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10 Abstract

1 Circulating tumor DNA (ctDNA) monitoring, while sufficiently advanced to reflect tumor evolution in

12 real time and inform on cancer diagnosis, treatment, and prognosis, mainly relies on DNA that originates
13 from cell death via apoptosis or necrosis. In solid tumors, chemotherapy and immune infiltration can
14 induce spatially variable rates of cell death, with the potential to bias and distort the clonal composition
15 of ctDNA. Using a stochastic evolutionary model of boundary-driven growth, we study how elevated
16 cell death on the edge of a tumor can simultaneously impact driver mutation accumulation and the
17 representation of tumor clones and mutation detectability in ctDNA. We describe conditions in which
18 invasive clones end up over-represented in ctDNA, clonal diversity can appear elevated in the blood, and
19 spatial bias in shedding can inflate subclonal variant allele frequencies (VAFs). Additionally, we find that
20 tumors that are mostly quiescent can display similar biases, but are far less detectable, and the extent of
21 perceptible spatial bias strongly depends on sequence detection limits. Overall, we show that spatially
22 structured shedding might cause liquid biopsies to provide highly biased profiles of tumor state. While
23 this may enable more sensitive detection of expanding clones, it could also increase the risk of targeting
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24 a subclonal variant for treatment. Our results indicate that the effects and clinical consequences of

25 spatially variable cell death on ctDNA composition present an important area for future work.

26 Keywords: tumor growth model; tumor evolution; spatial evolution; ctDNA; tumor DNA shedding

» Introduction

28 A once far-fetched idea that a blood sample can precisely inform on cancer diagnosis, treatment, and prognosis
20 is quickly becoming clinical reality (Wan et al.,|2017)). This is largely due to advances in the quantification
s of DNA fragments from cancer cells shed into the bloodstream, known as circulating tumor DNA (ctDNA),
s which are primarily released from the tumor via apoptosis, necrosis, and active secretion (De Rubis et al.|
s [2019). While tissue biopsies have been a critical component in cancer care, providing a snapshot of the tumor-
33 host microenvironment, they are invasive and repeated biopsies over time to monitor cancer progression and
3¢ optimize therapies are seldom feasible. Moreover, even when accessible, a single biopsy sample may not
s represent an entire tumor, which usually displays significant spatial heterogeneity. ctDNA-based “liquid
3 Dbiopsies”, on the other hand, do not have some of these drawbacks and can act as a noninvasive cancer
a7 biomarker, allowing analyses of the tumor’s genetic evolution more frequently and comprehensively (Cha
s let all [2023; [Ulz et all |2017; [Kujala et all, 2022)). Two major applications of ctDNA already used in the
3 clinic are for the monitoring of tumor burden before, during, and after treatment, and for the detection of
w0 post-treatment relapse (Mattox et al., [2019; [Ignatiadis et al} 2021). Liquid biopsies have also shown great
41 promise in predicting relapse, progression free survival, and overall survival across a variety of tumor types
«2 and stages (Reinert et al. 2019 (Chae et al. 2019; [Sanz-Garcia et al.l [2022; |Cha et al., |2023).

43 Despite its potential to revolutionize cancer monitoring and treatment, ctDNA can also show poor con-
w4 cordance between blood and tissue, hampering its general clinical utility (Chae et al. 2017} |Merker et al.,
a5 |2018). The main causes for this include access to only minuscule concentrations of ¢tDNA in a plasma
4 sample, the limits of current sequencing technologies, the confounding effects of non-cancerous mutations
«7 and intra-tumor heterogeneity (Jahangiri and Hurstl |2019). While improvements in assay sensitivity and
s specificity could help to better resolve the ground truth composition of observed ctDNA in a blood sam-
4 ple, we need different methods to better understand and correct possible inaccuracies arising from biased
so representations of the different tumor clones in ctDNA fragments.

51 Changes to ctDNA yield and representation of different mutations have been observed before and during

sz chemotherapy, altering the detectability of resistance-causing mutations (Schwaederlé et al., 2017; Ma et al.,
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ss 2016} [Tran et al) 2023). The majority of ¢fDNA fragments are around 100-160 base pairs long, which is

s« consistent with apoptosis-induced digestion of nuclear DNA into fragments the circumference of a nucleosome

s (Stroun et al) 2001; Roth et al) |2011; Hu et all 2021). Elevated apoptosis can increase the amount and

ss  clinical detectability of ctDNA in the bloodstream (Marques et al|2020) and varying apoptosis rates between

57 clones can in theory lead them to become disproportionately represented in the bloodstream (Heitzer et al.
ss |2020). In addition to the intrinsic differences in growth and death rates for different clones, heterogeneity in

se the tumor microenvironment due to immune infiltration, hypoxia, or treatment onset can also significantly

o jimpact rates of apoptosis (Kaufmann and Earnshaw, 2000; Trédan et al., 2007; Murthy et al., 2021} |Giordano|

s let al., 2016; Zhou et al. |2006; Marques et al 2020; Kato et al.,2016; Rostami et al.,|2020). These can in turn

62 influence the evolutionary fate of a tumor by altering its local selective pressures and genetic heterogeneity

s (Meads et al., [2008).

64 While there are many models studying tumor growth and evolution, the degree to which this underlying

es genetic distortion between blood and tumor tissue exists, and the evolutionary mechanisms that shape it,

s are not directly considered, either in models of tumor evolution derived from ctDNA (Abouali et al., 2022),

&7 or in clinical studies of ¢ctDNA concordance (Stetson et al. [2019). Recent mathematical models studied

es how varying the apoptosis rates of tumor cells could influence the time to detection of early-stage tumors

oo (Avanzini et all [2020) or the effect of differential shedding on the representation of different metastases

7 in ¢tDNA (Rhrissorrakrai et all [2023)), but ignore the underlying evolutionary process or study neutral,
71 non-spatial evolution. Separately, a model by (2015)) showed how reduced chemotherapy exposure

72 in a sanctuary site can promote acquired resistance, but this work did not specifically model the effects on

73 ctDNA genetic distortions.

