

1 **Fibrillar adhesion dynamics govern the timescales of nuclear mechano-response via the vimentin
2 cytoskeleton**

4 Amy E.M. Beedle^{1,2,*}, Anuja Jaganathan³, Aina Albajar-Sigalés¹, F. Max Yavitt^{4,5}, Kaustav Bera^{4,5}, Ion
5 Andreu^{1,6,7}, Ignasi Granero-Moya¹, Dobryna Zalvidea¹, Zanetta Kechagia^{1,8}, Gerhard Wiche⁹, Xavier
6 Trepat^{1,10}, Johanna Ivaska¹¹⁻¹⁴, Kristi S. Anseth^{4,5}, Vivek B. Shenoy³, Pere Roca-Cusachs^{1,10} *

8 ¹ Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology
9 (BIST), 08028 Barcelona, Spain

10 ² Department of Physics, King's College London, London WC2R 2LS, UK

11 ³ Center for Engineering Mechanobiology and Department of Materials Science and Engineering,
12 University of Pennsylvania, Philadelphia, PA 19104

13 ⁴ Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA

14 ⁵ BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303 USA

15 ⁶ Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, E-48940, Leioa, Spain

16 ⁷ Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain

17 ⁸ Department of Biochemistry, University of Zurich, Zurich, Switzerland

18 ⁹ Max Perutz Laboratories, Department of Biochemistry and Cell Biology, University of Vienna, 1030
19 Vienna, Austria

20 ¹⁰ University of Barcelona, 08028 Barcelona, Spain

21 ¹¹ Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland

22 ¹² Department of Life Technologies, University of Turku, FI-20520 Turku, Finland.

23 ¹³ InFLAMES Research Flagship Center, University of Turku, Turku, Finland.

24 ¹⁴ Foundation for the Finnish Cancer Institute, Tukholmankatu 8, FI-00014 Helsinki, Finland.

26 *Correspondence:

28 Amy E.M. Beedle (amy.beedle@kcl.ac.uk) and Pere Roca-Cusachs (proca@ibecbarcelona.eu).

30 **Abstract**

32 The cell nucleus is continuously exposed to external signals, of both chemical and mechanical nature. To
33 ensure proper cellular response, cells need to regulate not only the transmission of these signals, but also
34 their timing and duration. Such timescale regulation is well described for fluctuating chemical signals, but
35 if and how it applies to mechanical signals reaching the nucleus is still unknown. Here we demonstrate
36 that the formation of fibrillar adhesions locks the nucleus in a mechanically deformed conformation,
37 setting the mechanical response timescale to that of fibrillar adhesion remodelling (~1 hour). This process
38 encompasses both mechanical deformation and associated mechanotransduction (such as via YAP), in
39 response to both increased and decreased mechanical stimulation. The underlying mechanism is the
40 anchoring of the vimentin cytoskeleton to fibrillar adhesions and the extracellular matrix through plectin
41 1f, which maintains nuclear deformation. Our results reveal a mechanism to regulate the timescale of
42 mechanical adaptation, effectively setting a low pass filter to mechanotransduction.

43 **Introduction**

44 Mechanical force is a fundamental regulator of cellular behaviour, driving changes in protein
45 conformation and localisation, gene expression and cell function. The inability of a cell to correctly sense
46 force underpins a number of pathologies, including fibrosis and cancer^{1,2}. Mechanistically, when a cell
47 receives a mechanical stimulus (such as force application or increased substrate rigidity) from the
48 extracellular matrix (ECM), this triggers a highly coordinated chain of events that propagates the signal
49 across the cytoplasm to the nucleus. This mechanotransduction process includes the growth and
50 maturation of the focal adhesion complexes at the cell surface, and the formation and organization of
51 actin stress fibres, which connect to and mechanically deform the nucleus³. In turn, nuclear deformation
52 has a plethora of effects, including among others chromatin reorganization^{4,5}, signalling at the nuclear
53 envelope^{6,7}, and altered nucleo-cytoplasmic transport dynamics, leading to the nuclear accumulation of
54 mechanosensitive transcription factors^{3,8}. Whereas these steps describe cell responses to increased force
55 transmission, cells in physiological conditions are exposed to a dynamically changing environment where
56 forces can also decrease. However, the molecular mechanisms and timescales that govern the reversibility
57 of mechanotransduction are largely unknown.

58

59 A potential structure that could govern this reversibility, and its timescales, is the Extracellular Matrix
60 (ECM) and its remodelling, which has recently been shown to store information of past cellular behaviour.
61 Indeed, fibronectin deposition guides cell migration by generating a physiochemical cue that provides
62 spatial memory⁹, and collagen remodelling promotes the invasion from a mechanically stiff to a soft
63 environment via energy minimization¹⁰. ECM deposition and remodelling is also a defining feature of cells
64 in a high rigidity environment¹¹. This remodelling occurs concomitantly with the formation of fibrillar
65 adhesions, which are long-lived integrin- $\alpha_5\beta_1$ rich adhesions that colocalise with fibronectin fibrils. Fibrillar
66 adhesions mature from focal adhesions as they are pulled by actin fibres and get progressively enriched
67 with the protein tensin. From this evidence, it is tempting to hypothesize that ECM remodelling, and
68 fibrillar adhesions, can regulate the dynamics of cell adaptation to a loss of forces.

69

70 Here we show that actomyosin contractility is required to initiate, but not sustain, nuclear deformation
71 and subsequent mechanosignalling. Instead, nuclear deformation can be sustained simply through the
72 anchoring of the vimentin cytoskeleton to the ECM through fibrillar adhesions. Upon loss of mechanical
73 forces, this ECM-vimentin coupling delays mechano-adaptation by maintaining nuclear deformation and
74 the nuclear localisation of mechanosensitive transcription factors. Furthermore, this ECM-vimentin
75 connection also buffers high mechanical loads, protecting the nucleus from deformation and damage.
76 Taken together, we unveil a mechanism by which fibrillar adhesions act as a low-pass filter for mechanical
77 stimulation, setting the timescale of response to that of fibrillar adhesion remodelling (~1 hour).

78 **Results**

79 **Nuclear YAP is maintained upon loss of contractility in the presence of fibrillar adhesions**

80 We sought to study the mechanisms regulating the re-localisation of mechanosensitive transcription
81 factors upon loss of active contractile forces. We first seeded telomerase immortalized foreskin fibroblasts
82 (TIFF) on fibronectin-coated glass coverslips for 4 hours to obtain a highly mechanically active phenotype,
83 with the mechanosensitive transcription factor YAP localised to the nucleus. We then treated cells for 30
84 minutes with different pharmacological inhibitors that interfere with the actomyosin cytoskeleton. We
85 found that there was no change in the Nuclear/Cytoplasmic (N/C) ratio of YAP upon treatment with
86 blebbistatin (bleb, myosin inhibitor) or cytochalasinD (cytoD, actin inhibitor), whereas treatment with Y-
87 27632 (Y-27, ROCK inhibitor) or latrunculinA (latA, actin inhibitor) triggered a decrease in nuclear localised
88 YAP (Fig. 1a,b). Using traction force microscopy, we verified that all treatments dramatically decreased
89 active cellular forces (fig. 1c,d), and therefore the maintenance of nuclear YAP localization is not explained
90 by sustained cellular force generation. To understand the underlying mechanisms, our first approach was
91 to study known markers of mechanotransduction, such as actin stress fibre organisation and focal
92 adhesion length. Surprisingly, the change in localisation of YAP upon different pharmacological treatments
93 did not correlate with these parameters (SI fig. 1). Instead, using a epitope-specific integrin- α 5 antibody
94 to mark fibrillar adhesions^{12,13} (Snaka51), we observed that in conditions where YAP remained nuclear
95 (blebbistatin and cytochalasinD) the fibrillar adhesions were present, and conditions with loss of nuclear
96 YAP (Y-27632 and LatrunculinA) correlated with loss of fibrillar adhesions (Fig. 1e,f). To further investigate
97 this relationship, we varied the pharmacological treatment time (30 min – 2 hr) and found a good
98 correlation ($R^2 = 0.7977$) between the presence of fibrillar adhesions and the N/C ratio of YAP, where the
99 loss of fibrils correlates with a loss of nuclear YAP (Fig. 1g). To elucidate whether this phenomenon was
100 specific to the YAP signalling pathway, we performed analogous experiments with other known
101 mechanosensitive transcription factors twist¹⁴ and snail¹⁵. These experiments recapitulated the findings
102 with YAP, indicating that this is a general phenomenon regulating the cytoplasmic relocalisation of
103 mechanosensitive molecules upon loss of active cellular forces (SI fig. 1).

104

105 To decouple the contributions of mechanosensitivity and biochemical signalling regulating the change in
106 molecular localisation, we performed experiments using a previously developed mechano-reporter
107 (L-NLS-41-GFP). This reporter functions independently of chemical signalling, and instead responds to
108 mechanically-induced changes in facilitated and passive nucleocytoplasmic diffusion such that it localises
109 to the nucleus in higher rigidity environments⁸ (SI fig. 1). We transfected cells with the mechano-reporter
110 and treated them with either cytoD or latA, both targeting the actin cytoskeleton but with differential
111 effects on the fibrillar adhesions. Upon treatment with cytoD, which does not disrupt fibrillar adhesions,
112 the dynamics of the reporter was indistinguishable from the control DMSO treatment (Fig. 1h,i). By
113 contrast, treating cells with latA, which disrupts fibrillar adhesions, caused a rapid loss of the sensor from
114 the nucleus (Fig. 1h,i). Given that the localisation of mechanosensitive molecules such as YAP, snail or
115 twist1 is caused by force transmission to the nucleus, and subsequent nuclear deformation and
116 flattening^{3,8}, we thus sought to understand whether these differences in nuclear localisation are
117 associated with changes in nuclear morphology. After 1 hour cytoD treatment, the nuclear height was not
118 significantly different from the control DMSO condition (Fig 1j,k) despite the total removal of actin stress
119 fibres spanning the nucleus (SI fig. 1). However, in cells treated for 1 hour with latA, the nuclei undergo a

120 significant increase in nuclear height (Fig. 1j,k). Taken together, these results suggest that fibrillar
121 adhesions maintain nuclear morphology and delay the relocalisation of mechanosensitive transcription
122 factors from the nucleus upon loss of contractile forces.

123

124 **Inhibiting fibrillar adhesion formation leads to rapid loss of mechanosensitive molecules from the**
125 **nucleus and altered nuclear morphology upon loss of contractility**

126 To test the hypothesis that fibrillar adhesions alter cell response to loss of contractile forces, we impeded
127 the formation of fibrillar adhesions by inhibiting the remodelling of fibronectin. As a first approach, we
128 used the PUR4 (also known as FUD) peptide that binds with high affinity to N-terminus of fibronectin and
129 is a potent inhibitor of the assembly of fibronectin into fibrils¹⁶⁻¹⁸ (SI fig. 2). This effectively prevented the
130 formation of fibrillar adhesions (Fig. 2a), but did not alter key aspects of cellular mechanotransduction,
131 including focal adhesion growth, and the nuclear localisation of YAP (SI Fig. 2, Fig. 2c,d). To understand
132 the contribution of fibrillar adhesions upon loss of contractile forces, we exposed cells to either PUR4 or
133 a control scrambled peptide and treated them with blebbistatin or cytochalasinD. As expected, for the
134 control conditions these treatments did not trigger a decrease in the N/C ratio of YAP (Fig. 2c,d). However,
135 in the cells lacking fibrillar adhesions, this pharmacological treatment triggered a significant decrease in
136 the N/C YAP ratio (Fig. 2c,d). The same results were obtained when we tracked the mechano-reporter
137 L-NLS-41 over time in cytoD treated cells, showing the generality of the results beyond YAP (Fig. 2e,f).
138 This change in localisation was also associated with a change in nuclear morphology. When the fibrillar
139 adhesions are present (exposure to control peptide), nuclear height was not affected by cytoD (Fig. 2g,h).
140 By contrast, when fibrillar adhesion formation was inhibited (PUR4 exposure), the cytoD treatment
141 increased nuclear height (Fig. 2g,h).

142

143 To further confirm the role of fibrillar adhesions, we interfered with their formation with five alternative
144 methods. First, we crosslinked fibronectin with glutaraldehyde prior to cell seeding, which prevents its
145 remodelling and subsequent fibrillar adhesion formation¹⁹. This led to the same trends in YAP and nuclear
146 height as the PUR4 peptide (SI Fig 2). Second, we used a blocking antibody against $\alpha_5\beta_1$ integrins, through
147 which fibrillar adhesions attach to fibronectin²⁰. Cells with blocked $\alpha_5\beta_1$ lacked fibrillar adhesions (SI Fig.
148 2) but exhibited nuclear localised YAP (Fig. 2i,k). Upon treatment with blebbistatin or cytochalasinD, cells
149 treated with $\alpha_5\beta_1$ antibody, but not with a control antibody, rapidly lost the nuclear localisation of both
150 YAP (Fig. 2i,j) and the mechano-reporter (Fig. 2k,l). This was accompanied by a change in nuclear
151 morphology (SI Fig. 2). Third, we compared cells seeded on high rigidity gels (30 kPa), where fibrillar
152 adhesions were formed and YAP was nuclear, to intermediate rigidity gels (5 kPa), where YAP was already
153 nuclear but fibrillar adhesions were smaller as described previously¹² (SI Fig. 3). Upon treatment with
154 cytoD, the cells on the higher rigidity gels maintained the N/C YAP ratio, whereas there was a significant
155 reduction in the cells seeded on 5 kPa gels (SI fig. 3). Fourth, we applied bleb or cytoD to MCF10A
156 mammary epithelial cells, which do not form fibrillar adhesions, and observed a significant reduction in
157 N/C YAP ratio after 30 min (SI fig. 3).

