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Abstract

We introduce Mistral 7B, a 7-billion-parameter language model engineered for
superior performance and efficiency. Mistral 7B outperforms the best open 13B
model (Llama 2) across all evaluated benchmarks, and the best released 34B
model (Llama 1) in reasoning, mathematics, and code generation. Our model
leverages grouped-query attention (GQA) for faster inference, coupled with sliding
window attention (SWA) to effectively handle sequences of arbitrary length with a
reduced inference cost. We also provide a model fine-tuned to follow instructions,
Mistral 7B — Instruct, that surpasses Llama 2 13B — chat model both on human and
automated benchmarks. Our models are released under the Apache 2.0 license.
Code: https://github.com/mistralai/mistral-src

Webpage: https://mistral.ai/news/announcing-mistral-7b/

1 Introduction

In the rapidly evolving domain of Natural Language Processing (NLP), the race towards higher model
performance often necessitates an escalation in model size. However, this scaling tends to increase
computational costs and inference latency, thereby raising barriers to deployment in practical,
real-world scenarios. In this context, the search for balanced models delivering both high-level
performance and efficiency becomes critically essential. Our model, Mistral 7B, demonstrates that
a carefully designed language model can deliver high performance while maintaining an efficient
inference. Mistral 7B outperforms the previous best 13B model (Llama 2, [26]) across all tested
benchmarks, and surpasses the best 34B model (LLaMa 34B, [25]) in mathematics and code
generation. Furthermore, Mistral 7B approaches the coding performance of Code-Llama 7B [20],
without sacrificing performance on non-code related benchmarks.

Mistral 7B leverages grouped-query attention (GQA) [1], and sliding window attention (SWA) [6, 3].
GQA significantly accelerates the inference speed, and also reduces the memory requirement during
decoding, allowing for higher batch sizes hence higher throughput, a crucial factor for real-time
applications. In addition, SWA is designed to handle longer sequences more effectively at a reduced
computational cost, thereby alleviating a common limitation in LLMs. These attention mechanisms
collectively contribute to the enhanced performance and efficiency of Mistral 7B.
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Mistral 7B is released under the Apache 2.0 license. This release is accompanied by a reference
implementation' facilitating easy deployment either locally or on cloud platforms such as AWS, GCP,
or Azure using the vLLM [17] inference server and SkyPilot . Integration with Hugging Face * is
also streamlined for easier integration. Moreover, Mistral 7B is crafted for ease of fine-tuning across
a myriad of tasks. As a demonstration of its adaptability and superior performance, we present a chat
model fine-tuned from Mistral 7B that significantly outperforms the Llama 2 13B — Chat model.

Mistral 7B takes a significant step in balancing the goals of getting high performance while keeping
large language models efficient. Through our work, our aim is to help the community create more
affordable, efficient, and high-performing language models that can be used in a wide range of
real-world applications.

2 Architectural details
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Figure 1: Sliding Window Attention. The number of operations in vanilla attention is quadratic in the sequence
length, and the memory increases linearly with the number of tokens. At inference time, this incurs higher
latency and smaller throughput due to reduced cache availability. To alleviate this issue, we use sliding window
attention: each token can attend to at most W tokens from the previous layer (here, W = 3). Note that tokens
outside the sliding window still influence next word prediction. At each attention layer, information can move
forward by W tokens. Hence, after £ attention layers, information can move forward by up to k£ x W tokens.

Mistral 7B is based on a transformer architecture [27]. The main

parameters of the architecture are summarized in Table 1. Compared Parameter Value
to Llama, it introduces a few changes that we summarize below. dim 4096
Sliding Window Attention. SWA exploits the stacked layers of a trans- Egi:yziz 13;
former to attend information beyond the window size W. The hidden hidden dim 14336
state in position ¢ of the layer k, h;, attends to all hidden states from n_heads 32
the previous layer with positions between ¢ — W and ¢. Recursively, n_kv_heads 8
h; can access tokens from the input layer at a distance of up to W x k window_size 4096
tokens, as illustrated in Figure 1. At the last layer, using a window size context_len 8192
of W = 4096, we have a theoretical attention span of approximately vocab_size 32000

131K tokens. In practice, for a sequence length of 16K and W = 4096,
changes made to FlashAttention [11] and xFormers [18] yield a 2x
speed improvement over a vanilla attention baseline.