74, Here we combine a stochastic model of boundary-driven tumor evolution (Waclaw et al., |2015; Bozic|

7 et al.l [2019} |Chkhaidze et al.l |2019} [Noble et al., [2022; |Lewinsohn et al., [2023) with a model of differential

76 apoptosis and cellular shedding and study the effects of spatially-heterogeneous cellular apoptosis on ctDNA
77 composition and its genetic distortion relative to the tumor tissue. We spatially constrain tumor evolution
73 by assuming that differential drug penetration or immune system infiltration leads to increased cell death
7 and DNA fragment shedding on the edge of the growing tumor. We compare results across a variety of
s modeling choices, such as differences between quiescent or proliferative tumors, and track the distortion of
st clones and subclonal mutations in the ctDNA over time.

82 We find that, as cancers grow and shed DNA into the bloodstream, the clones responsible for expansion

g3 into the edge environment are consistently overrepresented in the ct DNA and, in some cases, when progression
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s results in highly heterogeneous tumors, homogeneous regions trapped in the tumor core are underrepresented
g5 in the blood. We further show that over-representation of clones from high-shedding tumor regions can lead to
s differences in the number of detectable subclonal driver mutations, and that the chosen sequencing detection
g7 limit can have a complex effect on the extent of the observed genetic differences. We also discuss the potential
s clinical relevance of distortions in ctDNA genetic variability during clinically significant events, such as the
g appearance of an expanding subclone or cell turnover-driven increases in clonal diversity.

90 For liquid biopsy technologies and ctDNA analyses to transform cancer care, from early screening and
o1 diagnosis through treatment and long-term follow-up, we need to better understand how to interpret the
92 genetic diversity measured in the blood and how it can be used to inform on the true composition of
9s  the tumor tissue. Overall, our results showcase how spatial heterogeneity in apoptosis and cellular shedding
9 across different regions of a tumor can significantly bias the mutational composition of ctDNA and emphasize
95 important directions for further theoretical and clinical investigation into the effect of the microenvironment
9 on ctDNA origin and quantification.

97

« Methods

99 The tumor growth model. While there are many models of tumor growth, to analyze the role of solid
100 tumor spatial structure in shaping the observed variation in c¢tDNA, we use a model of boundary-driven
101 growth, in which cells on the periphery of a tumor are assumed to experience higher proliferation rates
102 over time, as compared to the tumor core. This type of spatially-restricted growth is usually observed in
103 tissues with weak physical resistance and it can significantly alter tumor evolution by blunting the strength
104 of selection, promoting clonal interference, and increasing mutation burden from the tumor core to its edges
w05 (Waclaw et al., |2015; [Noble et al., 2022|). Because of its simplicity and well-understood properties, it is an
10s excellent starting point for exploring how spatial variation in apoptosis can impact ctDNA release and can
17 bias the observed genetic differences between blood and main tissue.

108 In our Eden model, cells grow on a 2D regular lattice and each cell has 8 neighbors (a Moore neighbor-
109 hood), similar to|Waclaw et al.| (2015]); |Chkhaidze et al.| (2019)); [Noble et al.[(2022); Lewinsohn et al.| (2023]).
1o Each simulation begins with a single cell and terminates when the population either goes extinct or reaches
111 a size of 60,000 voxels. In the initial stage of growth, the tumor experiences an environment with death rate

12 dj. Once the tumor reaches a large enough size (here, a radius of 90 voxels or, equivalently, 3 billion cells)


https://doi.org/10.1101/2023.11.10.566658
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.10.566658; this version posted November 11, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A Il Driver-dependent or Shedding in the
Fnitiati i independent invasion into g ini
| Neoplasm initiation I Detection newpedge eryironment tbclaoc?ga r|1'c>rgtt)gt|onal
- %
;gqﬁi‘i @ Tumor cell, no drivers
\ ke @ Tumor cell with driver
~. ‘ 8 mutations
/ Core tumor
environment, death
rate d,
Edge tumor
D environment, death
rated, >d,
B Y Driver-dependent invasion le10
cl
Re) L1070
081 o -~ Example clone 1 (blood)
© *0-8'8 —— Example clone 1 (tissue)
“=0.6 loe® Example clone 2 (blood)
8 ' g. Example clone 2 (tissue)
O 047 Fo.43 Example clone 3 (blood)
O 02 L0 @ Example clone 3 (tissue)
’ ’ N Total population size
0.0 ; , ; — 0.0
’ 0 100 200 . 300 400
Units of time
C Lo Driver-independent invasion 1e10
c :
.SE 084 - 1.0 EE
© LosD Example clone 1 (blood)
g 0.6 4 Los E—J Example clone 1 (tissue)
o) e Example clone 2 (blood)
S 0.4 0.4 S Example clone 2 (tissue)
O oz l o2 % —— Total population size
Loo®

°©

<)
N
04
o

160 . i 1%0 260
Units of time

Figure 1: A. Tllustration of the model. Tumors grow to a clinically detectable size (a 2D cross-section of a 3
billion cell tumor), and are then partially exposed to a new environment, where the cells die with rate de. The
growth rate in the new environment determines the invasive potential of a clone. If the death rate ds is higher
than the initial birth rate, only clones with mutations increasing the growth rate to a positive number can
grow in the new environment, so invasion is driver-dependent. Otherwise, it is driver-independent. Tumor
growth can be proliferative or quiescent. In the former, cells divide when they have an empty neighbor on
the lattice and die at a rate independent of their neighbors. In the latter, cells also divide when they have
an empty neighbor on the lattice, however cell death also requires empty neighbors. The shedding rate of
DNA into the blood is assumed to be proportionate to the death rate. B. Example trajectories, driver-
dependent invasion. Trajectories of clone fractions and total population size for driver dependent invasion,
with visualizations of the 2D tumor at selected timepoints. Each color corresponds to a unique clone, also
shown in the trajectory plot. C. Example trajectories, driver-independent invasion. Trajectories of clone
fractions and total population size for driver independent invasion, with visualizations of the 2D tumor at
selected timepoints. For both cases, p = 0.001,s = 0.1,d; = 0.1,b = 0.7. For driver-dependent invasion,
ds = 0.9. For driver independent invasion, ds = 0.69.