158

159 Finally, given that fibrillar adhesions form upon the maturation of focal adhesions, there should be a time-
160 dependent effect linked to fibrillar adhesion formation. To test this, we first probed the timescales of focal
161 adhesion formation, fibrillar adhesion formation, and YAP localization and observed that after 2 hours of

162 seeding focal adhesions are formed and YAP is localised to the nucleus, but the fibrillar adhesions were
163 not fully mature (SI fig 3). We subsequently inhibited contractility in cells seeded for 2 hours and observed
164 a significant change in YAP localisation at short timescales (SI fig 3). This is in contrast to the lack of effect
165 observed 4 hours after cell seeding, when fibrillar adhesions are fully formed (Fig. 1b). Altogether, these
166 results demonstrate that fibrillar adhesions maintain the localisation of mechanosensitive molecules in
167 the absence of contractility by sustaining a deformed, flat nuclear morphology independently of the actin
168 cytoskeletal network.

169

170 **Fibrillar adhesions anchor the vimentin network via plectin 1f**

171 To explore the underlying mechanism by which fibrillar adhesions regulate nuclear morphology and
172 mechanosensitive molecular localisation upon loss of contractile forces, we hypothesized that there may
173 be a contribution from cytoskeletal components. Given that YAP remained nuclear in the absence of an
174 actin network (cytoD treatment, Fig. 1), we turned our attention to other cytoskeletal networks. In
175 particular, fibrillar adhesions serve as docking sites for vimentin via the cytolinker protein plectin isoform
176 1f²¹ and thus fibrillar adhesions may regulate the organisation of the vimentin intermediate filament
177 network. To assess this, we first transfected cells with plectin 1f-GFP and performed stainings against the
178 fibrillar adhesion marker snaka51 (Fig. 3a). Confirming the presence of plectin 1f in fibrillar adhesions,
179 plectin 1f and snaka51 colocalized in the central region of cells (where snaka51 marks fibrillar adhesions)
180 and not at the periphery (where snaka51 marks focal adhesions, Fig. 3b). Then, we assessed the
181 organization of the vimentin network upon applying the different perturbations used in figures 1 and 2.
182 In response to pharmacological treatments, we found that conditions with fibrillar adhesion loss also
183 exhibited a collapsed vimentin network, measured as a reduction in the percentage area of the cell
184 occupied by vimentin (Fig. 3c,d), with a very high correlation between both parameters ($R^2=0.8895$). Upon
185 blocking fibronectin remodelling with either the PUR4 peptide (Fig. 3e,f) or glutaraldehyde (SI Fig. 4), the
186 cell area occupied by vimentin decreased. Finally, vimentin spreading was also increased along fibrillar
187 adhesions in response to substrate stiffness (SI Fig. 4). Thus, the ability of vimentin to spread and form a
188 structured cytoskeleton is determined by the cells ability to remodel fibronectin, and the subsequent
189 formation of fibrillar adhesions.

190

191 Given that the fibrillar adhesion – vimentin connection is mediated by plectin 1f, breaking this connection
192 should lead to vimentin network collapse regardless of the presence of fibrillar adhesions. To investigate
193 this, we transfected cells with a truncated version of plectin 1f which contains the fibrillar adhesion-
194 binding N-terminal domain but lacks the intermediate filament-binding C-terminal domain²¹ (plectin 1f-8)
195 (Fig. 3g). Cells overexpressing plectin 1f-8-GFP formed fibrillar adhesions where plectin 1f-8-GFP localized
196 (SI. Fig 4), but exhibited reduced vimentin spreading as compared to cells transfected with GFP alone (Fig.
197 3h,i). Thus, plectin 1f-8 functions as a dominant-negative, likely by displacing some of the endogenous
198 plectin 1f and reducing the connectivity between the fibrillar adhesions and vimentin. Consistently, plectin
199 1f-8 overexpression did not affect N/C YAP ratios in control untreated cells (SI fig. 4), but it abolished their
200 ability to retain nuclear YAP upon contractility inhibition (Fig. 3j,k and SI Fig. 4). Furthermore, upon
201 treatment with cytoD which destroys the actin cap, cells expressing GFP-alone maintained their nuclear
202 morphology (SI. Fig 4), but in plectin 1f-8 expressing cells the nuclear height significantly increased (Fig.
203 3l,m). Thus, a vimentin network properly anchored by plectin 1f is able to sustain a deformed nuclear

204 morphology in the absence of contractile forces and a compressive actin cap, maintaining the localisation
205 of the mechanosensitive transcription factor YAP.

206
207 To further understand whether a simple vimentin cage around the nucleus could maintain nuclear shape,
208 we generated a mechanical model considering the key elements involved. The model (see methods)
209 considers a contractile actomyosin network anchored to the cell periphery via focal adhesions. A vimentin
210 network spans the nucleus and is anchored to fibrillar adhesions via adhesive interactions. In conditions
211 lacking fibrillar adhesions, this adhesive force is set to zero effectively decoupling vimentin from the
212 extracellular environment. We first allowed the contractile actin network to form, leading to high
213 compressive strains and a flattening of the nucleus (Fig. 3n). Regardless of whether vimentin is anchored,
214 we observed a similar nuclear morphology that is consistent with the experimental observations. We
215 subsequently removed contractility from the model and observed the effect on nuclear morphology. In
216 the condition where vimentin is anchored to fibrillar adhesions, the adhesive force prevents any change
217 in nuclear morphology. This is because once the fibrillar adhesions are engaged with the vimentin cage
218 the interactions persist even when the contractility is abrogated. While contractility is not needed to
219 sustain these bonds, it is essential to initiate their formation. By contrast, in the case where vimentin is
220 not anchored, we observe a significant rounding of the nucleus (Fig. 3o and red bars in Fig. 2h). This is
221 consistent with the experimental results, and demonstrates that vimentin anchoring to the substrate is
222 sufficient to maintain a compressed nuclear morphology in the absence of active contractile forces.
223

224 **The ECM-vimentin coupling alters mechano-adaptation timescales**

225 Thus far, we have shown that the connectivity between the fibrillar adhesions and the vimentin network
226 delays the loss of mechanical signals upon inhibition of cellular contractility. Next, we asked whether this
227 mechanism would also determine the timescales by which cells adapt from a high to low rigidity
228 mechanical environment. Indeed, by maintaining a mechanically active phenotype, fibrillar adhesions
229 could delay the timescales of adaptation from a stiff-to-soft conversion. As an initial experiment, we
230 treated cells seeded on low rigidity polyacrylamide gels (1.5kPa) with Mn²⁺, which activated $\alpha_5\beta_1$ integrins
231 and initiated cell spreading, fibrillar adhesion formation, and nuclear localisation of the mechano-
232 reporter, mimicking the mechanical activation of stiff gels (SI fig. 5). Upon removal of Mn²⁺, PUR4 treated
233 cells (with blocked fibrillar adhesions) decreased nuclear area, and nuclear localization of the mechano-
234 reporter, faster than cells treated with the scrambled peptide (SI Fig. 5).
235

236 These experiments suggest a delay in mechano-adaptation, but do not fully mimic a change in substrate
237 rigidity. To improve this, we fabricated stiff hydrogels that contain a photocleavable cross-linker that
238 breaks upon illumination with UV light, triggering a softening of the hydrogel²² (Fig. 4a-c). The extent of
239 softening can be regulated by the dose of light. We first verified that the gel softening affected cell
240 mechanotransduction by seeding cells on unexposed gels (~9.3 kPa in Young's modulus), or gels softened
241 for 4.5mins prior to cell seeding. As expected, N/C YAP ratio in cells seeded on the pre-softened gels (Fig.
242 4d,e) was significantly lower. We next utilized the photodegradable hydrogels to investigate whether
243 fibrillar adhesions regulate how cells adapt to a change in the mechanical properties of the environment.
244 We seeded cells on non-softened gels for >4 hours in the presence of the scramble or PUR4 peptide to
245 control fibrillar adhesion formation and observed that in both conditions YAP was localized to the nucleus

246 (Fig. 4f-h). We subsequently *in-situ* softened the gels with 4.5min UV illumination and waited for 1 hour
247 to allow the cells to adapt to the new low rigidity environment. After 1 hour there was a reduction in the
248 N/C YAP ratio for both conditions; however, the cells with fibrillar adhesions (scramble) had a significantly
249 higher N/C YAP ratio compared to the cells lacking fibrillar adhesions (PUR4) (Fig. 4i,j), suggesting that
250 fibrillar adhesions help to maintain a mechanically active phenotype and delays the adaptation timescales.
251 Confirming that this effect is due to substrate mechanics rather than UV illumination, UV exposure to cells
252 on non-degradable polyacrylamide gels of similar rigidity did not produce differences in N/C YAP between
253 the two conditions (SI fig. 5).

254
255 To understand how fibrillar adhesions affect the timescales of mechanoadaptation, we performed *in-situ*
256 softening experiments on cells transfected with the mechano-reporter (L_NLS-41-GFP) in the presence of
257 the PUR4 or scrambled peptide (Fig. 4k-o). In the presence of the PUR4 peptide, the N/C ratio of the sensor
258 began to decrease immediately upon softening (Fig. 4l). By contrast, control cells with fibrillar adhesions
259 displayed a lag-time, where the N/C ratio of the sensor was unaffected by the gel softening for ~30mins
260 before decreasing. Correspondingly, the time required for the sensor N/C ratio to fall below half of the
261 starting value ($t_{0.5}$) was ~52 minutes for control cells, compared to ~17 minutes in the presence of the
262 PUR4 peptide (Fig. 4m). We verified that the initial (pre-softened) and final (2 hour post softening) N/C
263 sensor ratio was the same for both conditions (Fig. n,o). We therefore sought to understand whether
264 these differences in cellular response timescales stem from differences in dynamics of the focal adhesions
265 compared to the fibrillar adhesions. We analysed the disassembly timescales of focal adhesions (marked
266 with paxillin-GFP, Fig. 4p,q) and fibrillar adhesions (marked with tenins1-GFP, Fig. 4r,s) and found a stark
267 difference. While the focal adhesions disassembled within ~20min, fibrillar adhesions required ~60 mins
268 (Fig. 4t), thereby closely matching the timescales of adaptation to soft substrates. Altogether, this
269 demonstrates that the stable dynamics of fibrillar adhesions sets the timescales of cellular mechano-
270 adaptation, thus delaying the relocalisation of mechanosensitive molecules upon softening of the
271 mechanical environment.

272
273 **The ECM-vimentin coupling protects the nucleus from mechanical deformation**
274 Thus far we have demonstrated that an anchored vimentin network sets the timescales for adaptation
275 upon a loss of force. A more well-established role for the intermediate filament network^{23,24}, and in
276 particular vimentin^{25,26}, is that it protects the nucleus from mechanical deformation and damage.
277 However, this knowledge largely stems from studies comparing cells lacking a vimentin network to cells
278 with an intact network. Our results raise the question of whether the vimentin network must merely be
279 present or must be anchored to the ECM to effectively dissipate high mechanical loads. To address this
280 question, we stretched cells by ~10% and measured the corresponding change in cell and nuclear area
281 (Fig. 5a). Cells treated with either PUR4 or the scrambled peptide increased their membrane area equally
282 upon stretch (SI Fig. 6). Fibrillar adhesions (marked with tensin-GFP) were also stretched (SI Fig. 6).
283 However, the nuclei of cells with the scrambled peptide (and therefore with fibrillar adhesions) increased
284 their area to a smaller degree than cells exposed to PUR4 (Fig. 5b,c). The same trends were observed
285 when blocking fibrillar adhesions with glutaraldehyde (SI Fig. 6), or with plectin 1f-8 overexpression (Fig
286 5d,e and SI fig 6). We therefore hypothesised that the anchoring of vimentin allows the vimentin network
287 to stretch and dissipate some of the mechanical load from reaching the nucleus. Indeed, the vimentin

288 network (as labelled with vimentin-GFP overexpression) underwent larger deformations in cells with
289 fibrillar adhesions (SI fig. 6). This protection also reduced the well-known effect of stretch-induced DNA
290 damage²⁷⁻²⁹ as measured with the marker γH2AX (Fig. 5f,g and SI fig. 6).

291
292 To understand the mechanisms underpinning the protective effect afforded by the fibrillar adhesion –
293 vimentin coupling, we imposed a 13% cell stretch in our computational model. In the condition where
294 vimentin is anchored to the fibrillar adhesions, we observed high stresses in the extracellular matrix close
295 to the adhesion sites (Fig. 5h). By assuming that this stress is frictional (due to the slip-bond nature of the
296 adhesions as described in Methods) and thereby dissipates energy, this implies that vimentin anchoring
297 to the fibrillar adhesions facilitates energy dissipation to the substrate. By contrast, vimentin decoupling
298 from the fibrillar adhesions reduced stresses, energy dissipation, and therefore nuclear strain energy
299 (from 2.5 to 1.9 fJ, Fig. 5h and methods). This in turn corresponds to a smaller nuclear deformation in cells
300 with fibrillar adhesions (4%) than without (10%, Fig. 5c). Taken together, our experimental results in
301 conjunction with a minimal component model reveal that vimentin anchoring to the ECM is crucial for
302 effectively dissipating an applied stretching force and protecting the nucleus from deformation and
303 damage.

