genetic distortion between blood and tissue is a function of clonal dynamics is
314 not limited to spatial heterogeneity in intrinsic death rates, and could also arise as the result of differential
315 access to blood vessels or nutrients. Further specific scenarios can be theoretically and clinically explored,

316 such as local metastasis of a primary breast tumor to the lymph nodes, or the microinvasion of a colorectal
317 tumor into the subserosal tissue, particularly during neoadjuvant treatment when the tumor faces novel
318 selective pressure. In both of these cases, there is recent evidence that ctDNA shedding can vary as a
319 function of spatial location. Clonal replacement during treatment for early stage breast tumors is also well
320 documented, and a small study of early stage breast cancer patients discovered mutations private to clones
321 that invaded the lymph nodes. In one patient, as an example of subclone over-representation, these mutations
322 comprised the majority of detected ctDNA (Bredno et al., 2020; Caswell-Jin et al., 2019; Barry et al., 2018).

323 While our simulations consider only a single form of spatial growth and do not incorporate a fully
324 realistic downstream analysis of ctDNA, here we nonetheless show that even a simple model of spatially
325 heterogeneous tumor growth and shedding can showcase how blood sample data may not represent the
326 tissue accurately, depending on the evolutionary processes shaping the tumor around the time of a blood
327 draw. Further biases as a result of low tumor fraction in cfDNA, copy number variation, germline mutations,
328 hematopoietic mutations, and heterogeneity absent from small tissue samples introduce significant additional
329 complexity that we ignore here (Kammesheidt et al., 2018; Chan et al., 2020). Future directions include
330 incorporating a spatial model of blood vessel distribution that impacts drug delivery, oxygenation, and the
331 resulting apoptosis and shedding rates. Rather than modeling changes to overall clone frequencies under
332 an infinite sites assumption, incorporating a specific resistance model would further allow predictions of the
333 detectability of specific drivers. Here we assume that changes to birth and death rates happen incrementally
334 through a series of point mutations, while specific models of chemotherapy resistance or immune escape
335 may have a different effect on growth rates and the resulting shedding. Because the expanding clones in
336 our model continue to experience high apoptosis, our results would best apply when apoptosis reduction is
337 absent or only partial in the resistant population, such as in apoptosis-induced compensatory proliferation
338 (AICP) (Friedman, 2016).

339 A further area of study is using model insights to correct for the observed bias between ctDNA and tissue
340 genetics. The work here reveals some of the circumstances in which we would expect such a bias to manifest
341 and the mechanisms by which it would occur, but systematically inverting that bias to reconstruct with
342 maximum fidelity the clonal composition of the tumor from the blood data will require further work. For
343 example, some important applications of tumor genome samples to clonal lineage tracing (“tumor phyloge-
344 netics”) depend on accurate quantification of allele frequencies, and extending such methods to use blood
345 data productively will require ways to not only identify, but also correct for these biases. It will be important
346 to characterize the circumstances under which this problem is invertible and what additional data might be

347 needed.

348 At a basic level, ctDNA can reveal information about the likely presence and burden of cancer within
349 the body. To make full use of this new technology, further work is needed to understand all of the ways that
350 ctDNA can provide a distorted mirror of the main tissue, how tumor evolution shapes these biases and how
351 to correct for them.

352 **Code and data availability**

353 Code and raw data used to generate all results and figures for this paper can be found at <https://github.com/trachman1/lattice-tumor-ctdna>.

355 **Acknowledgments**

356 We gratefully acknowledge support from the NIH National Institute of General Medical Sciences (award
357 no. R35GM147445) and from the NIH T32 training grant (no. T32 EB009403). Research reported in
358 this publication was also supported by the National Human Genome Research Institute of the National
359 Institutes of Health under award number R01HG010589. This research was done using resources provided
360 by the Open Science Grid, which is supported by the National Science Foundation award 1148698, and the
361 U.S. Department of Energy's Office of Science. The content is solely the responsibility of the authors and
362 does not necessarily represent the official views of the National Institutes of Health.

363 References

364 Hesam Abouali, Seied Ali Hosseini, Emma Purcell, Sunitha Nagrath, and Mahla Poudineh. Recent advances
365 in device engineering and computational analysis for characterization of cell-released cancer biomarkers.
366 *Cancers*, 14(2):288, 2022.

367 Stefano Avanzini, David M. Kurtz, Jacob J. Chabon, Everett J. Moding, Sharon Seiko Hori, Sanjiv Sam
368 Gambhir, Ash A. Alizadeh, Maximilian Diehn, and Johannes G. Reiter. A mathematical model of ctDNA
369 shedding predicts tumor detection size. *Science Advances*, 6(50):eabc4308, 2020. doi: 10.1126/sciadv.
370 abc4308.

371 Peter Barry, Alexandra Vatsiou, Inmaculada Spiteri, Daniel Nichol, George D Cresswell, Ahmet Acar,
372 Nicholas Trahearn, Sarah Hrebien, Isaac Garcia-Murillas, Kate Chkhaidze, et al. The spatiotemporal
373 evolution of lymph node spread in early breast cancer. *Clinical Cancer Research*, 24(19):4763–4770, 2018.

374 Ivana Bozic, Chay Paterson, and Bartlomiej Waclaw. On measuring selection in cancer from subclonal
375 mutation frequencies. *PLOS Computational Biology*, 15(9):e1007368, 2019.

376 Joerg Bredno, Jafi Lipson, Oliver Venn, Samuel Gross, Alexander P. Fields, John F. Beausang, Qinwen Liu,
377 Jacqueline D. Brooks, Xiaoji Chen, Rita Lopatin, Hai Liu, Nan Zhang, Lori Zhang, Tony Wu, Brian Allen,
378 Anne-Renee Hartman, Earl Hubbell, Arash Jamshidi, and Alex Aravanis. Tumor area and microscopic
379 extent of invasion to determine circulating tumor DNA fraction in plasma and detectability of colorectal
380 cancer (CRC). *JCO*, 38(4_suppl):243–243, 2020. doi: 10.1200/JCO.2020.38.4_suppl.243.