13 we assume the tumor is detected and treatment can occur that can shrink the initial tumor. After detection,

112 we assume that, due to differential chemotherapy drug penetration or differences in immune infiltration and

115 oxygenation, spatial differences in apoptosis appear between between the tumor core and the edge of the
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16 tumor. Specifically, cells in the core, or the sanctuary site (radius R < 90), continue to experience death at
17 rate di, while on the tumor edge, cells have death rate do < d;. For the sake of simplicity, we do not model
1 angiogenesis or interactions of cancer cells with other cell types.

119 This spatial difference in death rates effectively creates a selective barrier for tumor expansion. We
120 consider two parameter regimes: d; < b < dp and d; < dy < b, which we call “driver-dependent" and
121 “driver-independent" invasion, respectively (Figure 1). In the driver-dependent regime, only lineages that
122 have acquired sufficient driver mutations can expand past the core radius R, while, with driver-independent
123 invasion, all lineages continue to grow in the presence of the new edge environment. At each time step,
124 a random cell is chosen uniformly from the population, and attempts division with a probability equal to
125 its birth rate b x (1 4+ s)™, where b is the baseline birth rate in the population, s is the selective advantage
126 of driver mutations, and n is the chosen cell’s driver mutation count. If the cell attempts division, it
127 places a daughter cell in a randomly-chosen empty site in its Moore neighborhood. If the cell is completely
128 surrounded, it cannot divide. Upon division, we assume that the daughter cell acquires a Poisson-distributed
120 number of additional driver mutations, with rate u. We assume each mutation appears only once (infinite
130 site assumption). After attempting division, the chosen cell is removed from the population with probability
131 equal to its death rate d;, where ¢ € 1,2 indicates which region of the tumor the cell inhabits.

132 We also analyze a version of the main model where cells do not die if they are fully surrounded, so that
133 the tumor core remains in a quiescent state and where selection acts by reducing the apoptosis rate rather

13« than increasing birth rate, so that d <— d * (1 — s).

13 Parameter Choices. To significantly save on simulation time and memory, we assume a Poisson distributed
137 driver mutation rate of p = 0.001, roughly 100 times the estimated empirical rate, which we denote by
138 reqs = le—D5, as in|Bozic et al.| (2019)). We also simulate the tumors in 2D, so that the spatial heterogeneity

139 reflects that of a cross section of a much larger 3D tumor, a rationale used in |Noble et al.| (2022)) for similar

©

T identical cells. For a simulation with m voxels, we
real

10 2D spatial models. Each 2D voxel then represents

121 roughly approximate the 3D tumor size, N, to be that of a sphere, with a cross section equal in area to the

122 number of 2D cells, such that N = %W(# A I m)% We further choose a sanctuary site radius, R, ranging from

143 20 to 60 voxels. Assuming 20um diameter tumor cells, and 100 cells per 2D voxel, this R would correspond
144 to an equivalent tumor with a radius of 0.4 to 1.2cm and approximately 1000 to 20,000 cells, representing
15 a cross section of a 3D tumor of roughly 30 million - 1 billion cells (Del Monte, 2009)). We simulate tumors

1s until they expand well beyond the core sanctuary site and stop the simulations when tumors reach a size of
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127 60,000 voxels, corresponding to a tumor size of approximately 10 billion cells or a radius of 2.5cm. Without
128 loss of generality, throughout what follows, we also assume a constant selective benefit for driver mutations,

e s=0.1.

150

N Final tumor size

R Core / sanctuary site radius

b Initial cell birth rate

dq Cell death rate in the tumor core

ds Cell death rate in the tumor edge

S Driver mutation fitness advantage

1 | Poisson-distributed driver mutation rate

Table 1: Main parameters used in the model.

151 Modeling clone fractions and variant allele frequencies (VAFs) in ctDNA.

152 To compute clone frequencies in the ctDNA, let N;; be the number of cells of clone ¢ from region j, with
13 corresponding death rate d;. We assume that shedding into the blood is proportional to the death rate of a
1« tumor region (Avanzini et al., |2020), i.e. the fraction of a tumor clone in the ctDNA population at time ¢
155 can be computed as a weighted average over the frequency of the clone in each region, %

156 While this represents the clone’s fraction of the tumor population, to test the effect of clone fraction
157 distortion on mutation detection, we also estimate clinically realistic VAFs in the blood, which also contains
158 DNA fragments from healthy tissue. To do this, we compute the frequencies of each driver mutation belonging
159 to each clone and then estimate the fraction of the total number of fragments that originate from the tumor
10 (the tumor fraction). At the point of diagnosis, Phallen et al. found that the mean tumor fraction in the
161 bloodstream for stage I and II breast, lung, ovarian, and colorectal tumors was 1% (Phallen et al.l [2017)).
12 We calibrate the simulated tumor fraction by assuming this is the fraction for proliferative tumors at the
1ea  point of detection, assumed to occur at 3 billion cells, with initial death rate of dy = 0.1.

164 To estimate a shedding probability, we adapt a formula from |Avanzini et al.| (2020). Assuming an

15 exponentially growing tumor with a constant growth rate, the formula computes the number of fragments

16 shed into the bloodstream as a Poisson-distributed random variable, with mean C' = Jevff, where N, d, q,
17 € and r are the number of cells, death rate, shedding rate, decay rate, and growth rate respectively. We
168 estimate C using the Phallen data set, which found the median DNA concentration in plasma to be 29 ng/ml.