304

305 **Discussion**

306 Mechanotransduction processes include events that occur at the scale of seconds (such as integrin-
307 mediated reinforcement^{30,31} or altered nucleocytoplasmic transport^{3,8}), minutes (such as focal adhesion
308 maturation³²), hours (such as transcriptional responses or chromatin remodelling²⁸) and days or longer
309 (such as tumour growth^{33,34}). Some of the longer-lived effects, such as chromatin reorganization or cell
310 differentiation, can persist for some time after the mechanical stimulus has ceased, in a phenomenon that
311 has been termed “mechanical memory”³⁵⁻³⁷. Even considering such memory effects, mechanical
312 stimulation in physiological conditions may occur at all these timescales, potentially triggering constant,
313 uncontrolled mechano-signalling. Just as biochemical signalling pathways do³⁸⁻⁴¹, it is thus reasonable to
314 hypothesize that mechanotransduction pathways should have mechanisms controlling the timescale of
315 cellular response. To effectively control mechanotransduction, such mechanisms should in fact control
316 not merely the timescale of cellular response, but of mechanical stimulation itself.

317

318 Here we demonstrate one such mechanism, by which matrix remodelling, fibrillar adhesion formation,
319 and the anchoring of the vimentin network lock the nucleus in a mechanically deformed state. Effectively,
320 this sets a low-pass filter to mechanical stimulation, setting the timescale of nuclear shape changes (and
321 all subsequent mechanotransduction events) to the timescale of fibrillar adhesion remodelling (~1h). This
322 mechanism operates in response both to decreased and increased mechanical stimulation, and shows
323 two major new properties of the ECM: i) it can regulate not only mechanosignalling but its timescale, and
324 ii) this regulation depends not only on ECM protein composition²³ and spatial organization⁴² as reported
325 previously, but also on the conformation of its proteins (in this case, fibronectin). Our findings also reveal
326 an unanticipated role of vimentin in maintaining rather than preventing nuclear deformation, as
327 previously reported^{25,26}.

328

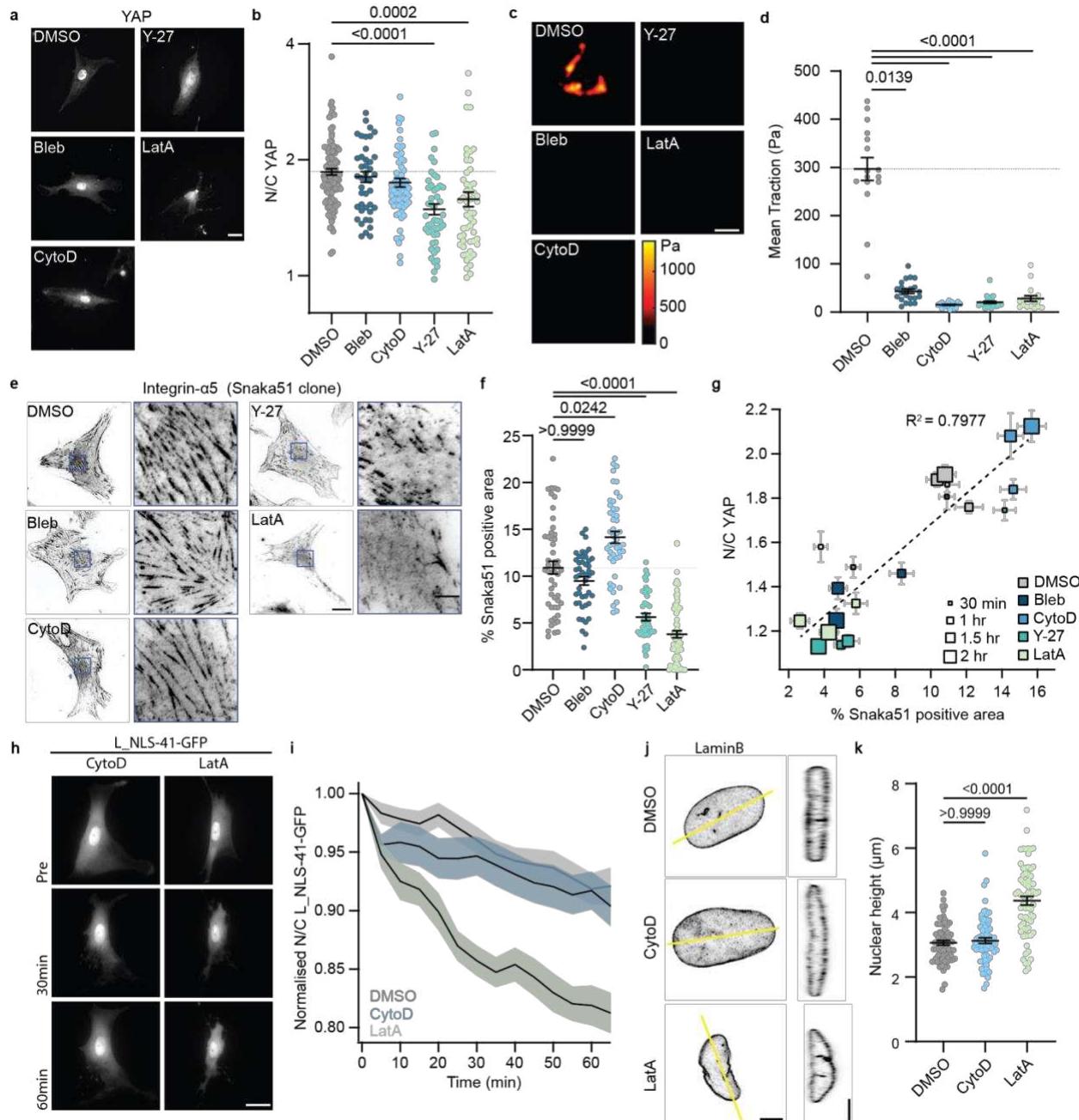
329 Two relevant questions remain open. First, the molecular link between plectin 1f and the fibrillar
330 adhesions remains unknown, and multiple molecular binding targets could potentially exist. Tensin is a
331 possible candidate as it is a major component of the fibrillar adhesions¹², and tensin-3 drives fibrillar
332 adhesion formation via the interaction with talin⁴³. Another candidate is Hic-5, which is fundamental for
333 fibrillar adhesion formation and fibronectin remodelling via its interaction with tensin1^{44,45}, and its
334 ablation triggers vimentin network collapse⁴⁶. Second, the fact that fibrillar adhesions are disrupted by
335 latrunculin but not cytochalasin is intriguing. Potentially, this may be due to inaccessibility of cytochalasin
336 to the barbed end of actin microfilaments within the long-lived fibrillar adhesion complexes (whereas
337 latrunculin targets freely accessible actin monomers).

338
339 We anticipate that this mechanism could be relevant in physiological settings where slow and fast
340 mechanical perturbations must elicit different cellular responses. For instance, fibroblasts in connective
341 tissue associated with lungs, heart, the circulatory system, or the urinary system should respond to long-
342 lasting mechanical alterations caused by wounding or tumour formation, but not to second-scale
343 alterations caused by breathing, heart pumping, or bladder voiding. Whether such implications remain to
344 be explored, the timescale regulatory mechanism unveiled here sets a foundation to explore such
345 phenomena, with potential implications in homeostasis and disease.

346
347 **Acknowledgements**
348 We thank S. Usieto, A. Menédez, N. Castro and M. Purciolas-Casas for providing technical support, A. Le
349 Roux, L. Faure, A. Labernadie, R. Sunyer, J. Triadú-Gali, L. Rossetti and all members of the P. Roca-Cusachs
350 and X. Trepat groups for invaluable discussions. A.E.M.B. is the recipient of a Sir Henry Wellcome
351 fellowship (210887/Z/18/Z). P.R.-C. acknowledges funding from the Spanish Ministry of Science and
352 Innovation (PID2019-110298GB-I00), the European Commission (H2020-FETPROACT-01-2016-731957),
353 the Generalitat de Catalunya (2021 SGR 01425), The prize “ICREA Academia” for excellence in research,
354 Fundació la Marató de TV3 (201936-30-31), and “la Caixa” Foundation (Agreement
355 LCF/PR/HR20/52400004). IBEC is a recipient of a Severo Ochoa Award of Excellence from MINCIN. F.M.Y
356 acknowledges funding from the National Institutes of Health (F31 DK126427). A.A-S is funded by the
357 Spanish Ministry for Science and Innovation (FPU21/03952). K.S.A. acknowledges funding from the
358 National Science Foundation (CBET 2033723) and the National Institutes of Health (R01 DK120921). The
359 computational work was supported by National Cancer Institute awards U54CA261694 (V.B.S.); National
360 Institute of Biomedical Imaging and Bioengineering awards R01EB017753 (V.B.S.) and R01EB030876
361 (V.B.S.); NSF Center for Engineering Mechanobiology GrantCMMI-154857 (V.B.S.); NSF Grant DMS-
362 1953572 (V.B.S.). J.I. acknowledges funding from the Finnish Cancer Institute (K. Albin Johansson
363 Professorship to J.I.) and Academy of Finland Centre of Excellence program (grant no. 346131)

364
365 **Author contributions**
366 A.E.M.B and P.R.-C conceived the study. A.E.M.B and P.R.-C designed the experiments. A.E.M.B, A.A.-S,
367 D.Z, and Z.K performed experiments. A.J. and V.B.S designed and implemented the computational model.
368 F.N.Y and K.B synthesised the photodegradable gel compounds and performed associated gel
369 characterisation. I.A, I.G.-M, G.W X.T, J.I, K.S.A, V.B.S contributed to material, reagents, technical expertise
370 and discussions. A.E.M.B and P.R.-C wrote the manuscript, with input from all other authors.

371
372 **Declaration of interests**
373 The authors declare no competing interests.


374 **Data availability**

375 Data that support the findings of this study are in the article and supplementary data file. The other
376 relevant raw data and source data are available from the corresponding author upon request.

377

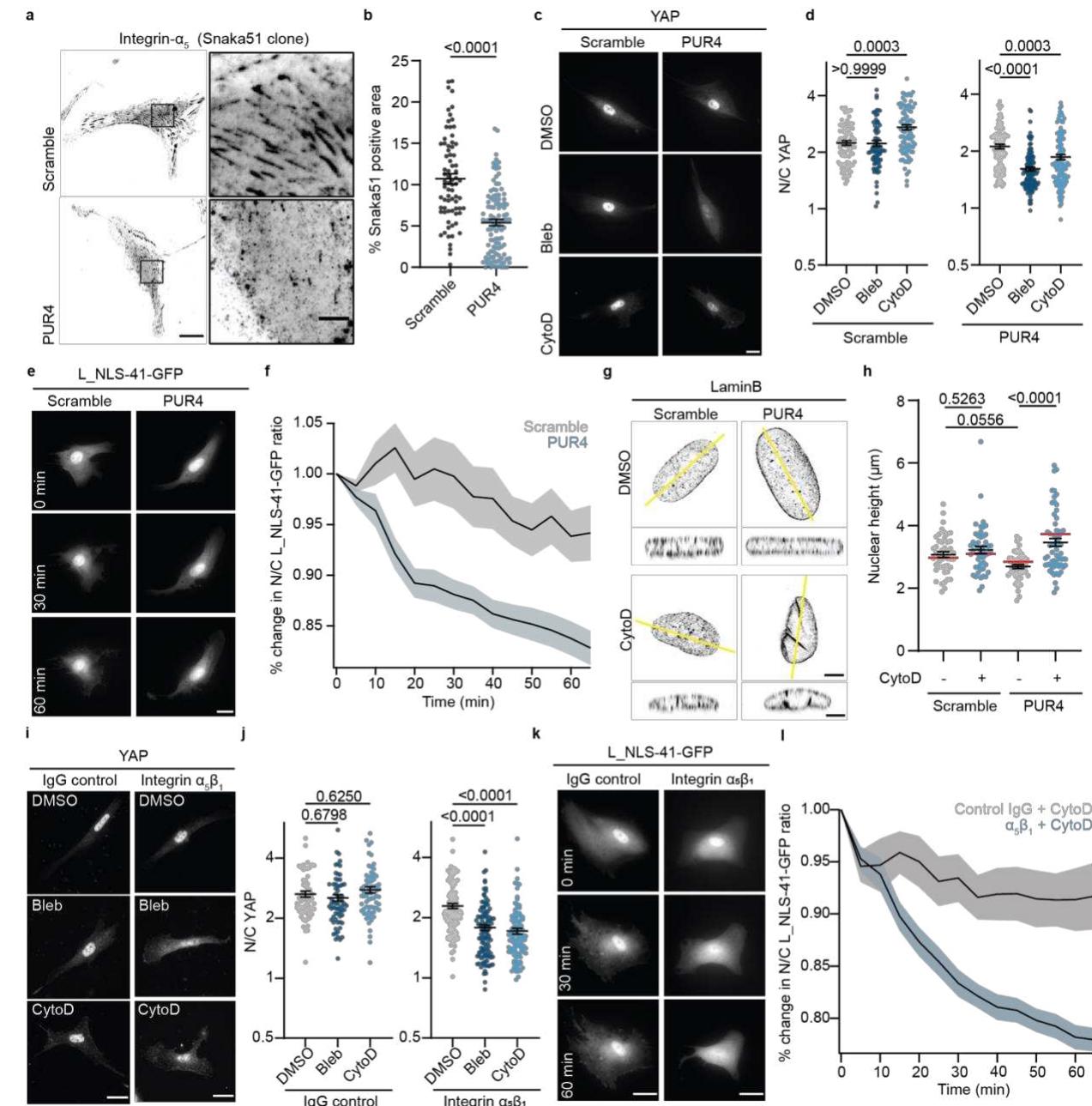
378 **Code availability**

379 Simulation codes are available upon request.

389 **d.** Quantification of cell tractions on 15kPa polyacrylamide gels. (n=16/22/21/26/17 cells for
390 DMSO/bleb/cytoD/Y-27/latA from 2 independent experiments; Kruskal-wallis ANOVA with Dunn's
391 multiple comparison test).

