

1 **Molecular Epidemiology of Diarrhoeagenic *Escherichia coli* in Africa: A Systematic Review
2 and Meta-Analysis**

3 John Bosco Kalule^{1*§}, Linda A. Bester^{2,3*§}, Daniel L. Banda^{4*}, Firehiwot Abera Derra^{5*}, Francis
4 Chikuse⁶, Sofonias K. Tessema⁶, Africa PGI Foodborne Diseases Genomic Surveillance Focus
5 Group, Ebenezer Foster-Nyarko⁷

6

7 ¹ Makerere University, College of Veterinary Medicine Animal Resources and Biosecurity
8 (CoVAB), Biotechnical and Diagnostic Sciences

9 ² Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of
10 Health Sciences, University of KwaZulu Natal, South Africa

11 ³ Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture,
12 University of Venda, South Africa

13 ⁴ Department of Medical Laboratory Sciences, School of Life Sciences & Allied Health
14 Professions, Kamuzu University of Health Sciences, Malawi

15 ⁵ Food Safety and Food Microbiology National Reference Laboratory, Food Science and Nutrition
16 Research Directorate, Ethiopian Public Health Institute

17 ⁶ Africa Pathogen Genomics Initiative, Africa Centres for Disease Control and Prevention

18 ⁷ Department of Infection Biology, London School of Hygiene and Tropical Medicine, London,
19 United Kingdom

20

21 *These authors contributed equally to this work.

22 §Corresponding authors: johnbosco.kalule@mak.ac.ug; Besterl@ukzn.ac.za

23

24 **Collaborative group:**

25 **Africa Pathogen Initiative Foodborne Disease Genomic Surveillance Focus Group**

26 Stella I. Smith^a, Chisomo Msefula^b, Anthony M. Smith^{c,d}, Abraham Ajayi^a, Happiness
27 Kumburu^{e,f,g}, Geoffrey Kwenda^h, Kaunda Yamba^{i,j}, John Mwaba^{k,l}, Yasmina J. Fakim^m, Nyasha
28 Sitholeⁿ, Aquillah M. Kanzi^o

29

30 ^a Molecular Biology and Biotechnology Department, Nigerian Institute of Medical Research
31 (NIMR), Yaba Lagos, Nigeria

32 ^b Pathology Department, School of Medicine and Oral Health, Kamuzu University of Health
33 Sciences, Blantyre, Malawi

34 ^c Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the
35 National Health Laboratory Service, Johannesburg, South Africa

36 ^d Department of Medical Microbiology, School of Medicine, Faculty of Health Sciences, University
37 of Pretoria, Pretoria, South Africa

38 ^e Kilimanjaro Clinical Research Institute, Tanzania

39 ^f Kilimanjaro Christian Medical Centre, Tanzania

40 ^g Kilimanjaro Christian Medical University College, Tanzania

41 ^h Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka,
42 Zambia

43 ⁱ University Teaching Hospitals, Zambia

44 ^j Zambia National Public Health Institute, Zambia

45 ^k Department of Pathology and Microbiology, University Teaching Hospital, Lusaka

46 ^l Institute of Basic and Biomedical Sciences, Levy Mwanawasa Medical University, Zambia

47 ^m University of Mauritius, Mauritius

48 ⁿ Africa CDC, Addis Ababa, Ethiopia

49 ^o African Society for Laboratory Medicine (ASLM), Johannesburg, South Africa

50

51

52

53

54

55

56

57

58

59 **Abstract**

60 **Introduction:** Diarrhoeagenic *Escherichia coli* (DEC) persistently challenges public health in
61 Africa, contributing substantially to the diarrhoeal disease burden. This systematic review and
62 meta-analysis illuminate the distribution and antimicrobial resistance (AMR) patterns of DEC
63 pathotypes across the continent.

64

65 **Methods:** The review selectively focused on studies reporting prevalence and/or AMR of human-
66 derived DEC pathotypes from African nations, excluding data from extra-intestinal, animal, and
67 environmental sources, and studies focused on drug and mechanism experiments. Employing a
68 robust search strategy, pertinent studies were retrieved from SCOPUS, PubMed, and
69 EBSCOhost, processed with Covidence, and screened in alignment with PRISMA guidelines.

70

71 **Results:** The reviewed studies were predominantly hospital-based (80%) and paediatric-focused
72 (91%), with a meagre 4.4% documenting DEC outbreaks. Seven DEC pathotypes were
73 discerned, with Enteropathogenic *E. coli* (EAEC) being notably prevalent (43%, 95% CI: 30% –
74 55%) and Enteroinvasive *E. coli* (EIEC) least prevalent (24%, 95%CI: 17% – 32%). Identified
75 non-susceptibilities were noted against essential antibiotics, including ciprofloxacin, ceftriaxone,
76 and ampicillin, while instances of carbapenem and Extended-Spectrum Beta-Lactamase (ESBL)
77 resistance were scarce.

78

79 **Conclusion:** Despite sporadic data on DEC prevalence and AMR in Africa, particularly in
80 community settings, a palpable gap remains in real-time outbreak surveillance and
81 comprehensive data documentation. Augmenting surveillance and embracing advancements in
82 molecular/genomic characterisation techniques are crucial to precisely discerning the actual
83 impact and resistance continuum of DEC in Africa.

84

85 **Background**

86 Diarrhoea is a significant public health concern in sub-Saharan Africa—with a high incidence due
87 to factors like limited access to clean water and sanitation—leading to millions of cases
88 annually—and is exacerbated by limited healthcare access, particularly among young children,
89 HIV-positive individuals, and visitors from abroad [1-3]. Diarrhoea manifests as a symptom
90 originating from infections induced by various organisms, including bacteria, viruses, and
91 parasites, predominantly propagated through water contaminated with faeces. In low-income
92 nations, Rotavirus and *Escherichia coli* are two predominant causative agents of moderate-to-
93 severe diarrhoea, along with other pathogens like *Cryptosporidium* and *Shigella* [4, 5].

94

95 Despite recent studies in Africa revealing the problematic emergence of antimicrobial resistance
96 for common causes of diarrhoea such as diarrhoeagenic *E. coli*, the full scope, distribution,
97 molecular epidemiology, and antimicrobial resistance of diarrhoeagenic bacterial pathogens in
98 the continent remain poorly understood, mainly because many cases go undetected, unreported,
99 and, consequently, untreated. A recent PulseNet International survey emphasised the absence of
100 Whole Genome Sequencing (WGS) in foodborne surveillance outside the United States, Canada,
101 and Europe, spotlighting significant disparities in resources and expertise across regions [6].

102

103 In response to this pressing need, the Africa Pathogen Genomics Initiative (PGI) of the Africa
104 Centres for Disease Control and Prevention (Africa CDC) established a technical focus group of
105 experts on Foodborne Diseases (FBD) in April 2022. A significant area of concern is *E. coli*, a
106 member of the *Enterobacteriaceae* family, which the World Health Organisation (WHO) has
107 identified as one of twelve bacterial families that significantly threaten human health due to
108 escalating antibiotic resistance [7]. The most vulnerable, such as young children, older adults,
109 and those with compromised immunity or malnutrition, are at heightened risk. Key transmission
110 factors include unhygienic practices, limited sanitation, and exposure to contaminated water
111 sources for consumption and irrigation. The latter has been pinpointed as a significant factor in
112 transmitting genes related to antibiotic resistance and increased pathogenicity [8].

113

114 While current research primarily analyses *E. coli* samples from diarrhoeic patients, there is a
115 significant gap in our understanding of its prevalence in the broader community setting [1, 9]. The
116 Global Enteric Multicenter Study (GEMS) provided insights into the genomic diversity of *E. coli*.
117 Among others, their findings suggest the potential for certain strains to carry or acquire virulence
118 genes typically associated with *E. coli* diarrhoeagenic pathotypes [10-12]. Beyond these insights,

119 a fragmented understanding of *E. coli* pathotypes and their contribution to diarrhoeal diseases
120 across the continent remains. Consequently, we lack a cohesive picture of this pivotal pathogen's
121 epidemiology and associated antibiotic resistance in African settings.

122

123 Contrasting with developed regions such as the USA and Europe, which have robust *E. coli*
124 surveillance systems [13-18], Africa contends with significant systemic challenges. The value of
125 well-established FBD surveillance systems was exemplified by the United Kingdom's swift
126 containment of a Shiga toxin-producing *Escherichia coli* (STEC) outbreak within five weeks using
127 WGS [19]. As plans unfold for an African genomic FBD surveillance platform, understanding the
128 prevalence, burden, and diversity of diarrhoeagenic *E. coli* from Africa becomes imperative.
129 Addressing this gap is crucial, as it informs where to allocate resources and infrastructure.

130

131 Consequently, this systematic review examines the existing literature on diarrhoeagenic *E. coli*
132 obtained from human stool samples of diarrhoeic cases in African healthcare settings and
133 communities. Our objective is to elucidate the status of the main diarrhoeagenic *E. coli*
134 pathotypes, viz. enteropathogenic *E. coli* (EPEC), Shiga toxin-producing *E. coli* (STEC),
135 enteroaggregative *E. coli* (EAEC), enterotoxigenic *E. coli* (ETEC), enteroinvasive *E. coli* (EIEC),
136 and diffusely adherent *E. coli* (DAEC) and their antibiotic resistance profiles, which directly
137 challenge primary therapeutic measures. By aggregating data until December 2022, this review
138 sets the foundation for developing a comprehensive pan-African surveillance system that
139 integrates WGS insights.

140 **Methods**

141 This systematic review utilised the Covidence (Veritas Health Innovation Ltd) data management
142 system and adhered to the Preferred Reporting Items for Systematic Reviews and Meta-
143 Analyses (PRISMA) reporting guidelines [20]. The process encompassed importing journal
144 articles from three databases into Covidence, followed by title and abstract screening (**Figure 1**).
145 After selecting the relevant articles, we proceeded with full-text screening and data extraction.
146 The extracted data was then exported in the comma-separated values (CSV) file format for
147 further analysis in Microsoft Excel, R Studio and JupyterLab.

148 **Generation of search terms and database selection**

149 The search terms were derived from common terms previously associated with our topic. We
150 reviewed the reference sections of 30 articles pertinent to the molecular epidemiology of
151 diarrhoeagenic *E. coli*. The journals and databases in which these references were published

152 were then noted. The selection of databases for our literature search was based on the frequency
153 of these journals. The keywords used for the search were determined by collating those from the
154 30 articles mentioned above and selecting the most frequently occurring keywords related to the
155 molecular epidemiology of diarrhoeagenic *E. coli* in Africa.

156 **Search strategy**

157 Database searches were conducted using Scopus, PubMed, and EBSCOhost Research
158 Databases. The specific strategies for each are detailed below.

159

160 **SCOPUS** (315 results; Search date: 25th April 2023)

161 TITLE-ABS-KEY (["Diarrhoeagenic *Escherichia coli*", "Verotoxigenic *Escherichia coli*", vtec,
162 "Verotoxigenic *E. coli*", "Shiga Toxin-Producing *Escherichia coli*", "Vero Cytotoxin-Producing
163 *Escherichia coli*", "Shiga Toxigenic *Escherichia coli*", stec, "Shiga Toxigenic *E. coli*",
164 "Enteropathogenic *E. coli*", epec, "Enteroinvasive *Escherichia coli*", "Enteroinvasive *E. coli*", eiec,
165 "Diffusely Adherent *Escherichia coli*", "Diffusely Adherent *E. coli*", daec, "Enteroaggregative
166 *Escherichia coli*", eaggec, "Enteroaggregative *E. coli*", etec, "Enterotoxigenic *E. coli*",
167 "Enterotoxigenic *Escherichia coli*"]) AND TITLE-ABS-KEY ([Outbreak*, Antimicrobial*, Antibiotic*,
168 epidemic*, Pandemic*]) AND EXCLUDE (AFFILCOUNTRY, ["United States", "United Kingdom",
169 "Germany", "Canada", "China", "India", "Japan", "Brazil", "France", "Italy", "Sweden", "Spain",
170 "Australia", "Iran", "Mexico", "Argentina", "South Korea", "Denmark", "Belgium", "Switzerland",
171 "Netherlands", "Bangladesh", "Thailand", "Norway", "Ireland", "Poland", "Indonesia", "Finland",
172 "Peru", "Turkey", "Saudi Arabia", "Austria", "Pakistan", "Chile", "New Zealand", "Greece",
173 "Hungary", "Israel", "Czech Republic", "Portugal", "Iraq", "Viet Nam", "Malaysia", "Romania",
174 "Russian Federation", "Taiwan", "Nepal", "Colombia", "Serbia", "Slovakia", "Hong Kong",
175 "Jordan", "Bulgaria", "Croatia", "Lebanon", "Singapore", "Uruguay", "Bolivia", "Slovenia", "United
176 Arab Emirates", "Philippines", "Cuba", "Georgia", "Laos", "Costa Rica", "Jamaica", "Kuwait",
177 "Latvia", "Qatar", "Trinidad and Tobago", "Luxembourg", "Nicaragua", "Venezuela", "Cyprus",
178 "Ecuador", "Estonia", "Guatemala", "Honduras", "Lithuania", "New Caledonia", "Palestine",
179 "Puerto Rico", "Yemen", "Yugoslavia", "Albania", "Belarus", "Bosnia and Herzegovina", "Burma",
180 "Cambodia", "Czechoslovakia", "Fiji", "Iceland", "Kazakhstan", "Mongolia", "Myanmar",
181 "Panama", "Paraguay", "Saint Kitts and Nevis", "Suriname", "Syrian Arab Republic"]).