19 Repeating a calculation from their paper, a haploid genome weighs roughly 0.0033ng, suggesting that there

170 are 8788 haploid genome equivalents (HGEs) in 1ml of plasma. With 5L total blood volume in the human
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171 body and 55% plasma, we can therefore estimate C' to be 5000 x 0.55 x 8788 x 0.01 = 241,670. While the
172 formula depends on 7 (the tumor birth rate can in fact slightly alter the total ctDNA molecules present in
173 a blood draw), the tumor population changes on the order of days, while DNA decays in the blood with a
74 half life of about 30 minutes (Sanz-Garcia et all 2022)). This implies € = 48In2 =~ 33.3, while r < 1. In a

175 spatial setting, the effective growth rate is even lower, because cells do not divide when surrounded, so we

3e9x0.1xq

€ b

176 assume r ~ 0. Setting C' = we estimate g ~ 0.026.
177 The mean number of tumor fragments at other time points is then computed as C; = NTQE, where d is
176 the mean death rate of the whole tumor. For a mutation m with tissue frequency f,, and overall death rate
17 dm, we write the total number of fragments with that mutation as C,, ~ Pois(@). For a 15ml blood
10 draw (0.3% of the total supply), we scale the mean number of fragments by 0.003. Let Cin, be the total
181 fragments in a 15ml blood draw, at the point of detection. Then Cyor, ~ Pois(5000 x 0.55 x 8800 x 0.003).
1.2 We assume the mean number of non-tumor fragments remains constant at Cp, = 0.99 * Cipy,. If we assume
13 all cells are diploid, each mutation appears on a single chromosome copy and we ignore the possibility of
184 recurrent mutation or subsequent allelic gain or loss, we can write the expression for the spatially biased
Pois(3Cm)

15 VAF of a specific mutation in the blood as Pors(

Pos(Cir ) To analyze the effect of spatially correlated death

186 rates on the detection of tumor mutations, we compute both spatially biased and unbiased VAFs by using
w7 the mean death rate of the specific mutation (d,,) for the former, and the mean death rate of the entire
s tumor (replace d,,, with d in the expression for C,,) for the latter.

189

10 Inverse Simpson diversity as a measure of intratumor heterogeneity, ITH. Since an important
191 goal of this work is understanding how ctDNA data collected from the blood may distort estimates of clonal
192 heterogeneity present in the main solid tumor, we use the inverse Simpson diversity index to quantify and
193 compare heterogeneity estimates from blood and tissue sequences. The inverse Simpson diversity index is a

104 classic diversity measure employed in many previous studies of population diversity which takes into account

195 the number of lineages present, as well as the relative abundance of each (Buckland et al., 2005; [Noble et al.,

16 [2022)). For a set of clone fractions f1, ..., fy, with Zf, fi =1, it is defined as D = Zl& 7=
1 k3

197

198 Resu:l.ts

199 Spatial differences in apoptosis and shedding can bias clone fractions in ctDNA
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200 To study how the spatial structure of a solid tumor, through spatial heterogeneity in apoptosis, can bias
201 the observed ctDNA in blood draws, we first analyze the difference in the clonal fractions between blood
200 and tumor tissue. In Figure we compare results for proliferative versus quiescent cell models, small
203 versus large sanctuary sites and driver-dependent versus driver-independent invasion. Across all modeling
20 scenarios, Figure [2|shows that new clones on the expanding front tend to be over-emphasized in the ct DNA,
20s while older clones, trapped in the tumor sanctuary, tend to be under-represented. The magnitude of the
206 differences in clonal fraction and their likelihood to impact clinical detectability depend on the accumulated
207 clonal diversity on the edge of the tumor, mediated by the edge environmental effects.

In the driver-dependent case (Figures and B), the few driver clones able to invade the new environ-
ment experience a higher death rate during expansion on the edge and end up over-represented in the blood,
making the absolute difference between the blood and tissue clone fractions substantial. The maximum
difference between the two occurs in the limiting case of a single clone, originating on the expanding front
and growing without competition in the new edge environment. For proliferative tumors, we can write an
upper bound for this clone fraction difference. If we assume the tumor initiates with death rate d; and grows
to a constant size S, after which a single invasive subclone grows to size x, experiencing death rate da, the

difference in the expected clone fraction can be written as

o dox oz

208 It is easy to show that the maximum value of f is %, which occurs when = = S %. We plot the

200 maximum possible clone fraction difference for all d; and ds in Supplementary Figure and show that
210 despite the apparently high choice of dy in some of our simulations, large differences in estimated clonal
211 frequencies can occur with very small absolute death rates. In line with the prediction that the peak clone
212 fraction difference does not depend on region size, simulations also show that, for driver-dependent invasion,
213 the size of the tumor sanctuary does not greatly impact the distribution of clonal fraction differences (Figures
214 and B).

215 The sanctuary size does affect the results for proliferative driver-independent tumors, which show very
216 little difference between the ctDNA and main tissue, when the sanctuary site is small (Figure ) This is
217 because early clones from the small sanctuary region can invade the edge environment before the appearance
21s and spread of later clones, and are therefore represented throughout all tumor regions that differentially shed

219 into the blood. This effect is still present with a larger sanctuary site, since the observed minimum clonal
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Figure 2: Clone fraction differences between blood and tissue: (A-D) Each plot shows the results
of 50 simulation runs, where each point represents the difference between clonal frequencies estimated from
the blood versus those present in the tumor, for a single clone, with the color showing the age of the clone
relative to the total simulation time. Tumors were grown from a single cell until reaching a 2D cross-section
of a 10 billion cell tumor. For all simulations, ¢ = 0.001,s = 0.1,d; = 0.1,b = 0.7. For driver-dependent
invasion, des = 0.9. For driver independent invasion, ds = 0.69. The orange and blue lines show the average
positive and negative clone fraction difference, respectively. Only clones comprising at least 10% of the
tumor were included in the average. Shading is +1 s.d. We show the same plots over normalized time in

Supplementary Figure

220 fraction difference is still much smaller than the corresponding one in the driver-dependent case (compare
2 Figures 2B and D).