381 ST Buckland, AE Magurran, RE Green, and RM Fewster. Monitoring change in biodiversity through
382 composite indices. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 360(1454):
383 243–254, 2005.

384 Jennifer L. Caswell-Jin, Katherine McNamara, Johannes G. Reiter, Ruping Sun, Zheng Hu, Zhicheng Ma,
385 Jie Ding, Carlos J. Suarez, Susanne Tilk, Akshara Raghavendra, Victoria Forte, Suet-Feung Chin, Helen
386 Bardwell, Elena Provenzano, Carlos Caldas, Julie Lang, Robert West, Debu Tripathy, Michael F. Press,
387 and Christina Curtis. Clonal replacement and heterogeneity in breast tumors treated with neoadjuvant
388 HER2-targeted therapy. *Nat Commun*, 10(1):657, 2019. doi: 10.1038/s41467-019-08593-4.

389 Yongjun Cha, Sheehyun Kim, and Sae-Won Han. Utilizing plasma circulating tumor DNA sequencing for

390 precision medicine in the management of solid cancers. *Cancer Research and Treatment: Official Journal*
391 *of Korean Cancer Association*, 55(2):367–384, 2023.

392 Young Kwang Chae, Andrew A Davis, Sarika Jain, Cesar Santa-Maria, Lisa Flbaum, Nike Beaubier,
393 Leonidas C Platanias, William Gradishar, Francis J Giles, and Massimo Cristofanilli. Concordance of
394 genomic alterations by next-generation sequencing in tumor tissue versus circulating tumor DNA in breast
395 cancer. *Molecular Cancer Therapeutics*, 16(7):1412–1420, 2017.

396 Young Kwang Chae, Andrew A Davis, Sarita Agte, Alan Pan, Nicholas I Simon, Wade T Iams, Marcelo R
397 Cruz, Keerthi Tamragouri, Kyunghoon Rhee, Nisha Mohindra, et al. Clinical implications of circulating
398 tumor DNA tumor mutational burden (ctDNA TMB) in non-small cell lung cancer. *The Oncologist*, 24
399 (6):820–828, 2019.

400 Hiu Ting Chan, Yoon Ming Chin, Yusuke Nakamura, and Siew-Kee Low. Clonal hematopoiesis in liquid
401 biopsy: from biological noise to valuable clinical implications. *Cancers*, 12(8):2277, 2020.

402 Re-I Chin, Kevin Chen, Abul Usmani, Chanelle Chua, Peter K Harris, Michael S Binkley, Tej D Azad,
403 Jonathan C Dudley, and Aadel A Chaudhuri. Detection of solid tumor molecular residual disease (mrD)
404 using circulating tumor DNA (ctDNA). *Molecular Diagnosis & Therapy*, 23(3):311–331, 2019.

405 Ketevan Chkhaidze, Timon Heide, Benjamin Werner, Marc J Williams, Weini Huang, Giulio Caravagna,
406 Trevor A Graham, and Andrea Sottoriva. Spatially constrained tumour growth affects the patterns of
407 clonal selection and neutral drift in cancer genomic data. *PLOS Computational Biology*, 15(7):e1007243,
408 2019.

409 Gabriele De Rubis, Sabna Rajeev Krishnan, and Mary Bebawy. Liquid biopsies in cancer diagnosis, moni-
410 toring, and prognosis. *Trends in Pharmacological Sciences*, 40(3):172–186, 2019.

411 Ugo Del Monte. Does the cell number 109 still really fit one gram of tumor tissue? *Cell Cycle*, 8(3), 2009.
412 doi: 10.4161/cc.8.3.7608.

413 Stanislav Fridland, Jaeyoun Choi, Myungwoo Nam, Samuel Joseph Schellenberg, Eugene Kim, Grace Lee,
414 Nathaniel Yoon, and Young Kwang Chae. Assessing tumor heterogeneity: integrating tissue and circulating
415 tumor DNA (ctDNA) analysis in the era of immuno-oncology-blood TMB is not the same as tissue TMB.
416 *Journal for Immunotherapy of Cancer*, 9(8), 2021.

417 Ran Friedman. Drug resistance in cancer: molecular evolution and compensatory proliferation. *Oncotarget*,
418 7(11):11746, 2016.

419 Feng Fu, Martin A. Nowak, and Sebastian Bonhoeffer. Spatial Heterogeneity in Drug Concentrations Can
420 Facilitate the Emergence of Resistance to Cancer Therapy. *PLOS Computational Biology*, 11(3):e1004142,
421 2015. doi: 10.1371/journal.pcbi.1004142.

422 S. Giordano, L. Morosi, P. Veglianese, S. A. Licandro, R. Frapolli, M. Zucchetti, G. Cappelletti, L. Falciola,
423 V. Pifferi, S. Visentin, M. D'Incalci, and E. Davoli. 3D Mass Spectrometry Imaging Reveals a Very
424 Heterogeneous Drug Distribution in Tumors. *Sci Rep*, 6(1):37027, 2016. doi: 10.1038/srep37027.

425 Ellen Heitzer, Lisa Auinger, and Michael R. Speicher. Cell-Free DNA and Apoptosis: How Dead Cells Inform
426 About the Living. *Trends in Molecular Medicine*, 26(5):519–528, 2020. doi: 10.1016/j.molmed.2020.01.012.

427 Zijian Hu, Honghong Chen, Yanzhu Long, Ping Li, and Yueqing Gu. The main sources of circulating cell-
428 free DNA: apoptosis, necrosis and active secretion. *Critical Reviews in Oncology/Hematology*, 157:103166,
429 2021.

430 Michail Ignatiadis, George W Sledge, and Stefanie S Jeffrey. Liquid biopsy enters the clinic—implementation
431 issues and future challenges. *Nature Reviews Clinical oncology*, 18(5):297–312, 2021.

432 Leila Jahangiri and Tara Hurst. Assessing the Concordance of Genomic Alterations between Circulating-Free
433 DNA and Tumour Tissue in Cancer Patients. *Cancers*, 11(12):1938, 2019. doi: 10.3390/cancers11121938.