182

183 **PUBMED** (225 papers; Search date, 19 April 2023) from 1977 to 2022

184 (["Diarrhoeagenic *Escherichia coli*[Title/Abstract]", "VTEC[Title/Abstract]", "Verotoxigenic *E.*
185 *coli*[Title/Abstract]", "Verotoxin-Producing *Escherichia coli*[Title/Abstract]", "Shiga Toxin-

186 Producing *Escherichia coli*[Title/Abstract]", "Vero Cytotoxin-Producing *Escherichia*
187 *coli*[Title/Abstract]", "Shiga Toxigenic *Escherichia coli*[Title/Abstract]", "STEC[Title/Abstract]",
188 "Shiga Toxigenic *E. coli*[Title/Abstract]", "Enteropathogenic *E. coli*[Title/Abstract]",
189 "EPEC[Title/Abstract]", "Enteroinvasive *Escherichia coli*[Title/Abstract]", "Enteroinvasive *E.*
190 *coli*[Title/Abstract]", "EIEC[Title/Abstract]", "Diffusely Adherent *Escherichia coli*[Title/Abstract]",
191 "Diffusely Adherent *E. coli*[Title/Abstract]", "DAEC[Title/Abstract]", "Enteroaggregative
192 *Escherichia coli*[Title/Abstract]", "EAggEC[Title/Abstract]", "Enteroaggregative *E.*
193 *coli*[Title/Abstract]", "ETEC[Title/Abstract]", "Enterotoxigenic *Escherichia coli*[Title/Abstract]",
194 "Enterotoxigenic *E. coli*[Title/Abstract"] AND (Outbreak*[Title/Abstract],
195 Antimicrobial*[Title/Abstract], Antibiotic*[Title/Abstract], Pandemic*[Title/Abstract],
196 epidemic*[Title/Abstract]) AND Algeria[Title/Abstract], Angola[Title/Abstract],
197 Benin[Title/Abstract], Botswana[Title/Abstract], Burkina Faso[Title/Abstract], "Burkina
198 Faso"[Title/Abstract], Burkina Fasso[Title/Abstract], Upper Volta[Title/Abstract], "Upper
199 Volta"[Title/Abstract], Burundi[Title/Abstract], Cameroon[Title/Abstract], Cape
200 Verde[Title/Abstract], "Cape Verde"[Title/Abstract], Central African Republic[Title/Abstract],
201 Chad[Title/Abstract], Comoros[Title/Abstract], "Iles Comores"[Title/Abstract], Iles
202 Comores[Title/Abstract], Comoro Islands[Title/Abstract], "Comoro Islands"[Title/Abstract],
203 Congo[Title/Abstract], Democratic Republic Congo[Title/Abstract], "Democratic Republic of the
204 Congo"[Title/Abstract], Zaire[Title/Abstract], Djibouti[Title/Abstract], Egypt[Title/Abstract],
205 Equatorial Guinea[Title/Abstract], "Equatorial Guinea"[Title/Abstract], Eritrea[Title/Abstract],
206 Ethiopia[Title/Abstract], Gabon[Title/Abstract], Gambia[Title/Abstract], Ghana[Title/Abstract],
207 Guinea[Title/Abstract], Guinea Bissau[Title/Abstract], "Guinea Bissau"[Title/Abstract], Ivory
208 Coast[Title/Abstract], "Ivory Coast"[Title/Abstract], Cote d'Ivoire[Title/Abstract], "Cote
209 d'Ivoire"[Title/Abstract], Kenya[Title/Abstract], Lesotho[Title/Abstract], Liberia[Title/Abstract],
210 Libya[Title/Abstract], Libia[Title/Abstract], Jamahiriya[Title/Abstract], Jamahirya[Title/Abstract],
211 Madagascar[Title/Abstract], Malawi[Title/Abstract], Mali[Title/Abstract],
212 Mauritania[Title/Abstract], Mauritius[Title/Abstract], Ile Maurice[Title/Abstract], "Ile
213 Maurice"[Title/Abstract], Morocco[Title/Abstract], Mozambique[Title/Abstract],
214 Mocambique[Title/Abstract], Namibia[Title/Abstract], Niger[Title/Abstract],
215 Nigeria[Title/Abstract], Rwanda[Title/Abstract], Sao Tome[Title/Abstract], "Sao
216 Tome"[Title/Abstract], Senegal[Title/Abstract], Seychelles[Title/Abstract], Sierra
217 Leone[Title/Abstract], "Sierra Leone"[Title/Abstract], Somalia[Title/Abstract], South
218 Africa[Title/Abstract], "South Africa"[Title/Abstract], Sudan[Title/Abstract], South
219 Sudan[Title/Abstract], "South Sudan"[Title/Abstract], Swaziland[Title/Abstract],
220 Tanzania[Title/Abstract], Tanganyika[Title/Abstract], Zanzibar[Title/Abstract],

221 Togo[Title/Abstract], Tunisia[Title/Abstract], Uganda[Title/Abstract], Western
222 Sahara[Title/Abstract], "Western Sahara"[Title/Abstract], Zambia[Title/Abstract],
223 Zimbabwe[Title/Abstract], Africa[Title/Abstract], Africa*[Title/Abstract], Southern
224 Africa[Title/Abstract], West Africa[Title/Abstract], Western Africa[Title/Abstract], Eastern
225 Africa[Title/Abstract], East Africa[Title/Abstract], North Africa[Title/Abstract], Northern
226 Africa[Title/Abstract], Central Africa[Title/Abstract], Sub Saharan Africa[Title/Abstract],
227 Subsaharan Africa[Title/Abstract], Sub-Saharan Africa[Title/Abstract]).

228

229 **EBSCO HOST** via EBSCOhost Research Databases (176 papers; Search date, 24 April 2023):
230 Using Africa-Wide Information and CINAHL
231 AB ([“Diarrhoeagenic *Escherichia coli*”, “VTEC”, “Verotoxigenic *E. coli*”, “Verotoxin-Producing
232 *Escherichia coli*”, “Shiga Toxin-Producing *Escherichia coli*”, “Vero Cytotoxin-Producing
233 *Escherichia coli*”, “Shiga Toxigenic *Escherichia coli*”, “STEC”, “Shiga Toxigenic *E. coli*”,
234 “Enteropathogenic *E. coli*”, “EPEC”, “Enteroinvasive *Escherichia coli*”, “Enteroinvasive *E. coli*”,
235 “EIEC”, “Diffusely Adherent *Escherichia coli*”, “Diffusely Adherent *E. coli*”, “DAEC”, “
236 Enterotoaggregative *Escherichia coli*”, “EAggEC”, “Enterotoaggregative *E. coli*”, “ETEC”,
237 “Enterotoxigenic *E. coli*”, “Enterotoxigenic *Escherichia coli*”]) AND AB([Outbreak*, Antimicrobial*,
238 Antibiotic*, Pandemic*, Epidemic*]) AND AB ([“Algeria”, “Angola”, “Benin”, “Botswana”, “Burkina
239 Faso”, “Burkina Faso”, “Burkina Fasso”, “Upper Volta”, “Upper Volta”, “Burundi”, “Cameroon”,
240 “Cape Verde”, “Cape Verde”, “Central African Republic”, “Chad”, “Comoros”, “Iles Comores”,
241 “Comoro Islands”, “Congo”, “Democratic Republic Congo”, “Democratic Republic of the Congo”,
242 “Zaire”, “Djibouti”, “Egypt”, “Equatorial Guinea”, “Eritrea”, “Ethiopia”, “Gabon”, “Gambia”, “Ghana”,
243 “Guinea”, “Guinea Bissau”, “Guinea Bissau”, “Ivory Coast”, “Cote d’Ivoire”, “Kenya”, “Lesotho”,
244 “Liberia”, “Libya”, “Libia”, “Jamahiriya”, “Jamahiryia”, “Madagascar”, “Malawi”, “Mali”, “Mauritania”,
245 “Mauritius”, “Ile Maurice”, “Ile Maurice”, “Morocco”, “Mozambique”, “Moçambique”, “Namibia”,
246 “Niger”, “Nigeria”, “Rwanda”, “Sao Tome”, “Sao Tome”, “Senegal”, “Seychelles”, “Sierra Leone”,
247 “Sierra Leone”, “Somalia”, “South Africa”, “South Africa”, “Sudan”, “South Sudan”, “South Sudan”,
248 “Swaziland”, “Tanzania”, “Tanganyika”, “Zanzibar”, “Togo”, “Tunisia”, “Uganda”, “Western
249 Sahara”, “Western Sahara”, “Zambia”, “Zimbabwe”, “Africa”, “Africa*”, “Southern Africa”, “West
250 Africa”, “Western Africa”, “Eastern Africa”, “East Africa”, “North Africa”, “Northern Africa”, “Central
251 Africa”, “Sub Saharan Africa”, “Subsaharan Africa”, “Sub-Saharan Africa”]).

252

253 **Study Eligibility Criteria**

254 We incorporated studies that specifically reported on the prevalence and or antimicrobial
255 resistance patterns of diarrhoeagenic *E. coli* pathotypes derived from human sources but

256 excluded samples from extra-intestinal sources and those that did not use molecular methods to
257 confirm the pathotype.

258

259 Studies were excluded at the screening and full-text review stages if they were systematic or
260 literature reviews, they exhibited an unclear study design, the articles were not written in English,
261 or they sourced *E. coli* from non-human origins such as water, animals, soil, or food. Studies
262 based on regions outside Africa (e.g., Europe, Asia, Americas, Australasia) were similarly
263 excluded, along with papers reporting drug or mechanistic trials.

264

265 **Study Quality Assessment**

266 Each study's quality was scrutinised by two independent reviewers using a designated quality
267 assessment protocol. The laboratory methodologies implemented needed to align with global
268 recommended standards. These methods should have been confirmatory rather than mere
269 screening tools.

270

271 **Title and Abstract Screening**

272 Preliminary screening of the gathered studies was done based on their titles and abstracts. Two
273 reviewers determined the eligibility of each study for inclusion. In cases where the reviewers'
274 decisions clashed, a consensus was reached through discussion.

275

276 **Full-Text Screening**

277 At this juncture, the complete text of each article was meticulously perused by two reviewers to
278 gauge its relevance. Any disagreement between the reviewers was settled through a mutual
279 discussion to reach a final decision.

280

281 **Data Extraction Strategy**

282 We employed the Covidence software to devise a data extraction protocol tailored to accrue
283 pertinent data about the antimicrobial resistance and prevalence of diarrhoeagenic *E. coli*
284 pathotypes across Africa. This protocol was formulated and refined with the insights of four
285 reviewers until a unanimous consensus was reached. During the extraction phase, each study
286 was critically examined by two reviewers. Discrepancies in data extracted by the reviewers were
287 addressed and resolved by a third reviewer's intervention.