222 For quiescent tumors, ctDNA can only come from the shedding of cells on the expanding front, which is
223 determined by the total size of the tumor prior to detection, and the sanctuary size again has little effect on
22+ the observed differences (Figures and D). Despite this, the magnitude of the differences in death rates
225 are comparable to proliferative tumors. However, we notice that quiescent tumors distort clone fractions
226 across all population sizes and time points, due to the additional spatial bias in death rate. One thing to
227 note is that, while here we assume that differences in shedding are caused by spatial heterogeneity in death
228 rates, we expect results to be similar in any extension of the model in which clones are weighted differently

220 in the ctDNA than the tissue, for example, with differential access to the bloodstream based on proximity

10
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230 to blood vessels or via a model of active secretion. Additionally, we find that the version of the model where
231 driver mutations reduce death rate, akin to apoptosis resistance, results in similar clone fraction distortions
22 (Supplementary Figure [S3).

233

23«  Differential shedding can make us overestimate the true intra-tumor heterogeneity

235 In Figure [3] we use the inverse Simpson diversity index across normalized time points as a proxy for
23 ITH in the ctDNA and in the tissue, over the course of tumor progression. We find that driver-independent
27 tumors with a large sanctuary site consistently show a large difference between blood and tissue ITH (Figure
28 |3ID), while tumors with a small sanctuary site do not show any difference. This is a consequence of the clone
239 fraction differences observed in Figure [2| which, for proliferative tumors, vanish once the sanctuary site is
20 too small. Also consistent with Figure [2] quiescent driver-independent tumors show elevated ITH for both
20 sanctuary sizes (Supplementary Figure . As expected, driver-dependent tumor growth is driven by

22 very few clones following detection, which results in much lower overall clonal diversity (Figures , B and

23 Supplementary Figure .
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Figure 3: Discrepancies between blood and tissue clonal diversity. The subplots show the inverse
Simpson diversity index of the clonal frequencies in the blood and tissue for each clone in 50 simulated
tumors. Timepoints are normalized by run and then binned and down-sampled. Tumors were grown from
a single cell until reaching a 2D cross-section of a 10 billion cell tumor. For all simulations, x = 0.001,s =
0.1,d; =0.1,b = 0.7. For driver-dependent regrowth, do = 0.9. For driver independent regrowth, do = 0.69.
Shading represents £1 s.d. The figure shows results for proliferative tumors only. For all scenarios, see
Supplementary Figure [S_Zl
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244
s The effect of sequencing detection limits and sanctuary site size on observed VAFs in the blood
246 We next analyze how biased clonal fractions in the blood translate into biased observed VAFs, under
247 various sequencing detection limits. In Figure [4) we consider sequence detection limits of 10~ and 1072,
28 which are often utilized for panel-based assays optimized for MRD detection (Chin et al}2019). As expected,
20 a higher sequence detection limit of 1072 diminishes the number of detected drivers (VAF exceeds the
20 detection limit) and increases the tumor size at which the first mutations are detected, compared to a limit
251 of 1073 (Figure [4|A). This effect is more pronounced in quiescent tumors than proliferative ones. While
22 driver-independent tumors produce many more mutations, responsible for the higher ITH shown in (Figure
253 , they are nonetheless very low-frequency and so the number of mutations above a 102 threshold is
25« comparable to that of driver-independent tumors. Most mutations evade detection entirely, as the overall
25 percentage of driver mutations detected at any point is below 10% for all scenarios (Supplementary Figure
256 C-D).

257 In Figure [4B, we compare the percent change in number of detectable drivers when the simulated VAFs
258 are compared to VAFs from a spatially uniform null model, computed assuming the tumor sheds all clones
25 at the same rate. We show that spatial tumor heterogeneity can greatly affect the number of detectable
260 driver mutations in the blood, and sequencing detection limits can further alter the extent of this bias, with
26t the timing and magnitude of difference spikes further dependent on the detection limit of the sequencing
262 technology.

263 Because clonal VAFs cannot change due to shedding differences, the effect depends entirely on the de-
264 tection limit relative to subclonal VAFs. We see that spatial bias in proliferative driver-dependent tumors
265 increases when the detection limit is raised, but quiescent spatial bias either decreases in magnitude and
266 appears at a larger tumor size, or disappears all together. We show the percent spatial bias over normalized
27 time in Supplementary Figure B.

268 In Figures[4IC-F, we examine the dependency of spatial bias on detection limit by plotting the frequency
260 versus the mean tumor radius of every mutation present in 50 simulation runs at the point of maximal
20 spatial bias (the labeled peaks in Figure ) Plots corresponding to the peaks of the other scenarios are
2z shown in Supplementary Figure [S6l We observe a cluster of clonal mutations in the core of the tumor
222 (colored black), which are equally represented in the blood and tissue. Due to boundary-driven growth,
273 subclonal mutations accumulate more on the edge of the tumor and tend to remain there across generations,

274 increasing the frequency of mutations further from the core. Because the mutations also shed at higher rates,
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Figure 4: Influence of spatial bias on limits of detection. A. Plots of the number of detectable
driver mutations starting from the point of relapse for minimum detection frequencies of 1le-3 and le-2 for
proliferative and quiescent tumors relapsing at ~ 10% and ~ 10° cells. Mutations were detectable if the
estimated VAF exceeded the detection limit. VAFs were estimated based on a tumor fraction of 1% for a 3
billion-cell tumor with death rate of 0.1 (see Methods). B. Percent change in number of detectable drivers
when the VAFs in A are compared to VAFs computed assuming the tumor sheds all clones at the same
rate for the same detection limits (see Methods). C-F. Scatter plots of mean spatially biased VAFs (green)
and unbiased VAFs (blue) at the size where the average spatial bias over all replicates is maximal (marked
with the corresponding letter in B). Each plot shows all mutations for 50 replicates of the corresponding
simulation scenario. The x-axis is the mean distance of the mutation from the tumor’s center. Black points
are clonal mutations, which show perfect overlap between the blood and tissue. The vertical line marks the
end of the sanctuary region.

filtering for larger mutations can increase bias, but will decrease it once the majority of detectable VAFs are
clonal (Figure [4[F). Of clinical relevance is the case where subclonal variants are exaggerated to near-clonal
frequencies, which occurs in the driver-dependent case (Figure -F). This showcases the benefits and
risks of distorted ctDNA: while exaggerated subclonal mutations would provide more biomarkers to aid in

detecting recurrence, they would make poor targets for treatment.