Table 1: Model architecture.

Rolling Buffer Cache. A fixed attention span means that we can limit our cache size using a rolling
buffer cache. The cache has a fixed size of W, and the keys and values for the timestep ¢ are stored
in position ¢ mod W of the cache. As a result, when the position ¢ is larger than W, past values
in the cache are overwritten, and the size of the cache stops increasing. We provide an illustration
in Figure 2 for W = 3. On a sequence length of 32k tokens, this reduces the cache memory usage
by 8x, without impacting the model quality.

"https://github.com/mistralai/mistral-src
*https://github.com/skypilot-org/skypilot
*https://huggingface.co/mistralai
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Figure 2: Rolling buffer cache. The cache has a fixed size of W = 4. Keys and values for position ¢ are stored
in position ¢ mod W of the cache. When the position ¢ is larger than W, past values in the cache are overwritten.
The hidden state corresponding to the latest generated tokens are colored in orange.

Pre-fill and Chunking. When generating a sequence, we need to predict tokens one-by-one, as
each token is conditioned on the previous ones. However, the prompt is known in advance, and we
can pre-fill the (k, v) cache with the prompt. If the prompt is very large, we can chunk it into smaller
pieces, and pre-fill the cache with each chunk. For this purpose, we can select the window size as
our chunk size. For each chunk, we thus need to compute the attention over the cache and over the
chunk. Figure 3 shows how the attention mask works over both the cache and the chunk.
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Figure 3: Pre-fill and chunking. During pre-fill of the cache, long sequences are chunked to limit memory

usage. We process a sequence in three chunks, “The cat sat on”, “the mat and saw”, “the dog go to”. The figure
shows what happens for the third chunk (“the dog go to”): it attends itself using a causal mask (rightmost block),
attends the cache using a sliding window (center block), and does not attend to past tokens as they are outside of
the sliding window (left block).

3 Results

We compare Mistral 7B to Llama, and re-run all benchmarks with our own evaluation pipeline for
fair comparison. We measure performance on a wide variety of tasks categorized as follow:

¢ Commonsense Reasoning (0-shot): Hellaswag [28], Winogrande [21], PIQA [4], SIQA [22],
OpenbookQA [19], ARC-Easy, ARC-Challenge [9], CommonsenseQA [24]

* World Knowledge (5-shot): NaturalQuestions [16], TriviaQA [15]

¢ Reading Comprehension (0-shot): BoolQ [8], QuAC [7]

* Math: GSMS8K [10] (8-shot) with maj@8 and MATH [13] (4-shot) with maj@4
¢ Code: Humaneval [5] (0-shot) and MBPP [2] (3-shot)

e Popular aggregated results: MMLU [12] (5-shot), BBH [23] (3-shot), and AGI Eval [29]
(3-5-shot, English multiple-choice questions only)

Detailed results for Mistral 7B, Llama 2 7B/13B, and Code-Llama 7B are reported in Table 2. Figure 4
compares the performance of Mistral 7B with Llama 2 7B/13B, and Llama 1 34B* in different
categories. Mistral 7B surpasses Llama 2 13B across all metrics, and outperforms Llama 1 34B on
most benchmarks. In particular, Mistral 7B displays a superior performance in code, mathematics,
and reasoning benchmarks.

*Since Llama 2 34B was not open-sourced, we report results for Llama 1 34B.
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Figure 4: Performance of Mistral 7B and different Llama models on a wide range of benchmarks. All
models were re-evaluated on all metrics with our evaluation pipeline for accurate comparison. Mistral 7B
significantly outperforms Llama 2 7B and Llama 2 13B on all benchmarks. It is also vastly superior to Llama 1
34B in mathematics, code generation, and reasoning benchmarks.

Model Modality MMLU HellaSwag WinoG PIQA Arc-e Arc-c NQ TriviaQA HumanEval MBPP MATH GSM8K
LLaMA 27B  Pretrained 44.4%  77.1% 69.5% 77.9% 68.7% 43.2% 24.7% 63.8% 11.6%  261% 3.9% 16.0%
LLaMA 2 13B  Pretrained 55.6% 80.7%  72.9% 80.8% 75.2% 48.8% 29.0% 69.6% 189%  354% 6.0% 34.3%

Code-Llama 7B Finetuned 36.9%  62.9%  62.3% 72.8% 59.4% 34.5% 11.0% 34.9% 311% 525% 52% 20.8%
Mistral 7B Pretrained 60.1% 81.3% 753% 83.0% 80.0% 55.5% 28.8% 69.9% 30.5% 47.5% 13.1% 52.2%

Table 2: Comparison of Mistral 7B with Llama. Mistral 7B outperforms Llama 2 13B on all metrics, and
approaches the code performance of Code-Llama 7B without sacrificing performance on non-code benchmarks.

Size and Efficiency. We computed “equivalent model sizes” of the Llama 2 family, aiming to
understand Mistral 7B models’ efficiency in the cost-performance spectrum (see Figure 5). When
evaluated on reasoning, comprehension, and STEM reasoning (specifically MMLU), Mistral 7B
mirrored performance that one might expect from a Llama 2 model with more than 3x its size. On
the Knowledge benchmarks, Mistral 7B’s performance achieves a lower compression rate of 1.9x,
which is likely due to its limited parameter count that restricts the amount of knowledge it can store.

Evaluation Differences. On some benchmarks, there are some differences between our evaluation
protocol and the one reported in the Llama 2 paper: 1) on MBPP, we use the hand-verified subset 2)
on TriviaQA, we do not provide Wikipedia contexts.

4 Instruction Finetuning

Tq evaluate the generalﬁzatign capgbilities of Chatbot Arena
Mistral 7B, we fine-tuned it on instruction datasets ~Model ELO Rating M7 Bench
publicly available on the Hugging Face repository.

; i ; ioaq.  WizardLM 13B v1.2 1047 7.2

NQ proprietary data or training tl‘l.CkS were utilized: Mistral 7B Instruct 1031 6.84 +/- 0.07
Mistral 7B — Instruct model is a simple and

.. . Llama 2 13B Chat 1012 6.65
preliminary demonstration that the base model can ;.. .- 13 1041 6.57
easily be fine-tuned to achieve good performance. | j;ma 2 7B Chat 985 6.27
In Table 3, we observe that the resulting model, vicuna 7B 997 6.17
Mistral 7B — Instruct, exhibits superior perfor- Alpaca 13B 914 453

mance compared to all 7B models on MT-Bench,
and is comparable to 13B — Chat models. An
independent human evaluation was conducted on
https://1llmboxing.com/leaderboard.

Table 3: Comparison of Chat models. Mistral 7B —
Instruct outperforms all 7B models on MT-Bench, and
is comparable to 13B — Chat models.

In this evaluation, participants were provided with a set of questions along with anonymous responses
from two models and were asked to select their preferred response, as illustrated in Figure 6. As of
October 6, 2023, the outputs generated by Mistral 7B were preferred 5020 times, compared to 4143
times for Llama 2 13B.
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Figure 5: Results on MMLU, commonsense reasoning, world knowledge and reading comprehension for
Mistral 7B and Llama 2 (7B/13B/70B). Mistral 7B largely outperforms Llama 2 13B on all evaluations, except
on knowledge benchmarks, where it is on par (this is likely due to its limited parameter count, which limits the
amount of knowledge it can compress).

5 Adding guardrails for front-facing applications

The ability to enforce guardrails when it comes to Al generation is important for front-facing appli-
cations. In this section, we highlight how to leverage system prompting to optionally enforce output
constraints on top of our models. Additionally, we showcase the ability of Mistral 7B to perform
fine-grained content moderation, which can be useful to enforce quality content in applications.

5.1 System prompt to enforce guardrails

We introduce a system prompt (see below) to guide the model to generate answers within specified
guardrails, similar to the work done with Llama 2. Using this prompt allows the user to move on the
Pareto front of model utility / guardrails enforcement, as indicated in Table 4.

Always assist with care, respect, and truth. Respond with utmost utility yet securely. Avoid harmful,
unethical, prejudiced, or negative content. Ensure replies promote fairness and positivity.

We use a set of 175 unsafe prompts for evaluating safety. -
With the recommended system prompt, the model properly Guardrails MT Bench
declines to answer 100% of the harmful questions. No system prompt 6.84 + 0.07
Llama 2 system prompt  6.38 & 0.07
Mistral system prompt ~ 6.58 & 0.05

As an illustration, we provide in Table 5 the answers of
both Mistral 7B — Instruct and Llama 2 Chat 13B to the
question How to kill a linux process with system prompts 1able 4: System prompts. Mean official
activated. We observe that Mistral 7B provides a correct MT Bench score over 10 iterations with
response while Llama 2 declines to answer. Note that on ?:??:frgrgsz;atﬁgéféw 11 ;%a£7§h;tlgs;?ri;
this specific question, both models answer correctly when — ea o o o

system prompts are deactivated.

5.2 Content moderation with self-reflection

Mistral 7B — Instruct can be used as a content moderator: the model itself is able to accurately
classify a user prompt or its generated answer as being either acceptable or falling into one of the
following categories: Illegal activities such as terrorism, child abuse or fraud; Hateful, harassing
or violent content such as discrimination, self-harm or bullying; Unqualified advice for instance
in legal, medical or financial domains.



Model Answer

To kill a Linux process, you can use the " kill' command followed by the process ID (PID)
of the process you want to terminate. For example, to kill process with PID 1234, you
would run the command “kill 1234 . It’s important to note that killing a process can

have unintended consequences, so it’s generally a good idea to only kill processes that
you are certain you want to terminate. Additionally, it’s generally a good idea to use the
“kill* command with caution, as it can be used to terminate critical system processes that
are necessary for the operation of the system.

Mistral 7B — Instruct
with Mistral system prompt

As a helpful and respectful assistant, I cannot provide information on how to kill a Linux
process. It is not appropriate or ethical to intentionally harm or terminate processes, as it
Llama 2 13B — Chat can cause damage to the system and potentially result in data loss. Additionally, it is
with Llama 2 system prompt important to respect the autonomy and security of other users’ processes, as they may be
critical to their work or personal activities. Instead, I suggest that you explore other
options to address any issues or concerns you may have.

Table 5: Comparison between Mistral and Llama system prompts. Mistral provides the right answer whereas
Llama 2 declines to answer to the question How fo kill a linux process.

To do so, we designed a self-reflection prompt that makes Mistral 7B classify a prompt or a generated
answer. We evaluated self-reflection on our manually curated and balanced dataset of adversarial
and standard prompts and got a precision of 99.4% for a recall of 95.6% (considering acceptable
prompts as positives).

The use cases are vast, from moderating comments on social media or forums to brand monitoring
on the internet. In particular, the end user is able to select afterwards which categories to effectively
filter based on their particular use-case.

6 Conclusion

Our work on Mistral 7B demonstrates that language models may compress knowledge more than
what was previously thought. This opens up interesting perspectives: the field has so far put the
emphasis on scaling laws in 2 dimensions (directly associating model capabilities to training cost, as
in [14]); the problem is rather 3 dimensional (model capabilities, training cost, inference cost), and
much remains to be explored to obtain the best performance with the smallest possible model.
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Can you recommend a foundational and accessible book about

quantum physics?

Round Winner: mistral-7b-instruct-v0.1

mistral-7b-instruct-v0.1 & Round
Winner &

A great book for a foundational
understanding of quantum physics is
"The Quantum Universe: Everything
that Can Happen Does Happen" by
Brian Cox and Jeff Forshaw. This
book is accessible and easy to
understand, making it a great
choice for beginners. It covers all
the basics of quantum mechanics,
including superposition,
entanglement, and the uncertainty
principle. The authors also explore
the implications of quantum physics
for our understanding of the
universe, including the nature of
time and space. Overall, "The
Quantum Universe" is an excellent
choice for anyone looking to gain a
foundational understanding of this
fascinating field

1lama-2-13b-chat

Certainly! For a foundational and
accessible introduction to quantum
physics, I highly recommend "The
Feynman Lectures on Physics" by
Richard Feynman. This classic text
provides a clear and engaging
overview of the principles and
concepts of quantum mechanics, with
minimal mathematical formalism and
plenty of illustrations and
examples. It's a great starting
point for anyone looking to gain a
deeper understanding of quantum
physics without getting bogged down
in too much technical detail.

Figure 6: Human evaluation of Mistral 7B — Instruct vs Llama 2 13B — Chat Example. An example of
human evaluation from 11mboxing. com. The question asks for recommendations of books in quantum physics.
Llama 2 13B — Chat recommends a general physics book, while Mistral 7B — Instruct recommends a more
relevant book on quantum physics and describes in the contents in more detail.
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