434 Anja Kammesheidt, Theresa R TonoZZI, Stephen W Lim, and Glenn D Braunstein. Mutation detection using
435 plasma circulating tumor DNA (ctDNA) in a cohort of asymptomatic adults at increased risk for cancer.
436 *International journal of molecular epidemiology and genetics*, 9(1):1, 2018.

437 Kikuya Kato, Junji Uchida, Yoji Kukita, Toru Kumagai, Kazumi Nishino, Takako Inoue, Madoka Kimura,
438 and Fumio Imamura. Transient appearance of circulating tumor DNA associated with de novo treatment.
439 *Scientific Reports*, 6(1):38639, 2016.

440 Scott H. Kaufmann and William C. Earnshaw. Induction of Apoptosis by Cancer Chemotherapy. *Experi-
441 mental Cell Research*, 256(1):42–49, 2000. doi: 10.1006/excr.2000.4838.

442 Jouni Kujala, Jaana M. Hartikainen, Maria Tengström, Reijo Sironen, Päivi Auvinen, Veli-Matti Kosma,
443 and Arto Mannermaa. Circulating Cell-Free DNA Reflects the Clonal Evolution of Breast Cancer Tumors.
444 *Cancers*, 14(5):1332, 2022. doi: 10.3390/cancers14051332.

445 Maya A Lewinsohn, Trevor Bedford, Nicola F Müller, and Alison F Feder. State-dependent evolutionary
446 models reveal modes of solid tumour growth. *Nature Ecology & Evolution*, 7(4):581–596, 2023.

447 Fei Ma, Wenjie Zhu, Yanfang Guan, Ling Yang, Xuefeng Xia, Shanshan Chen, Qiao Li, Xiuwen Guan,
448 Zongbi Yi, Haili Qian, et al. ctDNA dynamics: a novel indicator to track resistance in metastatic breast
449 cancer treated with anti-HER2 therapy. *Oncotarget*, 7(40):66020, 2016.

450 Joana F Marques, Susana Junqueira-Neto, Jorge Pinheiro, José C Machado, and José L Costa. Induction
451 of apoptosis increases sensitivity to detect cancer mutations in plasma. *European Journal of Cancer*, 127:
452 130–138, 2020.

453 Austin K. Mattox, Chetan Bettegowda, Shabin Zhou, Nickolas Papadopoulos, Kenneth W. Kinzler, and
454 Bert Vogelstein. Applications of liquid biopsies for cancer. *Sci Transl Med*, 11(507):eaay1984, 2019. doi:
455 10.1126/scitranslmed.aay1984.

456 Mark B Meads, Lori A Hazlehurst, and William S Dalton. The bone marrow microenvironment as a tumor
457 sanctuary and contributor to drug resistance. *Clinical Cancer Research*, 14(9):2519–2526, 2008.

458 Jason D. Merker, Geoffrey R. Oxnard, Carolyn Compton, Maximilian Diehn, Patricia Hurley, Alexander J.
459 Lazar, Neal Lindeman, Christina M. Lockwood, Alex J. Rai, Richard L. Schilsky, Apostolia M. Tsim-
460 beridou, Patricia Vasalos, Brooke L. Billman, Thomas K. Oliver, Suanna S. Bruinooge, Daniel F. Hayes,
461 and Nicholas C. Turner. Circulating Tumor DNA Analysis in Patients With Cancer: American Society of
462 Clinical Oncology and College of American Pathologists Joint Review. *Archives of Pathology & Laboratory
463 Medicine*, 142:1242–1253, 2018. doi: 10.5858/arpa.2018-0901-SA.

464 Vijayashree Murthy, Masanori Oshi, Yoshihisa Tokumaru, Itaru Endo, and Kazuaki Takabe. Increased
465 apoptosis is associated with robust immune cell infiltration and cytolytic activity in breast cancer. *Am J
466 Cancer Res*, 11(7):3674–3687, 2021.

467 Robert Noble, Dominik Burri, Cécile Le Sueur, Jeanne Lemant, Yannick Viossat, Jakob Nikolas Kather, and
468 Niko Beerenwinkel. Spatial structure governs the mode of tumour evolution. *Nature ecology & evolution*,
469 6(2):207–217, 2022.

470 Jillian Phallen, Mark Sausen, Vilmos Adleff, Alessandro Leal, Carolyn Hruban, James White, Valsamo
471 Anagnostou, Jacob Fiksel, Stephen Cristiano, Eniko Papp, et al. Direct detection of early-stage cancers
472 using circulating tumor DNA. *Science translational medicine*, 9(403):eaan2415, 2017.

473 Thomas Reinert, Tenna Vesterman Henriksen, Emil Christensen, Shruti Sharma, Raheleh Salari, Himanshu
474 Sethi, Michael Knudsen, Iver Nordentoft, Hsin-Ta Wu, Antony S. Tin, et al. Analysis of Plasma Cell-Free
475 DNA by Ultradeep Sequencing in Patients With Stages I to III Colorectal Cancer. *JAMA Oncology*, 5(8):
476 1124–1131, 2019. doi: 10.1001/jamaoncol.2019.0528.

477 Kahn Rhrissorakrai, Filippo Utro, Chaya Levovitz, and Laxmi Parida. Lesion shedding model: unraveling
478 site-specific contributions to ctDNA. *Briefings in Bioinformatics*, 24(2):bbad059, 2023.

479 Ariana Rostami, Meghan Lambie, W Yu Caberry, Vuk Stambolic, John N Waldron, and Scott V Bratman.
480 Senescence, necrosis, and apoptosis govern circulating cell-free DNA release kinetics. *Cell reports*, 31(13),
481 2020.

482 Carina Roth, Klaus Pantel, Volkmar Müller, Brigitte Rack, Sabine Kasimir-Bauer, Wolfgang Janni, and
483 Heidi Schwarzenbach. Apoptosis-related deregulation of proteolytic activities and high serum levels of
484 circulating nucleosomes and DNA in blood correlate with breast cancer progression. *BMC cancer*, 11(1):
485 1–12, 2011.