Discussion

As cancers grow, they slough off cells and DNA from apoptotic or necrotic cancer cells, which enter the
bloodstream. Through the use of technologies such as next-generation sequencing, these fragments of DNA
can reveal a wealth of information about cancer, without the need for invasive surgical biopsies. Here we

explore how boundary-driven tumor growth and spatial heterogeneity in cellular death rates impact both
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255 the clonal evolution of the tumor, and its representation in ctDNA. We find that the appearance of genetic
286 distortions between blood and tissue ultimately depends on whether the tumor’s genetic heterogeneity varies
257 with respect to rates of apoptosis and ctDNA shedding, which themselves can vary between tumors or over
258 time, for a single tumor. When there is a strong correlation, such as when a change in cellular death rate
289 occurs in direction of tumor growth, ctDNA can drastically bias which clones are observed and can lead to
200 biased estimates of intratumor heterogeneity (ITH).

291 In the driver-dependent case and, to a lesser extent, the driver-independent case explored here, this bias
202 can be beneficial, by increasing the visibility of and sensitivity for the particular mutations responsible for
203 tumor progression. Spatial differences in cell death rates could also lead to subclonal mutations appearing
204 at clonal frequencies in ctDNA, thus increasing the likelihood that they are mistaken for clonal mutations
25 and chosen as therapeutic targets (Figure . Our results agree with findings that quiescent tumors may be
206 difficult to detect in the bloodstream (Figure ), and further suggest that any detectable ctDNA is likely
207 to dramatically under-represent some tumor regions with reduced shedding (Figure . One possibility is
206 that a lesion with a quiescent interior could be nearly undetectable and suddenly begin to shed appreciably
299 due to a clonal expansion. Because of the extremely biased location of shedding in quiescent tumors, the
a0 overall size should not be assumed to correlate well with ct DNA yield. The potential for exaggerated observed
st heterogeneity in the blood relative to the tissue for tumors experiencing high apoptosis on the expanding
sz front suggests that low-frequency clones, with a high probability to go undetected in a tissue sample, could
as  be better captured in the blood and provide an early indicator of heterogeneous growth. At the same
as time, when clinical studies find greater heterogeneity in blood than in tissue samples, this is usually mainly
as attributed to missed heterogeneity in the tissue sample. However, localized high death rates could generate
as more mutations and at the same time enrich these in ctDNA, through increased shedding. This both poses
a7 a potential confounding factor for assessing tumor mutational burden from ctDNA, while simultaneously
as  supporting the potential of blood-based diagnostics to be a more sensitive indicator of changing levels of
as  heterogeneity than tissue biopsies. Recent work has found that in contrast to high tissue mutational burden,
a0 which may indicate high neoantigen load and better overall survival, high blood mutational burden may better
ain reflect overall ITH and therefore indicate poor overall survival (Fridland et al., |2021)). High heterogeneity
sz correlated to high-shedding regions could contribute to this discordance.

313 This general principle that genetic distortion between blood and tissue is a function of clonal dynamics is
s1a not limited to spatial heterogeneity in intrinsic death rates, and could also arise as the result of differential

a5 access to blood vessels or nutrients. Further specific scenarios can be theoretically and clinically explored,
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s such as local metastasis of a primary breast tumor to the lymph nodes, or the microinvasion of a colorectal
a7 tumor into the subserosal tissue, particularly during neoadjuvant treatment when the tumor faces novel
sz selective pressure. In both of these cases, there is recent evidence that ctDNA shedding can vary as a
ato  function of spatial location. Clonal replacement during treatment for early stage breast tumors is also well
a0 documented, and a small study of early stage breast cancer patients discovered mutations private to clones
a1 that invaded the lymph nodes. In one patient, as an example of subclone over-representation, these mutations
w2 comprised the majority of detected ctDNA (Bredno et al., |2020; Caswell-Jin et al.l [2019; Barry et al., [2018)).
323 While our simulations consider only a single form of spatial growth and do not incorporate a fully
s« realistic downstream analysis of ctDNA, here we nonetheless show that even a simple model of spatially
35 heterogeneous tumor growth and shedding can showcase how blood sample data may not represent the
a6 tissue accurately, depending on the evolutionary processes shaping the tumor around the time of a blood
a7 draw. Further biases as a result of low tumor fraction in ¢fDNA, copy number variation, germline mutations,
a8 hematopoetic mutations, and heterogeneity absent from small tissue samples introduce significant additional
w9 complexity that we ignore here (Kammesheidt et al., 2018; |Chan et al., |2020). Future directions include
a0 incorporating a spatial model of blood vessel distribution that impacts drug delivery, oxygenation, and the
a1 resulting apoptosis and shedding rates. Rather than modeling changes to overall clone frequencies under
sz an infinite sites assumption, incorporating a specific resistance model would further allow predictions of the
sz detectability of specific drivers. Here we assume that changes to birth and death rates happen incrementally
asa  through a series of point mutations, while specific models of chemotherapy resistance or immune escape
ass  may have a different effect on growth rates and the resulting shedding. Because the expanding clones in
s our model continue to experience high apoptosis, our results would best apply when apoptosis reduction is
a7 absent or only partial in the resistant population, such as in apoptosis-induced compensatory proliferation
ws  (AICP) (Friedmanl [2016]).

339 A further area of study is using model insights to correct for the observed bias between ctDNA and tissue
a0 genetics. The work here reveals some of the circumstances in which we would expect such a bias to manifest
a1 and the mechanisms by which it would occur, but systematically inverting that bias to reconstruct with
a2 maximum fidelity the clonal composition of the tumor from the blood data will require further work. For
s3  example, some important applications of tumor genome samples to clonal lineage tracing (“tumor phyloge-
as  netics”) depend on accurate quantification of allele frequencies, and extending such methods to use blood
as  data productively will require ways to not only identify, but also correct for these biases. It will be important

a6 to characterize the circumstances under which this problem is invertible and what additional data might be
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needed.

