arXiv:2310.06825v1 [cs.CL] 10 Oct 2023

Mistral 7B

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford,
Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux,

Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix,
William El Sayed

Abstract

We introduce Mistral 7B, a 7-billion-parameter language model engineered for
superior performance and efficiency. Mistral 7B outperforms the best open 13B
model (Llama 2) across all evaluated benchmarks, and the best released 34B
model (Llama 1) in reasoning, mathematics, and code generation. Our model
leverages grouped-query attention (GQA) for faster inference, coupled with sliding
window attention (SWA) to effectively handle sequences of arbitrary length with a
reduced inference cost. We also provide a model fine-tuned to follow instructions,
Mistral 7B — Instruct, that surpasses Llama 2 13B — chat model both on human and
automated benchmarks. Our models are released under the Apache 2.0 license.
Code: https://github.com/mistralai/mistral-src

Webpage: https://mistral.ai/news/announcing-mistral-7b/

1 Introduction

In the rapidly evolving domain of Natural Language Processing (NLP), the race towards higher model
performance often necessitates an escalation in model size. However, this scaling tends to increase
computational costs and inference latency, thereby raising barriers to deployment in practical,
real-world scenarios. In this context, the search for balanced models delivering both high-level
performance and efficiency becomes critically essential. Our model, Mistral 7B, demonstrates that
a carefully designed language model can deliver high performance while maintaining an efficient
inference. Mistral 7B outperforms the previous best 13B model (Llama 2, [26]) across all tested
benchmarks, and surpasses the best 34B model (LLaMa 34B, [25]) in mathematics and code
generation. Furthermore, Mistral 7B approaches the coding performance of Code-Llama 7B [20],
without sacrificing performance on non-code related benchmarks.

Mistral 7B leverages grouped-query attention (GQA) [1], and sliding window attention (SWA) [6, 3].
GQA significantly accelerates the inference speed, and also reduces the memory requirement during
decoding, allowing for higher batch sizes hence higher throughput, a crucial factor for real-time
applications. In addition, SWA is designed to handle longer sequences more effectively at a reduced
computational cost, thereby alleviating a common limitation in LLMs. These attention mechanisms
collectively contribute to the enhanced performance and efficiency of Mistral 7B.

https://github.com/mistralai/mistral-src
https://mistral.ai/news/announcing-mistral-7b/

Mistral 7B is released under the Apache 2.0 license. This release is accompanied by a reference
implementation' facilitating easy deployment either locally or on cloud platforms such as AWS, GCP,
or Azure using the vLLM [17] inference server and SkyPilot . Integration with Hugging Face * is
also streamlined for easier integration. Moreover, Mistral 7B is crafted for ease of fine-tuning across
a myriad of tasks. As a demonstration of its adaptability and superior performance, we present a chat
model fine-tuned from Mistral 7B that significantly outperforms the Llama 2 13B — Chat model.

Mistral 7B takes a significant step in balancing the goals of getting high performance while keeping
large language models efficient. Through our work, our aim is to help the community create more
affordable, efficient, and high-performing language models that can be used in a wide range of
real-world applications.

2 Architectural details

The cat sat on the The cat sat on the window size
The /1.0 0 0 0] /10 0 0 o nnunnnnnn
cat 1 1 0 0 0 1 1 0O 0 O
sat 1 1 1.0 0 1 1 1 .0 o e
on 1 1 1 1 0 0 1 1 1 0

h 1 1 1 1 1 0o O 1 1 y II IIIIII

the |

N 4 Tokens

Vanilla Attention Sliding Window Attention Effective Context Length

Figure 1: Sliding Window Attention. The number of operations in vanilla attention is quadratic in the sequence
length, and the memory increases linearly with the number of tokens. At inference time, this incurs higher
latency and smaller throughput due to reduced cache availability. To alleviate this issue, we use sliding window
attention: each token can attend to at most W tokens from the previous layer (here, W = 3). Note that tokens
outside the sliding window still influence next word prediction. At each attention layer, information can move
forward by W tokens. Hence, after £ attention layers, information can move forward by up to k£ x W tokens.

Mistral 7B is based on a transformer architecture [27]. The main

parameters of the architecture are summarized in Table 1. Compared Parameter Value
to Llama, it introduces a few changes that we summarize below. dim 4096
Sliding Window Attention. SWA exploits the stacked layers of a trans- Egi:yziz 13;
former to attend information beyond the window size W. The hidden hidden dim 14336
state in position ¢ of the layer k, h;, attends to all hidden states from n_heads 32
the previous layer with positions between ¢ — W and ¢. Recursively, n_kv_heads 8
h; can access tokens from the input layer at a distance of up to W x k window_size 4096
tokens, as illustrated in Figure 1. At the last layer, using a window size context_len 8192
of W = 4096, we have a theoretical attention span of approximately vocab_size 32000

131K tokens. In practice, for a sequence length of 16K and W = 4096,
changes made to FlashAttention [11] and xFormers [18] yield a 2x
speed improvement over a vanilla attention baseline.