486 Enrique Sanz-Garcia, Eric Zhao, Scott V Bratman, and Lillian L Siu. Monitoring and adapting cancer
487 treatment using circulating tumor DNA kinetics: Current research, opportunities, and challenges. *Science
488 Advances*, 8(4):eabi8618, 2022.

489 Maria C Schwaederlé, Sandip P Patel, Hatim Husain, Megumi Ikeda, Richard B Lanman, Kimberly C Banks,
490 AmirAli Talasaz, Lyudmila Bazhenova, and Razelle Kurzrock. Utility of genomic assessment of blood-
491 derived circulating tumor DNA (ctDNA) in patients with advanced lung adenocarcinoma. *Clinical Cancer
492 Research*, 23(17):5101–5111, 2017.

493 Daniel Stetson, Ambar Ahmed, Xing Xu, Barrett RB Nuttall, Tristan J Lubinski, Justin H Johnson, J Carl
494 Barrett, and Brian A Dougherty. Orthogonal comparison of four plasma ngs tests with tumor suggests
495 technical factors are a major source of assay discordance. *JCO Precision Oncology*, 3:1–9, 2019.

496 M Stroun, J Lyautey, C Lederrey, A Olson-Sand, and P Anker. About the possible origin and mechanism
497 of circulating DNA: Apoptosis and active DNA release. *Clinical Chimica Acta*, 313(1-2):139–142, 2001.

498 Misha C Tran, Garth W Strohbehn, Theodore G Garrison, Sherin J Rouhani, Jeremy P Segal, Ardamian
499 Shergill, Philip C Hoffman, Jyoti D Patel, Marina C Garassino, Everett E Vokes, et al. Brief report:
500 Discordance between liquid and tissue biopsy-based next-generation sequencing in lung adenocarcinoma
501 at disease progression. *Clinical Lung Cancer*, 24(3):e117–e121, 2023.

502 Olivier Trédan, Carlos M. Galmarini, Krupa Patel, and Ian F. Tannock. Drug Resistance and the Solid
503 Tumor Microenvironment. *JNCI: Journal of the National Cancer Institute*, 99(19):1441–1454, 2007. doi:
504 10.1093/jnci/djm135.

505 Peter Ulz, Ellen Heitzer, Jochen B Geigl, and Michael R Speicher. Patient monitoring through liquid biopsies
506 using circulating tumor DNA. *International Journal of Cancer*, 141(5):887–896, 2017.

507 Bartlomiej Waclaw, Ivana Bozic, Meredith E Pittman, Ralph H Hruban, Bert Vogelstein, and Martin A
508 Nowak. A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity. *Nature*,
509 525(7568):261–264, 2015.

510 Jonathan CM Wan, Charles Massie, Javier Garcia-Corbacho, Florent Mouliere, James D Brenton, Car-
511 los Caldas, Simon Pacey, Richard Baird, and Nitzan Rosenfeld. Liquid biopsies come of age: towards
512 implementation of circulating tumour DNA. *Nature Reviews Cancer*, 17(4):223–238, 2017.

513 Jie Zhou, Tobias Schmid, Steffen Schnitzer, and Bernhard Brüne. Tumor hypoxia and cancer progression.
514 *Cancer Letters*, 237(1):10–21, 2006. doi: 10.1016/j.canlet.2005.05.028.

515 List of Figures

516 Figure 1. **A.** Illustration of the model. Tumors grow to a clinically detectable size (a 2D cross-section of
517 a 3 billion cell tumor), and are then partially exposed to a new environment, where the cells
518 die with rate d_2 . The growth rate in the new environment determines the invasive potential of
519 a clone. If the death rate d_2 is higher than the initial birth rate, only clones with mutations
520 increasing the growth rate to a positive number can grow in the new environment, so invasion
521 is driver-dependent. Otherwise, it is driver-independent. Tumor growth can be proliferative
522 or quiescent. In the former, cells divide when they have an empty neighbor on the lattice and
523 die at a rate independent of their neighbors. In the latter, cells also divide when they have an
524 empty neighbor on the lattice, however cell death also requires empty neighbors. The shedding
525 rate of DNA into the blood is assumed to be proportionate to the death rate. **B.** Example
526 trajectories, driver-dependent invasion. Trajectories of clone fractions and total population size
527 for driver dependent invasion, with visualizations of the 2D tumor at selected timepoints. Each
528 color corresponds to a unique clone, also shown in the trajectory plot. **C.** Example trajectories,
529 driver-independent invasion. Trajectories of clone fractions and total population size for driver
530 independent invasion, with visualizations of the 2D tumor at selected timepoints. For both
531 cases, $\mu = 0.001, s = 0.1, d_1 = 0.1, b = 0.7$. For driver-dependent invasion, $d_2 = 0.9$. For driver
532 independent invasion, $d_2 = 0.69$.

533 Figure 2. **Clone fraction differences between blood and tissue: (A-D)** Each plot shows the results
534 of 50 simulation runs, where each point represents the difference between clonal frequencies
535 estimated from the blood versus those present in the tumor, for a single clone, with the color
536 showing the age of the clone relative to the total simulation time. Tumors were grown from
537 a single cell until reaching a 2D cross-section of a 10 billion cell tumor. For all simulations,
538 $\mu = 0.001, s = 0.1, d_1 = 0.1, b = 0.7$. For driver-dependent invasion, $d_2 = 0.9$. For driver
539 independent invasion, $d_2 = 0.69$. The orange and blue lines show the average positive and
540 negative clone fraction difference, respectively. Only clones comprising at least 10% of the
541 tumor were included in the average. Shading is ± 1 s.d. We show the same plots over normalized
542 time in **Supplementary Figure S2**.

543 Figure 3. **Discrepancies between blood and tissue clonal diversity.** The subplots show the inverse
544 Simpson diversity index of the clonal frequencies in the blood and tissue for each clone in 50
545 simulated tumors. Timepoints are normalized by run and then binned and down-sampled.