At a basic level, ctDNA can reveal information about the likely presence and burden of cancer within
the body. To make full use of this new technology, further work is needed to understand all of the ways that
ctDNA can provide a distorted mirror of the main tissue, how tumor evolution shapes these biases and how

to correct for them.

Code and data availability

Code and raw data used to generate all results and figures for this paper can be found at https://github.

com/trachmanl/lattice-tumor-ctdna.
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sis JFigurel.  |A. Illustration of the model. Tumors grow to a clinically detectable size (a 2D cross-section of|
517 | a 3 billion cell tumor), and are then partially exposed to a new environment, where the cells|
518 | die with rate do. The growth rate in the new environment determines the invasive potential of]
519 | a clone. If the death rate ds is higher than the initial birth rate, only clones with mutations|
520 | increasing the growth rate to a positive number can grow in the new environment, so invasion|
521 | 1s driver-dependent. Otherwise, 1t 1s driver-independent. Tumor growth can be proliferative]
522 | or quiescent. In the former, cells divide when they have an empty neighbor on the lattice and|
523 | die at a rate independent of their neighbors. In the latter, cells also divide when they have an|
524 | empty neighbor on the lattice, however cell death also requires empty neighbors. The shedding|
525 | rate of DNA into the blood i1s assumed to be proportionate to the death rate. B. Example|
526 | trajectories, driver-dependent invasion. Irajectories ot clone tractions and total population size|
527 | for driver dependent invasion, with visualizations ot the 2D tumor at selected timepoints. Each|
528 | color corresponds to a unique clone, also shown in the trajectory plot. C. Example trajectories,|
529 | driver-independent invasion. Trajectories ot clone fractions and total population size for driver|
530 | independent invasion, with visualizations of the 2D tumor at selected timepoints. For both|
531 | cases, 4 = 0.001,s = 0.1,dy = 0.1,b = 0.7. For driver-dependent invasion, do = 0.9. For driver|
532 | independent 1nvasion, do = 0.69. |

s Figure2.  |Clone fraction differences between blood and tissue: (A-D) Each plot shows the results|

534 | of b0 simulation runs, where each point represents the difference between clonal frequencies|
535 | estimated from the blood versus those present in the tumor, for a single clone, with the color]
536 | showing the age of the clone relative to the total simulation time. Tumors were grown from]|
537 | a single cell until reaching a 2D cross-section of a 10 billion cell tumor. For all simulations,)
58 | pu = 0.001,s = 0.1,d; = 0.1,6 = 0.7. For driver-dependent invasion, do = 0.9. For driver|
539 | independent invasion, do = 0.69. 'The orange and blue lines show the average positive and|
50 | negative clone fraction difference, respectively. Only clones comprising at least 10% of the]
s | tumor were included in the average. Shading is £1 s.d. We show the same plots over normalized|
542 | time in Supplementary Figure [S2||

ss [Figure3.  |Discrepancies between blood and tissue clonal diversity. The subplots show the inverse]
540 | Simpson diversity index of the clonal frequencies in the blood and tissue for each clone 1n 50|
545 | simulated tumors. Timepoints are normalized by run and then binned and down-sampled.|
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546 | Tumors were grown from a single cell until reaching a 2D cross-section ot a 10 billion cell tumor.|
57 | For all simulations, 4 = 0.001,s = 0.1,d; = 0.1,b = 0.7. For driver-dependent regrowth,
58 | ds = 0.9. For driver independent regrowth, ds = 0.69. Shading represents +1 s.d. The figure
549 | shows results for proliferative tumors only. For all scenarios, see Supplementary Figure |S4]|

sso Figure4. |Influence of spatial bias on limits of detection. A. Plots of the number of detectable

551 | driver mutations starting from the point ot relapse for minimum detection frequencies of le-3|

ss2 | and le-2 for proliferative and quiescent tumors relapsing at ~ 10° and ~ 10° cells. Mutations|

553

ss4 | on a tumor fraction of 1% for a 3 billion-cell tumor with death rate of 0.1 (see Methods). B.|
555 | Percent change in number of detectable drivers when the VAFs in A are compared to VAFS|
55 | computed assuming the tumor sheds all clones at the same rate for the same detection limits|
ss7 | (see Methods). C-F. Scatter plots of mean spatially biased VAFs (green) and unbiased VAFg|
ss8 | (blue) at the size where the average spatial bias over all replicates is maximal (marked with the]
559 | corresponding letter in B). Each plot shows all mutations for 50 replicates of the corresponding]

560

561 | Black points are clonal mutations, which show pertect overlap between the blood and tissue.|

s62 | The vertical line marks the end of the sanctuary region.|

ss FigureS1. |A heatmap showing the maximum clone fraction difference possible for proliferative tumors with|

s64 | respect to all values of dy and ds.|

ses [FigureS2. |Clone fraction differences between blood and tissue over normalized time: (A-D)|

566 | Each plot shows the results ot 50 simulation runs, where each point represents the difterence|
567 | between clonal frequencies estimated from the blood versus those present in the tumor, for al
568 | single clone, with the color showing the age of the clone relative to the total simulation time.|
569 | Tumors were grown from a single cell until reaching a 2D cross-section of a 10 billion cell tumor.|
50 | Because mutation accumulation is random, we used down-sampled, normalized time points to|
s | plot each simulation run within a similar time frame. For all simulations, u = 0.001,s =|
52 | 0.1,dy = 0.1,b = 0.7. For driver-dependent relapse, do = 0.9. For driver independent invasion,|
573 | dy = 0.69. The orange and blue lines show the average positive and negative clone fraction|
s | difference, respectively. Only clones comprising at least 10% of the tumor were included in the]
575 | average. Shading i1s £1 s.d. |

se JFigureS3. [Clone fraction differences between blood and tissue with selection acting on death
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s | (A-D) Each plot shows the results of 50 simulation runs, where each point represents the|

578 | difterence between clonal frequencies estimated from the blood versus those present in the tumor|
579 | for a single clone, with the color showing the age of the clone relative to the total simulation|
580 | time. Tumors were grown from a single cell until reaching a 2D cross-section of a 10 billion cell|
581 | tumor. For all simulations, 4 = 0.001,s = 0.1,d; = 0.1,b = 0.7. For driver-dependent relapse,)|
582 | ds = 0.9. For driver independent invasion, do = 0.69. The orange and blue lines show the]
583 | average positive and negative clone fraction difference, respectively. Only clones comprising at|
sea | least 10% of the tumor were included in the average. Shading is =1 s.d.|

ss [FigureS4. [Discrepancies between blood and tissue clonal diversity: Inverse Simpson index of clone]

586 | frequencies in blood and tissue for each clone in 50 simulated tumors at simulation timepoints|
587 | normalized by run and then binned and down-sampled. Tumors were grown from a single cell|
588 | until reaching a 2D cross-section of a 10 billion cell tumor. For all simulations, 1 = 0.001, s =|
589 | 0.1,d; =0.1,b = 0.7. For driver-dependent regrowth, do = 0.9. For driver independent regrowth,|
590 | do = 0.69. Shading represents +1 s.d.|

st JFigureS5. [Number, percent spatial bias, and overall percentage of detectable drivers: (A) Plots|

592 | of the number of detectable driver mutations starting from the point of relapse for minimum)|
s | detection frequencies of le-3 and le-2, for proliferative and quiescent tumors, relapsing at ~ 10°|
se4 | and ~ 107 cells, over normalized timepoints. Mutations were detectable if the estimated VAF)|
595 exceeded the detection limit. VAFs were estimated based on a tumor fraction of 1% for
596 | 3 billion-cell tumor with death rate of 0.1 (see Methods). (B) Percent change in number of|
so7 | detectable drivers when the VAFs in (A) are compared to VAFs computed assuming the tumor|
598 | sheds all clones at the same rate for the same detection limits, referred to as percent spatial bias|
509 | (see Methods). (C) Overall percentage of detected driver mutations relative to population size.|
so0 | (D) Overall percentage of detected driver mutations relative to normalized timepoints.|

sor [FigureS6. [Spatial distribution of VAFs at points of maximal spatial bias for all scenarios: The|

602 | top row of line plots are repeated from Figure 4B, showing the percent change in detected|
603 | driver mutations for detection limits le — 3 and le — 2, under driver-dependent and independent|
604 | invasion. Fach scatterplot shows the distribution of VAFs corresponding to distance from the]
605 | tumor_center.|
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=« Supplementary Material: Supplementary Figures

-10
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Figure S1: A heatmap showing the maximum clone fraction difference possible for proliferative tumors with
respect to all values of d; and ds.
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Figure S2: Clone fraction differences between blood and tissue over normalized time: (A-D)
Each plot shows the results of 50 simulation runs, where each point represents the difference between clonal
frequencies estimated from the blood versus those present in the tumor, for a single clone, with the color
showing the age of the clone relative to the total simulation time. Tumors were grown from a single cell
until reaching a 2D cross-section of a 10 billion cell tumor. Because mutation accumulation is random, we
used down-sampled, normalized time points to plot each simulation run within a similar time frame. For
all simulations, ¢ = 0.001,s = 0.1,d; = 0.1,b = 0.7. For driver-dependent relapse, do = 0.9. For driver
independent invasion, do = 0.69. The orange and blue lines show the average positive and negative clone
fraction difference, respectively. Only clones comprising at least 10% of the tumor were included in the
average. Shading is +1 s.d.
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Figure S3: Clone fraction differences between blood and tissue with selection acting on death:
(A-D) Each plot shows the results of 50 simulation runs, where each point represents the difference between
clonal frequencies estimated from the blood versus those present in the tumor for a single clone, with the color
showing the age of the clone relative to the total simulation time. Tumors were grown from a single cell until
reaching a 2D cross-section of a 10 billion cell tumor. For all simulations, u = 0.001,s = 0.1,d; = 0.1,b = 0.7.
For driver-dependent relapse, do = 0.9. For driver independent invasion, do = 0.69. The orange and blue
lines show the average positive and negative clone fraction difference, respectively. Only clones comprising
at least 10% of the tumor were included in the average. Shading is £1 s.d.
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Figure S4: Discrepancies between blood and tissue clonal diversity: Inverse Simpson index of clone
frequencies in blood and tissue for each clone in 50 simulated tumors at simulation timepoints normalized
by run and then binned and down-sampled. Tumors were grown from a single cell until reaching a 2D
cross-section of a 10 billion cell tumor. For all simulations, = 0.001,s = 0.1,dy; = 0.1,b = 0.7. For driver-
dependent regrowth, do = 0.9. For driver independent regrowth, do = 0.69. Shading represents +1 s.d.
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Figure S5: Number, percent spatial bias, and overall percentage of detectable drivers: (A)
Plots of the number of detectable driver mutations starting from the point of relapse for minimum detection
frequencies of le-3 and le-2, for proliferative and quiescent tumors, relapsing at ~ 10% and ~ 10° cells,
over normalized timepoints. Mutations were detectable if the estimated VAF exceeded the detection limit.
VAFs were estimated based on a tumor fraction of 1% for a 3 billion-cell tumor with death rate of 0.1 (see
Methods). (B) Percent change in number of detectable drivers when the VAFs in (A) are compared to
VAFs computed assuming the tumor sheds all clones at the same rate for the same detection limits, referred
to as percent spatial bias (see Methods). (C) Overall percentage of detected driver mutations relative to
population size. (D) Overall percentage of detected driver mutations relative to normalized timepoints.
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Figure S6: Spatial distribution of VAFs at points of maximal spatial bias for all scenarios: The
top row of line plots are repeated from Figure [4B, showing the percent change in detected driver mutations
for detection limits 1le — 3 and le — 2, under driver-dependent and independent invasion. Each scatterplot
shows the distribution of VAFs corresponding to distance from the tumor center.
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