Table 1: Model architecture.

Rolling Buffer Cache. A fixed attention span means that we can limit our cache size using a rolling
buffer cache. The cache has a fixed size of W, and the keys and values for the timestep ¢ are stored
in position ¢ mod W of the cache. As a result, when the position ¢ is larger than W, past values
in the cache are overwritten, and the size of the cache stops increasing. We provide an illustration
in Figure 2 for W = 3. On a sequence length of 32k tokens, this reduces the cache memory usage
by 8x, without impacting the model quality.

"https://github.com/mistralai/mistral-src
*https://github.com/skypilot-org/skypilot
*https://huggingface.co/mistralai

https://github.com/mistralai/mistral-src
https://github.com/skypilot-org/skypilot
https://huggingface.co/mistralai

Timestep i Timestep i + 1 Timestep i + 2

This is an example of ... [This is an J \ This is an lexample‘ l of is an example‘

Mistral is a good ...

Mistral is [Mistral is a w [Mistral is a good]

The cat sat on the mat...{ The cat sat] on l [the cat sat] on I ‘ the mat sat on l

Figure 2: Rolling buffer cache. The cache has a fixed size of W = 4. Keys and values for position ¢ are stored
in position ¢ mod W of the cache. When the position ¢ is larger than W, past values in the cache are overwritten.
The hidden state corresponding to the latest generated tokens are colored in orange.

Pre-fill and Chunking. When generating a sequence, we need to predict tokens one-by-one, as
each token is conditioned on the previous ones. However, the prompt is known in advance, and we
can pre-fill the (k, v) cache with the prompt. If the prompt is very large, we can chunk it into smaller
pieces, and pre-fill the cache with each chunk. For this purpose, we can select the window size as
our chunk size. For each chunk, we thus need to compute the attention over the cache and over the
chunk. Figure 3 shows how the attention mask works over both the cache and the chunk.

The cat sat on the mat and saw the dog go to

the 0 0 0 0
dog 0 0 0 0

go 0 0 0 0

to 0 0 0 0

Past Cache Current

Figure 3: Pre-fill and chunking. During pre-fill of the cache, long sequences are chunked to limit memory

usage. We process a sequence in three chunks, “The cat sat on”, “the mat and saw”, “the dog go to”. The figure
shows what happens for the third chunk (“the dog go to”): it attends itself using a causal mask (rightmost block),
attends the cache using a sliding window (center block), and does not attend to past tokens as they are outside of
the sliding window (left block).

3 Results

We compare Mistral 7B to Llama, and re-run all benchmarks with our own evaluation pipeline for
fair comparison. We measure performance on a wide variety of tasks categorized as follow:

¢ Commonsense Reasoning (0-shot): Hellaswag [28], Winogrande [21], PIQA [4], SIQA [22],
OpenbookQA [19], ARC-Easy, ARC-Challenge [9], CommonsenseQA [24]

* World Knowledge (5-shot): NaturalQuestions [16], TriviaQA [15]

¢ Reading Comprehension (0-shot): BoolQ [8], QuAC [7]

* Math: GSMS8K [10] (8-shot) with maj@8 and MATH [13] (4-shot) with maj@4
¢ Code: Humaneval [5] (0-shot) and MBPP [2] (3-shot)

e Popular aggregated results: MMLU [12] (5-shot), BBH [23] (3-shot), and AGI Eval [29]
(3-5-shot, English multiple-choice questions only)

Detailed results for Mistral 7B, Llama 2 7B/13B, and Code-Llama 7B are reported in Table 2. Figure 4
compares the performance of Mistral 7B with Llama 2 7B/13B, and Llama 1 34B* in different
categories. Mistral 7B surpasses Llama 2 13B across all metrics, and outperforms Llama 1 34B on
most benchmarks. In particular, Mistral 7B displays a superior performance in code, mathematics,
and reasoning benchmarks.

*Since Llama 2 34B was not open-sourced, we report results for Llama 1 34B.

Mistral 7B LLaMA 2 13B 50§ Mistral 7B LLaMA 2 13B
m LlLaMA27B LLaMA 1 34B H LLaMA2 7B LLaMA 1 34B
70
40 v
. w
X 60 ki X
< - ¥ <z -
oy 3301
g g
350 3
[} i)
< w <20/
40
101
30 MMLU Knowledge Reasoning Comprehension ~ AGIEval Math BBH Code

Figure 4: Performance of Mistral 7B and different Llama models on a wide range of benchmarks. All
models were re-evaluated on all metrics with our evaluation pipeline for accurate comparison. Mistral 7B
significantly outperforms Llama 2 7B and Llama 2 13B on all benchmarks. It is also vastly superior to Llama 1
34B in mathematics, code generation, and reasoning benchmarks.