392 **e.** Examples of integrin- α_5 snaka51 clone stained cells after 30min of the indicated pharmacological
393 treatment; scale bar 25 μ m / zoom 5 μ m.

394 **f.** Quantification of the percentage area under the nucleus occupied by fibrillar adhesions.
395 (n=52/46/48/45/76 cells for DMSO/bleb/cytoD/Y-27/latA from at least 3 independent experiments;
396 Kruskal-wallis ANOVA with Dunn's multiple comparison test).


397 **g.** Correlation between N/C YAP ratio and percentage area of fibrillar adhesions under the nucleus for
398 different drug treatments (colour coded) with different incubation times (size coded). (At least 3
399 independent experiments with a minimum of 28 cells per condition).

400 **h.** Example images of mechano-reporter L_NLS-41-GFP transfected cells prior to and during cytoD or latA
401 treatment; scale bar 25 μ m.

402 **i.** Quantification of change in N/C L_NLS-41-GFP ratio with time (normalized to the pre-treatment ratio)
403 for cells upon with indicated pharmacological treatment. (n=40/33/30 cells for DMSO/cytoD/latA from 3
404 independent experiments).

405 **j.** Examples of LaminB stained nuclei after 1 hour of the indicated drug treatment. The yellow line signifies
406 the position of the Z-plane re-slice; scale bar 5 μ m.

407 **k.** Quantification of the nuclear height after 1hr pharmacological treatment. (n=69/70/70 nuclei for
408 DMSO/cytoD/latA from 5 independent experiments; Kruskal-wallis ANOVA with Dunn's multiple
409 comparison test)

410

Figure 2. Inhibition of fibrillar adhesions leads to rapid loss of mechanosensitive molecules when
411 contractility is inhibited. Fibrillar adhesions maintain nuclear morphology in absence of actin cap.

412

413 a. Example images of integrin- α_5 , clone snaka51 stained cells in scramble or PUR4 peptide seeded for 4

414 hours in presence of 500nM peptide. Scale bar 20 μ m, zoom 5 μ m.

415

416 b. Percentage area under the nucleus occupied by fibrillar adhesions for scramble and PUR4 peptide.

(n=74/109 cells for scramble/PUR4 from 4 independent experiments; unpaired t-test).

417

418 c. Example images of YAP stained cells treated for 30min with indicated pharmacological treatment for

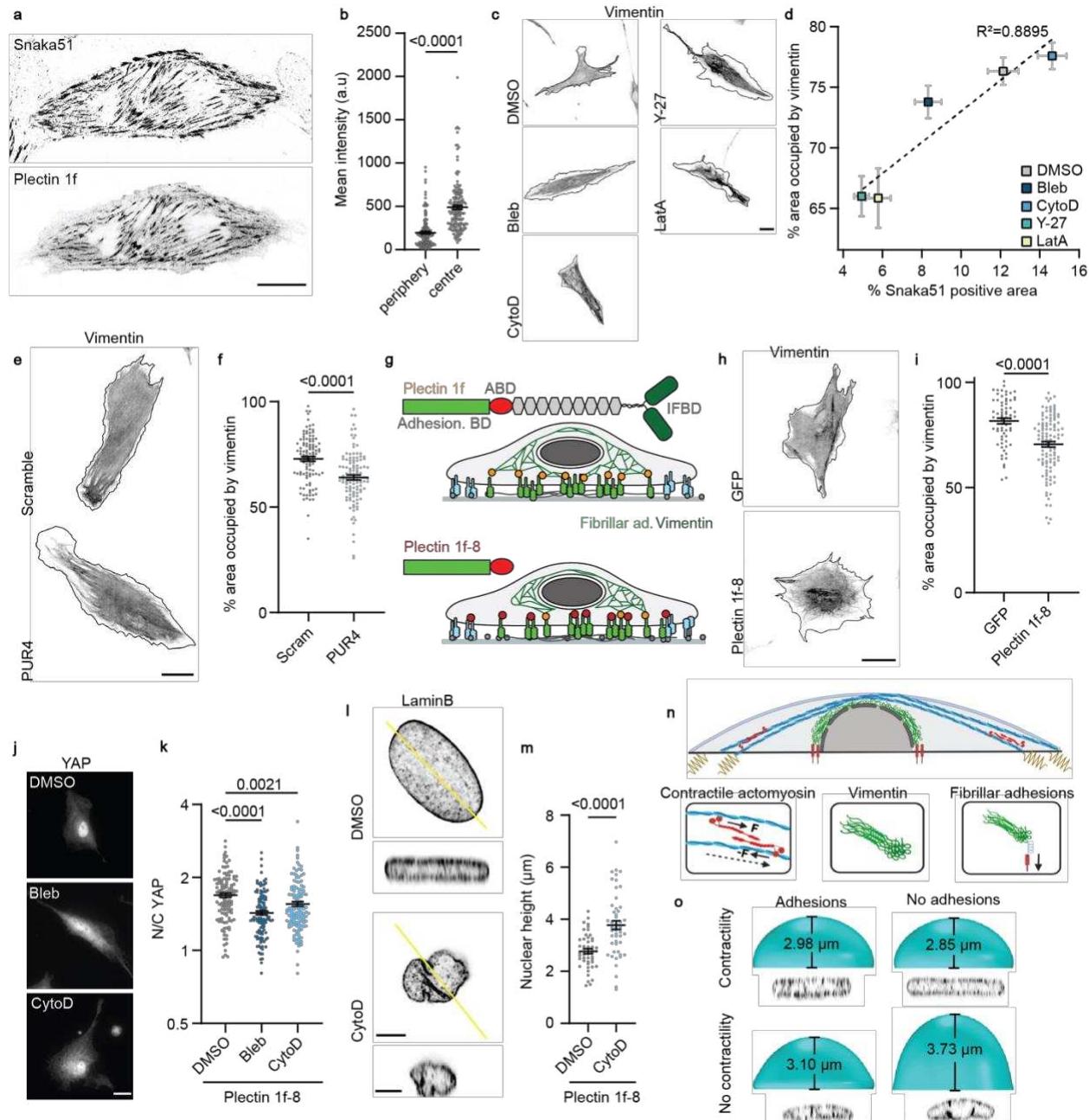
scramble and PUR4 peptide. Scale bar 20 μ m.

419 **d.** Quantification of N/C YAP ratio for cells in scramble or PUR4 peptide conditions treated with 30min
420 pharmacological treatment. (Scramble – n=80/74/82 cells for DMSO/bleb/cytoD. PUR4 – n=93/118/110
421 cells for DMSO/bleb/cytoD from at least 3 independent experiments; Kruskal-wallis ANOVA with Dunn's
422 multiple comparison test).

423 **e.** Example images of mechano-reporter L_NLS-41-GFP transfected cells in scramble or PUR4 peptide at
424 different time points are treatment with cytoD. Scale bar 20 μ m.

425 **f.** Quantification of change in N/C L_NLS-41-GFP ratio (normalized to the pre-cytoD treatment ratio) for
426 scramble (grey) and PUR4 (blue) peptide conditions treated with cytoD. Scramble n=36, PUR4 n=44 cells
427 from 3 independent experiments.

428 **g.** Example images of LaminB stained nuclei for scramble and PUR4 cells treated with DMSO control or
429 CytoD. Yellow line indicates the position of the re-slice; sale bar 5 μ m.


430 **h.** Quantification of nuclear height for scramble and PUR4 cells in the absence and presence of cytoD.
431 (Scramble – n=46/49 nuclei for DMSO/cytoD. PUR4 – n=48/60 nuclei for DMSO/cytoD from 3
432 independent experiments; two-way ANOVA with Tukey's multiple comparisons test). The red bars
433 represent the values of nuclear height obtained from the computational model.

434 **i.** Example images of YAP stained cells for cells blocked with IgG control or Integrin $\alpha_5\beta_1$ antibody and
435 treated with indicated pharmacological treatment for 30 minutes. Scale bar 20 μ m.

436 **j.** Quantification of N/C YAP ratio for cells blocked with IgG control or Integrin $\alpha_5\beta_1$ and subjected to
437 30min pharmacological treatment. (IgG – n=60/65/67 cells for DMSO/bleb/cytoD. Integrin $\alpha_5\beta_1$ –
438 n=103/109/109 cells for DMSO/bleb/cytoD from at least 4 independent experiments; Kruskal-wallis
439 ANOVA with Dunn's multiple comparison test).

440 **k.** Example images of mechano-reporter L_NLS-41-GFP transfected cells treated with IgG control or
441 integrin $\alpha_5\beta_1$ antibody at different timepoints after treatment with cytoD. Scale bar 20 μ m.

442 **l.** Quantification of change in N/C L_NLS-41-GFP ratio (normalized to the pre-cytoD treatment ratio) for
443 control IgG blocked cells treated with cytoD (grey) and integrin $\alpha_5\beta_1$ blocked cells treated with cytoD
444 (blue). Solid line represents the average of all trajectories and shaded area is the standard error. IgG
445 n=21 cells, Integrin $\alpha_5\beta_1$ n=25 cells from 5 independent experiments.

446

447 **Figure 3: Fibrillar adhesions anchor the vimentin network via plectin 1f and maintain nuclear**
 448 **morphology in absence of active forces.**

449 **a.** Example of cell transfected with plectin 1f-GFP and stained with snaka51 antibody. Scale bar 20μm.

450 **b.** The mean intensity of plectin 1f at snaka51 adhesions close to the cell periphery and in the central
 451 region of the cell. (n=160 adhesions from 32 cells from 3 independent experiments; Mann-Whitney test).

452 **c.** Example images of vimentin morphology in cells treated with indicated pharmacological treatment for
 453 1 hour. Black line indicates the cell outline. Scale bar 20 μm.

454 **d.** The percentage area of the cell occupied for vimentin vs the percentage area under the nucleus
455 occupied by fibrillar adhesions for 1 hour pharmacological treatment (colour coded). (Vimentin –
456 n=59/59/59/47 cells for DMSO/bleb/cytoD/Y-27/latA from 3 independent experiments. Fibrillar
457 adhesions – n=123/42/60/48/57 cells for DMSO/bleb/cytoD/Y-27/latA from at least 3 independent
458 experiments).

459 **e.** Example of vimentin stained cells in the presence of the scramble or PUR4 peptide. Black line indicates
460 the cell periphery. Scale bar 25 μ m.

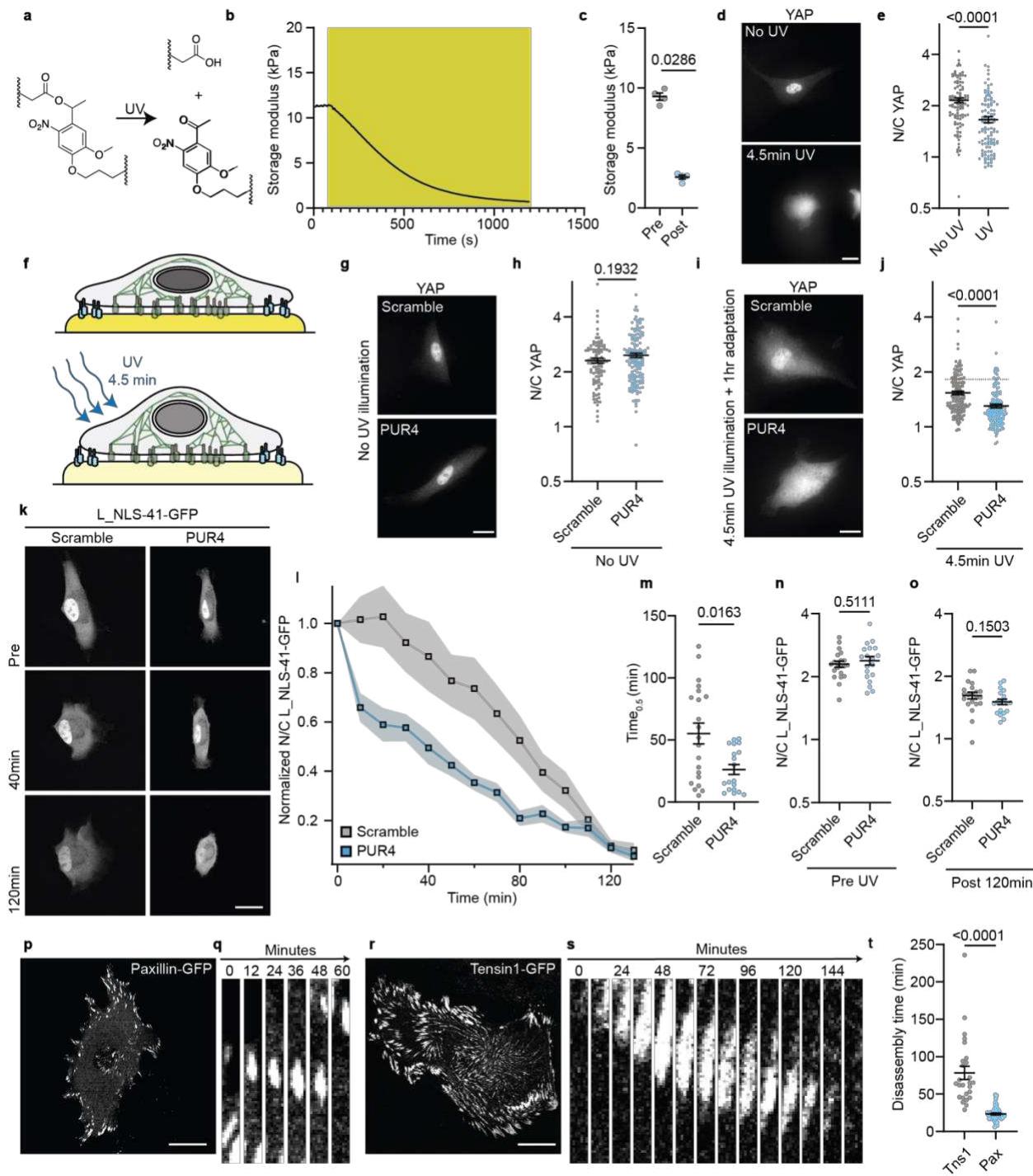
461 **f.** The percentage area of the cell occupied by vimentin in cells cultured with scrambled or PUR4 peptide.
462 (n=108/112 cells for scramble/PUR4 from 7 independent experiments; Mann-Whitney test).