288

289 **Data Analysis**

290 Upon the completion of data extraction, the results were transitioned into a comma-separated
291 value (CSV) file format and integrated into Microsoft Excel for subsequent analysis. Statistical
292 computations were predominantly executed using Python v3.10.9 via the JupyterLab interactive
293 development environment v3.5.3. Data on pathotype prevalence was extracted and processed
294 using Python's pandas library v2.0.3. The processed data, detailing the number of cases and the
295 sample size for each study, was then passed to the R statistical environment for further analysis.
296

297 Using R's metafor package v4.2-0, a DerSimonian and Laird random-effects meta-analysis was
298 performed. The metafor package computes effect sizes and associated variances, facilitating
299 meta-analytic pooling of prevalence rates across studies. For each study, the point estimate
300 (proportion) of prevalence and its variance were computed using the escalc function, which
301 utilises the proportion of cases (x_i) over the sample size (n_i) with the "PFT" measure.
302

303 Subsequently, the rma function from the metafor package was employed to compute the pooled
304 random-effects estimate while considering between-study heterogeneity. This meta-analysis
305 yielded effect sizes (or meta-estimates) for each study and an overall pooled effect size
306 representing the cumulative prevalence estimate.
307

308 Pairwise comparisons were conducted to compare the prevalence estimates of various
309 diarrhoeagenic *E. coli* pathotypes. The absolute differences in prevalence estimates between
310 each pair of pathotypes were computed. To ascertain the significance of these differences, p-
311 values were derived by comparing these differences to a normal distribution. Given the multiple
312 comparisons, the Bonferroni correction was applied to adjust the significance level, ensuring the
313 control of the family-wise error rate. A difference was deemed statistically significant if its
314 associated p-value was lower than the Bonferroni-adjusted significance threshold.
315

316 Python library matplotlib v3.7.2 was used to generate a forest plot, displaying the prevalence rate
317 for each study, along with the 95% confidence intervals. The overall pooled prevalence rate was
318 distinctly highlighted to emphasise the aggregate findings of the analysis.
319

320 For data on antimicrobial resistance, the frequency and percentage of non-susceptible isolates
321 for each antibiotic class were documented for studies where antibiograms were reported. For a
322 selection of antibiotics, we used Stata v17 statistical (StataCorp) software to carry out a meta-
323 analysis to determine the pooled resistance at the pathotype level.
324

325 We employed the Chi-Square and Fisher's Exact tests to investigate the statistical significance of
326 observed antibiotic nonsusceptibility across different antibiotic classes. Each antibiotic class'
327 observed frequencies were compared to expected frequencies based on the assumption of even
328 distribution within that class. Specifically, when any expected frequency count in a class was less
329 than or equal to five, the Fisher's Exact test was employed; this was especially pertinent for 2x2
330 tables but was extended here through a series of 2x2 tables, with the smallest p-value taken as
331 representative. The Chi-Square test was employed in cases where all expected frequencies were
332 above five. A p-value less than 0.05 was considered indicative of a significant departure from the
333 expected distribution, thus suggesting that the observed frequencies were unlikely due to random
334 variation alone.

335

336 **Data Visualisation**

337 All visualisations were created using Python's matplotlib library v3.7.2. The Set3 palette from
338 seaborn library v0.12.2 was employed to ensure that distinct categories (like pathotypes in our
339 study) were easily distinguishable. For the distribution of pathotype-specific studies by country, a
340 heatmap was used, where each cell in the heatmap displays the number of studies, with the
341 colour intensity indicative of the quantity (the darker the shade, the higher the number). The
342 methods used in the reviewed studies were visualised using a stacked bar chart, with the colour
343 of each bar segment signifying a distinct method used in the studies in percentage terms. For the
344 meta-analysis results, a forest plot-like visualisation was employed, where the estimated
345 prevalence from different studies, along with their 95% confidence intervals, were presented
346 using error bars. This format allowed for a clear comparison of prevalence estimates across
347 studies and pathotypes.

348 **Results**

349 **Geographical distribution**

350 Forty-five publications were reviewed for data extraction, spanning 18 African countries
351 (**Supplementary Table 1**). Most of the studies emerged from Kenya (24%) and South Africa
352 (18%). Of the 45 articles, 76% (34/45) reported on EPEC, 69% (31/45) reported on EAEC and
353 ETEC, 44% (20/45) reported on EIEC, 36% (16/45) reported on STEC/VTEC, 11% (5/45)
354 reported on DAEC, and only 6% (3/45) reported hybrid strains.

355

356 An interesting observation from the geographical data was the pronounced concentration of
357 reports of specific pathotypes in certain regions. Kenya, South Africa, and Nigeria emerged as

358 areas where EPEC, EAEC, and ETEC studies commonly emanated — a pattern clearly
359 illustrated in **Figure 2A**.

360

361 **Study types**

362 Most studies (43/45, 96%) comprised reports from non-outbreak settings, while only 4% (2/45)
363 represented the retrospective use of outbreak samples. At the same time, 69% (31/45) were
364 cross-sectional and 27% (12/45) were classified as case-control studies.

365

366 **Population characteristics in the reviewed studies**

367 The human population samples covered a broad age spectrum. Still, the focus was
368 predominantly on younger children despite many publications addressing more than one age
369 group. One of the publications reported on neonates under 28 days, 31% (14/45) on infants
370 under five years and 58% (26/45) on children under 18. Fewer reports (7/45, 16%) focused on
371 adults over 18 years, including one focusing on older people over 65 years, and 27% (12/45) did
372 not specify the age groups.

373

374 In terms of specific population categories, 4% (2 out of 45) were in rural settings, 7% (3 out of 45)
375 involved food handlers, and 2% (1 out of 45) each came from urban and peri-urban areas, with or
376 without livestock. The rest were from unique reports, such as travellers' diarrhoea, low-income
377 populations, a wedding party, and those suffering from underlying diseases.

378

379 **Study sites**

380 All the examined publications reported on stool samples primarily collected in hospital settings at
381 67% (30 out of 45). In contrast, 13% (6 out of 45) of the studies collected samples from both
382 hospital and community settings, and 16% (7 out of 45) were from community settings alone.

383

384 Of the 45 studies, all (100%) reported patients presenting with diarrhoea. Of these, 40% (18 out
385 of 45) reported patients displaying severe signs of diarrhoea, including bloody diarrhoea (10%),
386 vomiting (14%), and fever (14%).

387

388 **Diagnostic Laboratory Techniques Utilised from the African sourced publications.**

389 We explored the methodologies employed to detect diarrhoeagenic *E. coli*. From the 45
390 publications scrutinised, more than 15 analytic tools were identified (**Figure 2B**). Most
391 researchers (42/45; 93%) began their investigations with conventional culture techniques to
392 isolate pathogens from clinical specimens. Subsequent screening and verification utilised a

393 variety of approaches, including biochemical identification methods, conventional or multiplex
394 PCR, and serotyping. Notably, only a few studies (3/45, 7%) employed sequencing tools,
395 underscoring the limited capacity for advanced sequencing tools in foodborne research on the
396 continent. Researchers often sought collaboration with national or international laboratories when
397 specific tools were unavailable.

398

399 **Prevalence of Diarrhoeagenic *E. coli* Pathotypes**

400 Given that the reviewed publications did not consistently encompass all six main diarrhoeagenic
401 pathotypes, our calculations for individual pathotypes included only those explicitly reported.
402 Consequently, studies that investigated specific pathotypes did not contribute prevalence data for
403 other types that were not within their research scope. Our analysis highlighted EAEC as the most
404 prevalent pathotype (43%; 95% CI, 30% – 55%) (Figure 3A), while STEC (Figure 3E) and EIEC
405 (Figure 3F) presented the lowest prevalence at 28% (95%CI, 14% – 42%) and 24% (95%CI,
406 17% – 32%), respectively. Furthermore, ETEC, DAEC, and EPEC—inclusive of atypical EPEC—
407 also emerged as notably prevalent pathotypes with prevalence rates of 36% (95% CI, 27% –
408 45%), 36% (95% CI, 16% – 57%), and 31% (95% CI, 21% – 40%), respectively (Figures 3B –
409 3D). Notably, there were only three reports of hybrid strains throughout the studies under review.

410

411 Comparative analyses of the prevalence of different pathotypes highlighted significant disparities
412 among them (Supplementary Table 2). EAEC exhibited the highest prevalence and was
413 significantly more prevalent than ETEC, DAEC, EPEC, STEC, and EIEC, with differences in
414 prevalence estimates ranging from approximately 6.56% to 18.61%. ETEC's prevalence was
415 notably different from that of EPEC, STEC, and EIEC, though not significantly different from
416 DAEC. Furthermore, DAEC showed a significantly distinct prevalence from EPEC, STEC, and
417 EIEC. EPEC and STEC differed insignificantly in prevalence. In contrast, there were noticeable
418 differences between the prevalence of EPEC and EIEC and between STEC and EIEC.

419

420 **Commonly Used Susceptibility Testing Techniques and Interpretive Standards**

421 In our analysis of methodologies employed for assessing and interpreting antibiotic resistance
422 across the selected studies, the Clinical and Laboratory Standards Institute (CLSI) guidelines
423 emerged as the preferred framework. A substantial 90% (27/30) of the studies that detailed
424 antibiotic resistance determinations opted for the CLSI guidelines. On the other hand, the
425 EUCAST guidelines found favour in only 10% (3/30) of the publications, with a number inclusive
426 of reports following the directives of the Antibiogram Committee of the French Microbiological
427 Society.

428

429 Regarding the antimicrobial susceptibility testing approach, the Kirby-Bauer disc diffusion method
430 was the dominant technique, which was utilised by 73% (22/30) of the publications that reported
431 non-susceptibility to an antibiotic. Another 23% (7/30) integrated both the disc diffusion and
432 micro-broth dilution methods. A minority, 10% (3/30), relied solely on the micro-broth dilution
433 method. There was a solitary report of the VITEK system in use, with results closely mirroring
434 those derived via the micro-broth dilution method.

435

436 Notably, only seven studies explored antibiotic-resistant genes, either as an exclusive method or
437 in conjunction with the susceptibility assessment techniques mentioned earlier.

438

439 **Antibiotic Resistance Among Diarrhoeagenic *E. coli***

440 Of 30 studies presenting antimicrobial resistance outcomes, a cumulative 602 antimicrobial
441 resistance testing outcomes could be classified as antibiotic “non-susceptible”, comprising 87%
442 (n=521) resistant and 14% (n=81) intermediate resistant isolates (**Table 1**).

443

444 Among these, Quinolones surfaced as the most frequently encountered resistant class (p-value,
445 2.59E-11), with a frequency of 105. Following closely were the Cepheins, registering a frequency
446 of 98 (p-value, 1.98E-13), then Aminoglycosides and Penicillins, with frequencies of 79 and 76,
447 respectively. Folate pathway inhibitors followed with a frequency of 59 (p-value, 0.0001).

448

449 Phenicols and Tetracyclines came next, with frequencies of 46 and 40, respectively. Non-
450 susceptibility to Macrolides, β -lactam-inhibitor combinations, and Carbapenem classes were also
451 observed. Notably, only four instances of ESBL phenotypes were observed (**Table 1**).

452

453 Our analysis revealed variable resistance patterns among the different *E. coli* pathotypes for the
454 studies that reported antimicrobial susceptibility (AST) data (**Supplementary Figures 1 – 5**).

455 Despite a prevalence of 36% for DAEC, none of the studies that reported on this pathotype,
456 namely Garrine 2020, Omolajaiye 2020, Kalule 2018, and Ifeanyi 2015, provided data regarding
457 antimicrobial susceptibility testing (ASTs). Hence, no available data exists on the prevalence of
458 resistance among DAEC isolates. By contrast, STEC, ETEC, and EPEC isolates exhibited
459 strikingly high resistance to ampicillin (the most frequently reported antibiotic among the reviewed
460 studies) with prevalence rates and 95% confidence intervals (CIs) of 72% (13% – 100%), 73%
461 (58% – 89%), and 72% (46% – 98%), respectively (**Supplementary Figures 1 – 3**), albeit with
462 considerably wide confidence intervals, hinting at the variability within the data and the small

463 number of studies reporting AST data. On the other hand, pooled estimates for ampicillin
464 resistance among EAEC and EIEC were 43.3% (95% CI: 40% – 47%) and 43% (95% CI: 36% –
465 51%), respectively. When assessing antimicrobial susceptibility across all diarrhoeagenic *E. coli*
466 without distinguishing between individual pathotypes, the pooled resistance was as follows: 73%
467 (95% CI: 64% – 83%) for ampicillin, 32% (95% CI: 19% – 46%) for gentamicin, 22% (95% CI:
468 12% – 33%) for nalidixic acid, 14% (95% CI: 8% – 20%) for ciprofloxacin, and 14% (95% CI: 3%
469 – 25%) for ceftriaxone (**Figure 4**).

470 **Discussion**

471 This study reviewed the prevalence and antimicrobial resistance patterns of diarrhoeagenic *E.*
472 *coli* pathotypes in Africa. A significant proportion of reported studies emanated from Kenya, South
473 Africa, and Nigeria. However, these numbers may not accurately reflect the actual disease
474 prevalence across the continent. The disparity in the number of diarrhoeagenic *E. coli* studies
475 underscores the varying diagnostic and surveillance practices across African nations. This can be
476 attributed to the more developed healthcare infrastructures in Kenya, South Africa, and Nigeria
477 [21], emphasising the need for enhanced surveillance and pathotype-specific interventions across
478 Africa.