Model Modality MMLU HellaSwag WinoG PIQA Arc-e Arc-c NQ TriviaQA HumanEval MBPP MATH GSM8K
LLaMA 27B Pretrained 44.4% 77.1% 69.5% 77.9% 68.7% 43.2% 24.7% 63.8% 11.6% 261% 3.9% 16.0%
LLaMA 2 13B Pretrained 55.6% 80.7% 72.9% 80.8% 75.2% 48.8% 29.0% 69.6% 189% 354% 6.0% 34.3%

Code-Llama 7B Finetuned 36.9% 62.9% 62.3% 72.8% 59.4% 34.5% 11.0% 34.9% 311% 525% 52% 20.8%
Mistral 7B Pretrained 60.1% 81.3% 753% 83.0% 80.0% 55.5% 28.8% 69.9% 30.5% 47.5% 13.1% 52.2%

Table 2: Comparison of Mistral 7B with Llama. Mistral 7B outperforms Llama 2 13B on all metrics, and
approaches the code performance of Code-Llama 7B without sacrificing performance on non-code benchmarks.

Size and Efficiency. We computed “equivalent model sizes” of the Llama 2 family, aiming to
understand Mistral 7B models’ efficiency in the cost-performance spectrum (see Figure 5). When
evaluated on reasoning, comprehension, and STEM reasoning (specifically MMLU), Mistral 7B
mirrored performance that one might expect from a Llama 2 model with more than 3x its size. On
the Knowledge benchmarks, Mistral 7B’s performance achieves a lower compression rate of 1.9x,
which is likely due to its limited parameter count that restricts the amount of knowledge it can store.

Evaluation Differences. On some benchmarks, there are some differences between our evaluation
protocol and the one reported in the Llama 2 paper: 1) on MBPP, we use the hand-verified subset 2)
on TriviaQA, we do not provide Wikipedia contexts.

4 Instruction Finetuning

Tq evaluate the generalﬁzatign capgbilities of Chatbot Arena
Mistral 7B, we fine-tuned it on instruction datasets ~Model ELO Rating M7 Bench
publicly available on the Hugging Face repository.

; i ; ioaq. WizardLM 13B v1.2 1047 7.2

NQ proprietary data or training tl‘l.CkS were utilized: Mistral 7B Instruct 1031 6.84 +/- 0.07
Mistral 7B — Instruct model is a simple and

.. . Llama 2 13B Chat 1012 6.65
preliminary demonstration that the base model can ;.. .- 13 1041 6.57
easily be fine-tuned to achieve good performance. | j;ma 2 7B Chat 985 6.27
In Table 3, we observe that the resulting model, vicuna 7B 997 6.17
Mistral 7B — Instruct, exhibits superior perfor- Alpaca 13B 914 453

mance compared to all 7B models on MT-Bench,
and is comparable to 13B — Chat models. An
independent human evaluation was conducted on
https://1llmboxing.com/leaderboard.

Table 3: Comparison of Chat models. Mistral 7B —
Instruct outperforms all 7B models on MT-Bench, and
is comparable to 13B — Chat models.

In this evaluation, participants were provided with a set of questions along with anonymous responses
from two models and were asked to select their preferred response, as illustrated in Figure 6. As of
October 6, 2023, the outputs generated by Mistral 7B were preferred 5020 times, compared to 4143
times for Llama 2 13B.

https://llmboxing.com/leaderboard

—o— LlLaMA 2 —o— LlaMA 2
65 Mistral 70 Mistral
— X
X 60 -
< 268
2ss g
= 2
= 366
50 o«
Effective LLaMA 64 Effective LLaMA
45 size 23B (3.3x) size 38B 4x)
7 13 34 70 7 13 34 70
Model size (billion parameters) 68 Model size (billion parameters)
701 —e— LLaMA?2 —o— LLaMA 2
=65 Mistral § 66 Mistral
= c
= o
& 60 G 64
° o
o <
355 Y62
o Q
o £
¥ 50 B
o
Effective LLaMA 60 Effective LLaMA
45 Size 13B (1.9x) size 21B (3x)
7 13 34 70 7 13 34 70
Model size (billion parameters) Model size (billion parameters)

Figure 5: Results on MMLU, commonsense reasoning, world knowledge and reading comprehension for
Mistral 7B and Llama 2 (7B/13B/70B). Mistral 7B largely outperforms Llama 2 13B on all evaluations, except
on knowledge benchmarks, where it is on par (this is likely due to its limited parameter count, which limits the
amount of knowledge it can compress).

5 Adding guardrails for front-facing applications

The ability to enforce guardrails when it comes to Al generation is important for front-facing appli-
cations. In this section, we highlight how to leverage system prompting to optionally enforce output
constraints on top of our models. Additionally, we showcase the ability of Mistral 7B to perform
fine-grained content moderation, which can be useful to enforce quality content in applications.