463 **g.** Schematic representation of the full length plectin 1f and the truncated plectin 1f-8 lacking the
464 intermediate filament binding domain.

465 **h.** GFP and plectin 1f-8 transfected cells stained for vimentin. Solid black line indicates the perimeter of
466 the cell. Scale bar 25 μ m.

467 **i.** Quantification of the percentage area of the cell occupied by the vimentin network in GFP and plectin
468 1f-8 transfected cells. (n=67/112 cells for GFP/ Plectin 1f-8 from at least 5 independent experiments;
469 Mann-Whitney test).

470 **j.** Example of YAP staining for plectin 1f-8-GFP expressing cells treated for 30min with the indicated
471 pharmacological treatment. Scale bar 20 μ m.


472 **k.** Quantification of N/C YAP ratio of plectin 1f-8 transfected cells after 30min pharmacological treatment.
473 (n=120/120/132 cells for DMSO/bleb/cytoD from 5 independent experiments; Kruskal-wallis ANOVA with
474 Dunn's multiple comparison test).

475 **l.** Images of LaminB stained plectin 1f-8 transfected cells treated with DMSO and cytoD. Scale bar 5 μ m.

476 **m.** Quantification of nuclear height of plectin 1f-8 transfected cells treated with DMSO or cytoD. (n=48/52
477 nuclei for DMSO/cytoD from 3 independent experiments; unpaired two-tailed t-test).

478 **n.** Scheme showing main computational model components. This includes actomyosin contractility driven
479 by myosin motors, and a vimentin network around the nucleus anchored to the substrate via fibrillar
480 adhesions. Fibrillar adhesions are adhesive and withstand cell/ECM forces in a dissipative way.

481 **o.** Model predictions for nuclear height with anchored/unanchored vimentin (adhesions/no adhesions)
482 and in the presence/absence of contractility. Experimental data from fig. 2g are shown below model
483 predictions for comparison.

484

485 **Figure 4: The ECM-vimentin coupling delays mechanoadaptation to a soft environment.**

486 **a.** Chemical structure of the photodegradable compound.

487 **b.** Storage modulus of the photodegradable gel, which softens upon illumination with UV light (yellow
488 region, 365 nm, 10 mW cm⁻²). Trace representative of 3 gels.

489 **c.** Quantification of the gel storage modulus before UV exposure and after 5min UV exposure (n=4 gels, p
490 = 0.0286 from Mann-Whitney test).

491 **d.** Examples of YAP staining in cells seeded on gels that were not softened, or softened with 4.5min of UV
492 illumination prior to cell seeding; scale bar 20 μ m.

493 **e.** Quantification of N/C YAP ratio in cells seeded on photodegradable gels without UV exposure, or with
494 UV exposure prior to cell seeding. (n=98/107 cells for NoUV/UV from 3 independent experiments; Mann-
495 Whitney test).

496 **f.** Schematic representation of experimental set-up, whereby cells are seeded on photodegradable gels
497 (with scramble or PUR4 peptide) for 4hours. The gel is then softened with 4.5min of UV illumination.

498 **g.** Examples of YAP staining of cells seeded on photodegradable gels without UV exposure in scramble and
499 PUR4 condition; scale bar 20 μ m.

500 **h.** Quantification of N/C YAP ratio for cells in scramble or PUR4 peptide seeded on gels without UV
501 softening. (n=100/141 for scramble/PUR4 from 3 independent experiments; Mann-Whitney test).

502 **i.** Examples of YAP staining of cells on photodegradable gels 1hour after a 4.5min UV exposure for
503 scramble and PUR4 condition; scale bar 20 μ m.

504 **j.** Quantification of N/C YAP ratio for cells in scramble of PUR4 peptide 1 hour after UV induced gel
505 softening. The red line corresponds to the mean N/C YAP ratio for cells seeded on non-degradable
506 polyacrylamide gels and subjected to the same UV conditions; additional details in SI fig. 4. (n=144/170
507 cells for scramble/PUR4 from 3 independent experiments; Mann-Whitney test).

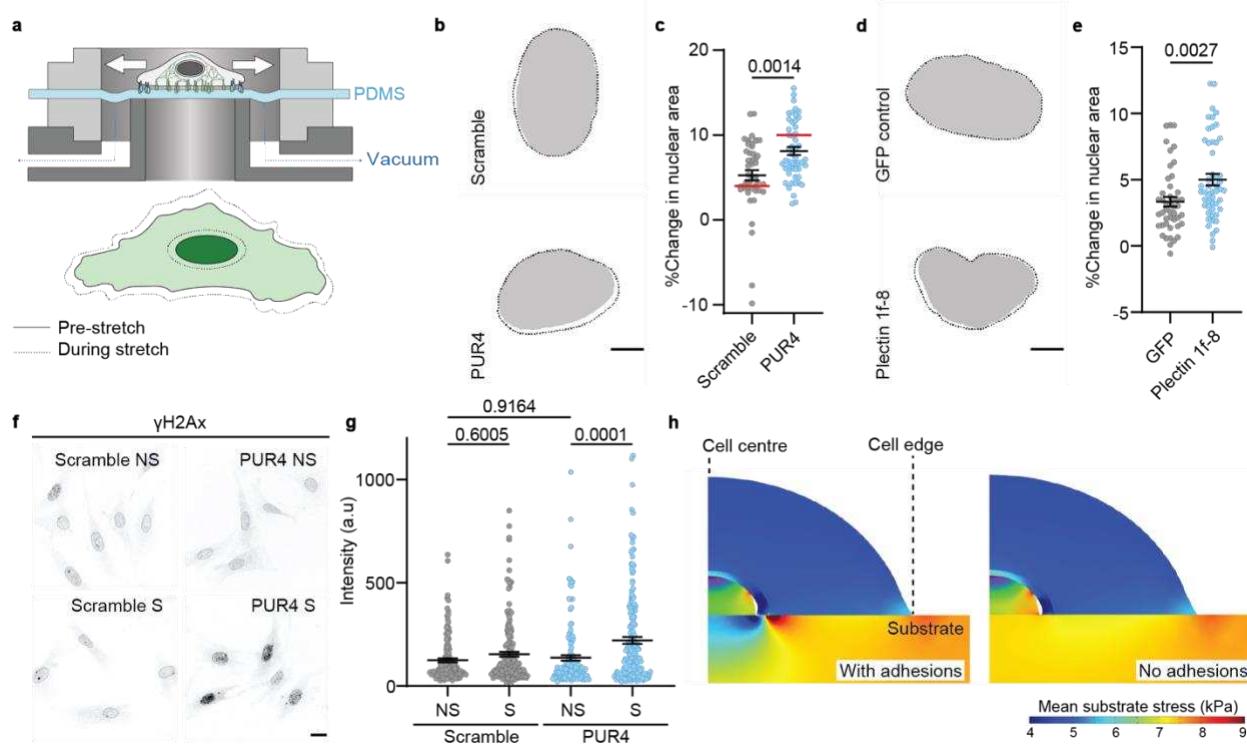
508 **k.** Examples of mechano-reporter L-NLS-41-GFP transfected cells on photodegradable gels pre-, after
509 40min-, and 120min- UV illumination for the scramble and PUR4 condition; scale bar 20 μ m.

510 **l.** Quantification of N/C L-NLS-41-GFP ratio with time (normalized to the initial and final ratio) for cells on
511 photodegradable gels upon exposure to 4.5min UV illumination for cells in scramble (grey) or PUR4 (blue)
512 peptide. (n=21/19 cells for scramble/PUR from 3 independent experiments).

513 **m.** Quantification of the time taken for the L-NLS-41-GFP ratio to fall below 50% of the initial value for
514 scramble and PUR4. n=21/19 cells for scramble/PUR from 3 independent experiments; Mann-Whitney
515 test)

516 **n.** Quantification of N/C L-NLS-41-GFP ratio for cells seeded on photodegradable gels prior to UV
517 illumination. (n=21/19 cells for scramble/PUR from 3 independent experiments; Unpaired two-tail t-test).

518 **o.** Quantification of N/C L-NLS-41-GFP ratio 120min after the UV exposure for scramble and PUR4
519 condition. (n=21/19 cells for scramble/PUR from 3 independent experiments; Unpaired two-tail t-test).


520 **p.** Example image of cell expressing paxillin-GFP seeded on glass; scale bar 20 μ m.

521 **q.** Images of an example paxillin-GFP adhesion at 12 minute intervals; scale bar is 1 μ m.

522 **r.** Example image of cell expressing tensin1-GFP seeded on glass; scale bar 20 μ m.

523 **s.** Images of an example tensin1-GFP adhesion at 12 minute intervals; scale bar is 1 μ m.

524 **t.** Quantification of adhesion disassembly time of paxillin and tensin1 adhesions. (Paxillin n=47
525 adhesions from 11 cells, 5 independent experiments and tensin1 n=26 adhesions from 10 cells, 4
526 independent experiments; Mann-Whitney test).

548 **h.** Model predictions for stresses in the cell and the substrate during mechanical stretch for cells with
549 an anchored vimentin network (adhesions), and cells lacking vimentin anchoring (no adhesions).

550

551 **Material and methods**

552 **Cell Culture, transfections, and drug treatments**

553 Human telomerase immortalized foreskin fibroblast (TIFFs) (a kind gift from J. Ivaska), were cultured in
554 high glucose Dulbecco's modified eagle medium (DMEM, ThermoFisher Scientific) supplemented with
555 20% FBS (v/v, ThermoFisher), 2% Hepes 1M (v/v, H0887 Sigma) and 1% penicillin-streptomycin (v/v,
556 10378016 ThermoFisher). For stretch experiments, media was changed to CO₂-independent media
557 (18045054 ThermoFisher) supplemented with the same concentrations of FBS, Hepes, and penicillin-
558 streptomycin as previous. Mammary epithelial cells (MCF10A) were purchased from ATCC, and cultured
559 in DMEM-F12 (21331-020 LifeTechnologies) with 5% horse serum, 1% penicillin streptomycin, EGF
560 (20 ng/ml), hydrocortisone (0.5 µg/ml), cholera toxin (100 ng/ml), and insulin (10 µg/ml). All cells were
561 maintained at 37°C with 5% CO₂. Cell cultures were routinely checked for the presence of mycoplasma.

562

563 Transfections were conducted using the Neon transfection system (ThermoFisher Scientific) following the
564 manufacturers instructions. TIFF cells were subjected to a single voltage pulse of 1650 V for a width of 20
565 ms. Cells were transfected the day before experiments, and cells were seeded ~4hours prior to the
566 experiment unless otherwise stated.

567

568 The plasmids used for transfections were:

569 L-NLS-41-GFP mechano-reporter was generated in the lab from a previous study⁸. Plectin 1f-GFP and
570 plectin 1f-8-GFP were generated from a previous study⁴⁷. GFP was generated in the lab from previous
571 study³. Membrane marker N-terminal Neuromodulin-GFP was a kind gift from Pr. F. Tebar. Tensin-1-eGFP
572 was a kind gift from J. Ivaska. EGFP-Vimentin-7 was a gift from Michael Davidson (Addgene plasmid
573 #56439; <http://n2t.net/addgene:56439>; RRID:Addgene_56439).

574

575 For the pharmaceutical inhibitor experiments, cells were seeded on fibronectin coated substrates for a
576 minimum of 4 hours (unless otherwise stated) to allow fibrillar adhesion formation. All compounds were
577 diluted and stored according to manufacturers instructions. Immediately prior to the experiments,
578 compounds were diluted in cell culture media and warmed to 37°C before adding to cells.