546 Tumors were grown from a single cell until reaching a 2D cross-section of a 10 billion cell tumor.
547 For all simulations, $\mu = 0.001, s = 0.1, d_1 = 0.1, b = 0.7$. For driver-dependent regrowth,
548 $d_2 = 0.9$. For driver independent regrowth, $d_2 = 0.69$. Shading represents ± 1 s.d. The figure
549 shows results for proliferative tumors only. For all scenarios, see **Supplementary Figure S4**.

550 **Figure 4. Influence of spatial bias on limits of detection.** **A.** Plots of the number of detectable
551 driver mutations starting from the point of relapse for minimum detection frequencies of 1e-3
552 and 1e-2 for proliferative and quiescent tumors relapsing at $\sim 10^8$ and $\sim 10^9$ cells. Mutations
553 were detectable if the estimated VAF exceeded the detection limit. VAFs were estimated based
554 on a tumor fraction of 1% for a 3 billion-cell tumor with death rate of 0.1 (see Methods). **B.**
555 Percent change in number of detectable drivers when the VAFs in **A** are compared to VAFs
556 computed assuming the tumor sheds all clones at the same rate for the same detection limits
557 (see Methods). **C-F.** Scatter plots of mean spatially biased VAFs (green) and unbiased VAFs
558 (blue) at the size where the average spatial bias over all replicates is maximal (marked with the
559 corresponding letter in **B**). Each plot shows all mutations for 50 replicates of the corresponding
560 simulation scenario. The x-axis is the mean distance of the mutation from the tumor's center.
561 Black points are clonal mutations, which show perfect overlap between the blood and tissue.
562 The vertical line marks the end of the sanctuary region.

563 **Figure S1.** A heatmap showing the maximum clone fraction difference possible for proliferative tumors with
564 respect to all values of d_1 and d_2 .

565 **Figure S2. Clone fraction differences between blood and tissue over normalized time: (A-D)**
566 Each plot shows the results of 50 simulation runs, where each point represents the difference
567 between clonal frequencies estimated from the blood versus those present in the tumor, for a
568 single clone, with the color showing the age of the clone relative to the total simulation time.
569 Tumors were grown from a single cell until reaching a 2D cross-section of a 10 billion cell tumor.
570 Because mutation accumulation is random, we used down-sampled, normalized time points to
571 plot each simulation run within a similar time frame. For all simulations, $\mu = 0.001, s = 0.1, d_1 = 0.1, b = 0.7$. For driver-dependent relapse, $d_2 = 0.9$. For driver independent invasion,
572 $d_2 = 0.69$. The orange and blue lines show the average positive and negative clone fraction
573 difference, respectively. Only clones comprising at least 10% of the tumor were included in the
574 average. Shading is ± 1 s.d.

575 **Figure S3. Clone fraction differences between blood and tissue with selection acting on death:**

577 **(A-D)** Each plot shows the results of 50 simulation runs, where each point represents the
578 difference between clonal frequencies estimated from the blood versus those present in the tumor
579 for a single clone, with the color showing the age of the clone relative to the total simulation
580 time. Tumors were grown from a single cell until reaching a 2D cross-section of a 10 billion cell
581 tumor. For all simulations, $\mu = 0.001, s = 0.1, d_1 = 0.1, b = 0.7$. For driver-dependent relapse,
582 $d_2 = 0.9$. For driver independent invasion, $d_2 = 0.69$. The orange and blue lines show the
583 average positive and negative clone fraction difference, respectively. Only clones comprising at
584 least 10% of the tumor were included in the average. Shading is ± 1 s.d.

585 **Figure S4. Discrepancies between blood and tissue clonal diversity:** Inverse Simpson index of clone
586 frequencies in blood and tissue for each clone in 50 simulated tumors at simulation timepoints
587 normalized by run and then binned and down-sampled. Tumors were grown from a single cell
588 until reaching a 2D cross-section of a 10 billion cell tumor. For all simulations, $\mu = 0.001, s =$
589 $0.1, d_1 = 0.1, b = 0.7$. For driver-dependent regrowth, $d_2 = 0.9$. For driver independent regrowth,
590 $d_2 = 0.69$. Shading represents ± 1 s.d.

591 **Figure S5. Number, percent spatial bias, and overall percentage of detectable drivers:** **(A)** Plots
592 of the number of detectable driver mutations starting from the point of relapse for minimum
593 detection frequencies of $1e-3$ and $1e-2$, for proliferative and quiescent tumors, relapsing at $\sim 10^8$
594 and $\sim 10^9$ cells, over normalized timepoints. Mutations were detectable if the estimated VAF
595 exceeded the detection limit. VAFs were estimated based on a tumor fraction of 1% for a
596 3 billion-cell tumor with death rate of 0.1 (see Methods). **(B)** Percent change in number of
597 detectable drivers when the VAFs in **(A)** are compared to VAFs computed assuming the tumor
598 sheds all clones at the same rate for the same detection limits, referred to as percent spatial bias
599 (see Methods). **(C)** Overall percentage of detected driver mutations relative to population size.
600 **(D)** Overall percentage of detected driver mutations relative to normalized timepoints.

601 **Figure S6. Spatial distribution of VAFs at points of maximal spatial bias for all scenarios:** The
602 top row of line plots are repeated from **Figure 4B**, showing the percent change in detected
603 driver mutations for detection limits $1e-3$ and $1e-2$, under driver-dependent and independent
604 invasion. Each scatterplot shows the distribution of VAFs corresponding to distance from the
605 tumor center.