5.1 System prompt to enforce guardrails

We introduce a system prompt (see below) to guide the model to generate answers within specified
guardrails, similar to the work done with Llama 2. Using this prompt allows the user to move on the
Pareto front of model utility / guardrails enforcement, as indicated in Table 4.

Always assist with care, respect, and truth. Respond with utmost utility yet securely. Avoid harmful,
unethical, prejudiced, or negative content. Ensure replies promote fairness and positivity.

We use a set of 175 unsafe prompts for evaluating safety. -
With the recommended system prompt, the model properly Guardrails MT Bench
declines to answer 100% of the harmful questions. No system prompt 6.84 + 0.07
Llama 2 system prompt 6.38 & 0.07
Mistral system prompt ~ 6.58 & 0.05

As an illustration, we provide in Table 5 the answers of
both Mistral 7B — Instruct and Llama 2 Chat 13B to the
question How to kill a linux process with system prompts 1able 4: System prompts. Mean official
activated. We observe that Mistral 7B provides a correct MT Bench score over 10 iterations with
response while Llama 2 declines to answer. Note that on ?:??:frgrgsz;atﬁgéféw 11 ;%a£7§h;tlgs;?ri;
this specific question, both models answer correctly when — ea o o o

system prompts are deactivated.

5.2 Content moderation with self-reflection

Mistral 7B — Instruct can be used as a content moderator: the model itself is able to accurately
classify a user prompt or its generated answer as being either acceptable or falling into one of the
following categories: Illegal activities such as terrorism, child abuse or fraud; Hateful, harassing
or violent content such as discrimination, self-harm or bullying; Unqualified advice for instance
in legal, medical or financial domains.

Model Answer

To kill a Linux process, you can use the " kill' command followed by the process ID (PID)
of the process you want to terminate. For example, to kill process with PID 1234, you
would run the command “kill 1234 . It’s important to note that killing a process can

have unintended consequences, so it’s generally a good idea to only kill processes that
you are certain you want to terminate. Additionally, it’s generally a good idea to use the
“kill* command with caution, as it can be used to terminate critical system processes that
are necessary for the operation of the system.

Mistral 7B — Instruct
with Mistral system prompt

As a helpful and respectful assistant, I cannot provide information on how to kill a Linux
process. It is not appropriate or ethical to intentionally harm or terminate processes, as it
Llama 2 13B — Chat can cause damage to the system and potentially result in data loss. Additionally, it is
with Llama 2 system prompt important to respect the autonomy and security of other users’ processes, as they may be
critical to their work or personal activities. Instead, I suggest that you explore other
options to address any issues or concerns you may have.

Table 5: Comparison between Mistral and Llama system prompts. Mistral provides the right answer whereas
Llama 2 declines to answer to the question How fo kill a linux process.

To do so, we designed a self-reflection prompt that makes Mistral 7B classify a prompt or a generated
answer. We evaluated self-reflection on our manually curated and balanced dataset of adversarial
and standard prompts and got a precision of 99.4% for a recall of 95.6% (considering acceptable
prompts as positives).

The use cases are vast, from moderating comments on social media or forums to brand monitoring
on the internet. In particular, the end user is able to select afterwards which categories to effectively
filter based on their particular use-case.

6 Conclusion

Our work on Mistral 7B demonstrates that language models may compress knowledge more than
what was previously thought. This opens up interesting perspectives: the field has so far put the
emphasis on scaling laws in 2 dimensions (directly associating model capabilities to training cost, as
in [14]); the problem is rather 3 dimensional (model capabilities, training cost, inference cost), and
much remains to be explored to obtain the best performance with the smallest possible model.

Acknowledgements

We are grateful to CoreWeave for their 24/7 help in marshalling our cluster. We thank the
CINECA/EuroHPC team, and in particular the operators of Leonardo, for their resources and help.
We thank the maintainers of FlashAttention, vVLLM, xFormers, Skypilot for their precious assistance
in implementing new features and integrating their solutions into ours. A huge thanks to Tri Dao
and Daniel Haziza for helping include Mistral related changes to FlashAttention and xFormers on
a tight schedule. We thank the teams of Hugging Face, AWS, GCP, Azure ML for their intense help
in making our model compatible everywhere.

Llama2 13b

@Mistral7b

1Health Remaining

5 Health Remaining

Can you recommend a foundational and accessible book about

quantum physics?