479

480 Our review showed that EAEC and ETEC were the most common diarrhoeagenic *E. coli*
481 pathotypes among the extant literature, with EIEC being the least prevalent. This finding aligns
482 with the conclusions of the Global Enteric Multicenter Study (GEMS), where ETEC, among
483 others, was a significant contributor to moderate-to-severe diarrhoea in young children. Earlier
484 studies have highlighted EAEC and ETEC as substantial contributors to childhood diarrhoea [1].
485 However, our review discerned a higher prevalence of ETEC, EAEC, and DAEC. In line with
486 earlier research, we identified an underreporting of EHEC, likely due to its overshadowing by
487 other more readily detectable pathogens that cause dysentery [22].

488

489 Interestingly, only two studies pinpointed outbreaks triggered by a specific diarrhoeagenic *E. coli*
490 pathotype, with one being attributed to a novel heat-stable enterotoxin-producing strain of
491 Enterotoaggregative *E. coli* [23]. The evident lack of real-time surveillance for foodborne pathogens
492 in many regions likely obscures the detection and actual frequency of outbreaks. Moreover, most
493 studies in our review opted for culture-based diagnostic methods despite the evolution and
494 optimisation of more sensitive genomic epidemiology techniques that could be adapted to low-
495 resource settings [14, 15, 24, 25].

496

497 A notable observation from our study is the marked scarcity of research concerning hybrid
498 strains. Hybrid strains often manifest with more severe clinical outcomes than their non-hybrid
499 counterparts, as emphasised by Santos et al. [26]. One plausible explanation for the limited
500 detection of these strains could be the lack of genomic capacity in the region to identify specific
501 genotypic markers indicative of hybridity. This is further corroborated by the limited number of
502 studies incorporating genomics into their *E. coli* pathotype surveillance within the reviewed
503 literature. Consequently, there's a compelling argument for the broader integration of genomics in
504 Africa's diagnostic landscape. Doing so will not only enhance the identification of such hybrid
505 strains but also augment the continent's capacity to anticipate and mitigate potential outbreaks.
506

507 Moreover, our analysis unveiled a trend of heightened resistance to pivotal antibiotics, notably
508 Quinolones and Cephalosporins. Due to the fragmented nature of the reports, we could not
509 determine absolute prevalence rates of resistance for diarrhoeagenic *E. coli*. While our results
510 provide important insights, it's crucial to note that this data only presents a snapshot of the
511 situation, as they are based on a limited number of studies. We need dedicated and meticulously
512 designed epidemiological studies to grasp the true prevalence of resistance. A comprehensive
513 approach, grounded in surveillance and well-structured research, is paramount to understanding
514 and combating the rising antimicrobial resistance tide. However, our findings warrant continuously
515 enhanced efforts to prevent the increase and emergence of antimicrobial resistance on the
516 continent [27].
517

518 In a silver lining, a marked low resistance was observed to extended-spectrum beta-lactamases
519 (ESBLs) and third-generation cephalosporins. While this can be construed as a positive
520 indication that the continent might be relatively shielded from the burgeoning global ESBL
521 challenge, caution is still warranted. The low prevalence of ESBLs could reflect the limited
522 number of studies that actively sought out ESBL determinants or harnessed genomics to
523 characterise resistance against this antibiotic class. Given the potential clinical implications, it
524 becomes imperative for Africa to sustain vigilant monitoring in this domain, ensuring that the
525 continent remains a step ahead in the battle against antimicrobial resistance.
526

527 Of the four studies that documented ESBL production among diarrhoeagenic *E. coli*, one reported
528 on the environmental correlates of antimicrobial resistance and noted that children whose
529 caregivers used a shared pit latrine or who openly defecated were more likely to carry multidrug-
530 resistant bacteria than those with flush or unshared toilets [36]. This underscores the need for
531 broader, community-based research on foodborne pathogens. Unfortunately, our review noted

532 that most studies reported on children less than 18 years of age during a health crisis and that
533 more than two-thirds of the samples studied were reported from hospital sites. However, the
534 actual burden of the disease within a community is better represented by community samples.

535

536 The interplay between antibiotic resistance and the virulence of pathogenic bacteria, including *E.*
537 *coli*, has garnered significant global concern [1, 28, 29]. While some previous studies have
538 suggested reduced virulence among multidrug resistant *E. coli* isolates relative to sensitive
539 strains [30], others have emphasised that the acquisition of antimicrobial resistance does not
540 necessarily compromise microbial fitness [31].

541

542 Consistent with this notion, epidemiological data indicate that antibiotic resistance and virulence
543 factor carriage are linked in *E. coli* populations in some community settings [32]. A related study
544 showed that the expression of virulence factors led to the formation of an antibiotic-tolerant
545 subpopulation [33] and that antibiotic treatment indeed may select for virulence [34]. In addition to
546 drug resistance, treatment failure on the use of antibiotics in a clinical setting could be due to
547 tolerance and or persistence to antibiotics [35]. Importantly, community-based surveillance
548 studies are pivotal, as evidenced by findings linking sanitation practices with antibiotic resistance
549 patterns [36]. However, our review discerned a focus on younger populations and hospital-based
550 studies, underscoring the need for broader, community-based research.

551

552 Accurate pathotype identification remains a challenge due to the complexities associated with
553 conventional laboratory techniques. The predominant reliance on the disk diffusion method over
554 minimum inhibition concentration (MIC) for antimicrobial testing introduces further complexity due
555 to varying sensitivity levels. Notwithstanding these challenges, a noticeable trend toward
556 employing more sensitive diagnostic methodologies has emerged, suggesting an optimistic
557 trajectory for future African studies.

558

559 On this note, the recent endeavours by Africa CDC, particularly through the foodborne disease
560 focus group, underscore the continent's readiness to embrace advanced surveillance platforms
561 for tracking foodborne disease outbreaks. Leveraging high-resolution techniques incorporating
562 genomics, such as whole-genome sequencing (WGS), will not only elevate the precision of
563 outbreak detection but also revolutionise our understanding of disease spread and antimicrobial
564 resistance patterns. This approach, if widely adopted, positions Africa at the forefront of
565 combating foodborne pathogens and ensuring the health and safety of its populace.

566

567 In our systematic review of published data on diarrhoeagenic *E. coli* from the African continent's
568 public health sector, we encountered significant challenges in data collation. The heterogeneity in
569 study designs and methodologies resulted in fragmented outputs. Notably, a limited number of
570 studies reported AST data, and where they occurred, antimicrobial resistance profile
571 determinations utilised a diverse array of antibiotics. Furthermore, many studies reported
572 concentrations not aligned with the CLSI or EUCAST breakpoint guidelines. This disparity
573 underscores the pressing need for standardised testing, reporting, and interpretive guidelines
574 tailored to Africa's unique demographics, geographies, and economic scales. Such
575 standardisation would ensure reproducibility and establish a robust platform for historic
576 surveillance, enabling timely assessment of risks to the healthcare sector across the continent.
577

578 **Limitations**

579 This review was meticulously designed with comprehensive search criteria to encompass a broad
580 spectrum of studies focusing on *E. coli* pathotypes. Nevertheless, given the vast expanse of
581 scientific literature on the topic, there remains a possibility that some pertinent studies might have
582 been inadvertently overlooked.
583

584 Furthermore, significant heterogeneity was observed among the studies reviewed, stemming from
585 differences in study design, population demographics, geographical location, and methods of
586 pathotype identification. Such heterogeneity can invariably influence the overall prevalence
587 estimates. While rigorous meta-analytic techniques were employed to mitigate this variation, it's
588 crucial to acknowledge that the reported rates may not capture the complete picture. They might,
589 in fact, reflect under-reporting due to a variety of reasons, including limited diagnostic capacities
590 or logistical constraints in specific settings.
591

592 **Conclusions**

593 Our comprehensive review of published data on diarrhoeagenic *E. coli* from the African continent
594 underscores the significant heterogeneity in study designs, methodologies, population
595 characteristics, and sample collection sites. Kenya, South Africa, and Nigeria emerge as hotspots
596 for research into particular pathotypes, with a noticeable focus on EPEC, EAEC, and ETEC. The
597 propensity for hospital-based sample collection is evident, with a notable divergence in
598 methodologies employed for both detection and antibiotic resistance assessments.
599

600 EAEC's prevalence as the dominant pathotype, juxtaposed with the striking low reports of hybrid
601 strains, underlines the need for targeted surveillance and management strategies. The alarmingly

602 high resistance rates to commonly used antibiotics, including emerging resistance to crucial drugs
603 such as ciprofloxacin, underscore the imminent threat of antibiotic resistance in the region. This
604 calls for urgent action in the form of robust antibiotic stewardship programs, harmonised
605 surveillance efforts, and educational campaigns aimed at healthcare providers and the public.

606

607 Our findings elucidate the dominance of the CLSI guidelines in antibiotic resistance
608 determination, indicating a potential avenue for standardisation and consolidation of antimicrobial
609 resistance reporting. The prominence of the Kirby-Bauer disc diffusion method highlights the
610 method's accessibility and utility in the region.

611

612 In light of these insights, there is a pronounced need for the African continent to foster
613 standardised testing, reporting, and interpretative guidelines tailored to its unique demographic
614 and geographic contexts. This will be instrumental in optimising diagnostics, treatment protocols,
615 and mitigation strategies against the looming threat of antimicrobial-resistant diarrhoeagenic *E.*
616 *coli* and other pathogens in the region.

617

618 **Acknowledgements**

619 This review was generously funded by the African Union. The authors wish to thank the Africa
620 CDC for their unwavering support throughout this systematic review. We extend special thanks to
621 Professor Kathryn E. Holt for her valuable time and insightful feedback on the draft manuscript.

622

623

624 **References**

- 625 1. **Okeke IN.** Diarrhoeagenic *Escherichia coli* in sub-Saharan Africa: status, uncertainties and
626 necessities. *J Infect Dev Ctries* 2009;3(11):817-842.
- 627 2. **World Health Organization.** WHO estimates of the global burden of foodborne diseases:
628 Foodborne diseases burden epidemiology reference group 2007–2015.
- 629 3. **Havelaar AH, Kirk MD, Torgerson PR, Gibb HJ, Hald T et al.** World Health Organization
630 global estimates and regional comparisons of the burden of foodborne disease in 2010. *PLOS
631 Medicine* 2015;12(12):e1001923.
- 632 4. **World Health Organization.** Fact Sheets: Diarrhoeal diseases.
- 633 5. **Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH et al.** Burden and aetiology of
634 diarrhoeal disease in infants and young children in developing countries (the Global Enteric
635 Multicenter Study, GEMS): a prospective, case-control study. *The Lancet*
636 2013;382(9888):209-222.
- 637 6. **Davedow T, Carleton H, Kubota K, Palm D, Schroeder M et al.** PulseNet International
638 survey on the implementation of whole genome sequencing in low and middle-income
639 countries for foodborne disease surveillance. *Foodborne Pathog Dis* 2022;19(5):332-340.
- 640 7. **Interagency Coordination Group (IACG) on Antimicrobial Resistance.** No time to wait:
641 Securing the future from drug-resistant infections report to the secretary-general of the United
642 Nations. *In Report to the Secretary-General of the United Nations*. April 2019.
- 643 8. **Amarasiri M, Sano D, Suzuki S.** Understanding human health risks caused by antibiotic
644 resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments:
645 Current knowledge and questions to be answered. *Critical Reviews in Environmental Science
646 and Technology* 2020;50(19):2016-2059.
- 647 9. **Hazen TH, Michalski JM, Tenant SM, Rasko DA.** Genomic diversity of non-diarrhoeagenic
648 fecal *Escherichia coli* from children in sub-Saharan Africa and South Asia and their
649 relatedness to diarrhoeagenic *E. coli*. *Nat Commun* 2023;14(1):1400.
- 650 10. **Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH et al.** Burden and aetiology of
651 diarrhoeal disease in infants and young children in developing countries (the Global Enteric
652 Multicenter Study, GEMS): a prospective, case-control study. *Lancet* 2013;382(9888):209-
653 222.
- 654 11. **Liu J, Platts-Mills JA, Juma J, Kabir F, Nkeze J et al.** Use of quantitative molecular
655 diagnostic methods to identify causes of diarrhoea in children: a reanalysis of the GEMS
656 case-control study. *Lancet* 2016;388(10051):1291-1301.
- 657 12. **Ingle DJ, Levine MM, Kotloff KL, Holt KE, Robins-Browne RM.** Dynamics of antimicrobial
658 resistance in intestinal *Escherichia coli* from children in community settings in South Asia and
659 sub-Saharan Africa. *Nat Microbiol* 2018;3(9):1063-1073.