606 **Supplementary Material: Supplementary Figures**

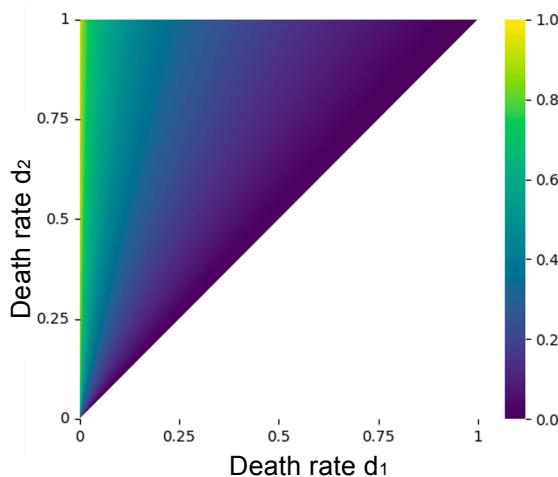


Figure S1: A heatmap showing the maximum clone fraction difference possible for proliferative tumors with respect to all values of d_1 and d_2 .

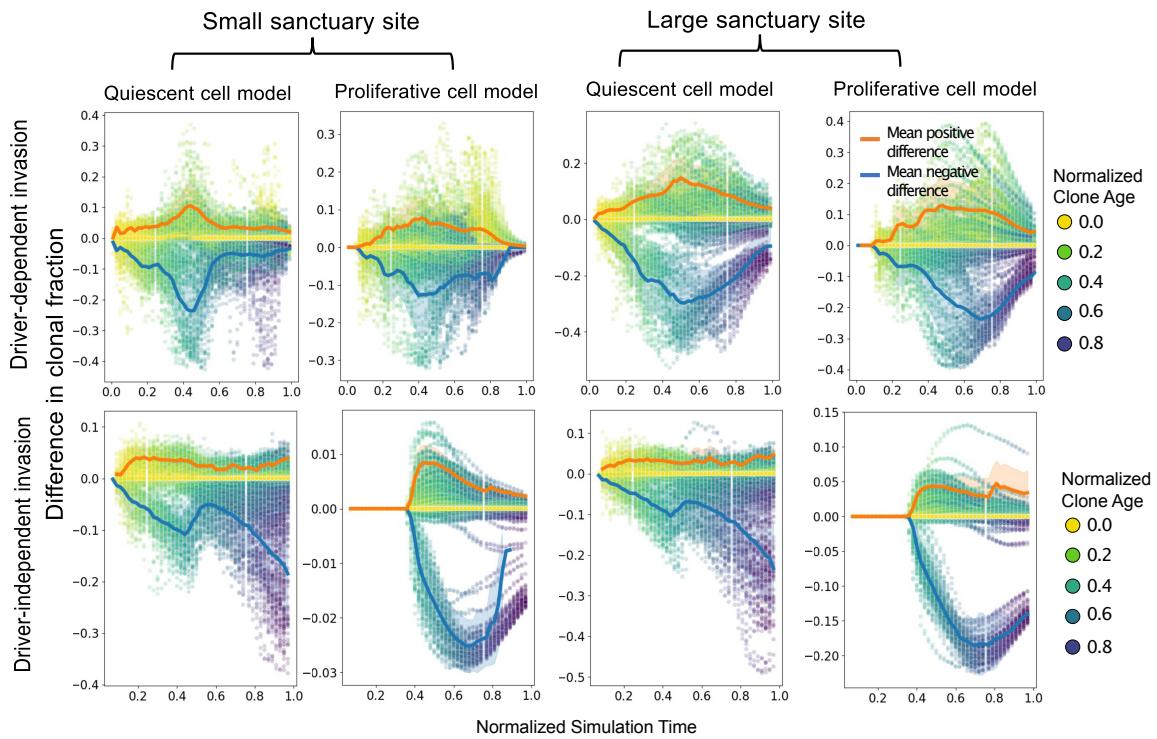


Figure S2: Clone fraction differences between blood and tissue over normalized time: (A-D)
 Each plot shows the results of 50 simulation runs, where each point represents the difference between clonal frequencies estimated from the blood versus those present in the tumor, for a single clone, with the color showing the age of the clone relative to the total simulation time. Tumors were grown from a single cell until reaching a 2D cross-section of a 10 billion cell tumor. Because mutation accumulation is random, we used down-sampled, normalized time points to plot each simulation run within a similar time frame. For all simulations, $\mu = 0.001$, $s = 0.1$, $d_1 = 0.1$, $b = 0.7$. For driver-dependent relapse, $d_2 = 0.9$. For driver independent invasion, $d_2 = 0.69$. The orange and blue lines show the average positive and negative clone fraction difference, respectively. Only clones comprising at least 10% of the tumor were included in the average. Shading is ± 1 s.d.