579

580 The drugs and concentrations used were: Blebbistatin (25 µM, B0560 Sigma), Cytochalasin D (1 µM, C2618
581 Sigma), Y-27632 (25 µM, 688001 Sigma), and LatrunculinA (0.5 µM, L5163 Sigma). Control cells were
582 incubated with DMSO (Sigma), where the volume added was equal to the maximum volume of the drug
583 conditions.

584

585 For the activation of integrin- $\alpha_5\beta_1$ by Mn²⁺, after trypsin cells were resuspended in media containing 5mM
586 Mn²⁺ and seeded onto 1.5kPa polyacrylamide gels. This concentration of Mn²⁺ was maintained throughout
587 the duration of the experiment.

588

589 **Fibril blocking approaches**

590 The PUR4 (also known as FUD) peptide (sequence:
591 KDDQSPLAGESGETEYITEVYGNQQNPVIDKKLPNETGFSGNMVETEDT) and the scrambled control (sequence:
592 EKGYSKPPVGNEGGDQVDEYDTMSQTKLEDEGNTLISPITFENATEQVN) were synthesised by ThermoFisher

593 Scientific without any tags or modifications. In all experiments, after trypsin the cells were resuspended
594 in media containing the PUR4 or scramble peptide at a final concentration of 500nM. The peptide was
595 maintained in the media for the duration of the experiment.

596
597 For blocking of the integrin $\alpha_5\beta_1$, cells in suspension were incubated for 20 minutes at 37°C in the blocking
598 antibody (integrin $\alpha_5\beta_1$, clone JBS5, Sigma) or control antibody (IgG) before seeding onto 10 μ g/mL
599 fibronectin coated glass surfaces. Both blocking antibodies were used at concentration of 10 μ g/mL.

600
601 Gluteraldehyde blocked surfaces were prepared as described previously¹⁹. Briefly, glass surfaces were
602 coated with 10 μ g/ml fibronectin overnight at 4°C or 1 hour at 37°C. Surfaces were then treated with a 1%
603 gluteraldehyde (Sigma Aldrich) in milliQ H₂O solution for 10 minutes at room temperature. Surfaces were
604 then thoroughly rinsed with H₂O and left to incubate in freshly prepared 1% BSA (Sigma Aldrich) solution
605 for at least 20 minutes at 37°C before cell seeding.

606
607 **Immunostainings**
608 Cells were fixed with 4% paraformaldehyde for 10 minutes at room temperature and rinsed thrice with
609 PBS. Cells were permeabilized with 0.1% Triton-X for 5 minutes and then blocked with 0.5% Fish-Gelatin
610 (SigmaAldrich) for 1 hour (except manganese treated cells which were permeabilized using 0.5% TritonX
611 for 15 minutes). Cells were incubated with the primary antibody for 1 hour diluted in the 0.5% fish gelatin
612 blocking solution, washed with blocking solution for 30 minutes, and incubated with the secondary
613 antibody labelled with Alexa fluorophore (ThermoFisher, 1:300 dilution) for 1 hour. In the case of actin
614 staining, phalloidin (SigmaAldrich, 1:1000) was added with the secondary antibody. Hoechst (1:2000) was
615 added for 5 minutes to label the nuclei, and samples were washed thoroughly.

616
617 The primary antibodies and their dilutions were:
618 YAP (1:300, sc-101199, Santa Cruz) or (1:300, 14074S, Cell Signaling). Integrin $\alpha 5$, clone Snaka51 (1:300,
619 MABT201, Millipore). LaminB (1:300 ab16048, abcam). Paxillin (1:300, ab32084, abcam). Twist (1:100, SC-
620 81417, Santa Cruz). Snail (1:50, Ab224731, abcam). Tensin-1 (1:200, ab233133, abcam). Fibronectin
621 (1:300, F3648, Sigma). Vimentin (1:600, ab92547, abcam). γ H2Ax (1:300, 2577, Cell Signaling).

622
623 **Polyacrylamide Gel**
624 Polyacrylamide gels of variable rigidity were prepared as previously described⁸. Briefly, glass bottom
625 dishes (MatTek) or glass coverslides were treated a solution of 3-(Trimethoxysilyl)propyl methacrylate
626 (Sigma), acetic acid, and 96% ethanol (1:1:14) for a minimum of 10 minutes. The glass was then thoroughly
627 rinsed in 96% ethanol and dried. Gels were prepared by mixing different concentrations of acrylamide and
628 bis-acrylamide to produce gels of different rigidity according to previous characterisation⁸, with 2% v/v
629 200-nm-diameter fluorescent carboxylate-modified beads (Fluospheres, Thermo Fisher Scientific), 0.05%
630 v/v ammonium persulfate (Sigma Aldrich) and 0.05% tetramethylethylenediamine (Sigma Aldrich), in PBS
631 1x. To cast the gels, 22 μ l was placed on top of the treated glass and then covered with an 18 mm circular
632 coverslip. Gels were left for 45 min to polymerize at room temperature. Finally, gels were submerged in
633 PBS 1x and the top coverslip was removed. To coat gels, we prepared a mixture containing 10% HEPES pH
634 (0.5M pH6.0), 0.004% Bis-acrylamide, 0.05% Igracure 2959 and 4% Acrylic-acid NHS/DMSO (10 mg/ml,

635 A8060 Sigma) in milliQ water. Gels were coated in this mixture and then illuminated with UV light for 8
636 minutes. Gels were then washed twice in 50mM HEPES pH7 and twice in PBS 1X, and incubated with
637 10ug/mL fibronectin in PBS overnight at 4°C, sterilised by UV-treatment in a laminar flow hood, washed
638 once with PBS and immediately used.

639

640 **Photodegradeable compound synthesis**

641 Photodegradable precursors were prepared as previously described²². Briefly, the acrylate functionalized
642 photodegradable monomer was synthesized by suspending 4-[4-(1-hydroxyethyl)-2-methoxy-5-
643 nitrophenoxy]butyric acid (0.0166 mol, Sigma-Aldrich) in anhydrous DCM (90 mL). The mixture was
644 purged with argon; triethylamine (0.0664 mol) was added to the flask by syringe; and acryloyl chloride
645 (0.0547 mol) in dry DCM was added dropwise at 0°C. The reaction was kept under argon atmosphere and
646 allowed to proceed overnight at room temperature. The reaction mixture was then added to DI water (0.5
647 L) and allowed to stir for 2 hours at room temperature, before being extracted with chloroform (5 x 200
648 mL washes). The organic phase was dried over NaSO₄ and concentrated by rotary evaporation to obtain
649 the acrylate functionalized photodegradable crosslinker.

650 To synthesize the photodegradable PEG crosslinker (PEGdiPDA), the acrylate functionalized
651 photodegradable monomer (6 mmol) was dissolved in NMP (15 mL) and purged with argon. The coupling
652 agent 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU, 6.6 mmol), 1-
653 hydroxybenzotriazole (HOBt, 6.6 mmol), and diisopropylethylamine (DIEA, 0.012 mol) were then added
654 to the reaction mixture and stirred for 5 minutes before the addition of PEGdiamine (0.6 mmol, 2 kDa) in
655 NMP. The reaction mixture was heated and vortexed until all reactants had completely dissolved, and left
656 to stir overnight at room temperature. The reaction mixture was then precipitated in diethyl ether at 0°C
657 and collected by centrifugation. The macromer product was redissolved in water and centrifuged (21,000
658 RPM, 1 hr) to yield a dark brown pellet with a clear supernatant. The supernatant was collected, dialyzed
659 (SpectraPor 7, CO 1000 g/mol), and lyophilized to produce a white powder (39 % yield) that was used in
660 experiments.

661

662 **Characterization of photodegradable gel mechanical properties**

663 Photodegradable gels were prepared by first mixing 5.4wt% PEGdiPDA, 9.6wt% PEG400acrylate, and
664 6.6mM sodium acrylate in PBS before degassing for 5 minutes on ice. Polymerization was initiated by
665 addition of 200mM TEMED and 100mM APS, which were pre-incubated on ice, and drops were added
666 between Sigmacote (Sigma-Aldrich) treated glass slides with either 200 µm spacers for 12 µL gels or 100
667 µm spacers for 6 µL gels. The gels were left to polymerize for 10 minutes before the top glass slide was
668 removed and the hydrogels were transferred to a well plate with PBS (500 µL). Following equilibration for
669 30 minutes in PBS, the hydrogels were transferred to a rheometer (DHR-3, TA Instruments) equipped with
670 a light curing accessory (Omnicure 1000, Lumen Dynamics) and an 8 mm parallel plate tool. The 6 µL gels
671 were used to track in situ network evolution during irradiation (365 nm, 10mW cm⁻²), and the 12 µL gels
672 were used to evaluate rheological properties of equilibrium swollen samples before and after pre-selected
673 doses of irradiation. All rheological characterization experiments utilized a strain of 1% and a frequency
674 of 1 Hz.

675

676 **Photodegradeable gel**

677 Glass bottom dishes were activated using the same protocol as the polyacrylamide gels. Photodegradable
678 gels were prepared by first mixing 5.4wt% PEGdiPDA, 9.6wt% PEG400acrylate, and 6.6mM sodium
679 acrylate in PBS before degassing for 5 minutes on ice. Polymerization was triggered by the addition of 5%
680 TEMED and 10% APS (2M), which were pre-incubated on ice, and a 22 μ L drop of gel mixture was placed
681 in the centre of the glass bottom dish and covered with a 18mm coverslip to achieve uniform spreading.
682 The gels were left to polymerise for 10 minutes before the addition of PBS and the removal of the top
683 coverslip.

684
685 For functionalisation, we prepared a mixture containing 100mM 1-Ethyl-3-(3'-
686 dimethylaminopropyl)carbodiimide HCL (8510070025, Sigma), and 200mM N-Hydroxysuccinimide
687 (130672, Sigma) in 20mM HEPES buffer pH7. Gels were incubated in this mixture for 20 minutes at 37°C.
688 The gels were rinsed once with HEPES buffer and once with PBS. The gels were then incubated with
689 10 μ g/mL of fibronectin overnight at 4°C. To initiate gel softening, gels were placed under a UV lamp (UVP
690 365nm, 15 Watt) for 4.5 minutes.

691
692 **Image acquisition**
693 Epifluorescent images and time lapse microscopy was performed with inverted microscopes (Nikon
694 Eclipse Ti) equipped with thermal, CO₂ and humidity control. Microscopes were equipped with an ORCA
695 Flash4.0 camera (Hamamatsu) and controlled with MetaMorph (version 7.7.1.0) or Micromanager. Most
696 images were taken with a 60X objective (plan apo; NA 1.2; water immersion) unless otherwise stated.
697

698 For time-lapse acquisition of the change in mechano-reporter L_NLS-41-GFP localisation with drug
699 treatments, a single image was acquired prior to pharmacological treatment, and then images were
700 acquired every 5 minutes for a total duration of 1 hour. For time-lapse acquisition of the change in
701 mechano-reporter L_NLS-41-GFP localisation upon *in-situ* photodegradable gel softening, images were
702 taken on a Nikon TiE inverted microscope equipped with a spinning disk confocal unit (Andor) and a Sona
703 sCMOS camera (Andor), using a 40X objective (Plan Fluor; NA 0.75) controlled with Fusion software. A
704 single z-stack was acquired prior to UV softening. Gels were then softened for 4.5minutes with a UV lamp,
705 and z-stack images were taken every 10 minutes for 2 hours.

706
707 Confocal images of nuclear height and plectin1F were acquired a Zeiss LSM880 inverted confocal
708 microscope using Zeiss ZEN2.3 SP1 FP3 (black, version 14.0.24.201), using a 63X 1.46 NA oil immersion
709 objective. Confocal images of the vimentin network were taken using a Nikon TiE inverted microscope
710 with a spinning disk confocal unit (CSU-WD, Yokogawa) and a Zyla 4.2 sCMOS camera (Andor) using a 60X
711 objective (plan apo; NA 1.2; water immersion) controlled with Micromanager.

712
713 **Traction force microscopy**
714 Traction force microscopy experiments were performed as described previously⁴⁸. Briefly, cells were
715 seeded on 15kPa polyacrylamide gels embedded with fluorescent beads. Images of the cells and the beads
716 were acquired prior to pharmacological treatment, and 30 minutes after pharmacological treatment. Cells
717 were then removed from the gel using Trypsin to obtain a reference image of the beads. Local gel
718 deformation was computed with a custom particle imaging velocimetry (PIV) software⁴⁹ in Matlab

719 (MathWorks Inc.). Traction forces were computed using Fourier traction microscopy with a finite gel
720 thickness and the mean of each cell was calculated.

721

722 **Cell stretch experiments and quantification**

723 Stretchable polydimethylsiloxane (PDMS) (Sylgard 184 Silicone Elastomer Kit, Dow Corning) membranes
724 were prepared as previously described³⁰. Briefly, a mix of 10:1 base to crosslinker was spun for 1 min at
725 500 rpm and cured at 65 °C overnight on plastic supports. Once polymerized, membranes were peeled off
726 and assembled onto the stretching device. The PDMS membranes were functionalized with 10 µg/mL
727 fibronectin overnight at 4 °C. Tiff cells were seeded for at least 4 hours (unless otherwise stated) prior to
728 the stretch experiment. Immediately before stretch, the cell media was changed to CO₂-independent
729 media. The stretch experiments were performed by mounting the stretching device on an upright
730 microscope (Nikon eclipse Ni-U) equipped with temperature control and controlled with Metamorph.
731 Calibration of the system was performed using PDMS coated with fluorescent beads, to ensure that the
732 vacuum applied a 10% stretch to the PDMS membrane. Each membrane was stretched for a maximum of
733 6 times per experiment. The percentage change in area of the nucleus and cell membrane upon stretch
734 was calculated by segmenting the fluorescent signal from the Hoechst or membrane marker respectively,
735 before and during stretch. For DNA damage experiments, cells were subjected to 5 cycles of 30 seconds
736 of 10% stretch, 10 seconds of release. The stretch system was immediately removed from the microscope
737 and the cells were fixed and stained with γH2Ax and Hoechst. The Hoechst signal was used to segment
738 the nuclei, and the mean intensity of each nucleus was measured correcting for the background.