660 13. National surveillance of bacterial foodborne illness (Enteric Diseases) [database on the
661 Internet]. Available from: <https://www.cdc.gov/nationalsurveillance/index.html>.

662 14. **Hoang T, da Silva AG, Jennison AV, Williamson DA, Howden BP et al.** AusTrakka: Fast-
663 tracking nationalized genomics surveillance in response to the COVID-19 pandemic. *Nat
664 Commun* 2022;13(1):865.

665 15. **Brown E, Dessai U, McGarry S, Gerner-Smidt P.** Use of whole-genome sequencing for food
666 safety and public health in the United States. *Foodborne Pathog Dis* 2019;16(7):441-450.

667 16. **Allard MW, Strain E, Melka D, Bunning K, Musser SM et al.** Practical value of food
668 pathogen traceability through building a whole-genome sequencing network and database. *J
669 Clin Microbiol* 2016;54(8):1975-1983.

670 17. **Chattaway MA, Dallman TJ, Larkin L, Nair S, McCormick J et al.** The transformation of
671 reference microbiology methods and surveillance for *Salmonella* with the use of whole
672 genome sequencing in England and Wales. *Front Public Health* 2019;7:317.

673 18. Surveillance and disease data for *Escherichia coli*. [database on the Internet]2022. Available
674 from: <https://www.ecdc.europa.eu/en/escherichia-coli-ecoli/surveillance-and-disease-data>.

675 19. **Gobin M, Hawker J, Cleary P, Inns T, Gardiner D et al.** National outbreak of Shiga toxin-
676 producing *Escherichia coli* O157:H7 linked to mixed salad leaves, United Kingdom, 2016.
677 *Euro Surveill* 2018;23(18).

678 20. **Moher D, Liberati A, Tetzlaff J, Altman DG, Group P.** Preferred reporting items for
679 systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med*
680 2009;6(7):e1000097.

681 21. **Ng'etich AKS, Voyi K, Kirinyet RC, Mutero CM.** A systematic review on improving
682 implementation of the revitalised integrated disease surveillance and response system in the
683 African region: A health workers' perspective. *PLoS One* 2021;16(3):e0248998.

684 22. **Zhang X, Payne M, Kaur S, Lan R.** Improved genomic identification, clustering, and
685 serotyping of Shiga toxin-producing *Escherichia coli* using cluster/serotype-specific gene
686 markers. *Front Cell Infect Microbiol* 2021;11:772574.

687 23. **Ochi S, Shah M, Odoyo E, Bundi M, Miringu G et al.** An outbreak of diarrhea in Mandera,
688 Kenya, due to *Escherichia coli* serogroup O-nontypable strain that had a coding gene for
689 enteroaggregative *E. coli* heat-stable enterotoxin 1. *Am J Trop Med Hyg* 2017;96(2):457-464.

690 24. **Foster-Nyarko E, Cottingham H, Wick RR, Judd LM, Lam MMC et al.** Nanopore-only
691 assemblies for genomic surveillance of the global priority drug-resistant pathogen, *Klebsiella*
692 *pneumoniae*. *Microb Genom* 2023;9(2).

693 25. **Foster-Nyarko E, Alikhan NF, Ikumapayi UN, Sarwar G, Okoi C, Tientcheu PM, Defernez
694 M, O'Grady J, Antonio M, Pallen MJ.** Genomic diversity of *Escherichia coli* from healthy
695 children in rural Gambia. *PeerJ* 2021;9:e10572.

696 26. **Santos ACM, Santos FF, Silva RM, Gomes TAT.** Diversity of hybrid- and hetero-pathogenic
697 *Escherichia coli* and their potential implication in more severe diseases. *Front Cell Infect*
698 *Microbiol* 2020;10:339.

699 27. **Fraser JL, Alimi YH, Varma JK, Muraya T, Kujinga T et al.** Antimicrobial resistance control
700 efforts in Africa: a survey of the role of Civil Society Organisations. *Global Health Action*
701 2021;14(1):1868055.

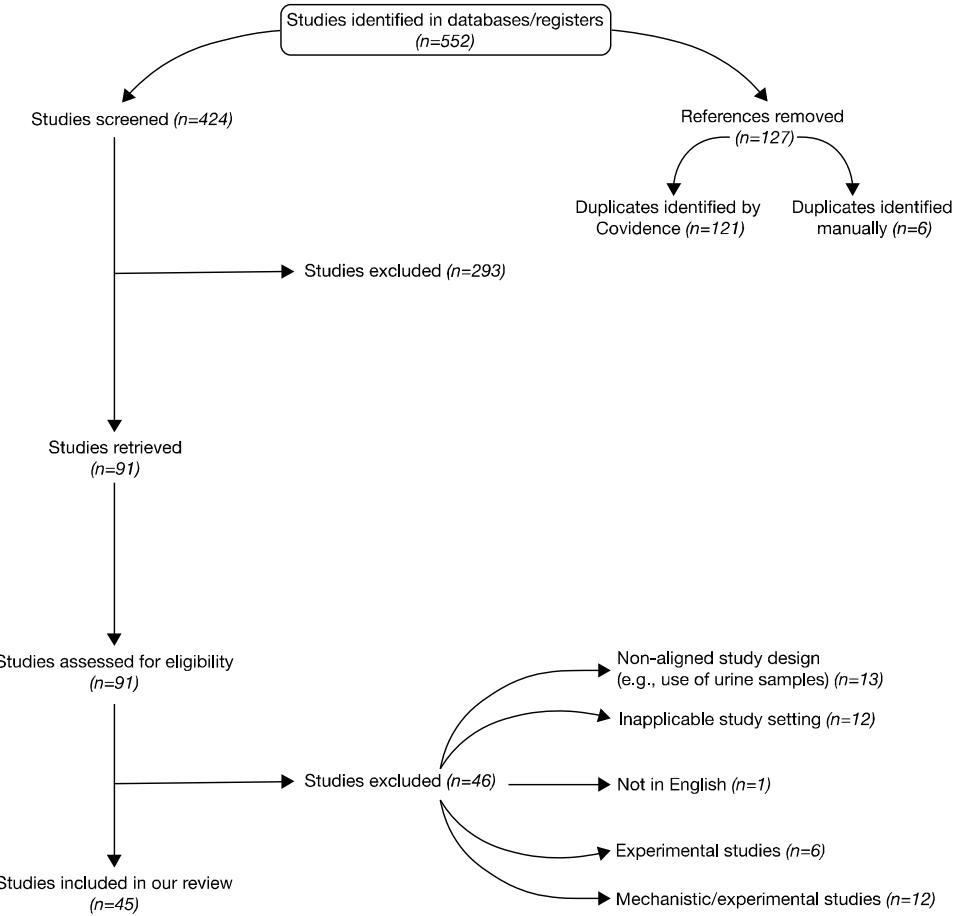
702 28. **Wang J, Stanford K, McAllister TA, Johnson RP, Chen J et al.** Biofilm formation, virulence
703 gene profiles, and antimicrobial resistance of nine serogroups of non-O157 Shiga toxin-
704 producing *Escherichia coli*. *Foodborne Pathog Dis* 2016;13(6):316-324.

705 29. **Beceiro A, Tomás M, Bou G.** Antimicrobial resistance and virulence: a successful or
706 deleterious association in the bacterial world? *Clin Microbiol Rev* 2013;26(2):185-230.

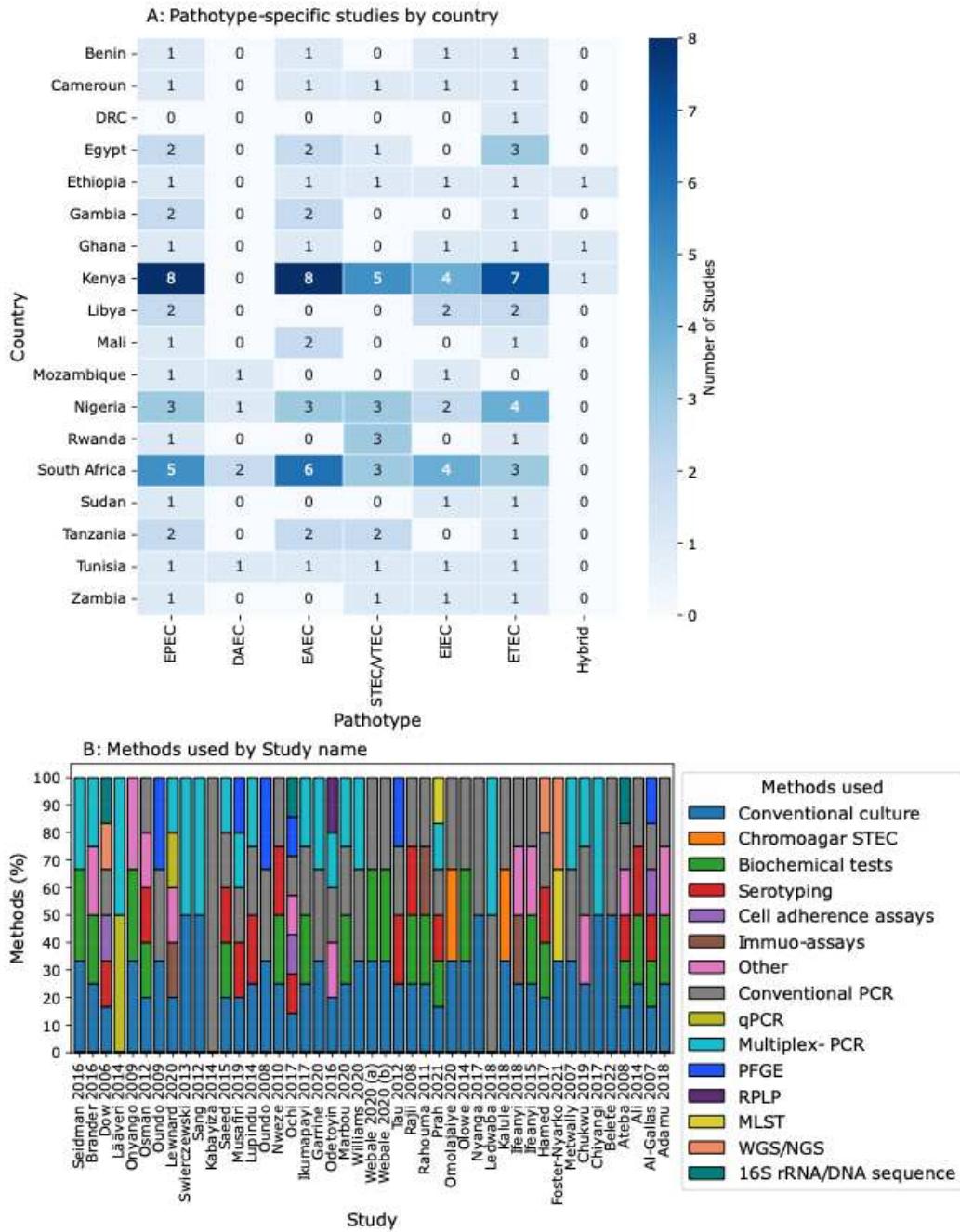
707 30. **Moreno E, Prats G, Sabaté M, Pérez T, Johnson JR et al.** Quinolone, fluoroquinolone and
708 trimethoprim/sulfamethoxazole resistance in relation to virulence determinants and
709 phylogenetic background among uropathogenic *Escherichia coli*. *J Antimicrob Chemother*
710 2006;57(2):204-211.

711 31. **Holmes AH, Moore LS, Sundsfjord A, Steinbakk M, Regmi S et al.** Understanding the
712 mechanisms and drivers of antimicrobial resistance. *Lancet* 2016;387(10014):176-187.

713 32. **Zhang L, Levy K, Trueba G, Cevallos W, Trostle J et al.** Effects of selection pressure and
714 genetic association on the relationship between antibiotic resistance and virulence in
715 *Escherichia coli*. *Antimicrob Agents Chemother* 2015;59(11):6733-6740.


716 33. **Arnoldini M, Vizcarra IA, Peña-Miller R, Stocker N, Diard M et al.** Bistable expression of
717 virulence genes in *Salmonella* leads to the formation of an antibiotic-tolerant subpopulation.
718 *PLoS Biol* 2014;12(8):e1001928.