Round Winner: mistral-7b-instruct-v0.1

mistral-7b-instruct-v0.1 & Round
Winner &

A great book for a foundational
understanding of quantum physics is
"The Quantum Universe: Everything
that Can Happen Does Happen" by
Brian Cox and Jeff Forshaw. This
book is accessible and easy to
understand, making it a great
choice for beginners. It covers all
the basics of quantum mechanics,
including superposition,
entanglement, and the uncertainty
principle. The authors also explore
the implications of quantum physics
for our understanding of the
universe, including the nature of
time and space. Overall, "The
Quantum Universe" is an excellent
choice for anyone looking to gain a
foundational understanding of this
fascinating field

1lama-2-13b-chat

Certainly! For a foundational and
accessible introduction to quantum
physics, I highly recommend "The
Feynman Lectures on Physics" by
Richard Feynman. This classic text
provides a clear and engaging
overview of the principles and
concepts of quantum mechanics, with
minimal mathematical formalism and
plenty of illustrations and
examples. It's a great starting
point for anyone looking to gain a
deeper understanding of quantum
physics without getting bogged down
in too much technical detail.

Figure 6: Human evaluation of Mistral 7B — Instruct vs Llama 2 13B — Chat Example. An example of
human evaluation from 11mboxing. com. The question asks for recommendations of books in quantum physics.
Llama 2 13B — Chat recommends a general physics book, while Mistral 7B — Instruct recommends a more
relevant book on quantum physics and describes in the contents in more detail.

7

llmboxing.com

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrén, and
Sumit Sanghai. Gqa: Training generalized multi-query transformer models from multi-head
checkpoints. arXiv preprint arXiv:2305.13245, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732, 2021.

1z Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about phys-
ical commonsense in natural language. In Proceedings of the AAAI conference on artificial
intelligence, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with
sparse transformers. arXiv preprint arXiv:1904.10509, 2019.

Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-tau Yih, Yejin Choi, Percy Liang, and
Luke Zettlemoyer. Quac: Question answering in context. arXiv preprint arXiv:1808.07036,
2018.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and
Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions.
arXiv preprint arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast
and memory-efficient exact attention with IO-awareness. In Advances in Neural Information
Processing Systems, 2022.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
arXiv preprint arXiv:2103.03874, 2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Thomas
Hennigan, Eric Noland, Katherine Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karén Simonyan, Erich Elsen, Oriol Vinyals, Jack Rae, and Laurent
Sifre. An empirical analysis of compute-optimal large language model training. In Advances in
Neural Information Processing Systems, volume 35, 2022.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaga: A large
scale distantly supervised challenge dataset for reading comprehension. arXiv preprint
arXiv:1705.03551, 2017.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453—466, 2019.

[17] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large lan-
guage model serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium
on Operating Systems Principles, 2023.

[18] Benjamin Lefaudeux, Francisco Massa, Diana Liskovich, Wenhan Xiong, Vittorio Caggiano,
Sean Naren, Min Xu, Jieru Hu, Marta Tintore, Susan Zhang, Patrick Labatut, and Daniel Haziza.
xformers: A modular and hackable transformer modelling library. https://github.com/
facebookresearch/xformers, 2022.

[19] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

[20] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models
for code. arXiv preprint arXiv:2308.12950, 2023.

[21] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99-106,
2021.

[22] Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiga: Com-
monsense reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

[23] Mirac Suzgun, Nathan Scales, Nathanael Schirli, Sebastian Gehrmann, Yi Tay, Hyung Won
Chung, Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei.
Challenging big-bench tasks and whether chain-of-thought can solve them. arXiv preprint
arXiv:2210.09261, 2022.

[24] Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A ques-
tion answering challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937,
2018.

[25] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[26] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[28] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

[29] Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied,
Weizhu Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foundation
models. arXiv preprint arXiv:2304.06364, 2023.

https://github.com/facebookresearch/xformers
https://github.com/facebookresearch/xformers