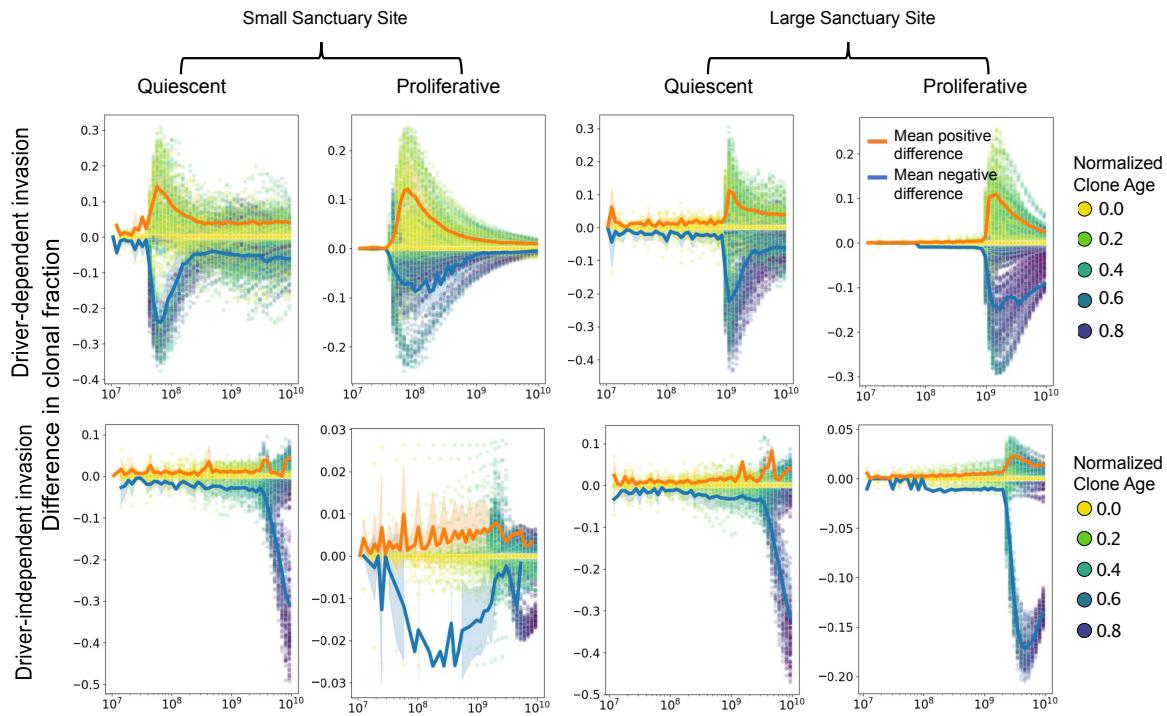


Figure S3: Clone fraction differences between blood and tissue with selection acting on death: (A-D) Each plot shows the results of 50 simulation runs, where each point represents the difference between clonal frequencies estimated from the blood versus those present in the tumor for a single clone, with the color showing the age of the clone relative to the total simulation time. Tumors were grown from a single cell until reaching a 2D cross-section of a 10 billion cell tumor. For all simulations, $\mu = 0.001$, $s = 0.1$, $d_1 = 0.1$, $b = 0.7$. For driver-dependent relapse, $d_2 = 0.9$. For driver independent invasion, $d_2 = 0.69$. The orange and blue lines show the average positive and negative clone fraction difference, respectively. Only clones comprising at least 10% of the tumor were included in the average. Shading is ± 1 s.d.

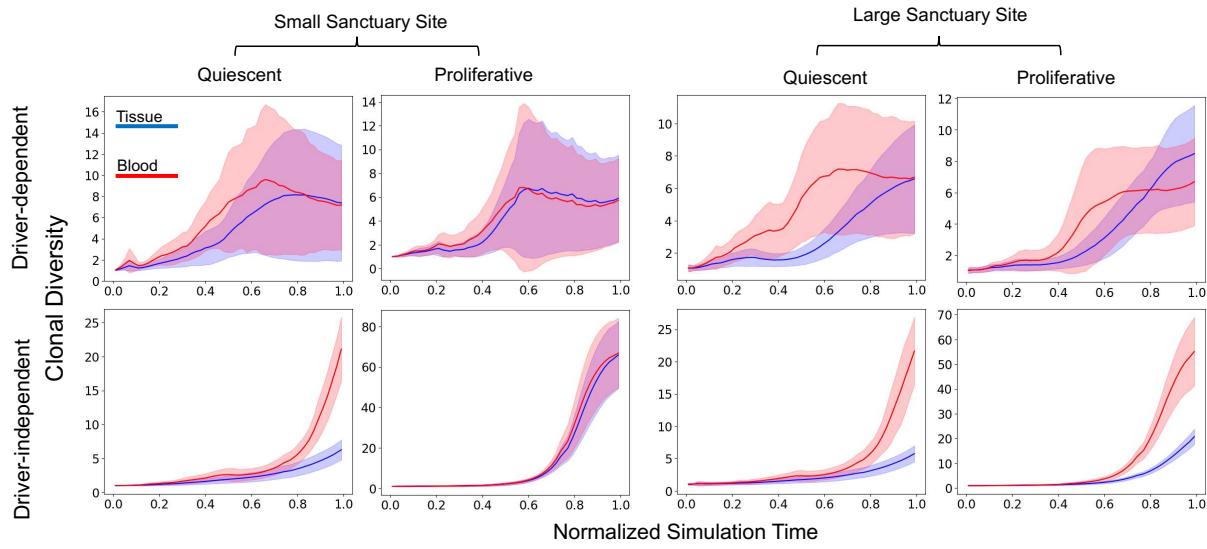


Figure S4: Discrepancies between blood and tissue clonal diversity: Inverse Simpson index of clone frequencies in blood and tissue for each clone in 50 simulated tumors at simulation timepoints normalized by run and then binned and down-sampled. Tumors were grown from a single cell until reaching a 2D cross-section of a 10 billion cell tumor. For all simulations, $\mu = 0.001$, $s = 0.1$, $d_1 = 0.1$, $b = 0.7$. For driver-dependent regrowth, $d_2 = 0.9$. For driver independent regrowth, $d_2 = 0.69$. Shading represents ± 1 s.d.