719 34. **Diard M, Sellin ME, Dolowschiak T, Arnoldini M, Ackermann M et al.** Antibiotic treatment
720 selects for cooperative virulence of *Salmonella* Typhimurium. *Curr Biol* 2014;24(17):2000-
721 2005.


722 35. **Brauner A, Fridman O, Gefen O, Balaban NQ.** Distinguishing between resistance, tolerance
723 and persistence to antibiotic treatment. *Nat Rev Microbiol* 2016;14(5):320-330.

724 36. **Brander RL, Walson JL, John-Stewart GC, Naulikha JM, Ndonye J et al.** Correlates of
725 multi-drug non-susceptibility in enteric bacteria isolated from Kenyan children with acute
726 diarrhea. *PLoS Negl Trop Dis* 2017;11(10):e0005974.

727
728

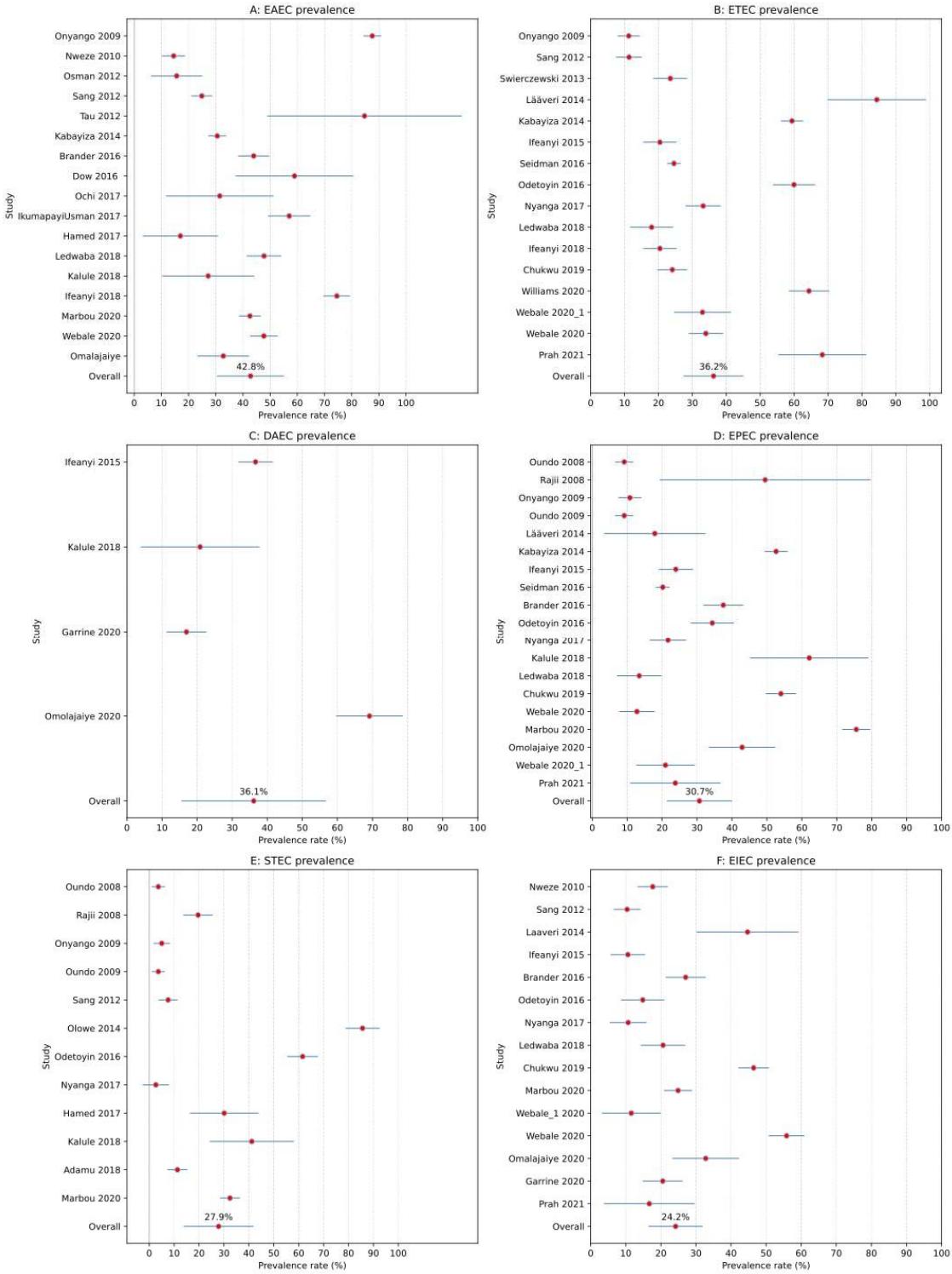

Figure 1. A flow diagram depicting the flow of information through the various stages of the systematic review, drawn using PRISMA.

Figure 2. Overview of pathotype-specific studies by country and methodologies employed.

Panel A (Pathotype-specific studies by country) illustrates the distribution of pathotype-specific studies across various countries. The countries are displayed on the y-axis, while distinct pathotypes are on the x-axis. The colour intensity, progressing from light to dark, represents an increasing number of studies, with the precise number annotated within each cell.

Panel B (Methods used) details the techniques used across the studies reviewed. The methods are enumerated along the x-axis; each colour in the bars corresponds to a distinct method utilised in the research, as indicated by the colour-coded legend. The percentage (on the y-axis) denotes the prevalence of each method in each study. PFGE, Pulsed Field Gel Electrophoresis; MLST, Multilocus Sequencing Typing; WGS, Whole Genomics Sequencing; NGS, Next generation sequencing; PCR, Polymerase Chain Reaction; qPCR, quantitative Polymerase Chain Reaction; RFLP, Restriction Fragment Length Polymorphism; Other, includes techniques like haemolytic activities, verotoxicity tests, ELISA, transconjugation assays and the Colilert test.

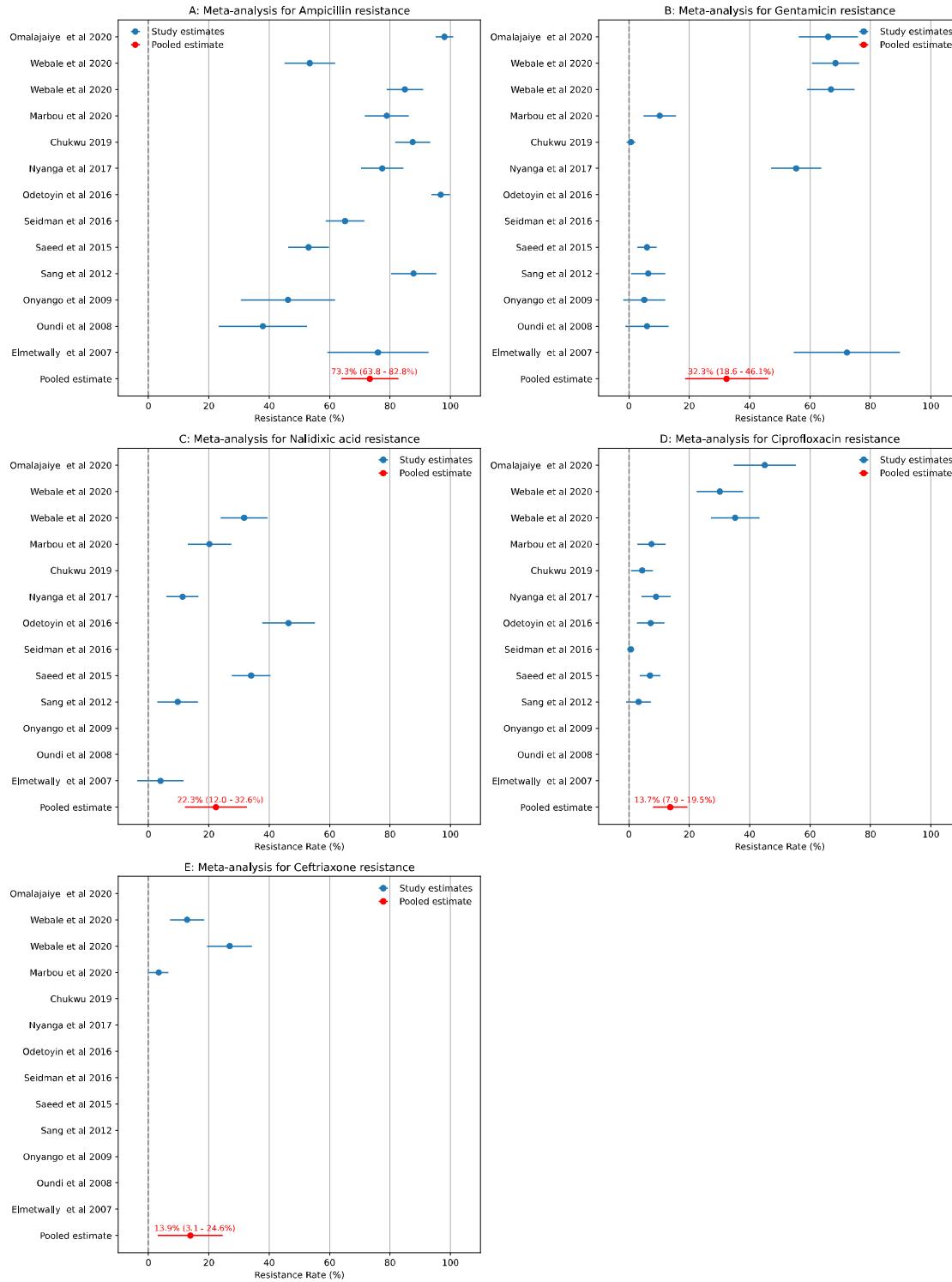


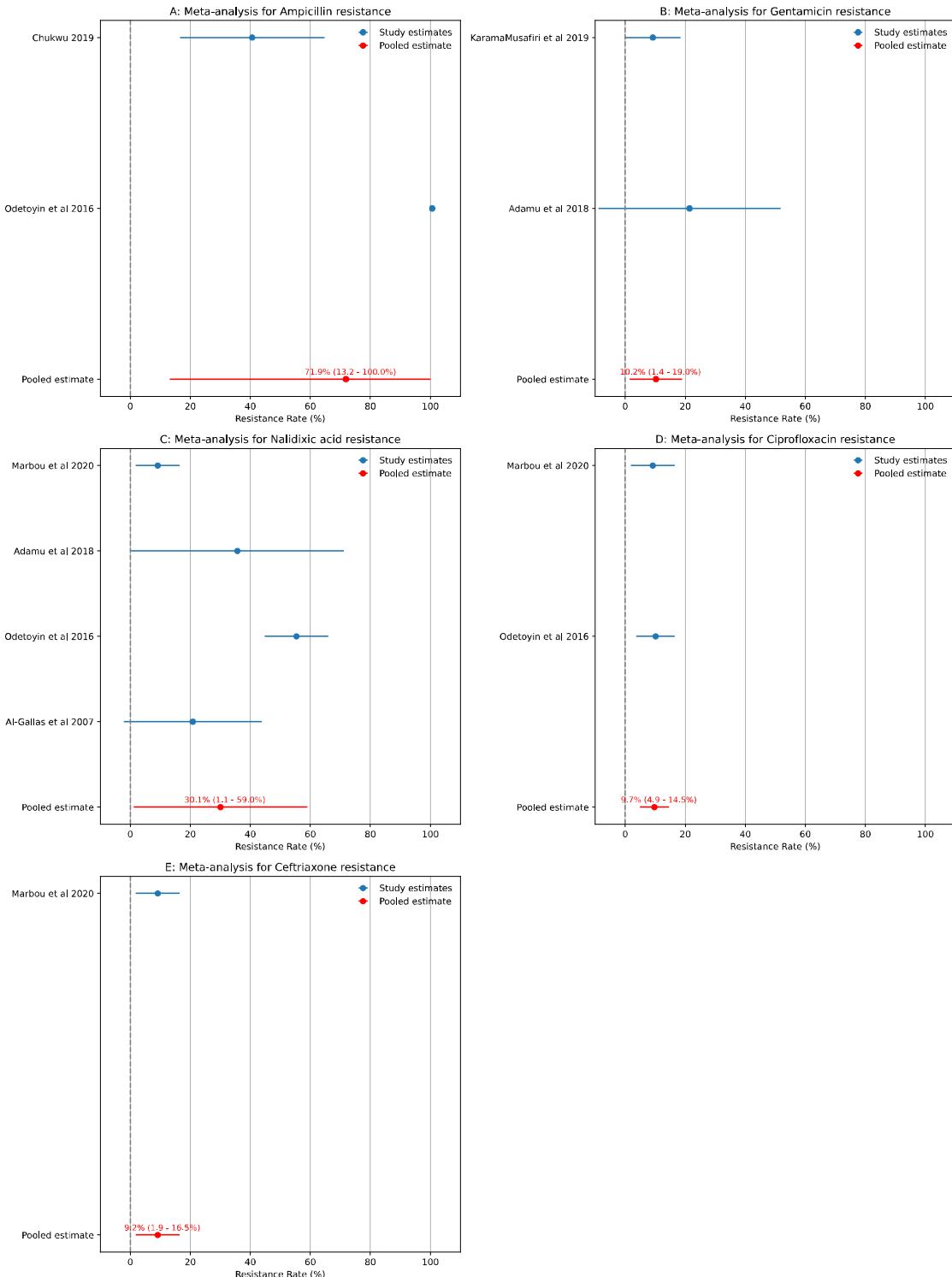
Figure 3. Prevalence of enteropathogenic bacterial pathotypes.