	㤳‰⁯扪਼㰠⽔楴汥⣾Ｙ㐠〠潢樊㰼 呩瑬攨﻿㤵‰⁯扪਼㰠⽔楴汥⣾Ｙ㘠〠潢樊㰼 呩瑬攨﻿㤷‰⁯扪਼㰠⽔楴汥⣾Ｙ㠠〠潢樊㰼 呩瑬攨﻿㤹‰⁯扪਼㰠⽔楴汥⣾Ｑ〰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛ㄷㄮ㐱㈠㌱㜮ㄶ㈠㌸㌮〶㜠㌲㠮㈸㕝ਯ䄼㰯呹灥⽁捴楯渊⽓⽕剉ਯ啒䤨桴瑰猺⼯杩瑨畢⹣潭⽭楳瑲慬慩⽭楳瑲慬⵳牣⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㄰ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬱㠷⸹㠠㌰㘮㈵㌠㐳ㄮ㔰㠠㌱㜮㌷㙝ਯ䄼㰯呹灥⽁捴楯渊⽓⽕剉ਯ啒䤨桴瑰猺⼯浩獴牡氮慩⽮敷猯慮湯畮捩湧⵭楳瑲慬ⴷ戯⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴ㄸ⸲㌱‱㜸⸰㤶‴㌰⸱㠷‱㠶⸹㐲崊⽄敳琠嬶‰⁒ 塙娠㄰㠠㌶㠮㜱㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌷㘮㜷㘠ㄶ㜮ㄸ㘠㌸㠮㜳ㄠㄷ㘮〳㍝ਯ䑥獴⁛㘠〠删⽘奚‱〸‴〵⸴㌰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㠸⸳㘲‱㔶⸲㜷‵〰⸳ㄷ‱㘵⸱㈴崊⽄敳琠嬶‰⁒ 塙娠㄰㠠㔸㠮㤹㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌲ㄮ㔲ㄠㄲ㤮〷㤠㌲㠮㐹㔠ㄳ㜮㠲㙝ਯ䑥獴⁛㜠〠删⽘奚‱ㄲ⸹㠱〠㜰㈮ㄸ㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐸㐮ㄲ㤠ㄲ㠮㤸‴㤱⸱〳‱㌷⸸㈶崊⽄敳琠嬷‰⁒ 塙娠ㄱ㈮㤸㄰‵㈱⸲ㄷ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㄰㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㤴⸰㐵‱㈸⸹㠠㔰ㄮ〱㤠ㄳ㜮㠲㙝ਯ䑥獴⁛㜠〠删⽘奚‱ㄲ⸹㠱〠㘲㔮㐳㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱〸‰⁯扪਼㰯呹灥⽇牯異ਯ匯呲慮獰慲敮捹ਯ䤠瑲略㸾敮摯扪਱〹‰⁯扪਼㰯丠㌯䱥湧瑨‵㌶㸾獴牥慭਀�ᡡ灰氄�m湴牒䝂⁘奚 ĀĀ��a捳灁偐䰀�A偐䰀��������ö혀Ā�Óⵡ灰泬ﶣ踸蕇썭뒽佺����������������੤敳挀�ﰀ�っ灲琀�Ⰰ�偷瑰琀�簀�ᑲ塙娀�退�ᑧ塙娀�ꐀ�ᑢ塙娀�렀�ᑲ呒䌀�찀�⁣桡搀��Ɫ呒䌀�찀�⁧呒䌀�찀�⁭汵挀���Ā�౥湕匀�᐀�ᰀ䐀椀猀瀀氀愀礀 倀㍭汵挀���Ā�౥湕匀�㐀�ᰀ䌀漀瀀礀爀椀最栀琀 䄀瀀瀀氀攀 䤀渀挀⸀Ⰰ ㈀　㈀㉘奚 ��ö픀Ā�Óⱘ奚 ����=뿿�뭘奚 ��J뼀±㜀
류奚 ��(㠀�଀È륰慲愀��̀�ɦ昀ò꜀
夀�퀀
孳昳㈀��Č䈀��￳☀�錀ý郿￻ꋿ�ꌀ��À渊敮摳瑲敡洊敮摯扪਱㄰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛ㄶ㠮㈹㜠㘹㔮㤷㔠ㄷ㐮㈷㔠㜰㠮㐶㡝ਯ䑥獴⁛ㄠ〠删⽘奚‱㈴⸱㐰〠㄰㌮㘶㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱ㄱ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈱㘮㔶㜠㘸㜮ㄲ㌠㈲㠮㔲㈠㘹㔮㤷崊⽄敳琠嬶‰⁒ 