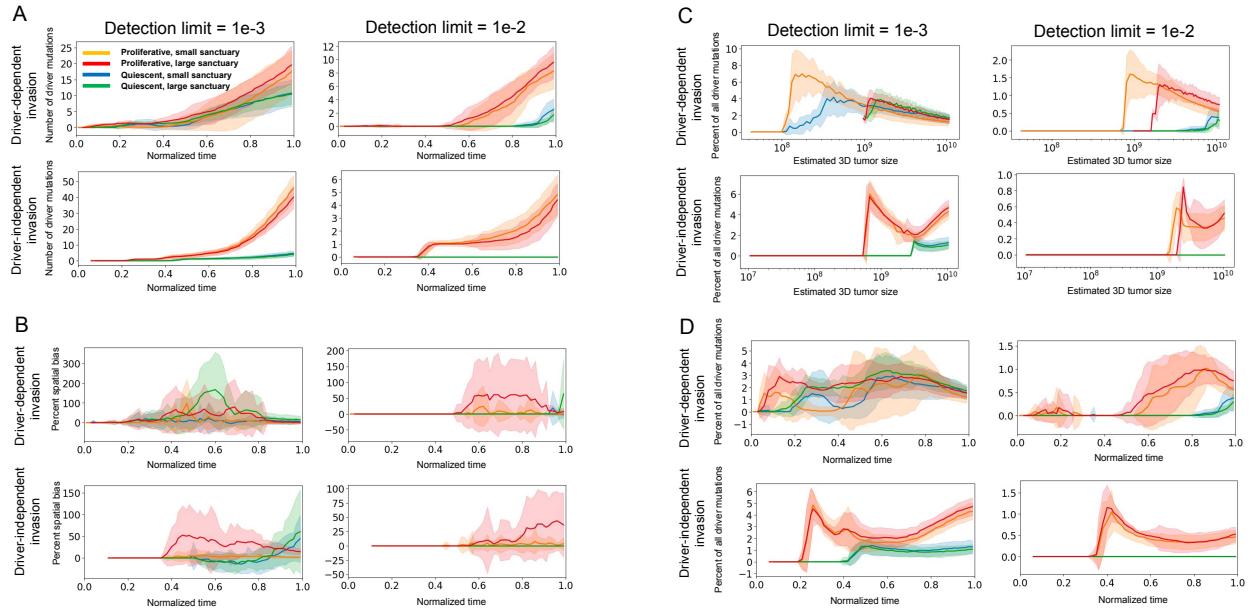


Figure S5: Number, percent spatial bias, and overall percentage of detectable drivers: (A) Plots of the number of detectable driver mutations starting from the point of relapse for minimum detection frequencies of $1e-3$ and $1e-2$, for proliferative and quiescent tumors, relapsing at $\sim 10^8$ and $\sim 10^9$ cells, over normalized timepoints. Mutations were detectable if the estimated VAF exceeded the detection limit. VAFs were estimated based on a tumor fraction of 1% for a 3 billion-cell tumor with death rate of 0.1 (see Methods). (B) Percent change in number of detectable drivers when the VAFs in (A) are compared to VAFs computed assuming the tumor sheds all clones at the same rate for the same detection limits, referred to as percent spatial bias (see Methods). (C) Overall percentage of detected driver mutations relative to population size. (D) Overall percentage of detected driver mutations relative to normalized timepoints.

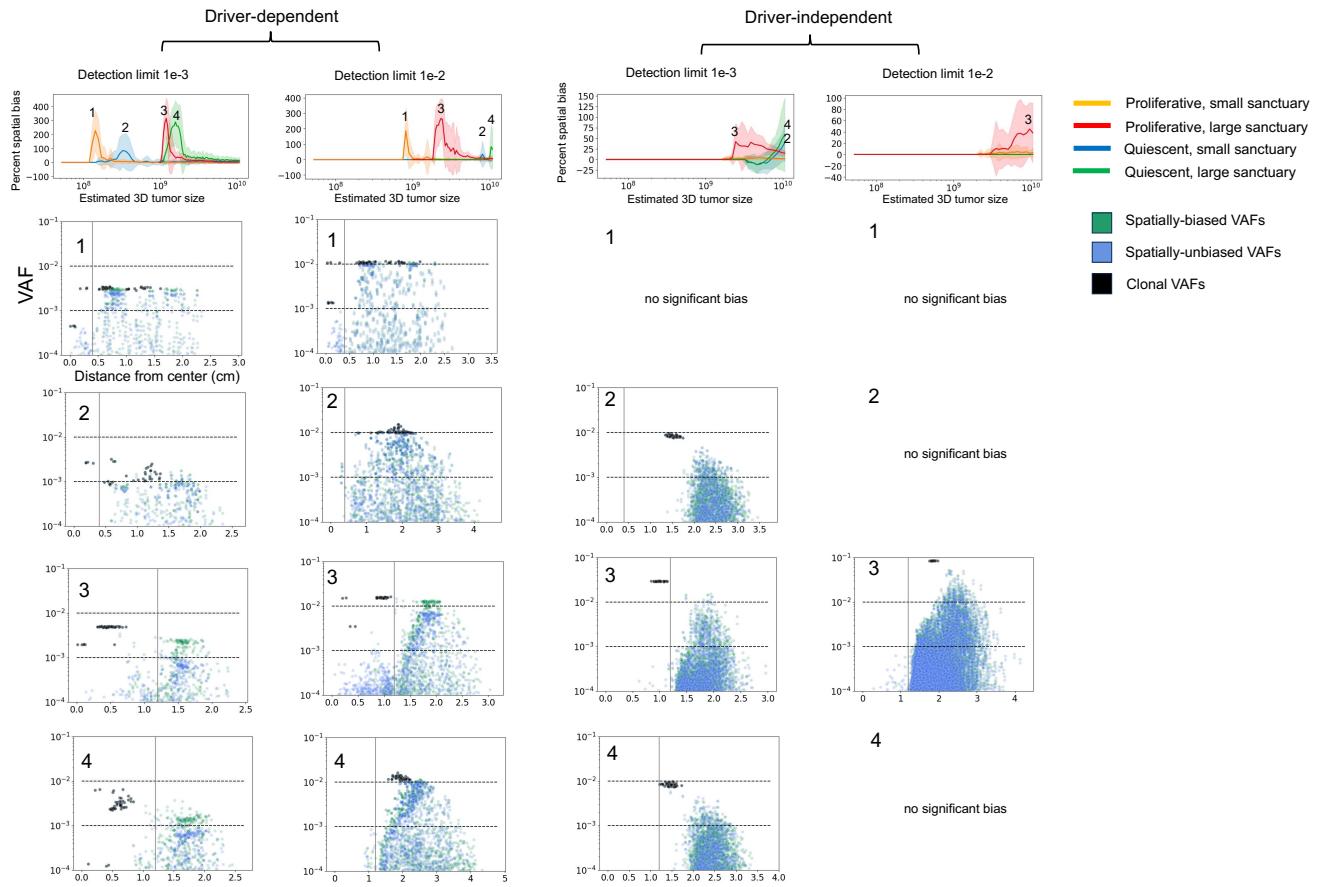


Figure S6: Spatial distribution of VAFs at points of maximal spatial bias for all scenarios: The top row of line plots are repeated from **Figure 4B**, showing the percent change in detected driver mutations for detection limits $1e-3$ and $1e-2$, under driver-dependent and independent invasion. Each scatterplot shows the distribution of VAFs corresponding to distance from the tumor center.