The figure displays six distinct forest plots, each highlighting the prevalence of a specific enteropathogenic bacterial pathotype. Red circles represent the estimated prevalence rates from individual studies. Accompanying these markers, horizontal blue lines illustrate the 95% confidence interval (CI) for each respective rate.

Each panel is dedicated to a different bacterial pathotype. Panel A elucidates the prevalence of Enteropathogenic *E. coli* (EAEC), while Panel B depicts Enterotoxigenic *E. coli* (ETEC). Similarly, Panels C through F focus on Diffusely adherent *E. coli* (DAEC), Enteropathogenic *E. coli* (EPEC), Shiga toxin-producing *E. coli* (STEC), and Enteroinvasive *E. coli* (EIEC), respectively.

The percentage value annotated above the 'Overall' marker indicates the cumulative meta-analysed prevalence rate associated with each pathotype. As a point of reference, a vertical grey line is drawn at the 0% prevalence rate mark, and dashed gridlines are included at regular intervals to facilitate a clearer understanding of the prevalence percentages.

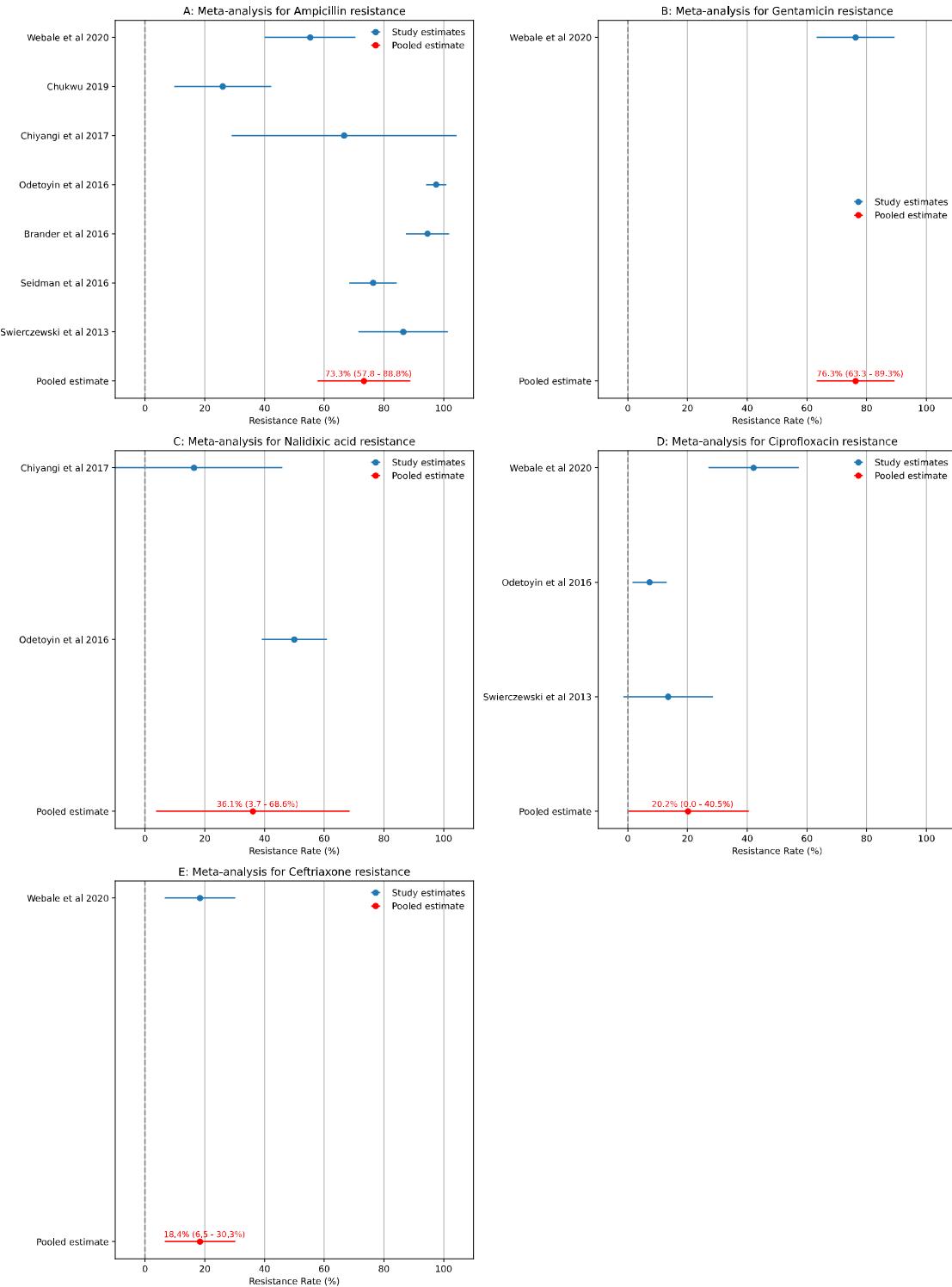
Figure 4: Meta-analysis of antibiotic resistance prevalence in diarrhoeagenic *E. coli* across studies.


This figure showcases a series of subplots, each dedicated to representing the prevalence of resistance to a particular antibiotic among all diarrhoeagenic *Escherichia coli* (DEC) strains. Each

blue dot pertains to a specific study and displays the proportion of DEC samples in that study that exhibited resistance to the antibiotic under consideration. The horizontal position of each dot indicates the resistance percentage. The vertical position denotes the study from which the data originates. The error bars, extending from each dot, represent the 95% confidence interval (CI) of the resistance percentage for that study. The red dot in the first position of each subplot represents the pooled estimate of the resistance rate from a random effects model. The horizontal lines connected to the red dot indicate the 95% CIs of the pooled estimate. Beside each pooled estimate dot is a label specifying the exact resistance percentage and the corresponding 95% CIs.

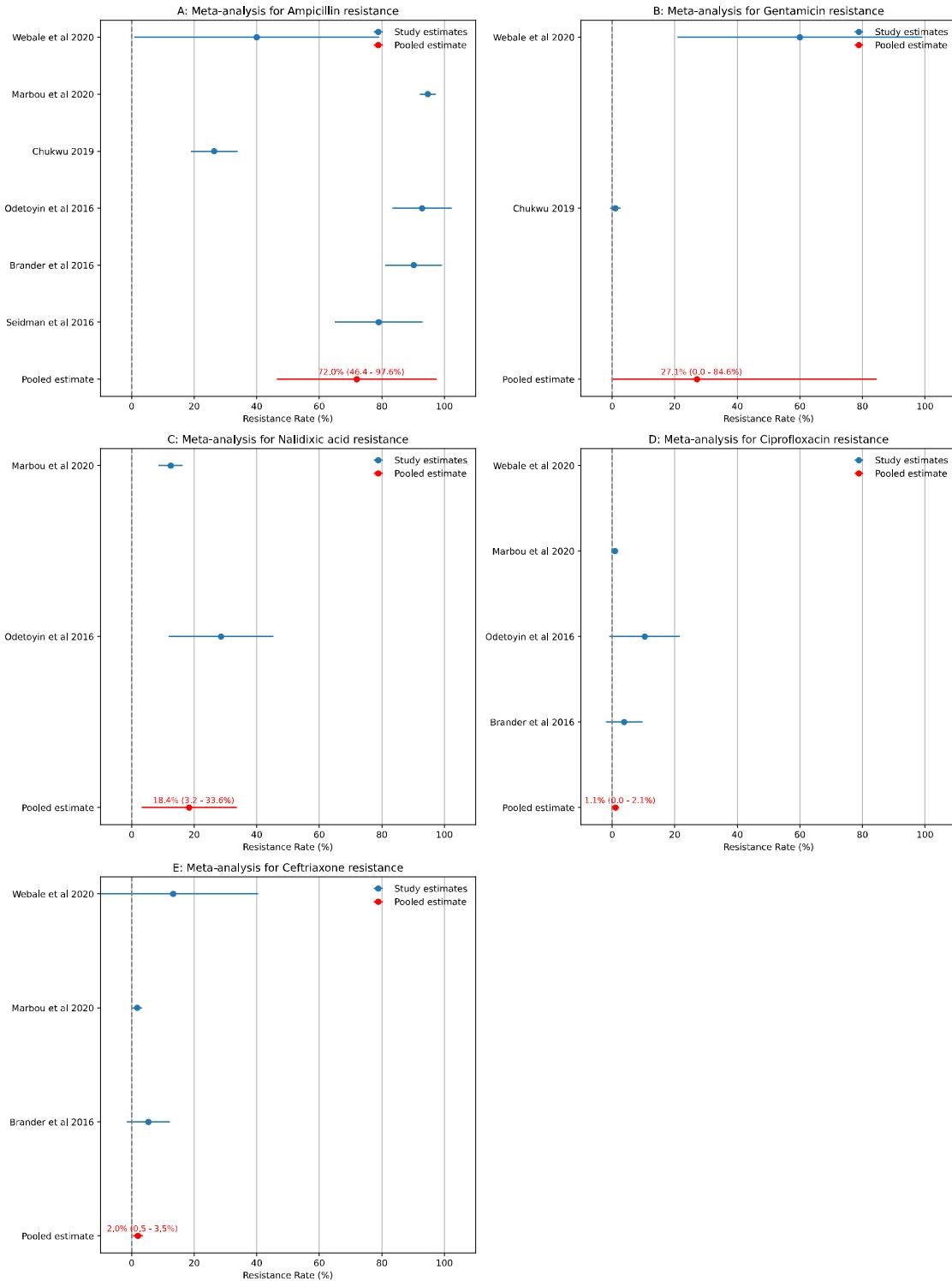
Table 1: Prevalent rates (counts) of non-susceptibility (intermediate and resistant phenotypes) to commonly used antibiotics

Antibiotic class	Count of non-susceptibility by antibiotic	Frequency (by class)	Percent	Cumulative	Test used	p-value
Quinolones	Nalidixic acid, 32 (30.48%); Ciprofloxacin, 52 (49.52%); Norfloxacin, 20 (19.05%); Enrofloxacin, 1 (0.95%)	105	17.44	74.92	Chi-Square	2.5911E-11
Cephems	Ceftriaxone, 26 (26.53%); Cefotaxime, 20 (20.41%); Ceftazidime, 20 (20.41%); Cefpodoxime, 5 (5.10%); Cephalexin, 1 (1.02%); Cefuroxime, 14 (14.29%); Cephazolin, 5 (5.10%); Cefoxitin, 3 (3.06%); Cefepime, 2 (2.04%)	98	16.28	38.7	Chi-Square	1.9844E-13
Aminoglycosides	Gentamycin, 39 (49.37%); Streptomycin, 22 (27.85%); Kanamycin, 8 (10.13%); Neomycin, 1 (1.27%); Amikacin, 8 (10.13%); Tobramycin, 1 (1.27%)	79	13.12	51.83	Chi-Square	1.8365E-16
Penicillins	Ampicillin, 61 (80.26%); Ticarcillin, 1 (1.32%); Ofloxacin, 12 (15.79%); Amoxicillin, 2 (2.63%)	76	12.62	12.62	Chi-Square	1.7065E-27
Folate pathway inhibitors	Trimethoprim, 14 (23.73%); Trimethoprim + sulfamethoxazole, 35 (59.32%); Sulphamethoxazole, 10 (16.95%)	59	9.8	22.43	Chi-Square	0.00010417
Phenicols	Chloramphenicol, 46 (100%)	46	7.64	96.67	Chi-Square	
Tetracyclines	Tetracycline, 38 (95%); Oxytetracycline, 1 (2.50%); Doxycycline, 1 (2.50%)	40	6.64	89.03	Chi-Square	1.3686E-15
Macrolides	Erythromycin, 19 (55.88%); Clarithromycin, 5 (14.71%); Azithromycin, 10 (29.41%)	34	5.65	57.48	Chi-Square	0.01178207
β-lactam-inhibitor combinations	Amoxicillin-clavulanic acid, 23 (92.0%); Piperacillin-tazobactam, 2 (8.00%)	25	4.15	79.07	Chi-Square	2.6691E-05
Carbapenem	Ertapenem, 1 (5%); Meropenem, 11 (55%); Imipenem, 8 (40%)	20	3.32	82.39	Chi-Square	0.0192547
Lipopeptides	Colistin sulfate, 7 (100%)	7	1.16	98.33	Chi-Square	
Glycylcycline	Tigecycline, 6 (100%)	6	1	99.34	Chi-Square	
ESBL	ESBL, 4 (100%)	4	0.66	100	Fisher's Test	1
Nitrofurans	Nitrofurantoin, 3 (100.00%)	3	0.5	97.17	Fisher's Test	1