塙娠㄰㠠㜲〮㤴㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱ㄲ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌵㌮㜴㔠㘸㔮〶㘠㌵㤮㜲㌠㘹㜮㔵㥝ਯ䑥獴⁛ㄠ〠删⽘奚‱㈴⸱㐰〠㤲⸸ㄳ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄱ㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬴㠹⸷㠲‶㠵⸰㘶‴㤵⸷㘠㘹㜮㔵㥝ਯ䑥獴⁛ㄠ〠删⽘奚‱㈴⸱㐰〠㠱⸹㘳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄱ㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㈱⸵㌠㌲〮ㄷ㜠㌳㌮㐸㔠㌲㤮〲㑝ਯ䑥獴⁛㘠〠删⽘奚‱〸″㌲⸰〵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄱ㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬳㌱⸳㤶″〷⸲ㄱ″㌸⸴㐠㌱㠮ㄱ㕝ਯ䑥獴⁛ㄠ〠删⽘奚″㤵⸱〲〠㌲ㄮ〴㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱ㄶ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈲㜮㔷㘠㈲㔮㌶㠠㈳㐮㐵ㄠ㈳㘮㈷ㅝਯ䑥獴⁛ㄠ〠删⽘奚‱〸‵㘲⸸㐴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄱ㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㐶⸴〶‱㤴⸷㤷′㔸⸳㘱′〳⸵㐴崊⽄敳琠嬷‰⁒ 塙娠㄰㠠㌴〮㈴㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱ㄸ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌲㘮㌳‱㤴⸶㤸″㌸⸲㠵′〳⸵㐴崊⽄敳琠嬶‰⁒ 塙娠㄰㠠㘷㌮㌲㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱ㄹ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛ㄴ㘮㌷㔠ㄲㄮ㜰㘠ㄵ㌮㐴㐠ㄳ㈮㘶㍝ਯ䑥獴⁛㈠〠删⽘奚‱〸‷㈵⸴㔵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬱㈳⸱㐳‸㤮㜱㘠㌱㌮㠸㈠㄰㈮㔵㥝ਯ䄼㰯呹灥⽁捴楯渊⽓⽕剉ਯ啒䤨桴瑰猺⼯杩瑨畢⹣潭⽭楳瑲慬慩⽭楳瑲慬⵳牣⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬱㈳⸱㐳‷㠮㠶㔠㌱㌮㠸㈠㤱⸷〹崊⽁㰼⽔祰支䅣瑩潮ਯ匯啒䤊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯獫祰楬潴ⵯ牧⽳歹灩汯琩㸾ਯ卵扴祰支䱩湫㸾敮摯扪਱㈲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛ㄲ㌮ㄴ㌠㘸⸰ㄵ′㜵⸷㌴‸〮㠵㡝ਯ䄼㰯呹灥⽁捴楯渊⽓⽕剉ਯ啒䤨桴瑰猺⼯桵杧楮杦慣攮捯⽭楳瑲慬慩⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㌠〠潢樊㰼⽎″⽌敮杴栠㌱㐴㸾獴牥慭਀�䡌楮漂ကm湴牒䝂⁘奚 