739

740 **Adhesion disassembly times**

741 To measure the disassembly times of focal adhesions compared to fibrillar adhesions, Tiff cells were
742 transfected with either paxillin-GFP or tensin1-GFP, respectively. Transfections were performed 24 hours
743 prior to the experiment. On the day of the experiment, cells were seeded on fibronectin-coated glass
744 bottom dishes (Mattek) and left to form adhesions for a minimum of 4 hours. Adhesion dynamics were
745 acquired using a Zeiss LSM880 inverted confocal microscope with a 63X 1.46NA oil immersion objective.
746 For cells expressing paxillin-GFP, images were acquired every 120 seconds for approximately 2.5 hours.
747 For cells expressing tensin1-GFP, images were acquired every 300 seconds for approximately 10 hours.
748 The intensity of an adhesion was tracked with time, from the initial formation until disappearance. The
749 plot of adhesion intensity was then fit with a gaussian, and the disassembly time was measured at the
750 time from the gaussian peak until the return to background levels.

751

752 **Image analysis**

753 Nuclear / Cytoplasmic (N/C) ratio analysis

754 The nuclear/cytoplasmic ratio was quantified by measuring the mean fluorescence intensity of a nuclear
755 region (I_{nucleus}) and the intensity of a cytoplasmic region immediately adjacent ($I_{\text{cytoplasm}}$). The nuclear region
756 was determined from the Hoechst staining. The ratio was calculated using the following formula:

$$\frac{\text{Nucleus}}{\text{Cytoplasm}} = \frac{I_{\text{nucleus}} - I_{\text{background}}}{I_{\text{cytoplasm}} - I_{\text{background}}}$$

758 Where $I_{\text{background}}$ is the mean fluorescence intensity of a region outside of the cell. For the quantification of
759 the mechano-reporter L-NLS-41-GFP with time, the N/C ratio was calculated at each time point. For all

760 drug treatment experiments, the N/C ratio at each timepoint was normalized to the N/C ratio prior to the
761 addition of the compound. For quantification of the N/C mechano-reporter L-NLS-41-GFP ratio during *in*-
762 *situ* gel softening experiments, a single confocal plane was selected and the N/C ratio was normalized
763 between the pre-softened N/C ratio and the ratio at the final timepoint.

764 **Fibrillar adhesion quantification**

765 Fibrillar adhesions were marked with the Integrin α 5, clone SnaKa51 antibody (or tensin-1 antibody for
766 the blocking antibody experiments). To quantify the extent of fibrillar adhesion formation, the fibrils in
767 the area under the nucleus (determined from Hoechst staining) were detected using the Fiji Ridge
768 Detection plugin, and the percentage area occupied by fibrils was computed. For cells seeded on soft gels,
769 instead the length of the fibrillar adhesions was calculated to circumvent changes in focal plane across
770 the whole cell. For each cell, the length of \sim 5 representative fibrillar adhesions under the nucleus were
771 measured.

772 **Focal adhesion length**

773 Focal adhesion length was obtained by measuring the length of \sim 5 representative focal adhesions at the
774 cell periphery for each cell.

775 **Nuclear height**

776 Nuclear height was measured from z-stack confocal images of laminB stained nuclei. Each nucleus was
777 resliced along the long-axis, an intensity profile was created, and the height was measured from the
778 distance between the two peaks of maximum laminB intensity.

779 **Vimentin spreading**

780 To calculate the area occupied by vimentin, confocal stacks were acquired for cells stained with actin and
781 vimentin. The area of the actin and vimentin network was calculated by thresholding the z-projection
782 (sum) of each channel. The percentage area of the vimentin network with respect to the total cell area
783 (from the actin network) was computed for each cell.

784 **Actin Anisotropy**

785 The actin anisotropy was analysed using the FibrilTool plugin in imageJ⁵⁰.

786

787 **Computational model**

788 **Constitutive Models for the cell, nucleus and substrate**

789 To fully describe the effect of mechanical stress (generated due to cellular contraction and/or applied
790 stretch) on the nucleus, we consider the following key components in our computational model: i) contraction
791 due to myosin motors (red, Figure 3n), ii) actin filaments blue, Figure 3n), iii) vimentin
792 intermediate filaments (green, Figure 3n), iv) microtubules and v) fibrillar adhesions. In our model, the
793 cell cytoskeleton is considered to consist of spatially varying representative volume elements (RVEs), each
794 of which is comprised of the components (i-iv) described above (Figure S7(a)). We assume initially uniform
795 and isotropic distribution of these elements and describe how, due to the action of contractile forces and
796 the resulting stress field, these cytoskeletal components are redistributed in a more anisotropic manner,
797 facilitating force transfer from the cell cytoskeleton to the nucleus. Also, the extracellular matrix is
798 modelled as a linear elastic material with elastic modulus 70kPa, while the nucleus is similarly modelled
799 as an elastic material with Young's modulus and shear modulus values as listed in Table 1. We describe
800 each of these components here.

801

802 *Cytoskeletal contraction due to myosin molecular motors.* Myosin motors are treated as force dipoles (pair
803 of equal, but oppositely oriented forces) that bind to actin filaments and generate cellular contractility⁵¹
804 (Figure 3n, inset in green). The volume-averaged density of bound motors can be represented by a
805 symmetric tensor, ρ_{ij} , whose components represent cytoskeletal contractility along different directions⁵².
806 Within our coarse-grained approach, the contraction due to myosin motors is represented as an isotropic
807 stress tensor ($\rho_{11}=\rho_{22}=\rho_{33}=\rho$) of magnitude 1.5kPa, applied at every point in the cell cytoskeleton. Due to
808 cytoskeletal contraction, compressive stress $C_{ijkl}^{(A)}\varepsilon_{kl}^{(A)}$ are generated in components in compression (like
809 vimentin), while tensile stresses σ_{ij} are generated in the cytoskeletal components under tensile strain
810 (actin filaments). By force balance, the contractility is given as:

811
$$\rho_{ij} = -C_{ijkl}^{(A)}\varepsilon_{kl}^{(A)} + \sigma_{ij}$$

812 where $C_{ijkl}^{(A)}$ and $\varepsilon_{kl}^{(A)}$ are the stiffness tensor and strain of the components in compression (SI Fig. 7),
813 namely the microtubules and vimentin.

814
815 *Actin Filaments and actin-vimentin interactions.* The actin filaments experience tension as the cell
816 contracts and hence are in series with the myosin element. Vimentin intermediate filaments (VIF) interact
817 with actin through direct physical contact facilitated by cross-linkers and direct binding⁵³. Hence, the
818 vimentin intermediate filaments in contact with actin also experience tensile stresses and is added in
819 series to the non-linear elastic element representing actin filaments (SI Fig. 7).

820
821 *Vimentin-microtubule network under compression.* Vimentin intermediate filaments near the perinuclear
822 region interact with microtubule elements and are experimentally reported to stabilize them^{54,55}. To
823 represent this effect, we add another set of vimentin elements in parallel with the microtubules in
824 compression. Hence, there are two sets of vimentin intermediate filaments, one that is in direct physical
825 contact with actin and under tension, while the other is enmeshed with microtubules under compression,
826 reinforcing them⁵⁶. Also, vimentin intermediate filaments have been observed to stiffen under
827 compressive strains, leading to an overall compressive stiffening of cytoskeletal networks²⁶. To represent
828 the above effects, the cytoskeleton is modelled as a nearly incompressible, hyperelastic solid that stiffens
829 under compressive strains. First, we define the deformation gradient $F_{ij} = \frac{\partial x_i}{\partial X_j}$, as a second order tensor
830 that maps infinitesimal line elements dX in the reference configuration to corresponding infinitesimal line
831 elements dx in the current configuration. Further, we define $\mathbf{C} = \mathbf{F}^T \mathbf{F}$ to be the right Cauchy Green
832 deformation tensor whose normal components represent stretch along a given direction, while shear
833 components represent change of angle. A Mooney- Rivlin constitutive equation is used to represent this
834 stiffening behaviour and the strain energy of the cell can be defined as:

835

836
$$W_s = C_1(\bar{I}_1 - 3) + C_2(\bar{I}_2 - 3) + \frac{1}{2}K(J - 1)^2$$

837
838 In the above equation, the Jacobian $J = \det(\mathbf{F})$ the determinant of the deformation gradient tensor, while
839 \bar{I}_1 and \bar{I}_2 are the first and second invariants of the deviatoric part of \mathbf{C} , respectively. The parameters C_1
840 and C_2 are Mooney-Rivlin parameters while K is the bulk modulus of the cell. In the limit of small strains,

841 the parameters C_1 and C_2 can be related to the shear modulus of the cell μ as : $\mu = 2(C_1 + C_2)$. The values
842 of these parameters are listed in Table 1 and the elastic modulus of the cell for compressive strains in the
843 range of 0.001 to 0.5 are found to be 2.1-2.9 kPa, which provides reasonable agreement with the Young's
844 modulus measured for living fibroblasts using AFM⁵⁷. The high levels of compressive strain near the
845 nucleus due to the contractile stress leads to the formation of a stiff region representing the vimentin
846 cage observed experimentally (see principal stress σ_3 , SI Figure 7). By contrast, in the cell cytoskeleton,
847 high tensile stresses are observed close to the basal plane, particularly near the cell periphery (see
848 principal stress σ_1 , SI Figure 7) representing the actin and vimentin intermediate filaments in tension.
849

850 Adhesive and frictional forces due to fibrillar adhesions

851 Due to cytoskeletal contraction, the vimentin cage around the nucleus is gradually pushed down and is
852 anchored by fibrillar adhesions that are present near the centre of the cell. We propose that the fibrillar
853 adhesions exert an adhesive force f_a on the edge of the vimentin cage (Figure S3 (A)) once they are
854 engaged, which prevents nuclear rebound upon loss of contractile forces. We model this by applying a
855 vertical force along the vimentin edges which remain even when contractile forces are removed. We
856 estimate this force to be of the same magnitude as the contractile force needed to push down the
857 vimentin cage.
858

859 Fibrillar adhesions are defined by $\alpha 5\beta 1$ -integrin and tensin family of proteins which form bonds with
860 ligands on the ECM. On the application of stretch, the bond between the fibrillar adhesions and the ligands
861 on the ECM (a polymer structure) are ruptured. This rupture corresponds to overcoming of energy barriers
862 by thermal activation (note that, we assume that the vimentin remains anchored to the fibrillar adhesions
863 as it slides). The disengagement of the fibrillar adhesion-ligand bond follows a Hill Type relation, where
864 the velocity of the sliding adhesions decays exponentially as the activation energy associated with bond
865 rupture E_A increases:
866

$$v_a = v_0 \exp(-E_A/E_0)$$

867 where v_0 is the maximum sliding velocity (when the activation energy E_A is zero) and E_0 is an energy scale
868 related to thermal or active noise. The activation energy can be expressed as the work done by a
869 dissipative force f_d in translocating the fibrillar adhesions by a molecular sliding distance a :
870

$$v_a = v_0 \exp(-f_d a/E_0)$$

871 Assuming that the activation energy associated with the rupture is much smaller than E_0 , the above
872 equation can be linearized, and expressed as:
873

$$f_d = \eta_d v_a$$

874 where, $\eta_d = E_0/av_0$ is a frictional dissipative constant that is inversely related to the mobility of
875 individual fibrillar adhesions. Setting η_d as zero is equivalent to the case of fibrillar adhesions not anchored
876 to the ECM and is representative of cells lacking fibrillar adhesions.
877

878 Geometry, Mesh and Boundary Conditions
879
880

882 The model for the cell cytoskeleton, nucleus and the fibrillar adhesions is implemented in COMSOL
883 Multiphysics, within a finite element framework. The cell is modelled as an ellipsoid of semi-axes lengths
884 15 and 12 μm , while the nucleus is modelled as a spheroid of radius 3.7 μm located at the centre of the
885 cell. The substrate is modelled as a rigid cylinder of radius 50 μm . Due to rotational symmetry of the cell-
886 substrate system, an axisymmetric analysis is conducted, with horizontal roller boundary conditions
887 applied to the top and bottom ends of the substrate. While the cell and nucleus fully rest on the substrate,
888 a small hemispherical region around the nucleus 0.5 μm thick and separated from the nucleus by 0.1
889 microns is initially separated by a gap of 0.03 μm from the substrate. This represents the vimentin cage
890 that forms upon the action of contractile forces and is pushed down and eventually is anchored to the
891 fibrillar adhesions. Contact conditions are implemented at the vimentin-nucleus interface representing
892 the effect of nesprins and other molecules that directly transfer contractile stresses to the nucleus. In
893 addition, contact conditions are implemented at the vimentin-substrate interface to represent the
894 adhesion between the vimentin and the fibrillar adhesions near the centre of the cell. Triangular mesh
895 elements are used to discretize the cell geometry with a minimum element size of 0.001 μm near the
896 contact zones to accurately resolve the stresses and displacements at contact.
897

898 **Table 1. List of parameters used in the simulations.**

899

Parameter	Description	Value
K_{nuc}	Bulk modulus of nucleus	2.5 kPa
μ_{nuc}	Shear modulus of nucleus	1.2 kPa
E_{cell}	Elastic modulus of cell at 0.1% strain	2.1 kPa
C_1	Mooney-Rivlin Parameter	0.28 Pa
C_2	Mooney-Rivlin Parameter	700 Pa
η_d	Frictional viscosity constant	90 nN.s/ μm

900

901 **Material and software availability**

902 This study did not generate new reagents.

903

904 **Statistics**

905 Statistical analyses were performed with GraphPad Prism software (GraphPad, version 9). Statistical
906 significance was determined using the tests indicated in each figure legend. The number of data points
907 and number of independent experiments performed for each experiment is stated in the figure legend.
908

909 **References**

910 1. Jaalouk, D. E. & Lammerding, J. Mechanotransduction gone awry. *Nat. Rev. Mol. Cell Biol.* **10**, 63–73
911 (2009).