Supplementary figures

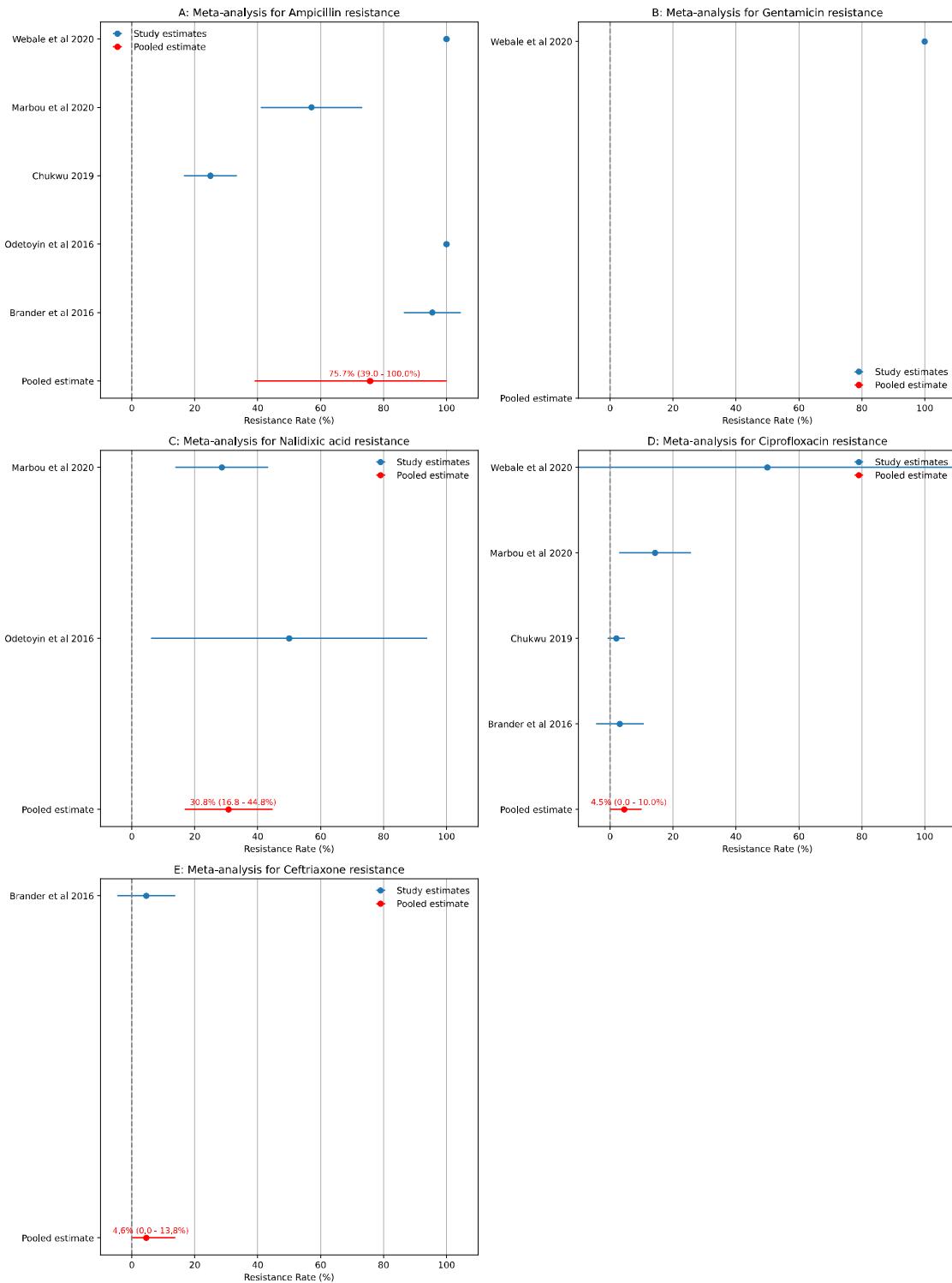
Supplementary Figure 1: Meta-analysis of antibiotic resistance prevalence in STEC.

The figure presents a series of subplots, each corresponding to the prevalence of resistance to a specific antibiotic in STEC samples from various studies. Each blue dot represents the proportion of isolates showing resistance in a particular study. The horizontal position of the dot indicates


the percentage of isolates that were resistant, while the dot's vertical position corresponds to a specific study. Horizontal lines extending from each dot represent the 95% confidence interval of the resistance proportion for that study. The red dot in the first position of each subplot represents the pooled estimate of the resistance rate from a random effects model. The horizontal lines connected to the red dot indicate the 95% CIs of the pooled estimate. Beside each pooled estimate dot is a label specifying the exact resistance percentage and the corresponding 95% CIs.

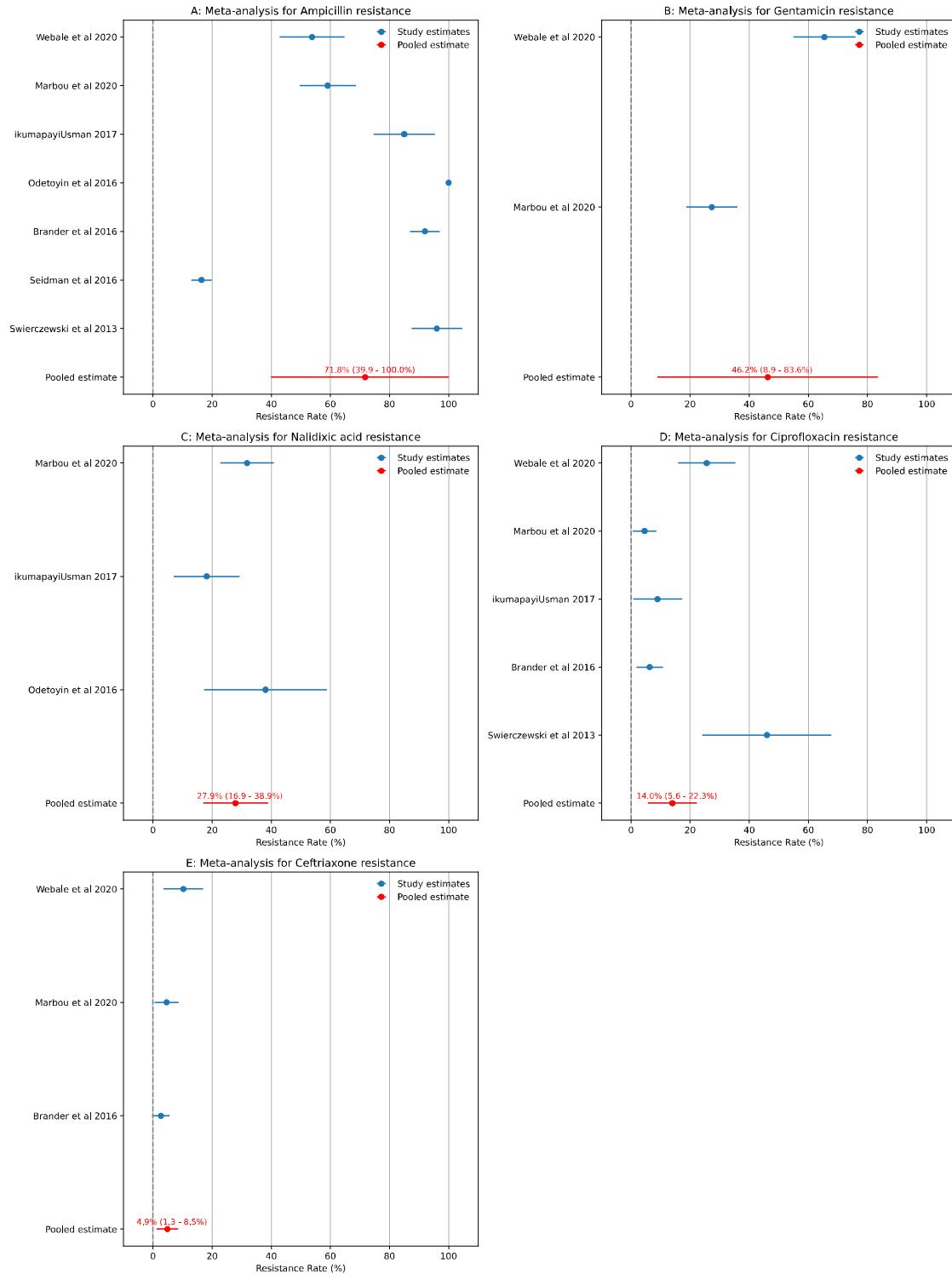
Supplementary Figure 2: Meta-analysis of antibiotic resistance prevalence in ETEC.

The figure presents a series of subplots, each corresponding to the prevalence of resistance to a specific antibiotic in ETEC samples from various studies. Each blue dot represents the proportion of isolates showing resistance in a particular study. The horizontal position of the dot indicates the percentage of resistant isolates, while the dot's vertical position corresponds to a specific


study. Horizontal lines extending from each dot represent the 95% confidence interval of the resistance proportion for that study. The red dot in the first position of each subplot represents the pooled estimate of the resistance rate from a random effects model. The horizontal lines connected to the red dot indicate the 95% CIs of the pooled estimate. Beside each pooled estimate dot is a label specifying the exact resistance percentage and the corresponding 95% CIs.

Supplementary Figure 3: Meta-analysis of antibiotic resistance prevalence in EPEC.

The figure presents a series of subplots, each corresponding to the prevalence of resistance to a specific antibiotic in EPEC samples from various studies. Each blue dot represents the proportion of isolates showing resistance in a particular study. The horizontal position of the dot indicates the percentage of resistant isolates, while the dot's vertical position corresponds to a


specific study. Horizontal lines extending from each dot represent the 95% confidence interval of the resistance proportion for that study. The red dot in the first position of each subplot represents the pooled estimate of the resistance rate from a random effects model. The horizontal lines connected to the red dot indicate the 95% CIs of the pooled estimate. Beside each pooled estimate dot is a label specifying the exact resistance percentage and the corresponding 95% CIs.

Supplementary Figure 4: Meta-analysis of antibiotic resistance prevalence in EIEC.

The figure presents a series of subplots, each corresponding to the prevalence of resistance to a specific antibiotic in EIEC samples from various studies. Each blue dot represents the proportion of isolates showing resistance in a particular study. The horizontal position of the dot indicates the percentage of resistant samples, while the dot's vertical position corresponds to a specific

study. Horizontal lines extending from each dot represent the 95% confidence interval of the resistance proportion for that study. The red dot in the first position of each subplot represents the pooled estimate of the resistance rate from a random effects model. The horizontal lines connected to the red dot indicate the 95% CIs of the pooled estimate. Beside each pooled estimate dot is a label specifying the exact resistance percentage and the corresponding 95% CIs.

Supplementary Figure 5: Meta-analysis of antibiotic resistance prevalence in EAEC.

The figure presents a series of subplots, each corresponding to the prevalence of resistance to a specific antibiotic in EAEC samples from various studies. Each blue dot represents the proportion of isolates showing resistance in a particular study. The horizontal position of the dot indicates the percentage of samples that were resistant, while the dot's vertical position

corresponds to a specific study. Horizontal lines extending from each dot represent the 95% confidence interval of the resistance proportion for that study. The red dot in the first position of each subplot represents the pooled estimate of the resistance rate from a random effects model. The horizontal lines connected to the red dot indicate the 95% CIs of the pooled estimate. Beside each pooled estimate dot is a label specifying the exact resistance percentage and the corresponding 95% CIs.