츀Ȁऀ؀㄀a捳灍卆吀�I䕃⁳則䈀������ö혀Ā�Óⵈ倠 �����������������������ᅣ灲琀�倀�㍤敳挀�萀�汷瑰琀��ᑢ歰琀�Ѐ�ᑲ塙娀�᠀�ᑧ塙娀�Ⰰ�ᑢ塙娀�䀀�ᑤ浮搀�吀�灤浤搀�쐀�衶略搀�䰀�虶楥眀�퐀�⑬畭椀��ᑭ敡猀�ఀ�⑴散栀�　�౲呒䌀�㰀�౧呒䌀�㰀�ౢ呒䌀�㰀�౴數琀�C潰祲楧桴 挩‱㤹㠠䡥睬整琭偡捫慲搠䍯浰慮礀d敳挀���ታ則䈠䥅䌶ㄹ㘶ⴲ⸱������獒䝂⁉䕃㘱㤶㘭㈮㄀������������������������X奚 ��ó儀Ā�Ė챘奚 �������X奚 ��oꈀ8�遘奚 ��b餀·蔀�� ��$ꀀ�萀¶콤敳挀���ᙉ䕃⁨瑴瀺⼯睷眮楥挮捨������䥅䌠桴瑰㨯⽷睷⹩散⹣栀����������������������d敳挀���⹉䕃‶ㄹ㘶ⴲ⸱⁄敦慵汴⁒䝂⁣潬潵爠獰慣攠ⴠ獒䝂�����.䥅䌠㘱㤶㘭㈮ㄠ䑥晡畬琠則䈠捯汯畲⁳灡捥‭⁳則䈀����������d敳挀���ⱒ敦敲敮捥⁖楥睩湧⁃潮摩瑩潮⁩渠䥅䌶ㄹ㘶ⴲ⸱�����,剥晥牥湣攠噩敷楮朠䍯湤楴楯渠楮⁉䕃㘱㤶㘭㈮㄀������������v楥眀��Ꭴ︀ᑟ⸀჏᐀ϭ찀Г଀Ξ��塙娠��LॖP�Wῧ浥慳�������������ʏ��獩朠��䍒吠捵牶���Ѐ��
����#(-27;@EJOTY^chmrw|�������¤©®²·¼ÁÆËÐÕÛàåëðöûāćčēęğĥīĲĸľŅŌŒřŠŧŮŵżƃƋƒƚơƩƱƹǁǉǑǙǡǩǲǺȃȌȔȝȦȯȸɁɋɔɝɧɱɺʄʎʘʢʬʶˁˋ˕ˠ˫˵̸̡̖̭̀̋̓͏͚ͦͲ;ΊΖ΢ήκχϓϠϬϹІГРЭлшѕѣѱѾҌҚҨҶӄӓӡӰӾԍԜԫԺՉ՘էշֆֵ֖֦ׅוץ׶؆ؖاطوٙ٪ٻڌڝگۀۑۣ۵܇ܙܫܽݏݡݴކޙެ޿ߒߥ߸ࠋࠟ࠲ࡆ࡚࡮ࢂ࢖ࢪࢾ࣒ࣧࣻऐथऺॏ।ॹএত঺৏৥৻਑ਧ਽੔੪ઁઘમૅ૜૳ଋଢହ୑୩஀஘ரை௡௹ఒపృఌ甌踌꜌쀌�഍☍䀍娍琍踍ꤍ쌍�ጎ⸎䤎搎缎鬎똎툎ए┏䄏帏稏阏댏켏ऐ☐䌐愐縐鬐뤐휐጑ㄑ休洑谑ꨑ중ܒ☒䔒搒萒ꌒ쌒̓⌓䌓挓茓ꐓ씓ؔ✔䤔樔謔괔츔ሕ㐕嘕砕鬕봕̖☖䤖氖輖눖혖益ᴗ䄗攗褗긗툗ᬘ䀘攘記꼘픘神’䔙欙鄙뜙�К⨚儚眚鸚씚ᐛ㬛挛訛눛�⨜刜笜ꌜ찜ḝ䜝瀝餝쌝ᘞ䀞樞鐞븞ጟ㸟椟鐟뼟ᔠ䄠氠頠쐠ᰡ䠡甡ꄡ측ﬢ✢唢舢꼢�ਣ㠣昣鐣숣ἤ䴤簤ꬤ�㠥栥霥윥✦圦蜦뜦ᠧ䤧稧꬧�ന㼨焨ꈨ퐩ة㠩欩鴩퀪Ȫ㔪株鬪켫ȫ㘫椫鴫턬Ԭ㤬測ꈬ휭భ䄭瘭ꬭᘮ䰮舮뜮␯娯鄯윯︰㔰氰ꐰ�䨱舱먱⨲挲鬲퐳ള䘳缳렳⬴攴鸴�䴵蜵숵ﴶ㜶父긶␷怷鰷휸ᐸ倸谸젹Թ䈹缹밹鷺㘺琺눺ⴻ欻꨻✼攼ꐼ∽愽ꄽ‾怾ꀾℿ愿ꈿ⍀摀Ꙁ⥁橁걁あ牂땂㩃絃쁄̈́䝄詄칅ቅ啅驅�≆杆ꭆ㕇筇쁈Ո䭈酈흉ᵉ捉ꥉ㝊絊쑋ో卋驋⩌牌멍ɍ䩍鍍�╎湎띏O䥏鍏�❐煐뭑ّ偑魑ㅒ籒읓ፓ当꩓䉔轔�畕쉖བ嚩囷坄垒埠堯塽壋多奩妸娇婖媦嫵孅宕寥ֆ홝❝硝쥞ᩞ汞뵟ཟ慟덠ՠ坠ꩠﱡ佡ꉡ䥢鱢䍣靣䁤鑤㵥鉥㵦鉦㵧鍧㽨陨䍩驩䡪齪佫ꝫｬ坬꽭࡭恭륮ቮ歮쑯ṯ硯텰⭰虰㩱镱䭲꙳ų嵳롴ᑴ灴챵⡵蕵㹶魶噷델ᅸ湸챹⩹襹䙺ꕻѻ捻쉼ⅼ腼䅽ꅾž找쉿⍿葿䞀ꢁઁ殁춂も銂垃몄ᶄ肄䞅ꮆຆ犆힇㮇龈҈榈캉㎉馉ﺊ撊쪋る隋ﲌ掌쪍ㆍ颍ﾎ暎캏㚏麐ڐ源횑㾑ꢒᆒ窒䶓뚔ₔ誔徕즖㒖龗ગ疗䲘뢙⒙邙ﲚ梚햛䊛꾜Ნ覜撝튞䂞꺟ᶟ讟猪榠�뚢⚢隣ڣ皣嚤장㢥ꦦ᪦讦ﶧ溧动쒩㞩ꦪᲪ辫ʫ疫곐굄궸긭꺡꼖꾋뀀끵냪녠뇖뉋닂댸뎮됥뒜딓떊똁뙹뛰띨럠롙룑륊맂먻몵묮뮧밡벛봕붏븊뺄뻿뽺뿵쁰샬셧쇣쉟싛썘쏔쑑쓎앋었왆웃읁잿젽좼줺즹쨸쪷쬶쮶찵첵촵춵츶캶켷쾸퀹킺턼톾툿틁퍄폆푉퓋핎헑확훘ퟗ擘泙盚ﯛ胜ל諝ო雞᳞ꋟ⧟꿠㛠뷡䓡쳢叢�珤ﳥ蓦෦雧ῧꧨ㋨볩䛩탪寪烫ﯬ蛭ᇭ鳮⣮듯䃯쳰声狱￲賳᧳ꟴ㓴싵僵�淶ﯷ諸᧸꣹㣹쟺基矼߼飽⧽뫾䯾�淿＊敮摳瑲敡洊敮摯扪਱㈴‰⁯扪਼㰊⽒敧楳瑲礨䅤潢�

