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Abstract

Introduction: Diarrhoeagenic Escherichia coli (DEC) persistently challenges public health in

Africa, contributing substantially to the diarrhoeal disease burden. This systematic review and
meta-analysis illuminate the distribution and antimicrobial resistance (AMR) patterns of DEC

pathotypes across the continent.

Methods: The review selectively focused on studies reporting prevalence and/or AMR of human-
derived DEC pathotypes from African nations, excluding data from extra-intestinal, animal, and
environmental sources, and studies focused on drug and mechanism experiments. Employing a
robust search strategy, pertinent studies were retrieved from SCOPUS, PubMed, and

EBSCOhost, processed with Covidence, and screened in alignment with PRISMA guidelines.

Results: The reviewed studies were predominantly hospital-based (80%) and paediatric-focused
(91%), with a meagre 4.4% documenting DEC outbreaks. Seven DEC pathotypes were
discerned, with Enteroaggregative E. coli (EAEC) being notably prevalent (43%, 95% CI: 30% —
55%) and Enteroinvasive E. coli (EIEC) least prevalent (24%, 95%CI: 17% — 32%). Identified
non-susceptibilities were noted against essential antibiotics, including ciprofloxacin, ceftriaxone,
and ampicillin, while instances of carbapenem and Extended-Spectrum Beta-Lactamase (ESBL)

resistance were scarce.

Conclusion: Despite sporadic data on DEC prevalence and AMR in Africa, particularly in
community settings, a palpable gap remains in real-time outbreak surveillance and
comprehensive data documentation. Augmenting surveillance and embracing advancements in
molecular/genomic characterisation techniques are crucial to precisely discerning the actual

impact and resistance continuum of DEC in Africa.
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Background

Diarrhoea is a significant public health concern in sub-Saharan Africa—uwith a high incidence due
to factors like limited access to clean water and sanitation—leading to millions of cases
annually—and is exacerbated by limited healthcare access, particularly among young children,
HIV-positive individuals, and visitors from abroad [1-3]. Diarrhoea manifests as a symptom
originating from infections induced by various organismes, including bacteria, viruses, and
parasites, predominantly propagated through water contaminated with faeces. In low-income
nations, Rotavirus and Escherichia coli are two predominant causative agents of moderate-to-

severe diarrhoea, along with other pathogens like Cryptosporidium and Shigella [4, 5].

Despite recent studies in Africa revealing the problematic emergence of antimicrobial resistance
for common causes of diarrhoea such as diarrhoeagenic E. coli, the full scope, distribution,
molecular epidemiology, and antimicrobial resistance of diarrhoeagenic bacterial pathogens in
the continent remain poorly understood, mainly because many cases go undetected, unreported,
and, consequently, untreated. A recent PulseNet International survey emphasised the absence of
Whole Genome Sequencing (WGS) in foodborne surveillance outside the United States, Canada,

and Europe, spotlighting significant disparities in resources and expertise across regions [6].

In response to this pressing need, the Africa Pathogen Genomics Initiative (PGI) of the Africa
Centres for Disease Control and Prevention (Africa CDC) established a technical focus group of
experts on Foodborne Diseases (FBD) in April 2022. A significant area of concern is E. coli, a
member of the Enterobacteriaceae family, which the World Health Organisation (WHO) has
identified as one of twelve bacterial families that significantly threaten human health due to
escalating antibiotic resistance [7]. The most vulnerable, such as young children, older adults,
and those with compromised immunity or malnutrition, are at heightened risk. Key transmission
factors include unhygienic practices, limited sanitation, and exposure to contaminated water
sources for consumption and irrigation. The latter has been pinpointed as a significant factor in

transmitting genes related to antibiotic resistance and increased pathogenicity [8].

While current research primarily analyses E. coli samples from diarrhoeic patients, there is a
significant gap in our understanding of its prevalence in the broader community setting [1, 9]. The
Global Enteric Multicenter Study (GEMS) provided insights into the genomic diversity of E. coli.
Among others, their findings suggest the potential for certain strains to carry or acquire virulence

genes typically associated with E. coli diarrhoeagenic pathotypes [10-12]. Beyond these insights,
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a fragmented understanding of E. coli pathotypes and their contribution to diarrhoeal diseases
across the continent remains. Consequently, we lack a cohesive picture of this pivotal pathogen’s

epidemiology and associated antibiotic resistance in African settings.

Contrasting with developed regions such as the USA and Europe, which have robust E. coli
surveillance systems [13-18], Africa contends with significant systemic challenges. The value of
well-established FBD surveillance systems was exemplified by the United Kingdom'’s swift
containment of a Shiga toxin-producing Escherichia coli (STEC) outbreak within five weeks using
WGS [19]. As plans unfold for an African genomic FBD surveillance platform, understanding the
prevalence, burden, and diversity of diarrhoeagenic E. coli from Africa becomes imperative.

Addressing this gap is crucial, as it informs where to allocate resources and infrastructure.

Consequently, this systematic review examines the existing literature on diarrhoeagenic E. coli
obtained from human stool samples of diarrhoeic cases in African healthcare settings and
communities. Our objective is to elucidate the status of the main diarrhoeagenic E. coli
pathotypes, viz. enteropathogenic E. coli (EPEC), Shiga toxin-producing E. coli (STEC),
enteroaggregative E. coli (EAEC), enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC),
and diffusely adherent E. coli (DAEC) and their antibiotic resistance profiles, which directly
challenge primary therapeutic measures. By aggregating data until December 2022, this review
sets the foundation for developing a comprehensive pan-African surveillance system that
integrates WGS insights.

Methods

This systematic review utilised the Covidence (Veritas Health Innovation Ltd) data management
system and adhered to the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) reporting guidelines [20]. The process encompassed importing journal
articles from three databases into Covidence, followed by title and abstract screening (Figure 1).
After selecting the relevant articles, we proceeded with full-text screening and data extraction.
The extracted data was then exported in the comma-separated values (CSV) file format for

further analysis in Microsoft Excel, R Studio and JupyterLab.

Generation of search terms and database selection
The search terms were derived from common terms previously associated with our topic. We
reviewed the reference sections of 30 articles pertinent to the molecular epidemiology of

diarrhoeagenic E. coli. The journals and databases in which these references were published
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were then noted. The selection of databases for our literature search was based on the frequency
of these journals. The keywords used for the search were determined by collating those from the
30 articles mentioned above and selecting the most frequently occurring keywords related to the

molecular epidemiology of diarrhoeagenic E. coli in Africa.

Search strategy
Database searches were conducted using Scopus, PubMed, and EBSCOhost Research

Databases. The specific strategies for each are detailed below.

SCOPUS (315 results; Search date: 25™ April 2023)

TITLE-ABS-KEY (["Diarrhoeagenic Escherichia coli", "Verotoxigenic Escherichia coli", vtec,
"Verotoxigenic E. coli", "Shiga Toxin-Producing Escherichia coli", "Vero Cytotoxin-Producing
Escherichia coli", "Shiga Toxigenic Escherichia coli®, stec, "Shiga Toxigenic E. coli",
"Enteropathogenic E. coli", epec, "Enteroinvasive Escherichia coli", "Enteroinvasive E. coli", eiec,
"Diffusely Adherent Escherichia coli", "Diffusely Adherent E. coli", daec, "Enteroaggregative
Escherichia coli", eaggec, "Enteroaggregative E. coli", etec, "Enterotoxigenic E. coli",
"Enterotoxigenic Escherichia coli"]) AND TITLE-ABS-KEY ([Outbreak*, Antimicrobial*, Antibiotic*,
epidemic*, Pandemic*]) AND EXCLUDE ( AFFILCOUNTRY, ["United States", "United Kingdom",
"Germany", "Canada", "China", "India", "Japan", "Brazil", "France", "ltaly", "Sweden", "Spain”,
"Australia”, "lran”, "Mexicao", "Argentina”, "South Korea", "Denmark”, "Belgium", "Switzerland",
"Netherlands”, "Bangladesh”, "Thailand", "Norway", "Ireland”, "Poland", "Indonesia”, "Finland",
"Peru”, "Turkey", "Saudi Arabia", "Austria”, "Pakistan”, "Chile", "New Zealand", "Greece",
"Hungary", "Israel", "Czech Republic", "Portugal”, "Iraq", "Viet Nam", "Malaysia", "Romania",
"Russian Federation", "Taiwan", "Nepal", "Colombia", "Serbia", "Slovakia", "Hong Kong",
"Jordan”, "Bulgaria”, "Croatia”, "Lebanon”, "Singapore", "Uruguay", "Bolivia", "Slovenia", "United
Arab Emirates”, "Philippines”, "Cuba", "Georgia", "Laos", "Costa Rica", "Jamaica”, "Kuwait",
"Latvia", "Qatar", "Trinidad and Tobago", "Luxembourg", "Nicaragua”, "Venezuela", "Cyprus",
"Ecuador”, "Estonia”, "Guatemala”, "Honduras", "Lithuania”, "New Caledonia", "Palestine",
"Puerto Rico", "Yemen", "Yugoslavia", "Albania", "Belarus", "Bosnia and Herzegovina", "Burma",
"Cambodia", "Czechoslovakia", "Fiji", "Iceland", "Kazakhstan", "Mongolia", "Myanmar",

"Panama”, "Paraguay", "Saint Kitts and Nevis", "Suriname", "Syrian Arab Republic"]).

PUBMED (225 papers; Search date, 19 April 2023) from 1977 to 2022
(["Diarrhoeagenic Escherichia coli[Title/Abstract]”, “VTEC[Title/Abstract]”, “Verotoxigenic E.

coli[Title/Abstract]”, “Verotoxin-Producing Escherichia coli[Title/Abstract]”, “Shiga Toxin-
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Producing Escherichia coli[Title/Abstract]”, “Vero Cytotoxin-Producing Escherichia
coli[Title/Abstract]”, “Shiga Toxigenic Escherichia coli[Title/Abstract]”, “STEC|[Title/Abstract]”,
“Shiga Toxigenic E. coli[Title/Abstract]’, “Enteropathogenic E. coli[Title/Abstract]”,
“EPEC][Title/Abstract]”, “Enteroinvasive Escherichia coli[Title/Abstract]”, “Enteroinvasive E.
coli[Title/Abstract]”, “EIEC][Title/Abstract]”, “Diffusely Adherent Escherichia coli[Title/Abstract]”,
“Diffusely Adherent E. coli[Title/Abstract]”, “DAEC][Title/Abstract]”, “Enteroaggregative
Escherichia coli[Title/Abstract]”, “EAggEC[Title/Abstract]”, “Enteroaggregative E.
coli[Title/Abstract]”, “ETEC][Title/Abstract]”, “Enterotoxigenic Escherichia coli[Title/Abstract]”,
“Enterotoxigenic E. coli[Title/Abstract”]) AND (Outbreak*[Title/Abstract],
Antimicrobial*[Title/Abstract], Antibiotic*[Title/Abstract], Pandemic*[Title/Abstract],
epidemic*[Title/Abstract]) AND Algeria[Title/Abstract], Angola[Title/Abstract],
Benin[Title/Abstract], Botswana[Title/Abstract], Burkina Faso[Title/Abstract], "Burkina
Faso"[Title/Abstract], Burkina Fasso|Title/Abstract], Upper Volta[Title/Abstract], "Upper
Volta"[Title/Abstract], Burundi[Title/Abstract], Cameroon[Title/Abstract], Cape
Verde[Title/Abstract], "Cape Verde"[Title/Abstract], Central African Republic[Title/Abstract],
Chad[Title/Abstract], Comoros[Title/Abstract], "lles Comores"[Title/Abstract], lles
Comores|[Title/Abstract], Comoro Islands[Title/Abstract], "Comoro Islands"[Title/Abstract],
CongolTitle/Abstract], Democratic Republic Congo[Title/Abstract], "Democratic Republic of the
Congo"[Title/Abstract], Zaire[Title/Abstract], Djibouti[Title/Abstract], Egypt[Title/Abstract],
Equatorial Guinea[Title/Abstract], "Equatorial Guinea"[Title/Abstract], Eritrea[Title/Abstract],
Ethiopia[Title/Abstract], Gabon[Title/Abstract], Gambia[Title/Abstract], Ghana[Title/Abstract],
Guinea[Title/Abstract], Guinea Bissau[Title/Abstract], "Guinea Bissau"[Title/Abstract], Ivory
Coast[Title/Abstract], "Ivory Coast"[Title/Abstract], Cote d'lvoire[Title/Abstract], "Cote
d'lvoire"[Title/Abstract], Kenya[Title/Abstract], Lesotho[Title/Abstract], Liberia[Title/Abstract],
Libya[Title/Abstract], Libia[Title/Abstract], Jamabhiriya[Title/Abstract], Jamahiryia[Title/Abstract],
Madagascar[Title/Abstract], Malawi[Title/Abstract], Mali[Title/Abstract],
Mauritania[Title/Abstract], Mauritius[Title/Abstract], lle Maurice[Title/Abstract], "lle
Maurice"[Title/Abstract], Morocco[Title/Abstract], Mozambique[Title/Abstract],
Moclambique[Title/Abstract], Namibia[Title/Abstract], Niger[Title/Abstract],
Nigeria[Title/Abstract], Rwanda[Title/Abstract], Sao Tome[Title/Abstract], "Sao
Tome"[Title/Abstract], Senegal[Title/Abstract], Seychelles[Title/Abstract], Sierra
Leone[Title/Abstract], "Sierra Leone"[Title/Abstract], Somalia[Title/Abstract], South
Africa[Title/Abstract], "South Africa"[Title/Abstract], Sudan[Title/Abstract], South
Sudan[Title/Abstract], "South Sudan”[Title/Abstract], Swaziland[Title/Abstract],
Tanzania[Title/Abstract], Tanganyika[Title/Abstract], Zanzibar[Title/Abstract],
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Togo[Title/Abstract], Tunisia[Title/Abstract], Uganda[Title/Abstract], Western
Sahara[Title/Abstract], "Western Sahara"[Title/Abstract], Zambia[Title/Abstract],
Zimbabwe[Title/Abstract], Africa[Title/Abstract], Africa*[Title/Abstract], Southern
Africa[Title/Abstract], West Africa[Title/Abstract], Western Africa[Title/Abstract], Eastern
Africa[Title/Abstract], East Africa[Title/Abstract], North Africa[Title/Abstract], Northern
Africa[Title/Abstract], Central Africa[Title/Abstract], Sub Saharan Africa[Title/Abstract],
Subsaharan Africa[Title/Abstract], Sub-Saharan Africa[Title/Abstract]).

EBSCO HOST via EBSCOhost Research Databases (176 papers; Search date, 24 April 2023):
Using Africa-Wide Information and CINAHL

AB ([“Diarrhoeagenic Escherichia coli”, “WVTEC”, “Verotoxigenic E. coli”, “Verotoxin-Producing
Escherichia coli”, “Shiga Toxin-Producing Escherichia coli”, “Vero Cytotoxin-Producing
Escherichia coli”, “Shiga Toxigenic Escherichia coli”, “STEC”, “Shiga Toxigenic E. coli”,
“Enteropathogenic E. coli”, “EPEC”", “Enteroinvasive Escherichia coli”, “Enteroinvasive E. coli”,
“EIEC”, “Diffusely Adherent Escherichia coli”, “Diffusely Adherent E. coli”, “DAEC”, *
Enteroaggregative Escherichia coli”, “EAgQgEC”, “Enteroaggregative E. coli”’, “ETEC”,
“Enterotoxigenic E. coli”, “Enterotoxigenic Escherichia coli”]) AND AB( [Outbreak*, Antimicrobial*,
Antibiotic*, Pandemic*, Epidemic*]) AND AB ([*Algeria”, “Angola”, “Benin”, “Botswana”, “Burkina
Faso”, “Burkina Faso”, “Burkina Fasso”, “Upper Volta”, “Upper Volta”, “Burundi”, “Cameroon”,
“Cape Verde”, “Cape Verde”, “Central African Republic”, “Chad”, “Comoros”, “lles Comores”,
“Comoro Islands”, “Congo”, “Democratic Republic Congo”, “Democratic Republic of the Congo”,
“Zaire”, “Djibouti”, “Egypt”, “Equatorial Guinea”, “Eritrea”, “Ethiopia”, “Gabon”, “Gambia”, “Ghana”,
“Guinea”, “Guinea Bissau”, “Guinea Bissau”, “Ivory Coast”, “Cote d'lvoire”, “Kenya”, “Lesotho”,
“Liberia”, “Libya”, “Libia”, “Jamabhiriya”, “Jamabhiryia”, “Madagascar”, “Malawi”, “Mali”, “Mauritania”,
“Mauritius”, “lle Maurice”, “lle Maurice”, “Morocco”, “Mozambique”, “Mocambique”, “Namibia”,
“Niger”, “Nigeria”, “Rwanda”, “Sao Tome”, “Sao Tome”, “Senegal”, “Seychelles”, “Sierra Leone”,
“Sierra Leone”, “Somalia”, “South Africa”, “South Africa”, “Sudan”, “South Sudan”, “South Sudan”,
“Swaziland”, “Tanzania”, “Tanganyika”, “Zanzibar”, “Togo”, “Tunisia”, “Uganda”, “Western
Sahara”, “Western Sahara”, “Zambia”, “Zimbabwe”, “Africa”, “Africa*”, “Southern Africa”, “West
Africa”, “Western Africa”, “Eastern Africa”, “East Africa”, “North Africa”, “Northern Africa”, “Central

Africa”, “Sub Saharan Africa”, “Subsaharan Africa”, “Sub-Saharan Africa]).

Study Eligibility Criteria
We incorporated studies that specifically reported on the prevalence and or antimicrobial

resistance patterns of diarrhoeagenic E. coli pathotypes derived from human sources but
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256  excluded samples from extra-intestinal sources and those that did not use molecular methods to
257  confirm the pathotype.

258

259  Studies were excluded at the screening and full-text review stages if they were systematic or
260 literature reviews, they exhibited an unclear study design, the articles were not written in English,
261 or they sourced E. coli from non-human origins such as water, animals, soil, or food. Studies
262  based on regions outside Africa (e.g., Europe, Asia, Americas, Australasia) were similarly

263  excluded, along with papers reporting drug or mechanistic trials.

264

265  Study Quality Assessment

266 Each study’s quality was scrutinised by two independent reviewers using a designated quality
267  assessment protocol. The laboratory methodologies implemented needed to align with global
268 recommended standards. These methods should have been confirmatory rather than mere

269  screening tools.

270

271  Title and Abstract Screening

272 Preliminary screening of the gathered studies was done based on their titles and abstracts. Two
273 reviewers determined the eligibility of each study for inclusion. In cases where the reviewers’
274 decisions clashed, a consensus was reached through discussion.

275

276  Full-Text Screening

277  Atthis juncture, the complete text of each article was meticulously perused by two reviewers to
278  gauge its relevance. Any disagreement between the reviewers was settled through a mutual
279  discussion to reach a final decision.

280

281 Data Extraction Strategy

282  We employed the Covidence software to devise a data extraction protocol tailored to accrue
283  pertinent data about the antimicrobial resistance and prevalence of diarrhoeagenic E. coli

284  pathotypes across Africa. This protocol was formulated and refined with the insights of four

285 reviewers until a unanimous consensus was reached. During the extraction phase, each study
286  was critically examined by two reviewers. Discrepancies in data extracted by the reviewers were
287  addressed and resolved by a third reviewer’s intervention.

288

289  Data Analysis
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Upon the completion of data extraction, the results were transitioned into a comma-separated
value (CSV) file format and integrated into Microsoft Excel for subsequent analysis. Statistical
computations were predominantly executed using Python v3.10.9 via the JupyterLab interactive
development environment v3.5.3. Data on pathotype prevalence was extracted and processed
using Python’s pandas library v2.0.3. The processed data, detailing the number of cases and the

sample size for each study, was then passed to the R statistical environment for further analysis.

Using R’s metafor package v4.2-0, a DerSimonian and Laird random-effects meta-analysis was
performed. The metafor package computes effect sizes and associated variances, facilitating
meta-analytic pooling of prevalence rates across studies. For each study, the point estimate
(proportion) of prevalence and its variance were computed using the escalc function, which

utilises the proportion of cases (xi) over the sample size (ni) with the “PFT” measure.

Subsequently, the rma function from the metafor package was employed to compute the pooled
random-effects estimate while considering between-study heterogeneity. This meta-analysis
yielded effect sizes (or meta-estimates) for each study and an overall pooled effect size

representing the cumulative prevalence estimate.

Pairwise comparisons were conducted to compare the prevalence estimates of various
diarrhoeagenic E. coli pathotypes. The absolute differences in prevalence estimates between
each pair of pathotypes were computed. To ascertain the significance of these differences, p-
values were derived by comparing these differences to a normal distribution. Given the multiple
comparisons, the Bonferroni correction was applied to adjust the significance level, ensuring the
control of the family-wise error rate. A difference was deemed statistically significant if its

associated p-value was lower than the Bonferroni-adjusted significance threshold.

Python library matplotlib v3.7.2 was used to generate a forest plot, displaying the prevalence rate
for each study, along with the 95% confidence intervals. The overall pooled prevalence rate was

distinctly highlighted to emphasise the aggregate findings of the analysis.

For data on antimicrobial resistance, the frequency and percentage of non-susceptible isolates
for each antibiotic class were documented for studies where antibiograms were reported. For a
selection of antibiotics, we used Stata v17 statistical (StataCorp) software to carry out a meta-

analysis to determine the pooled resistance at the pathotype level.
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We employed the Chi-Square and Fisher’'s Exact tests to investigate the statistical significance of
observed antibiotic nonsusceptibility across different antibiotic classes. Each antibiotic class’
observed frequencies were compared to expected frequencies based on the assumption of even
distribution within that class. Specifically, when any expected frequency count in a class was less
than or equal to five, the Fisher’'s Exact test was employed; this was especially pertinent for 2x2
tables but was extended here through a series of 2x2 tables, with the smallest p-value taken as
representative. The Chi-Square test was employed in cases where all expected frequencies were
above five. A p-value less than 0.05 was considered indicative of a significant departure from the
expected distribution, thus suggesting that the observed frequencies were unlikely due to random

variation alone.

Data Visualisation

All visualisations were created using Python’s matplotlib library v3.7.2. The Set3 palette from
seaborn library v0.12.2 was employed to ensure that distinct categories (like pathotypes in our
study) were easily distinguishable. For the distribution of pathotype-specific studies by country, a
heatmap was used, where each cell in the heatmap displays the number of studies, with the
colour intensity indicative of the quantity (the darker the shade, the higher the number). The
methods used in the reviewed studies were visualised using a stacked bar chart, with the colour
of each bar segment signifying a distinct method used in the studies in percentage terms. For the
meta-analysis results, a forest plot-like visualisation was employed, where the estimated
prevalence from different studies, along with their 95% confidence intervals, were presented
using error bars. This format allowed for a clear comparison of prevalence estimates across

studies and pathotypes.

Results

Geographical distribution

Forty-five publications were reviewed for data extraction, spanning 18 African countries
(Supplementary Table 1). Most of the studies emerged from Kenya (24%) and South Africa
(18%). Of the 45 articles, 76% (34/45) reported on EPEC, 69% (31/45) reported on EAEC and
ETEC, 44% (20/45) reported on EIEC, 36% (16/45) reported on STEC/VTEC, 11% (5/45)
reported on DAEC, and only 6% (3/45) reported hybrid strains.

An interesting observation from the geographical data was the pronounced concentration of

reports of specific pathotypes in certain regions. Kenya, South Africa, and Nigeria emerged as
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areas where EPEC, EAEC, and ETEC studies commonly emanated — a pattern clearly

illustrated in Figure 2A.

Study types
Most studies (43/45, 96%) comprised reports from non-outbreak settings, while only 4% (2/45)
represented the retrospective use of outbreak samples. At the same time, 69% (31/45) were

cross-sectional and 27% (12/45) were classified as case-control studies.

Population characteristics in the reviewed studies

The human population samples covered a broad age spectrum. Still, the focus was
predominantly on younger children despite many publications addressing more than one age
group. One of the publications reported on neonates under 28 days, 31% (14/45) on infants
under five years and 58% (26/45) on children under 18. Fewer reports (7/45, 16%) focused on
adults over 18 years, including one focusing on older people over 65 years, and 27% (12/45) did

not specify the age groups.

In terms of specific population categories, 4% (2 out of 45) were in rural settings, 7% (3 out of 45)
involved food handlers, and 2% (1 out of 45) each came from urban and peri-urban areas, with or
without livestock. The rest were from unique reports, such as travellers’ diarrhoea, low-income

populations, a wedding party, and those suffering from underlying diseases.

Study sites
All the examined publications reported on stool samples primarily collected in hospital settings at
67% (30 out of 45). In contrast, 13% (6 out of 45) of the studies collected samples from both

hospital and community settings, and 16% (7 out of 45) were from community settings alone.

Of the 45 studies, all (100%) reported patients presenting with diarrhoea. Of these, 40% (18 out
of 45) reported patients displaying severe signs of diarrhoea, including bloody diarrhoea (10%),
vomiting (14%), and fever (14%).

Diagnostic Laboratory Techniques Utilised from the African sourced publications.
We explored the methodologies employed to detect diarrhoeagenic E. coli. From the 45
publications scrutinised, more than 15 analytic tools were identified (Figure 2B). Most
researchers (42/45; 93%) began their investigations with conventional culture techniques to
isolate pathogens from clinical specimens. Subsequent screening and verification utilised a
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variety of approaches, including biochemical identification methods, conventional or multiplex
PCR, and serotyping. Notably, only a few studies (3/45, 7%) employed sequencing tools,
underscoring the limited capacity for advanced sequencing tools in foodborne research on the
continent. Researchers often sought collaboration with national or international laboratories when

specific tools were unavailable.

Prevalence of Diarrhoeagenic E. coli Pathotypes

Given that the reviewed publications did not consistently encompass all six main diarrhoeagenic
pathotypes, our calculations for individual pathotypes included only those explicitly reported.
Consequently, studies that investigated specific pathotypes did not contribute prevalence data for
other types that were not within their research scope. Our analysis highlighted EAEC as the most
prevalent pathotype (43%; 95% CI, 30% — 55%) (Figure 3A), while STEC (Figure 3E) and EIEC
(Figure 3F) presented the lowest prevalence at 28% (95%CI, 14% — 42%) and 24% (95%ClI,
17% — 32%), respectively. Furthermore, ETEC, DAEC, and EPEC—inclusive of atypical EPEC—
also emerged as notably prevalent pathotypes with prevalence rates of 36% (95% CI, 27% —
45%), 36% (95% ClI, 16% — 57%), and 31% (95% ClI, 21% — 40%), respectively (Figures 3B —

3D). Notably, there were only three reports of hybrid strains throughout the studies under review.

Comparative analyses of the prevalence of different pathotypes highlighted significant disparities
among them (Supplementary Table 2). EAEC exhibited the highest prevalence and was
significantly more prevalent than ETEC, DAEC, EPEC, STEC, and EIEC, with differences in
prevalence estimates ranging from approximately 6.56% to 18.61%. ETEC’s prevalence was
notably different from that of EPEC, STEC, and EIEC, though not significantly different from
DAEC. Furthermore, DAEC showed a significantly distinct prevalence from EPEC, STEC, and
EIEC. EPEC and STEC differed insignificantly in prevalence. In contrast, there were noticeable

differences between the prevalence of EPEC and EIEC and between STEC and EIEC.

Commonly Used Susceptibility Testing Techniques and Interpretive Standards
In our analysis of methodologies employed for assessing and interpreting antibiotic resistance
across the selected studies, the Clinical and Laboratory Standards Institute (CLSI) guidelines
emerged as the preferred framework. A substantial 90% (27/30) of the studies that detailed
antibiotic resistance determinations opted for the CLSI guidelines. On the other hand, the
EUCAST guidelines found favour in only 10% (3/30) of the publications, with a number inclusive
of reports following the directives of the Antibiogram Committee of the French Microbiological
Society.
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428

429  Regarding the antimicrobial susceptibility testing approach, the Kirby-Bauer disc diffusion method
430  was the dominant technique, which was utilised by 73% (22/30) of the publications that reported
431 non-susceptibility to an antibiotic. Another 23% (7/30) integrated both the disc diffusion and

432 micro-broth dilution methods. A minority, 10% (3/30), relied solely on the micro-broth dilution

433  method. There was a solitary report of the VITEK system in use, with results closely mirroring
434  those derived via the micro-broth dilution method.

435

436  Notably, only seven studies explored antibiotic-resistant genes, either as an exclusive method or
437  in conjunction with the susceptibility assessment techniques mentioned earlier.

438

439  Antibiotic Resistance Among Diarrhoeagenic E. coli

440  Of 30 studies presenting antimicrobial resistance outcomes, a cumulative 602 antimicrobial

441  resistance testing outcomes could be classified as antibiotic “non-susceptible”, comprising 87%
442  (n=521) resistant and 14% (n=81) intermediate resistant isolates (Table 1).

443

444  Among these, Quinolones surfaced as the most frequently encountered resistant class (p-value,
445  2.59E-11), with a frequency of 105. Following closely were the Cephems, registering a frequency
446  of 98 (p-value, 1.98E-13), then Aminoglycosides and Penicillins, with frequencies of 79 and 76,
447  respectively. Folate pathway inhibitors followed with a frequency of 59 (p-value, 0.0001).

448

449  Phenicols and Tetracyclines came next, with frequencies of 46 and 40, respectively. Non-

450  susceptibility to Macrolides, 3-lactam-inhibitor combinations, and Carbapenem classes were also
451  observed. Notably, only four instances of ESBL phenotypes were observed (Table 1).

452

453  Our analysis revealed variable resistance patterns among the different E. coli pathotypes for the
454  studies that reported antimicrobial susceptibility (AST) data (Supplementary Figures 1 —5).

455  Despite a prevalence of 36% for DAEC, none of the studies that reported on this pathotype,

456  namely Garrine 2020, Omolajaiye 2020, Kalule 2018, and Ifeanyi 2015, provided data regarding
457  antimicrobial susceptibility testing (ASTs). Hence, no available data exists on the prevalence of
458 resistance among DAEC isolates. By contrast, STEC, ETEC, and EPEC isolates exhibited

459  strikingly high resistance to ampicillin (the most frequently reported antibiotic among the reviewed
460  studies) with prevalence rates and 95% confidence intervals (CIs) of 72% (13% — 100%), 73%
461  (58% — 89%), and 72% (46% — 98%), respectively (Supplementary Figures 1 — 3), albeit with

462  considerably wide confidence intervals, hinting at the variability within the data and the small
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number of studies reporting AST data. On the other hand, pooled estimates for ampicillin
resistance among EAEC and EIEC were 43.3% (95% CI: 40% — 47%) and 43% (95% CI. 36% —
51%), respectively. When assessing antimicrobial susceptibility across all diarrhoeagenic E. coli
without distinguishing between individual pathotypes, the pooled resistance was as follows: 73%
(95% CI: 64% — 83%) for ampicillin, 32% (95% CI: 19% — 46%) for gentamicin, 22% (95% CI:
12% — 33%) for nalidixic acid, 14% (95% CI: 8% — 20%) for ciprofloxacin, and 14% (95% CI: 3%
— 25%) for ceftriaxone (Figure 4).

Discussion

This study reviewed the prevalence and antimicrobial resistance patterns of diarrhoeagenic E.
coli pathotypes in Africa. A significant proportion of reported studies emanated from Kenya, South
Africa, and Nigeria. However, these humbers may not accurately reflect the actual disease
prevalence across the continent. The disparity in the number of diarrhoeagenic E. coli studies
underscores the varying diagnostic and surveillance practices across African nations. This can be
attributed to the more developed healthcare infrastructures in Kenya, South Africa, and Nigeria
[21], emphasising the need for enhanced surveillance and pathotype-specific interventions across

Africa.

Our review showed that EAEC and ETEC were the most common diarrhoeagenic E. coli
pathotypes among the extant literature, with EIEC being the least prevalent. This finding aligns
with the conclusions of the Global Enteric Multicenter Study (GEMS), where ETEC, among
others, was a significant contributor to moderate-to-severe diarrhoea in young children. Earlier
studies have highlighted EAEC and ETEC as substantial contributors to childhood diarrhoea [1].
However, our review discerned a higher prevalence of ETEC, EAEC, and DAEC. In line with
earlier research, we identified an underreporting of EHEC, likely due to its overshadowing by

other more readily detectable pathogens that cause dysentery [22].

Interestingly, only two studies pinpointed outbreaks triggered by a specific diarrhoeagenic E. coli
pathotype, with one being attributed to a novel heat-stable enterotoxin-producing strain of
Enteroaggregative E. coli [23]. The evident lack of real-time surveillance for foodborne pathogens
in many regions likely obscures the detection and actual frequency of outbreaks. Moreover, most
studies in our review opted for culture-based diagnostic methods despite the evolution and
optimisation of more sensitive genomic epidemiology techniques that could be adapted to low-

resource settings [14, 15, 24, 25].
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A notable observation from our study is the marked scarcity of research concerning hybrid
strains. Hybrid strains often manifest with more severe clinical outcomes than their non-hybrid
counterparts, as emphasised by Santos et al. [26]. One plausible explanation for the limited
detection of these strains could be the lack of genomic capacity in the region to identify specific
genotypic markers indicative of hybridity. This is further corroborated by the limited number of
studies incorporating genomics into their E. coli pathotype surveillance within the reviewed
literature. Consequently, there’s a compelling argument for the broader integration of genomics in
Africa’s diagnostic landscape. Doing so will not only enhance the identification of such hybrid

strains but also augment the continent’s capacity to anticipate and mitigate potential outbreaks.

Moreover, our analysis unveiled a trend of heightened resistance to pivotal antibiotics, notably
Quinolones and Cephalosporins. Due to the fragmented nature of the reports, we could not
determine absolute prevalence rates of resistance for diarrhoeagenic E. coli. While our results
provide important insights, it's crucial to note that this data only presents a snapshot of the
situation, as they are based on a limited number of studies. We need dedicated and meticulously
designed epidemiological studies to grasp the true prevalence of resistance. A comprehensive
approach, grounded in surveillance and well-structured research, is paramount to understanding
and combating the rising antimicrobial resistance tide. However, our findings warrant continuously
enhanced efforts to prevent the increase and emergence of antimicrobial resistance on the

continent [27].

In a silver lining, a marked low resistance was observed to extended-spectrum beta-lactamases
(ESBLs) and third-generation cephalosporins. While this can be construed as a positive
indication that the continent might be relatively shielded from the burgeoning global ESBL
challenge, caution is still warranted. The low prevalence of ESBLs could reflect the limited
number of studies that actively sought out ESBL determinants or harnessed genomics to
characterise resistance against this antibiotic class. Given the potential clinical implications, it
becomes imperative for Africa to sustain vigilant monitoring in this domain, ensuring that the

continent remains a step ahead in the battle against antimicrobial resistance.

Of the four studies that documented ESBL production among diarrhoeagenic E. coli, one reported
on the environmental correlates of antimicrobial resistance and noted that children whose
caregivers used a shared pit latrine or who openly defecated were more likely to carry multidrug-
resistant bacteria than those with flush or unshared toilets [36]. This underscores the need for

broader, community-based research on foodborne pathogens. Unfortunately, our review noted
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that most studies reported on children less than 18 years of age during a health crisis and that
more than two-thirds of the samples studied were reported from hospital sites. However, the

actual burden of the disease within a community is better represented by community samples.

The interplay between antibiotic resistance and the virulence of pathogenic bacteria, including E.
coli, has garnered significant global concern [1, 28, 29]. While some previous studies have
suggested reduced virulence among multidrug resistant E. coli isolates relative to sensitive
strains [30], others have emphasised that the acquisition of antimicrobial resistance does not

necessarily compromise microbial fithess [31].

Consistent with this notion, epidemiological data indicate that antibiotic resistance and virulence
factor carriage are linked in E. coli populations in some community settings [32]. A related study
showed that the expression of virulence factors led to the formation of an antibiotic-tolerant
subpopulation [33] and that antibiotic treatment indeed may select for virulence [34]. In addition to
drug resistance, treatment failure on the use of antibiotics in a clinical setting could be due to
tolerance and or persistence to antibiotics [35]. Importantly, community-based surveillance
studies are pivotal, as evidenced by findings linking sanitation practices with antibiotic resistance
patterns [36]. However, our review discerned a focus on younger populations and hospital-based

studies, underscoring the need for broader, community-based research.

Accurate pathotype identification remains a challenge due to the complexities associated with
conventional laboratory techniques. The predominant reliance on the disk diffusion method over
minimum inhibition concentration (MIC) for antimicrobial testing introduces further complexity due
to varying sensitivity levels. Notwithstanding these challenges, a noticeable trend toward
employing more sensitive diagnostic methodologies has emerged, suggesting an optimistic

trajectory for future African studies.

On this note, the recent endeavours by Africa CDC, particularly through the foodborne disease
focus group, underscore the continent’s readiness to embrace advanced surveillance platforms
for tracking foodborne disease outbreaks. Leveraging high-resolution techniques incorporating
genomics, such as whole-genome sequencing (WGS), will not only elevate the precision of
outbreak detection but also revolutionise our understanding of disease spread and antimicrobial
resistance patterns. This approach, if widely adopted, positions Africa at the forefront of

combating foodborne pathogens and ensuring the health and safety of its populace.
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In our systematic review of published data on diarrhoeagenic E. coli from the African continent’s
public health sector, we encountered significant challenges in data collation. The heterogeneity in
study designs and methodologies resulted in fragmented outputs. Notably, a limited number of
studies reported AST data, and where they occurred, antimicrobial resistance profile
determinations utilised a diverse array of antibiotics. Furthermore, many studies reported
concentrations not aligned with the CLSI or EUCAST breakpoint guidelines. This disparity
underscores the pressing need for standardised testing, reporting, and interpretive guidelines
tailored to Africa's unique demographics, geographies, and economic scales. Such
standardisation would ensure reproducibility and establish a robust platform for historic

surveillance, enabling timely assessment of risks to the healthcare sector across the continent.

Limitations

This review was meticulously designed with comprehensive search criteria to encompass a broad
spectrum of studies focusing on E. coli pathotypes. Nevertheless, given the vast expanse of
scientific literature on the topic, there remains a possibility that some pertinent studies might have

been inadvertently overlooked.

Furthermore, significant heterogeneity was observed among the studies reviewed, stemming from
differences in study design, population demographics, geographical location, and methods of
pathotype identification. Such heterogeneity can invariably influence the overall prevalence
estimates. While rigorous meta-analytic techniques were employed to mitigate this variation, it's
crucial to acknowledge that the reported rates may not capture the complete picture. They might,
in fact, reflect under-reporting due to a variety of reasons, including limited diagnostic capacities

or logistical constraints in specific settings.

Conclusions

Our comprehensive review of published data on diarrhoeagenic E. coli from the African continent
underscores the significant heterogeneity in study designs, methodologies, population
characteristics, and sample collection sites. Kenya, South Africa, and Nigeria emerge as hotspots
for research into particular pathotypes, with a noticeable focus on EPEC, EAEC, and ETEC. The
propensity for hospital-based sample collection is evident, with a notable divergence in

methodologies employed for both detection and antibiotic resistance assessments.

EAEC's prevalence as the dominant pathotype, juxtaposed with the striking low reports of hybrid

strains, underlines the need for targeted surveillance and management strategies. The alarmingly
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high resistance rates to commonly used antibiotics, including emerging resistance to crucial drugs
such as ciprofloxacin, underscore the imminent threat of antibiotic resistance in the region. This
calls for urgent action in the form of robust antibiotic stewardship programs, harmonised

surveillance efforts, and educational campaigns aimed at healthcare providers and the public.

Our findings elucidate the dominance of the CLSI guidelines in antibiotic resistance
determination, indicating a potential avenue for standardisation and consolidation of antimicrobial
resistance reporting. The prominence of the Kirby-Bauer disc diffusion method highlights the

method’s accessibility and utility in the region.

In light of these insights, there is a pronounced need for the African continent to foster
standardised testing, reporting, and interpretative guidelines tailored to its unique demographic
and geographic contexts. This will be instrumental in optimising diagnostics, treatment protocols,
and mitigation strategies against the looming threat of antimicrobial-resistant diarrhoeagenic E.

coli and other pathogens in the region.
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Figure 1. A flow diagram depicting the flow of information through the various stages of the

systematic review, drawn using PRISMA.
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Figure 2. Overview of pathotype-specific studies by country and methodologies employed.

Panel A (Pathotype-specific studies by country) illustrates the distribution of pathotype-specific

studies across various countries. The countries are displayed on the y-axis, while distinct

pathotypes are on the x-axis. The colour intensity, progressing from light to dark, represents an

increasing number of studies, with the precise number annotated within each cell.
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Panel B (Methods used) details the techniques used across the studies reviewed. The methods
are enumerated along the x-axis; each colour in the bars corresponds to a distinct method
utilised in the research, as indicated by the colour-coded legend. The percentage (on the y-axis)
denotes the prevalence of each method in each study. PFGE, Pulsed Field Gel Electrophoresis;
MLST, Multilocus Sequencing Typing; WGS, Whole Genomics Sequencing; NGS, Next
generation sequencing; PCR, Polymerase Chain Reaction; gPCR, quantitative Polymerase
Chain Reaction; RFLP, Restriction Fragment Length Polymorphism; Other, includes techniques

like haemolytic activities, verotoxicity tests, ELISA, transconjugation assays and the Colilert test.
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Figure 3. Prevalence of enteropathogenic bacterial pathotypes.

The figure displays six distinct forest plots, each highlighting the prevalence of a specific

enteropathogenic bacterial pathotype. Red circles represent the estimated prevalence rates from

individual studies. Accompanying these markers, horizontal blue lines illustrate the 95%

confidence interval (Cl) for each respective rate.
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Each panel is dedicated to a different bacterial pathotype. Panel A elucidates the prevalence of
Enteroaggregative E. coli (EAEC), while Panel B depicts Enterotoxigenic E. coli (ETEC).
Similarly, Panels C through F focus on Diffusely adherent E. coli (DAEC), Enteropathogenic E.
coli (EPEC), Shiga toxin-producing E. coli (STEC), and Enteroinvasive E. coli (EIEC),

respectively.

The percentage value annotated above the ‘Overall' marker indicates the cumulative meta-
analysed prevalence rate associated with each pathotype. As a point of reference, a vertical grey
line is drawn at the 0% prevalence rate mark, and dashed gridlines are included at regular

intervals to facilitate a clearer understanding of the prevalence percentages.
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Figure 4: Meta-analysis of antibiotic resistance prevalence in diarrhoeagenic E. coli across

studies.

This figure showcases a series of subplots, each dedicated to representing the prevalence of

resistance to a particular antibiotic among all diarrheagenic Escherichia coli (DEC) strains. Each
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blue dot pertains to a specific study and displays the proportion of DEC samples in that study
that exhibited resistance to the antibiotic under consideration. The horizontal position of each dot
indicates the resistance percentage. The vertical position denotes the study from which the data
originates. The error bars, extending from each dot, represent the 95% confidence interval (Cl) of
the resistance percentage for that study. The red dot in the first position of each subplot
represents the pooled estimate of the resistance rate from a random effects model. The
horizontal lines connected to the red dot indicate the 95% Cls of the pooled estimate. Beside
each pooled estimate dot is a label specifying the exact resistance percentage and the

corresponding 95% Cls.
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Table 1: Prevalent rates (counts) of non-susceptibility (intermediate and resistant phenotypes) to commonly used antibiotics

Antibiotic class Count of non-susceptibility by antibiotic Frequency Percent Cumulative Test used p-value
(by class)
Quinolones Nalidixic acid, 32 (30.48%); Ciprofloxacin, 52 (49.52%); Norfloxacin, 20 105 17.44 74.92 Chi-Square  2.5911E-11
(19.05%); Enrofloxacin, 1 (0.95%)
Cephems Ceftriaxone, 26 (26.53%); Cefotaxime, 20 (20.41%); Ceftazidime, 20 (20.41%); 98 16.28 38.7 Chi-Square  1.9844E-13

Cefpodoxime, 5 (5.10%); Cephalexin, 1 (1.02%); Cefuroxime, 14 (14.29%);

Cephazolin, 5 (5.10%); Cefoxitin, 3 (3.06%); Cefepime, 2 (2.04%) ;

Gentamycin, 39 (49.37%); Streptomycin, 22 (27.85%); Kanamycin, 8 79 13.12 51.83 Chi-Square  1.8365E-16 3

Aminoglycosides (10.13%); Neomycin, 1 (1.27%); Amikacin, 8 (10.13); Tobramycin, 1 (1.27%) 3
Penicillins Ampicillin, 61 (80.26%); Ticarcillin, 1 (1.32%); Ofloxacin, 12 (15.79); 76 12.62 12.62 Chi-Square  1.7065E-27 g
Amoxicillin, 2 (2.63%) 5

Folate pathway Trimethoprim, 14 (23.73%); Trimethoprim + sulfamethoxazole, 35 (59.32%); 59 9.8 22.43 Chi-Square  0.00010417 2
inhibitors Sulphamethoxazole, 10 (16.95%) o
Phenicols Chloramphenicol, 46 (100%) 46 7.64 96.67 Chi-Square §_
Tetracyclines Tetracycline, 38 (95%); Oxycycline, 1 (2.50%); Doxycycline, 1 (2.50%) 40 6.64 89.03 Chi-Square  1.3686E-15 ]
Macrolides Erythromycin, 19 (55.88%); Clarithromycin, 5 (14.71%); Azithromycin, 10 34 5.65 57.48 Chi-Square  0.01178207 g(;
(29.41%) )

3-lactam- Amoxicillin-clavulanic acid, 23 (92.0%); Piperacillin-tazobactam, 2 (8.00%) 25 4.15 79.07 Chi-Square  2.6691E-05 2
inhibitor z
combinations 2
Carbapenem Ertapenem, 1 (5%); Meropenem, 11 (55%); Imipenem, 8 (40%) 20 3.32 82.39 Chi-Square  0.0192547 o
Lipopeptides Colistin sulfate, 7 (100%) 7 1.16 98.33 Chi-Square g
Glycylcycline Tigecycline, 6 (100%) 6 1 99.34 Chi-Square %
ESBL ESBL, 4 (100%) 4 0.66 100 Fisher's 1 3
Test s

Nitrofurans Nitrofurantoin, 3 (100.00%) 3 0.5 97.17 Fisher's 1 3
Test 5
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Supplementary Figure 1: Meta-analysis of antibiotic resistance prevalence in STEC.
The figure presents a series of subplots, each corresponding to the prevalence of resistance to a
specific antibiotic in STEC samples from various studies. Each blue dot represents the proportion

of isolates showing resistance in a particular study. The horizontal position of the dot indicates
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the percentage of isolates that were resistant, while the dot's vertical position corresponds to a
specific study. Horizontal lines extending from each dot represent the 95% confidence interval of
the resistance proportion for that study. The red dot in the first position of each subplot
represents the pooled estimate of the resistance rate from a random effects model. The
horizontal lines connected to the red dot indicate the 95% Cls of the pooled estimate. Beside
each pooled estimate dot is a label specifying the exact resistance percentage and the

corresponding 95% Cls.
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Supplementary Figure 2: Meta-analysis of antibiotic resistance prevalence in ETEC.

The figure presents a series of subplots, each corresponding to the prevalence of resistance to a

specific antibiotic in ETEC samples from various studies. Each blue dot represents the proportion

of isolates showing resistance in a particular study. The horizontal position of the dot indicates

the percentage of resistant isolates, while the dot's vertical position corresponds to a specific
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study. Horizontal lines extending from each dot represent the 95% confidence interval of the
resistance proportion for that study. The red dot in the first position of each subplot represents
the pooled estimate of the resistance rate from a random effects model. The horizontal lines
connected to the red dot indicate the 95% Cls of the pooled estimate. Beside each pooled
estimate dot is a label specifying the exact resistance percentage and the corresponding 95%
Cls.
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Supplementary Figure 3: Meta-analysis of antibiotic resistance prevalence in EPEC.

The figure presents a series of subplots, each corresponding to the prevalence of resistance to a

specific antibiotic in EPEC samples from various studies. Each blue dot represents the

proportion of isolates showing resistance in a particular study. The horizontal position of the dot

indicates the percentage of resistant isolates, while the dot's vertical position corresponds to a
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specific study. Horizontal lines extending from each dot represent the 95% confidence interval of
the resistance proportion for that study. The red dot in the first position of each subplot
represents the pooled estimate of the resistance rate from a random effects model. The
horizontal lines connected to the red dot indicate the 95% Cls of the pooled estimate. Beside
each pooled estimate dot is a label specifying the exact resistance percentage and the

corresponding 95% Cls.
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Supplementary Figure 4: Meta-analysis of antibiotic resistance prevalence in EIEC.

The figure presents a series of subplots, each corresponding to the prevalence of resistance to a

specific antibiotic in EIEC samples from various studies. Each blue dot represents the proportion

of isolates showing resistance in a particular study. The horizontal position of the dot indicates

the percentage of resistant samples, while the dot's vertical position corresponds to a specific
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study. Horizontal lines extending from each dot represent the 95% confidence interval of the
resistance proportion for that study. The red dot in the first position of each subplot represents
the pooled estimate of the resistance rate from a random effects model. The horizontal lines
connected to the red dot indicate the 95% Cls of the pooled estimate. Beside each pooled
estimate dot is a label specifying the exact resistance percentage and the corresponding 95%
Cls.
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Supplementary Figure 5: Meta-analysis of antibiotic resistance prevalence in EAEC.

The figure presents a series of subplots, each corresponding to the prevalence of resistance to a

specific antibiotic in EAEC samples from various studies. Each blue dot represents the

proportion of isolates showing resistance in a particular study. The horizontal position of the dot

indicates the percentage of samples that were resistant, while the dot's vertical position
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corresponds to a specific study. Horizontal lines extending from each dot represent the 95%
confidence interval of the resistance proportion for that study. The red dot in the first position of
each subplot represents the pooled estimate of the resistance rate from a random effects model.
The horizontal lines connected to the red dot indicate the 95% Cls of the pooled estimate. Beside
each pooled estimate dot is a label specifying the exact resistance percentage and the

corresponding 95% Cls.
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