912 2. Chin, L., Xia, Y., Discher, D. E. & Janmey, P. A. Mechanotransduction in cancer. *Curr. Opin. Chem. Eng.*
913 **11**, 77–84 (2016).

914 3. Elosegui-Artola, A. *et al.* Force Triggers YAP Nuclear Entry by Regulating Transport across Nuclear
915 Pores. *Cell* **171**, 1397-1410.e14 (2017).

916 4. Seelbinder, B. *et al.* Nuclear deformation guides chromatin reorganization in cardiac development
917 and disease. *Nat. Biomed. Eng.* **5**, 1500–1516 (2021).

918 5. Damodaran, K. *et al.* Compressive force induces reversible chromatin condensation and cell
919 geometry–dependent transcriptional response. *Mol. Biol. Cell* **29**, 3039–3051 (2018).

920 6. Venturini, V. *et al.* The nucleus measures shape changes for cellular proprioception to control
921 dynamic cell behavior. *Science* **370**, eaba2644 (2020).

922 7. Lomakin, A. J. *et al.* The nucleus acts as a ruler tailoring cell responses to spatial constraints. *Science*
923 **370**, eaba2894 (2020).

924 8. Andreu, I. *et al.* Mechanical force application to the nucleus regulates nucleocytoplasmic transport.
925 *Nat. Cell Biol.* **24**, 896–905 (2022).

926 9. d'Alessandro, J. *et al.* Cell migration guided by long-lived spatial memory. *Nat. Commun.* **12**, 4118
927 (2021).

928 10. Almeida, J., Mathur, J., Lee, Y. L., Sarker, B. & Pathak, A. Mechanically primed cells transfer memory
929 to fibrous matrices for invasion across environments of distinct stiffness and dimensionality. *Mol.*
930 *Biol. Cell* mbc.E22-10-0469 (2023) doi:10.1091/mbc.E22-10-0469.

931 11. Carraher, C. L. & Schwarzbauer, J. E. Regulation of Matrix Assembly through Rigidity-dependent
932 Fibronectin Conformational Changes. *J. Biol. Chem.* **288**, 14805–14814 (2013).

933 12. Barber-Pérez, N. *et al.* Mechano-responsiveness of fibrillar adhesions on stiffness-gradient gels. *J.*
934 *Cell Sci.* **jcs.242909** (2020) doi:10.1242/jcs.242909.

935 13. Clark, K. *et al.* A specific $\alpha 5\beta 1$ -integrin conformation promotes directional integrin translocation and
936 fibronectin matrix formation. *J. Cell Sci.* **118**, 291–300 (2005).

937 14. Wei, S. C. *et al.* Matrix stiffness drives epithelial–mesenchymal transition and tumour metastasis
938 through a TWIST1–G3BP2 mechanotransduction pathway. *Nat. Cell Biol.* **17**, 678–688 (2015).

939 15. Zhang, K. *et al.* Mechanical signals regulate and activate SNAIL1 protein to control the fibrogenic
940 response of cancer-associated fibroblasts. *J. Cell Sci.* **129**, 1989–2002 (2016).

941 16. Tomer, D. *et al.* A new mechanism of fibronectin fibril assembly revealed by live imaging and super-
942 resolution microscopy. *J. Cell Sci.* **135**, jcs260120 (2022).

943 17. Ensenberger, M. G. *et al.* Specific Interactions between F1 Adhesin of Streptococcus pyogenes and
944 N-terminal Modules of Fibronectin. *J. Biol. Chem.* **276**, 35606–35613 (2001).

945 18. Tomasini-Johansson, B. R. *et al.* A 49-Residue Peptide from Adhesin F1 of Streptococcus pyogenes
946 Inhibits Fibronectin Matrix Assembly. *J. Biol. Chem.* **276**, 23430–23439 (2001).

947 19. Missirlis, D., Haraszti, T., Kessler, H. & Spatz, J. P. Fibronectin promotes directional persistence in
948 fibroblast migration through interactions with both its cell-binding and heparin-binding domains.
949 *Sci. Rep.* **7**, 3711 (2017).

950 20. Pankov, R. *et al.* Integrin Dynamics and Matrix Assembly: Tensin-dependent Translocation of $\alpha 5\beta 1$
951 Integrins Promotes Early Fibronectin Fibrillogenesis. *J. Cell Biol.* **148**, 16 (2000).

952 21. Burgstaller, G., Gregor, M., Winter, L. & Wiche, G. Keeping the Vimentin Network under Control:
953 Cell–Matrix Adhesion–associated Plectin 1f Affects Cell Shape and Polarity of Fibroblasts. *Mol. Biol.*
954 *Cell* **21**, 3362–3375 (2010).

955 22. Kloxin, A. M., Kasko, A. M., Salinas, C. N. & Anseth, K. S. Photodegradable Hydrogels for Dynamic
956 Tuning of Physical and Chemical Properties. *Science* **324**, 59–63 (2009).

957 23. Kechagia, Z. *et al.* The laminin–keratin link shields the nucleus from mechanical deformation and
958 signalling. *Nat. Mater.* 1–12 (2023) doi:10.1038/s41563-023-01657-3.

959 24. Laly, A. C. *et al.* The keratin network of intermediate filaments regulates keratinocyte rigidity
960 sensing and nuclear mechanotransduction. *Sci. Adv.* **7**, eabd6187 (2021).

961 25. Patteson, A. E. *et al.* Vimentin protects cells against nuclear rupture and DNA damage during
962 migration. *J. Cell Biol.* **218**, 4079–4092 (2019).

963 26. Pogoda, K. *et al.* Unique Role of Vimentin Networks in Compression Stiffening of Cells and
964 Protection of Nuclei from Compressive Stress. *Nano Lett.* **22**, 4725–4732 (2022).

965 27. Shah, P. *et al.* Nuclear Deformation Causes DNA Damage by Increasing Replication Stress. *Curr. Biol.*
966 **31**, 753-765.e6 (2021).

967 28. Nava, M. M. *et al.* Heterochromatin-Driven Nuclear Softening Protects the Genome against
968 Mechanical Stress-Induced Damage. *Cell* **181**, 800-817.e22 (2020).

969 29. Denais, C. M. *et al.* Nuclear envelope rupture and repair during cancer cell migration. *Science* **352**,
970 353–358 (2016).

971 30. Andreu, I. *et al.* The force loading rate drives cell mechanosensing through both reinforcement and
972 cytoskeletal softening. *Nat. Commun.* **12**, 4229 (2021).

973 31. Strohmeyer, N., Bharadwaj, M., Costell, M., Fässler, R. & Müller, D. J. Fibronectin-bound $\alpha 5\beta 1$
974 integrins sense load and signal to reinforce adhesion in less than a second. *Nat. Mater.* **16**, 1262–
975 1270 (2017).

976 32. Webb, D. J. *et al.* FAK–Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly.
977 *Nat. Cell Biol.* **6**, 154–161 (2004).

978 33. Levental, K. R. *et al.* Matrix Crosslinking Forces Tumor Progression by Enhancing Integrin Signaling.
979 *Cell* **139**, 891–906 (2009).

980 34. Laklai, H. *et al.* Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce
981 matricellular fibrosis and tumor progression. *Nat. Med.* **22**, 497–505 (2016).

982 35. Li, C. X. *et al.* MicroRNA-21 preserves the fibrotic mechanical memory of mesenchymal stem cells.
983 *Nat. Mater.* **16**, 379–389 (2017).

984 36. Walker, C. J. *et al.* Nuclear mechanosensing drives chromatin remodelling in persistently activated
985 fibroblasts. *Nat. Biomed. Eng.* **5**, 1485–1499 (2021).

986 37. Yang, C., Tibbitt, M. W., Basta, L. & Anseth, K. S. Mechanical memory and dosing influence stem cell
987 fate. *Nat. Mater.* **13**, 645–652 (2014).

988 38. Doncic, A. *et al.* Compartmentalization of a Bistable Switch Enables Memory to Cross a Feedback-
989 Driven Transition. *Cell* **160**, 1182–1195 (2015).

990 39. Wang, L. *et al.* Bistable switches control memory and plasticity in cellular differentiation. *Proc. Natl.*
991 *Acad. Sci.* **106**, 6638–6643 (2009).

992 40. Xiong, W. & Ferrell, J. E. A positive-feedback-based bistable ‘memory module’ that governs a cell
993 fate decision. *Nature* **426**, 460–465 (2003).

994 41. Burrill, D. R. & Silver, P. A. Making Cellular Memories. *Cell* **140**, 13–18 (2010).

995 42. Oria, R. *et al.* Force loading explains spatial sensing of ligands by cells. *Nature* **552**, 219–224 (2017).

996 43. Atherton, P. *et al.* Tensin3 interaction with talin drives the formation of fibronectin-associated
997 fibrillar adhesions. *J. Cell Biol.* **221**, e202107022 (2022).

998 44. Goreczny, G. J., Forsythe, I. J. & Turner, C. E. Hic-5 regulates fibrillar adhesion formation to control
999 tumor extracellular matrix remodeling through interaction with tensin1. *Oncogene* **37**, 1699–1713
1000 (2018).

1001 45. Goreczny, G. J., Onderkirk-Pecone, J. L., Olson, E. C., Krendel, M. & Turner, C. E. Hic-5 remodeling of
1002 the stromal matrix promotes breast tumor progression. *Oncogene* **36**, 2693–2703 (2017).

1003 46. Vohnoutka, R. B. *et al.* The focal adhesion scaffold protein Hic-5 regulates vimentin organization in
1004 fibroblasts. *Mol. Biol. Cell* **30**, 3037–3056 (2019).

1005 47. Rezniczek, G. A., Abrahamsberg, C., Fuchs, P., Spazierer, D. & Wiche, G. Plectin 5'-transcript
1006 diversity: short alternative sequences determine stability of gene products, initiation of translation
1007 and subcellular localization of isoforms. *Hum. Mol. Genet.* **12**, 3181–3194 (2003).

1008 48. Elosegui-Artola, A. *et al.* Rigidity sensing and adaptation through regulation of integrin types. *Nat.*
1009 *Mater.* **13**, 631–637 (2014).

1010 49. Trepat, X. *et al.* Physical forces during collective cell migration. *Nat. Phys.* **5**, 426–430 (2009).

1011 50. Boudaoud, A. *et al.* FibrilTool, an ImageJ plug-in to quantify fibrillar structures in raw microscopy
1012 images. *Nat. Protoc.* **9**, 457–463 (2014).

1013 51. Shenoy, V. B., Wang, H. & Wang, X. A chemo-mechanical free-energy-based approach to model
1014 durotaxis and extracellular stiffness-dependent contraction and polarization of cells. *Interface Focus*
1015 **6**, 20150067 (2016).

1016 52. Alisafaei, F., Jokhun, D. S., Shivashankar, G. V. & Shenoy, V. B. Regulation of nuclear architecture,
1017 mechanics, and nucleocytoplasmic shuttling of epigenetic factors by cell geometric constraints.
1018 *Proc. Natl. Acad. Sci.* **116**, 13200–13209 (2019).

1019 53. Huber, F., Boire, A., López, M. P. & Koenderink, G. H. Cytoskeletal crosstalk: when three different
1020 personalities team up. *Curr. Opin. Cell Biol.* **32**, 39–47 (2015).

1021 54. Brangwynne, C. P. *et al.* Microtubules can bear enhanced compressive loads in living cells because
1022 of lateral reinforcement. *J. Cell Biol.* **173**, 733–741 (2006).

1023 55. Schaedel, L., Lorenz, C., Schepers, A. V., Klumpp, S. & Köster, S. Vimentin intermediate filaments
1024 stabilize dynamic microtubules by direct interactions. *Nat. Commun.* **12**, 3799 (2021).

1025 56. Alisafaei, F. *et al.* *Vimentin Intermediate Filaments Can Enhance or Abate Active Cellular Forces in a*
1026 *Microenvironmental Stiffness-Dependent Manner.*
1027 <http://biorxiv.org/lookup/doi/10.1101/2022.04.02.486829> (2022) doi:10.1101/2022.04.02.486829.
1028 57. Pogoda, K. *et al.* Depth-sensing analysis of cytoskeleton organization based on AFM data. *Eur.*
1029 *Biophys. J.* **41**, 79–87 (2012).
1030